OPTIMIZATION RELATED TO SOME NONLOCAL PROBLEMS OF
KIRCHHOFF TYPE

MOHSEN ZIVARI-REZAPOUR, AMIN FARJUDIAN, AND BEHROUZ EMAMIZADEH

ABsTRACT. In this paper we introduce two rearrangement optimization problems—one be-
ing a maximization and the other a minimization problem—related to a nonlocal boundary
value problem of Kirchhoff type. Using the theory of rearrangements as developed by
G. R. Burton we are able to show that both problems are solvable, and derive the corre-
sponding optimality conditions. These conditions in turn provide information concerning
the locations of the optimal solutions. The strict convexity of the energy functional plays a
crucial role in both problems. The popular case in which the rearrangement class (i. e. the
admissible set) is generated by a characteristic function is also considered. We show that
in this case, the maximization problem gives rise to a free boundary problem of obstacle
type, which turns out to be unstable. On the other hand, the minimization problem leads to
another free boundary problem of obstacle type, which is stable. Some numerical results
are included to confirm the theory.

1. INTRODUCTION
Consider the following Kirchhoff boundary value problem:

~M(||ull”)Apu = f(x) inD
u=20 on dD,

(1.1)

where D is a smooth bounded domain in RY, f € L9(D) is a non-negative (a. e.) and non-
trivial (i. e. not identically zero) function in D, and M : [0, co) — (0, c0) is continuous and
strictly increasing. Henceforth, p € (1,00), 1/p + 1/q = 1, and ||u| = (fD |VulPdx)'/P. The
differential operator A, denotes the classical p-Laplace operator which is defined by

Apu =V - ((VulP~2Vu).

The problem (1.1) is called nonlocal because of the presence of M(||u||?), a quantity which
is not measured pointwise.

The present paper is concerned with the role of the input function f in (1.1), in a specific
way, which we elaborate in detail. To emphasize the dependence on f we denote the unique
solution of (1.1) by u; and define a quantity—which we will refer to as energy—associated
with (1.1):

1 .
CD(f)=ffufdx——M(IquII”),
D p

where M(t) = fol M(s) ds. The key requirement is for the input function to be selected from
the set R(fp) of rearrangements generated by a prescribed function fy. We ask whether it is
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possible to find a member of R(fy) which generates the maximum energy. Mathematically
speaking, we are investigating the solvability of the following maximization problem:

(1.2) sup O(f);
feR(fo)

that is to say, whether or not we can find f € R(fo) such that (I)(f) = SUDPjeg(fyy PU)- As
we will see the answer to this question is affirmative. In addition, we will also show that if
f is a solution of (1.2), then the optimality condition leads to the information:

f =0y, aeinD,

for some increasing function ¢. Incorporating this information into (1.1), we obtain an
even more non-linear differential equation:

(1.3) ~M(lalP)Aya = (@) inD

’ =0 on dD,
where we have used & in place of u .

We also address the minimization problem:
(1.4) inf O(f).

FeR(fo)

Indeed, we prove that (1.4) is also solvable. Moreover, thanks to the strict convexity of @,
the minimizer f is unique and satisfies the optimality condition:

(1.5) f=dw,

almost everywhere in D, for some decreasing function ¢. Here we have used # in place of
uy. Whence we derive:

J(it) inD

1.6
(16) =0 on 0D.

=<

{ —M(lEl|P)A i

In case the generator fj is a characteristic function, we will see that the differential equa-
tion in (1.3) becomes a one-phase obstacle problem of unstable type whose free boundary
has not been investigated before except for p = 2. On the other hand, the differential equa-
tion in (1.6) becomes a one-phase obstacle problem of stable type. For this type of free
boundary problem there is an abundance of references in the literature. In the present paper
we will not make any efforts in this direction. However, we have included some numerical
examples to support the theory.

Let us present a physical motivation for studying the optimization problems (1.2) and
(1.4) when p = 2, in which case (1.1) would be the steady state equation corresponding to
the well known Kirchhoff equation:

(1.7) Uy —M( f |Vu|2dx) Au = f(t,x),
D

which was first introduced by Kirchhoff [20] as a generalization of the classical wave
equation by adding the nonlinearity M ( fD IVuIde) in front of the diffusion term. The
function f(¢,x) in (1.7) stands for the external force. Usually, M : R — R is an affine
function M(s) = As + B, in which both A and B are positive constants. The function u
stands for the displacement of the elastic membrane that occupies the region D in R.
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Multiplying the differential equation in (1.1) by u and integrating the result over D,
bearing in mind that u vanishes on the boundary (and p is assumed to be 2), leads to:

(1.8) Allul® + B)lull® = f fudx=:7y.
D
From (1.8), one gets:

, —B+ /B2+4yA
(1.9) lul| = —————.
2A
From (1.9), we obtain the following formulation for the energy functional:

O(f) =§(foufdx),

for an appropriate function ¢ : R, — R. Whence, the energy @(f) turns out to be a quantity
that depends on the total displacement of the membrane, relative to the measure fdx.

