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Abstract

The identification of multiple spreaders on weighted complex networks is
a crucial step towards efficient information diffusion, preventing epidemics
spreading and etc. In this paper, we propose a novel approach WVoteRank
to find multiple spreaders by extending VoteRank. VoteRank has limitations
to select multiple spreaders on unweighted networks while various real net-
works are weighted networks such as trade networks, traffic flow networks
and etc. Thus our approach WVoteRank is generalized to deal with both
unweighted and weighted networks by considering both degree and weight
in voting process. Experimental studies on LFR synthetic networks and real
networks show that in the context of Susceptible-Infected-Recovered (SIR)
propagation, WVoteRank outperforms existing states of arts methods such as
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weighted H-index, weighted K-shell, weighted degree centrality and weighted
betweeness centrality on final affected scale. It obtains an improvement of
final affected scale as much as 8.96%. Linear time complexity enables it to
be applied on large networks effectively.

Keywords: Multiple influential spreaders, Influence maximization,
Weighted complex networks
PACS: 89.75.Fb, 87.15.A, 87.23.Ge

1. Introduction

Real complex systems are modelled as complex networks [1, 2] where vital
nodes [3] (influential spreaders in propagation process) are of great impor-
tance to control the outbreak of epidemics [4, 5, 6, 7], to target potential
customers in advertisements, to evaluate the performance of research insti-
tutes [8] and etc. Such applications are defined as influence maximization [9]
to choose a set of initial spreaders which can achieve maximum propagation
scale via underlying complex networks.

The influence of a node is closely related to the topological structure
of the underlying network and where it locates. Traditional methods usu-
ally select a set of highly ranked nodes as influential spreaders because the
importance of nodes can be ranked by a specific structural measure. A mea-
sure characterizing the importance of a node according to the topological
information is usually named centrality. Degree centrality is a straightfor-
ward approach to count the neighbours of a certain node. It has limitations
because only directly linked neighbours are considered while neighbours of
neighbours are ignored. Thus Chen et al. proposed an improved method
LocalRank [10], which took into accounts of fourth-order neighbours instead
of first order neighbours in the case of degree centrality. Furthermore, it was
found that the clustering coefficient negatively related to the node influence
given the same neighbour number [11]. Thus ClusterRank [12] was proposed
considering both neighbour number and clustering coefficient.

Although H-index was proposed to measure a researcher’s scientific im-
pacts, it can also be applied to measure the importance of nodes considering
the degree information of neighbours [13]. Kitsak et al. argued that the in-
fluence of a node was determined by its position of global network structure
rather than local neighbours. Coreness [14] and its variants [15, 16] were
proposed to iteratively decompose the networks where nodes locating in the
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central shells were more influential than those in periphery shells. Lü et al.
discovered that degree centrality, H-index and coreness centrality can be re-
garded as the initial, intermediate and final states in the sequences driven
by a discrete operator [17]. We mainly have above discussions about cen-
tralities on undirected networks. There are many other centralities related
to directed networks including PageRank [18], LeaderRank [19], HITs [20]
and etc. A number of other measures have also been proposed due to differ-
ent assumptions, such as betweenness [21], closeness [22, 23], path diversity
[24], dynamic sensitive [25], k-core values of neighbors [26], mixed degree
decomposition [27], iterative resource allocation [28], gravity formula [29],
structural holes [30], spreading probability [31] and etc. Due to the limita-
tion of space, interested readers are suggested to refer to the comprehensive
review by Lü et al. [3].