Now let us consider the special case where fj is a characteristic function, thereby all
members of the rearrangement class R(fy) would also be characteristic functions supported
on sets having the same measure as that of the support of fy. In this case, the energy
functional ®(f) for f € R(fy) is simply a quantity that depends on the total displacement
of the membrane only inside the region which is subject to the uniform external force
f(x) = 1,1.e. D(E) = f(fE ude), where we have used ®(E) and ug in place of O(yg)
and u,,, respectively. In this setting, the maximization problem (1.2) amounts to that of
a search for an optimal region £ inside D such that ®(E) is largest in comparison with
all other competing regions E satisfying | E| = | E|. The minimization problem (1.4) is
interpreted similarly.

Boundary value problems of Kirchhoff type have been investigated by many authors.
The ones who inspired our research are [1, 8, 10] and the references therein. That said, we
would like to stress that the aim of this article is to introduce a new type of rearrangement
optimization problem that can be thoroughly analyzed using the well developed theory of
rearrangements by G. R. Burton [5, 6]. The reader may refer to [13, 14, 15, 16, 9, 22, 12]
which discuss other types of rearrangement optimization problems.

2. PRELIMINARIES

In this section we collect the tools that we need to prove our claims. Let us start with
the following:

Definition 2.1. We say u € Wé"’ (D) is a solution of (1.1) provided that:

(2.1) M(IIuIIp)f IVulP>Vu - Vvdx = ffvdx, Vv e Wé""(D).
D D

The next result is a basic one:

Lemma 2.2. Problem (1.1) has a unique solution uy which is the unique maximizer of the
functional:

1 .
Yr(w) = foudx— ;M(IIMIIP), (Yu € Wy"(D))

in which M(f) = fot M(s) ds. Moreover, the following holds:

1w
2.2) up =175 /

wyll”
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where wy € W(i’p (D) is the solution of:

{—A,,w =f(x), inD

2.3
@3 w=0 on 0D,

and t uniquely solves:
2.4) ta M(t) = |lwylle.
Remark 2.3. Note that in equation (2.2) as f is assumed to be non-trivial, we have wy # 0.

Remark 2.4. For equation (2.4) to be solvable in ¢ we need the range of ¢'/9M(¢) (for
t > 0) to cover all of [0, co). But this follows from our assumptions regarding the function
M, i.e. M being positive, continuous and strictly increasing for # > 0. In particular, Vt >
0 : M(t) > M(0) > 0, which combined with the fact that lim,_,. /7 = oo, would imply
that lim,_, '/2M(f) = co. Hence:

(1M (@) | 1> 0} = [0, c0).
Uniqueness of the solution follows from the fact that t'/9M(¢) is strictly increasing.

Proof. We set K = —y;. Let us note that K € C '(X,R), where X = W;"" (D). Next, we
show that K is coercive. For ||u|| > 1, we have:

lat? 1
Kuw) > — M(S)ds—ffudx > —M)((lull” = 1) = ClIfllllull,
P Ji D p

where we have used the monotonicity of M in conjunction with the Holder and Poincaré
inequalities. Thus, K (1) — oo as |ju|| — oo, hence K is coercive. Finally, as M(¢) is strictly
increasing then M is strictly convex, implying that % is also strictly convex. So, we can
apply the direct method of calculus of variations to conclude that the minimization:

inf K'(u)

ueX
has a unique solution uy. Whence:

K (up)v) = M(Ilu_fll”)f IVqu"’QVuf -Vvdx — f fvdx=0, VYveX
D D

Thus, uy is a solution of (1.1). Conversely, any solution of (1.1) is a minimizer of K(u)
relative to u € X.

Note that since #'/9M(z) is continuous, strictly increasing and its range is [0, c0), the
solution to (2.4) is unique. Verification of (2.2) is elementary. O

Let us fix a non-negative and non-trivial function fy € L7(D) which is bounded on D.
The rearrangement set generated by f; is defined as follows:

(2.5) R(fo) ={f € LY(D) |Va 20 : As(a) = 15 (a)},

where A¢(@) = |[{x € D| f(x) 2 a}|, known as the distribution function of f. Henceforth,
|E| denotes the N-dimensional Lebesgue measure of E ¢ RY. The tools that we need from

rearrangement theory are stated in the next lemma; for the proof the reader is referred to
(5, 6].

Lemma 2.5. Consider a non-negative f, € LY(D) and let R = R(fy) be its generated
rearrangement set as defined in (2.5) above. Then:

(i) RS LUD)and Vf € R:\flly = lfollg-

(ii) The weak closure of R in L1(D), denoted R, is weakly compact and convex.
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(iii) For every g € LP(D) the linear functional L(f) = fD fgdx has a maximizer f relative
tofeR

(iv) If f is the unique maximizer of the linear functional L defined in (iii) relative to R,
then it is also the unique maximizer of L relative to R. Moreover, f = (), almost
everywhere in D, for some increasing function 1.

The derivation of the optimality condition (1.5) crucially depends on the next result
whose proof can be extracted from either of [5] or [6]:

Lemma 2.6. Let fy and R be as in Lemma 2.5. Suppose g € LP(D), and its graph has no
significant flat zones; i. e. the sets {g = c} have zero measure, for every ¢ € R. Then, there
exists a decreasing function  such that J(g) € R, and f = y(g) is the unique minimizer of
the linear functional L(f) = fD fgdx relative to f € R.

Let us set K(t) = t'/9M(¢). Note that K is continuous and strictly increasing on [0, c0),

1
and (by Remark 2.4) its range covers [0, o). Whence, the function &(¢) = % (K’l(ﬂ’/ ‘1)) r
is well defined on (0, o0). Thus, from (2.2) and (2.4), we obtain:

)
_ e,
lIwll e

(2.6) up = 1'v

From (2.6) and [27], one gets uy € c(D)nc! (5) N leml (D). Moreover, as a consequence
of Harnack’s inequality u; is strictly positive in D.

Remark 2.7. In general for the boundary value problem:

-A,Q =h(x), inD
0=0 on dD,

in which 4 is bounded, we have Q € Wi}‘:_ (D). To be more precise, if p > 2 then Q €
W2’2(D), whereas for p € (1,2) one gets Q € WP (D).

loc loc

We are heading towards tackling the maximization problem (1.2). First we ensure that
the functional @ is bounded above on R. In fact ® is bounded above on the larger set R.
To see this, it suffices to observe that Q(f) = fD fuy dx is bounded above on R. For a fixed

f € R equation (2.1) implies:
2.7) Ml gl lleefll” = ffuf dx < || fllgllugllp < Cllfllglluegll,
D

where we have used the Holder inequality in conjunction with the Poincaré inequality.'
We know that there exists a sequence {f,} in R such that f, — f. So, by the weak lower
semi-continuity of the L7-norm, we obtain ||f||, < liminf,_ [|f:ll; = |lfoll;. Therefore,
from (2.7) we get M(Ilufll”)llufllp’l < C. Setting t = ||lug||”, yields M)t < C. Since
limy_,eo M(£)#'/4 = oo, we infer llusll < C. Whence, we obtain Q(f) < Cl|foll, which is the
desired result.

The boundedness of @ from above implies that the maximization problem (1.2) is mean-
ingful. We now start to show that the problem is in fact solvable:

Lemma 2.8. The functional ® : (ﬁ, o(L1,LP)) — R is sequentially continuous. Here,
o (L1, LP) denotes the weak topology on L1(D).

'We denote our constants by the symbol C, even though their values may vary from one place to another.
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Proof. Let us consider f, — f in L(D); that is, the sequence {f,} converges weakly in
Li1(D) to f. We want to show that ®(f,) — ®(f) as n — oo. To this end, first notice that
from the weak convergence of {f;}, we can infer that {f,} is bounded in LY(D); i.e. || fylly <
C. For simplicity, let us denote wy, as w,. Multiplying the differential equation in (2.3) by
wy, and integrating the result over D would yield |jw,||P = fD fuwn dx < Cllw,|l, where we
have applied the combination of the Holder inequality and the Poincaré inequality. This
implies that ||w,|| < C, hence {w,} is bounded in X := W(;"" (D). As a consequence, {w,}
contains a subsequence—still denoted {w,}—such that for some w € X:

w, =win X
w, = w in LP(D)

Therefore:

S—

1
fwpdx 51 fD (pfwy = 1Vwyl?) dx

L f (pfw — [Vwl?) dx
p—-1Jp

D

(2.8)

\%

\%

lim sup f (pfown — V) dx
D

- 1 n—oo

1
lim supf (pf,,wf - Iwalp)dx
1 D

- n—oo

= p%l fD (pfwy = 1Vwel?) dx

f fwrdx,
D

where the first inequality in (2.8) follows from the variational formulation of wy, and in
the second one we have used the weak lower semicontinuity of the X-norm. Clearly these
inequalities must all be equalities, and as a result w = wy.