A number of different measures have been proposed to rank nodes in
propagation process on complex networks. Those methods can deal with
ranking orders of nodes, but it is not effective to select a small number of
critical nodes in propagation dynamics. Because top-ranked nodes selected
by these methods might be clustered as a rich-club [32]. Initially, some
nodes are selected and they contribute to effective information propagation.
When more nodes are added to form the rich-club, these nodes have less
contributions to effective information propagation. Kempe et al. proposed a
hill-climbing heuristic to select a set of spreaders [9]. Chen et al. suggested
a degree discount heuristic [33] to select multiple spreaders, which achieved
larger propagation scope than degree and other centralities. It also runs in
milliseconds on networks with tens of thousands of nodes and edges. Zhao
et al. generalized the graph coloring problem from graph theory to iden-
tify multiple spreaders on complex networks [34]. Guo et al. proposed a
distance-based coloring method [35] which had significant improvement of
spreading scale compared with traditional coloring method. Liu et al. pro-
posed a method using local structural similarity (LSS) to identify multiple
influential spreaders [36]. Experimental studies on real networks show that
LSS outperforms traditional coloring method on final spreading influence.
He et al. argued that traditional methods might have limitations to find
multiple spreaders clustered in one community[37]. Thus it was discovered
that multiple spreaders can be selected from different communities [38, 39]
according to measures such as degree centrality, k-core [14] and ClusterRank
[12]. Morone et al. mapped this problem onto optical percolation to iden-
tify the minimal set of spreaders [40]. This new method Collective Influence
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(CI) [41] can discover influencers via optimal percolation in massively large
social networks. Hu et al. further discovered that information spread from
the seeds and it reached a point of no return and would rapidly reach the
percolation cluster. Thus they proposed that local structure could be applied
to quantify influential spreaders on the whole network [42].

Existing methods to identify multiple influential spreaders are usually
applied to unweighted networks. However, the edges of most real networks
are affiliated with link strengths denoting the extent of interactions. Weights
and degrees are two important properties of the underlying networks. But
there is no obvious evidence to demonstrate they are highly correlated. Thus
nodes with high degrees might have small weights because a large number of
low weight edges attach to neighboring nodes. It is also possible to see nodes
with small degrees but high weights. Weighted networks are wildly applied
to economic, trade and traffic networks where weights indicate the trade and
traffic flows. Traditional methods on unweighted networks have limitations
because spreaders are not only determined by degree but also the weights
of edges. Garas et al. extended the k-shell decomposition method from
unweighted networks to weight network to solve this problem [43]. Other
methods such as degree centrality [3], H-index centrality [17], betweeness
centrality [44], closeness centrality [45] also have variants on weighted net-
works. The common weakness of these methods to select multiple spreaders
on weighted networks is that top spreaders ranked by these methods are not
accurate due to rich club phenomena [32].

VoteRank is suggested to identify multiple spreaders by voting [46]. The
neighboring nodes of selected spreaders have a discount on voting abilities in
the subsequent selections. It has high accuracy compared with CI [40] and
other methods on large unweighted networks. Thus in this paper, we gener-
alize VoteRank from unweighted networks to both unweighted and weighted
networks as WVoteRank. The presented method can detect multiple spread-
ers on weighted complex networks by voting. All nodes vote for a spreader
using edge weight and neighbour number in each turn, and the voting ability
of neighbours of selected spreader will be decreased in subsequent turns. For
example, a specific candidate attracting a large number of votes leads to a
small number of votes given to other candidates. For this reason the vot-
ing ability of voters will be decreased after they vote for a specific spreader.
This voting method based on VoteRank and is extended from unweighted
networks to weighted networks. It is simple and effective compared with ex-
isting methods. Experimental studies on four synthetic networks generated
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by LFR [47] and four real networks show that it has significant improvement
against weighted H-index [17], weighted k-shell decomposition [43], weighted
degree centrality [3] and weighted betweeness centrality [44]. The maximum
improvement of final affected nodes on SIR propagation is as much as 8.96%
compared with the second best method weighted H-index.

2. Methods

2.1. VoteRank

Zhang et al. proposed VoteRank to decentralize and vote a set of influ-
ential spreaders [46] from underlying network G = (V,E) where E is the set
of edges connecting nodes from V . Each node v is attached with a tuple
(sv, vav) where voting score sv can be calculated from the neighbors of v by
summarizing all its neighbors voting ability scores vav.

Step 1 Initialization: Each node v is initialized with a tuple (sv, vav) =
(0, 1). p is given to identify the percentage of spreaders from the node set V .

Step 2 V oting: Each Node v votes for its directly linked neighbors with
voting ability vav. As a result, each node v obtains voting score sv by sum-
marizing all voting ability scores from its neighbors in Eq.1. The node
with maximum voting score will be selected as candidate spreader in this
turn. If the candidate is not the neighbor of existing spreaders, it will be
put into the seed set. Selected spreaders also do not participate in vot-
ing process in the subsequent rounds (vamax = 0). Due to the require-
ment of decentralization, the voting ability scores of the neighbors of the
voted spreader will be weaken. A discount d is given to the voting ability,
vav = vav − d, (if vav > d, otherwise vav = 0). Zhang et al. suggests
d = 1/〈w〉, where 〈w〉 is the average degree of the network [46].

sv =
∑
i∈γ(v)

vai (1)

The voting score sv of node v on an unweighted network is shown in Eq.
1. Given a node v and its neighboring set γ(v), the voting score sv is defined
as the summation of the voting ability vai of each neighbor i.