Next we use the following equation:

\%

(2.9) YveX: f [VwalP~2Vw,, - Vvdx = f favdx.
D D

By setting v = w,, in (2.9) we obtain [ fyw,dx = [, [Vw,[Pdx = [w,lP. But, [, fuw, dx —
fowf dx, since f, — fin LY(D) and w, — wy in LP(D). Whence, ||w,[|’ — fow_f dx =
lwsllP. Thus, we obtain [lw,|| — [lwy|| as n — co.

Setting u, = uy,, and recalling (2.6), we find u, = &(|lw,|[)w,. This in turn implies
that [luy|| = EwalDlwall — E(lwIDIwgll = llugll as n — co. So, we obtain M(|lunll?) —
M(||uy||P) as n — oco. On the other hand:

Q(fn)=£ﬁ1undx=§(llwnll)ﬁfnwn—>§(I|Wfll)foWfdx=Q(f)

as n — oo. Thus, ®(f,) = O(f) as n — oo. So, ® is weakly continuous in LI(D). This
completes the proof of the lemma. O

Remark 2.9. In the proof of Lemma 2.8, we have used the continuity of £ at ||w ||, whose
validity relies on establishing that w; # 0. In fact, as f € R we have

[{xeD: f(x) >0} = |{xeD: fy(x) >0}



OPTIMIZATION RELATED TO SOME NONLOCAL PROBLEMS OF KIRCHHOFF TYPE 7

a proof of which can be found in [5]. Hence, f is non-negative and non-trivial which
guarantees wy # 0.

Lemma 2.10. The functional ® : LY(D) — R is strictly convex.

Proof. Consider u € X = W,”(D) and set yp(u) = [ fudx - LM(lliP) (Vf € LA(D)).
Then, we have Yf € LY(D) : ®(f) = sup,.x vs(u), i.e. the supremum of a family of affine
functions, hence it is convex. Next, we show that @ is in fact strictly convex. To this end,
consider f, g € L1(D), f # g, and suppose that for some ¢ € (0, 1):

(2.10) Of+ (1 -1)g) =tO(f) + (1 —HD(g).

For simplicity, we set u#; = u;r4(1-ng. Using (2.10), with some straightforward calculations
incorporating the fact that uy and u, are the maximizers of vy, and 7,, respectively, we
obtain:

1 . 1 .
@.11) j)mm—ﬁmwm=j}ww——mwmm
D p D P
and
1 . 1 .
2.12) f@mw——Mwm%=f§%mF—Mww%
D p D p

Once again, by the maximality of u and u,, from (2.11) and (2.12) we deduce that u, =
uy = uy. On the other hand, we have:

~M(llusll")Apus = f(x) in D,
and
—M(llugll”)Apug = g(x) in D.
This implies f = g, which is a contradiction. O

Our next aim is to prove that @ is Gateaux differentiable. First we need a generic
estimate. So, consider f, g € LY(D). Then

1 .
<D(f)+f(g—f)ufdx fgufdx——M(Ilufll”)
D D p

O(g)

1 .
| ruwas= ity + [ o= pugas
D p b
Mﬁ+£@—ﬁ%m.

IA

IA

which implies:
(2.13) fD(g—f)ufdefD(g)—CD(f)SL(g—f)ung-

Lemma 2.11. The functional ® : L1(D) — R is Gdteaux differentiable. Moreover, the
Gateaux derivative O’ (f) of ® at any f € L1(D) can be identified with uy € LP(D).

Proof. Consider f,h € LY(D) and t € (0,1). Set g, := f + t(h — f) and apply (2.13) to
derive:

(2.14) f(h — Puydx < M < f(h — fug, dx.
D D

By passing to the limit #+ — 0* in (2.14) and keeping in mind that u, — uy in L?(D)
(this is a standard result, see for example Lemma 4.2 in [11]), we obtain ®'(f)(h — f) =
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fD(h — f)uy dx. This shows that @ is differentiable at f and its derivative can be identified
with u f- O

3. MAIN RESULTS

The main results regarding the maximization problem (1.2) and the minimization prob-
lem (1.4) are presented in this section.

3.1. Maximization problem. We begin with the following:

Theorem 3.1. The maximization problem (1.2) is solvable. Moreover, if f € R is a solu-
tion, then

3.1) f=dwp,
almost everywhere in D, for some a priori unknown increasing function .

Proof. We first relax the maximization problem (1.2) by extending the admissible set R to
R and consider:

(3.2) sup O(f).
ferR
From Lemmas 2.5 and 2.8 we infer that (3.2) is solvable. Let us suppose f € R is a solution

of (3.2). Setg = <D’(7) (.e. uy as in Lemma 2.11) and consider the linear functional

L(f) = fD fgdx. From item (iii) of Lemma 2.5 we infer existence of f € R that maximizes

L(f) relative to f € R. Since L is weakly continuous, we then deduce L(f) < L(f). Next,
by convexity of ® we get:

(3.3) O(f) 2 O(f) + L(f - f) = O(f) = O(f),

where the second inequality in (3.3) is a consequence of L(?) < I( f), already observed
above. Hence, all inequalities in (3.3) are in fact equalities and we obtain @( f) = (I)(f).
This, in turn, implies that f solves (1.2), as desired.

Now we proceed to derive (3.1). To this end, we assume £ is any solution of (1.2). By

A

Lemma 2.10, @ is strictly convex. Hence, for any f € R\ {f}:
(34) (f) > O(f) + fD (f = PHiadx,

where it = up = CD’(f). Since d)(f) > ®(f) for every f € R, we find from (3.4) that
[, fivdx < [ fivdx, for all f € R\ {f}. So we can apply item (iv) of Lemma 2.5 which

guarantees the existence of an increasing function ¢ for which (3.1) holds. This completes
the proof of the theorem. O

In the introduction we referred to the optimality condition as “information”. Our next
result partly explains the choice of this terminology. Henceforth, by the support S (f) of a
non-negative function f we mean the set of points where f is positive,” i. e.

S(f)={xeD: f(x)>0}.

Note that this is different from the usual topological definition of the support of a function where the closure
of this set is taken.
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Corollary 3.2. In addition to the hypotheses of Theorem 3.1, assume that the support of f
is an essentially proper subset of D, i.e. |S(fo)| < |D|. Also, suppose that f is a solution
of the maximization problem (1.2), and it = uy. Then, i attains its largest values on the

support of f, in the following sense:
3.5) @ = ess infs(f)it > ess supD\S(f)ﬁ =p0.

Proof. In order to derive a contradiction, let us assume that the assertion (3.5) is false. So,
we can find constants @ and ) such that @ < @; < 8; < . From the definitions of @ and 8
we infer existence of two measurable sets A C S(f) and B C D\ S(f) such that |A| |B| > O,
and:

u<a; onA
it>f onB.

Without loss of generality we may assume |A| = |B|, otherwise we consider subsets of them.
From classical measure theory (e. g. [25]) we know that there exists a measure preserving
bijection 7 : A — B. Using 17 we define a new element of R as follows:

f(n(x)) xeA (Note that here f(5(x)) = 0)
fo =3 fa'(x) xeB
f x¢AUB.

A close inspection of the proof of Theorem 3.1 confirms that f maximizes the linear
functional L(f) = fD fivdx, relative to f € R. Since f € R, we have L(f) < L(f). On the
other hand,

ffﬁdx—ffﬁdx = ffﬁdx+ffﬁdx—ffﬁdx—ffﬁdx
D D A B A B
fﬁw—fﬁw

B A

f for' (x)idx - f fadx

B A

fA Flam(x) - a(x) dx

= (B —al)ffdx
A
> 0.
Thus, L(f) < L(f), which is a contradiction. O

From Theorem 3.1 we see that if f is a solution of (1.2), then &t = up satisfies (1.3).
Let us briefly look into (1.3) for the case when the rearrangement class R is generated by
a characteristic function fy = yg,. Here Ey is a measurable subset of D. If |[Ey| = 5 < |D],
then it is easy to see that

R ={xe | E € D is measurable and |E| = 3}.

It is well-known that R = {f : 0 < f < 1, fodx = B}. Let us use the notation
¢(E) = D(yg). Identifying yr with E, the maximization problem in this new setting
becomes:

(3.6) sup ¢(E).
|E|=B
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The maximization problem (3.6) can be thought of as a shape optimization problem, where
each E indicates a shape.

As a consequence of Theorem 3.1, we know that there exists E < D which solves
the maximization problem (3.6). Moreover, from (3.1), since ¢ is increasing, we infer
the existence of a constant 6 (which is necessarily positive) such that £ = {ii > &} or
E = {ii > 8}, modulo a set of measure zero. Note that as i € leocl (D), the set {it = 6} N E
has measure zero. Thus, from (1.1) we obtain:
a7 {—M(Hftnpmpa = Xisey  inD

0 on dD.

i
By setting v = ¢ — ii, the differential equation in (3.7) becomes:

1
My o

The differential equation (3.8) is an example of a one-phase obstacle problem of unstable
type. The boundary of the set {v < 0} is known as the free boundary since it is not known
a priori.

As far as we know, however, for the p-Laplace operator the free boundary of the unstable
obstacle problem has not been investigated when p # 2. Therefore, we have decided to
include some numerical experiments in Section 4 to provide some ground for future work
on this subject, both for us and the interested reader. For the case p = 2 and N = 2 the
reader may refer to [26] where the singularities of the free boundary are discussed, whilst
for the higher dimensions one may refer to [2, 3, 4].

(3.8) Ay = in D.

3.2. Minimization problem. The main result regarding the minimization problem (1.4)
is stated below. In order to avoid obscuring the main ideas with technicalities we assume
that the generator f; is positive throughout the domain D. However, we stress that the
result of the theorem below stands valid even if f; is non-negative, but the proof would
require more technical steps.

Theorem 3.3. The minimization problem (1.4) has a unique solution f. Moreover, setting
w=u 7 we will have:

(3.9) f=da

almost everywhere in D, for some decreasing function W, unknown a priori.

Proof. Let us first address the uniqueness. Suppose f; and f, solve the minimization prob-
lem (1.4). Since © is weakly continuous, it follows that f; and f> also solve the problem:

inf ®(f) =m
feR

As R is convex, we get (fi + f2)/2 € R. Thus, the strict convexity of @ implies:

(f1+f2)< —O(f) + <D<fz)—

which is a contradiction.
Let us now address the existence. Again, we start by relaxing the problem:

(3.10) inf ®(f).
fer
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Since @ is weakly continuous and R is weakly compact in LY(D), problem (3.10) is solv-
able. Let us denote the solution by f € R. The following relation, satisfied by f, is called
the optimality condition:

(3.11) 0 € '(f) + déz(/).
in which & denotes the indicator function supported on R:

. [0 feRr
fﬂ(f)—{oo FeR

Here 0&x( 1) denotes the subdifferential of &z at 1

(3.12) 0éx(f) = {g € LP(D) | Vf € LYD) : &4(f) = &x(f) + fD (f- g dx}

Since '(f) = it = uy, (3.11) implies the existence of g € Aéz(f) such that it + g = 0.
Whence, we obtain:

(3.13) erﬁ:f(mg)(f—f)dx:o
D

On the other hand, from (3.12) we infer Vf € R : [/ ¢(f — f)dx < 0, which together with
(3.13) yields:

erﬁ:fa(f—f)dxzo
D

Thus, f minimizes the linear functional L(f) = fD fitdx over R.
Note that it € lencl (D). So the differential equation

(3.14) ~M(lillP)Api = f in D,

holds almost everywhere in D. On the other hand, recalling the assumption that f is posi-
tive, we infer that f is also positive (see [6, Lemma 2.14]). Therefore, (3.14) in conjunction
with [18, Lemma 7.7] implies that the graph of i has no significant flat zones in D. This
makes it possible to apply Lemma 2.6 to deduce that there exists a decreasing function ¢
such that t/v/(ﬁ) € R is the unique minimizer of the linear functional L(f) relative to f € R.
Recalling that f is a minimizer of the same linear functional, we obtain:

=,
almost everywhere in D. So, the proof of the theorem is complete. O

As mentioned earlier, the assertion of Theorem 3.3, in particular the optimality condi-
tion (3.9), still holds even when the generator f; is merely non-negative. As a result, in
case fy = xk, the Kirchhoff boundary value problem (1.1) in conjunction with Theorem
3.3 would give rise to the following:

-M(|lZP)Ay = X<z 0D
=0 on dD.

v

Introducing v = ¢ — i, this differential equation becomes:

1
X (v>0}-

Api= ———
()
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This equation is a one phase obstacle problem of stable type. There is a vast literature
addressing qualitative properties of the free boundary 9{v > 0}, but we specifically mention
the book [24].

4. NUMERICAL EXPERIMENTS

We have developed a numerical algorithm to get a better view of the qualitative nature
of the solutions to some of the free boundary problems mentioned so far. As these experi-
ments are primarily meant to provide us with further insight into the problems at hand, the
minute details of the implementation will not be presented here. Rather, an overview of
the main ingredients of the experiments will be provided so that the interested reader can
replicate the results and experiment with other sample problems of their own choice.

4.1. Setting the parameters. First of all, we only consider problems over two-dimensional
domains, and focus on the case where the rearrangement class R(fp) is generated by a char-
acteristic function, i. e.
HEQ cD: f() = XE,-

It should be clear that every function f € R(fp) is also the characteristic function of some
Ey € D with the same Lebesgue measure as Ey, i.e. |Ey| = | Eg|. By considering the
rearrangement class of a characteristic function, we are able to restrict our search to subsets
of the domain D with a given Lebesgue measure, rather than a function space.

Each of our optimization problems is specified by a few parameters:

(i) For the function M we consider M(¢t) = 1 + V.

(i) We set the p-Laplace parameter to 3,1i.e. p = 3.

(iii)) The Lebesgue measure of E, is determined by its ratio p € (0, 1) to the area of
the reference domain D. We consider a few different values. Specifically, we are
interested in cases where p is relatively small (for maximization) or relatively large
(for minimization).

(iv) Regarding the domain D, we will consider a few different cases, including non-
convex domains.

In each experiment, we are essentially interested in the location of the set £y whose char-
acteristic function f is the optimizer of the problem. This way we can provide evidence
of radial symmetry in case the domain D is a disc, and symmetry breaking for a couple of
non-convex domains.

4.2. Parametrization of the domain E;. The domain E is the support of a characteristic
function and may be parametrized in various ways. One option—sometimes referred to as
the Lagrangian approach—is to consider a parametrization of the boundary I'g, via (say)
somey : "' — Ik, in which S"~! is the n-dimensional unit sphere (see e. g. [17]). This
would provide smoother looking figures, but unfortunately, it does not suit our approach.

The main challenge we face is when the optimal domain is neither connected, nor sym-
metric. Thus, to make our algorithm work for different domain shapes, we work directly
on the mesh grids that we make over the domain D. This is sometimes referred to as the
Eulerian approach. In our algorithm we triangulate the domain, but the arguments could
work just as well for any other type of mesh grid.

4.3. Computational complexity and heuristics. Suppose that we have a mesh D = {D; |
1 < i < P} (for some P € N) over the domain D C R? such that D = UD. In this
discretization, let Dp = {D;, | 1 < i; < P} be the best outer approximation of the set
E C D, i.e. Dg is a subgrid of D with the smallest area for which E C UDg. We define
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#E as the number of indices k such that Dy € Dg. Assuming that the subregions D;
(1 <i < P) have roughly the same area, then #E£ ~ pP. In other words, the ratio of #E to
the total number of subregions P in the grid is close to the ratio p of the area of E to that
of D, and the finer the mesh is, the closer these values will be.

In these types of problems, one usually needs to refine the mesh by bisecting along all
dimensions to obtain one more digit of accuracy. In other words, for a given parameter
n € N, one needs a mesh of size P ~ Q(2") to provide a satisfactory result to within n
digits of accuracy. Remember that the search space S is essentially the set of subsets of
D of a given (fixed) Lebesgue measure, which in the discretized version would have the
cardinality

P
A.1) IS| ~ (#Eo)'

One can obtain an estimate of the growth of this value with respect to n using Stirling’s
approximation of the factorial function [23]:

4.2) VkeN: V2rktie™ <kl < ekf*iet,

Assuming that #E; ~ pP we can use inequalities (4.2) and formula (4.1), together with
some routine calculations, to obtain:

Var b ZF

e
a— <IS|lf ————=2—
e \Jp(1-p) VP 2 \Jp(1 = p) VP

1 1
TR TSIy
Note thatas p € (0,1) we have 1 < ¢ < 2.
Thus, for a constant C| which depends only on p, one gets:

in which

é«P
Ci— <|S],
1\/P

which together with the fact that P = €(2") implies that for some constant C which depends
on p and the domain D, and for some ¢ > 1 (also depending on p):
2’!
ct <is)
22
This is an instance of an intractable computational problem which should not be at-
tacked by unguided search. Hence, we devise a numerical method which employs a com-
bination of tools and methods, as follows:

Gradient: Lemma 2.11 provides a gradient to guide us with generating an optimiz-
ing sequence.

Stopping conditions: These are provided by the formulae (3.1) and (3.9).

Escaping local optima and saddle points: Even though the gradient formula helps
us with generating an optimizing sequence, we do not know whether the algorithm
is converging toward the real global optimum or a local non-global one. It is
also possible for the algorithm to follow gradient and converge on a saddle point.
Unfortunately, we have not proven the non-existence of non-global local optima
or saddle points in the problems we have considered so we have to assume that
there could exist such points.
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Hence, we employ a combination of certain heuristic methods including Simu-
lated Annealing [21] and Tabu Search [19] to tackle the problem. The algorithm
uses Simulated Annealing to escape local optima and saddle points by adding
some elements of randomness to the search, while Tabu Search is used to increase
efficiency by avoiding unnecessary repetition of operations that are unlikely to
improve the result.

4.4. Examples. Our experiments are primarily classified according to the shape of the
domain D:3

4.4.1. Disc. For a disc shaped domain D of radius R, we get a maximizing domain E
which seems to be a disc of radius r concentric with D where r = R +/p (Fig. 1 below).

Ficure 1. Disc: maximizing domain E (left) and the corresponding so-
lution u (right). It seems that we get radial symmetry in the optimizing
domain, which is the brown colored concentric disc on the left.

For the minimization problem, the minimizing domain is in fact a strip around the
boundary (Fig. 2 below).

3|
ol LEN
0s
W
-0 LEN
LN
A
o a]
P
2
o

Figure 2. Disc: minimizing domain E (brown colored strip along the
border on the left) and the corresponding solution u (right).

3All of the figures have been produced in MATLAB®.
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4.4.2. Ellipse. Let us squeeze the circle ‘a bit’ to obtain an ellipse. Again we see that the
maximizing domain £ is located in the middle, with a shape that indicates preservation of
some symmetries of the outer domain D (Fig. 3 below).

,

.

:

; ~
3
A o
S

Y x

Ficure 3. Ellipse: maximizing domain E (left) and the corresponding
solution u (right).

4.4.3. Dumbbell. We squeeze the circle even more to get a dumbbell shape. We consider
the case in which D is a dumbbell shaped domain comprising two large discs connected
with a narrow channel. When the ratio p is taken to be relatively small, we can observe
the breaking of symmetry in the maximizing zone (Fig. 4 below). It is interesting to note
that for the dual problem, i. e. minimization with relatively large p, symmetry is preserved
(Fig. 5 on the next page).

Ficure 4. Dumbbell domain: maximizing domain E (left) and the cor-
responding solution u (right). Notice the breaking of symmetry in the
optimizing domain.

4.4.4. Annulus. Finally, we consider an annulus {(x,y) € R? | R? < x*> + y*> < (R + h)*} in
which R is large and £ is quite small. For maximization we take the area ratio p to be also
quite small. Again we can observe symmetry breaking in Fig. 6 on the following page.

However, as in the case of the dumbbell shaped domain, for the dual minimization
problem with relatively large p, the symmetry is preserved (Fig. 7 on page 17).

5. CONCLUDING COMMENTS

We end the paper with some comments and questions.



1.

MOHSEN ZIVARI-REZAPOUR, AMIN FARJUDIAN, AND BEHROUZ EMAMIZADEH

a N

Ficure 5. Dumbbell domain: minimizing domain E (left) and the cor-
responding solution u (right). Notice that symmetry is preserved in the
optimizing domain.

FiGure 6. Annulus: maximizing domain E (the red colored patches on
the left) and the corresponding solution u (right). Notice the breaking of
symmetry in the optimizing domain.

A popular case of study in rearrangement optimization problems is when D is a disk
(ball). In this case one wonders if the optimal solutions are radial or not. In the context
of the present paper, if M is a constant function, then the functional ® reduces to:

1
O(f) = (1 - ;)foufdx,

which is essentially the operator considered in [7] in which the authors prove that f*,
the decreasing Schwarz symmetrization of fj, is the unique solution to the maximiza-
tion problem (1.2), and f,, the increasing Schwarz symmetrization of fj, is the unique
solution to the minimization problem (1.4).

It is easy to see that for M(¢) of type:

{ c  (0<t<t)
M) =
m(t) (1 £ 1),

and || fol|, sufficiently small, again f* and f. will be the unique optimal solutions of (1.2)
and (1.4), respectively.

. It is intriguing to see what happens if we relax the sign restriction on f; and allow it to

change sign.
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FiGURE 7. Annulus: minimizing domain E (left) and the corresponding
solution u (right). Notice that symmetry is preserved in the optimizing
domain.

3. Consider the eigenvalue problem:

—M(|lull”)Apu = AW(X)|ulP?u  in D

5.1
©-1) u=20 on 0D,

where w(x) is a non-negative bounded weight function. Let A;(w) be the principal
eigenvalue of (5.1). It is interesting to investigate the following problems:

sup A;(w) and inf  Ay(w),
weR(wy)

weR(wp)

where R(wy) is the rearrangement class generated by a prescribed weight function wy.

Acknowledgements. The authors wish to thank the referee for their constructive critique of
the first draft.
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