Step 3 Iteration: Step 2 will be repeated until p percent of nodes are
selected as spreaders.
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2.2. WVoteRank on weighted networks

VoteRank aims to select spreaders on the entire network by voting from its
neighbors, selected spreaders don’t participate in subsequent elections and
voting abilities of their neighboring nodes also decrease afterwards. How-
ever, it has limitations that only unweighted networks can be applied by this
method. Various real networks are weighted networks where the strength
of edges indicate the interactions between nodes. Thus, we extend VoteR-
ank from unweighted networks to weighted networks as WVoteRank. Since
unweighted networks are specific weighted networks, it can deal with un-
weighted networks when the default weight value of each edge is one.

Given a weighted network G = (V,E) where wuv denotes the link strength
between node u and node v. The main difference between VoteRank and
WVoteRank is in the voting process. Each node v obtains its voting score
sv from its neighbouring nodes. On one hand, the weighted sum of the
voting ability scores from the neighboring nodes of v positively influences
the voting score sv. On the other hand, the number of neighbors also has
positive impacts. Thus the voting score sv of node v is defined as square root
of the product of such two factors in Eq. 2. Spreader selection method and
voting ability updating rule are the same as VoteRank described previously.

sv =

√
|γ(v)|

∑
i∈γ(v)

vai ∗ w(v,i) (2)

It is shown in Eq. 2 to calculate the voting score sv of node v on a
weighted network. Given a node v and its neighboring set γ(v), the voting
score sv of node v is determined by three factors, the number of neighbors
|γ(v)|, the voting score vai of each neighbor i and the edge weight w(v,i)

between node v and node i. sv can be calculated as the square root of the
product of two parts, the number of neighbors |γ(v)| and weighted sum of
vai of each neighbor i.

2.3. Complexity of WVoteRank

The time complexity of WVoteRank consists of initialization of voting
ability scores and voting scores, selection of the node with highest voting
score and updating the voting ability and voting scores. It needs O(n) steps
to initialize voting ability of n nodes. Because the voting scores of n nodes
are initialized by their neighboring nodes, O(〈w〉 ∗ n) = O(m) is needed
at this step. As a result, the complexity of initialization is O(n + m). It
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Figure 1: (Color online) A toy sample of weighted network with 10 nodes and 12 edges
to demonstrate WVoteRank in (a-c). The weight of edge e2,7 is w2,7 = 4 and w8,9 = 2.
All other edges have default weight value 1. v7 with the maximum voting score 5.29 is
selected as the first spreader in the first round in (a). Then The voting ability of v7 is set
to 0 and it doesn’t participate subsequent elections. Similarly, v1 and v8 are selected as
spreaders in the second and third rounds as shown in (b) and (c) respectively.

takes O(n) to select the spreader in one round. Thus the time complexity
is O(rn) to select r spreaders in r round. As the second order neighbours
of the selected spreaders are updated after the spreader is selected. Thus
O(r〈w〉2) = O(rm2/n2) is needed to update the voting ability and voting
scores of selected spreaders. It concludes that O(n+m+ rn+ r ∗m2/n2) is
the total time complexity. If r << n and O(n) = O(m), the time complexity
of WVoteRank is simplified as O(n).

Next, we will demonstrate WVoteRank with a toy network shown in
Figure 1. The toy network with 10 nodes and 14 edges has the average
weighted degree 〈w〉 = 0.313. It is shown in Figure 1 (a) that in the first
round, the voting ability scores of all nodes are 1 and each node is voted by
its neighboring nodes. As a result, node v7 is selected as the first spreader
with maximum voting score sv7 = 5.29. In the second round shown in Figure
1 (b), voting ability scores of the neighbouring nodes of node v7 is decreased
by a discount 〈w〉= 0.313 because node v7 is selected as the spreader in the
first round. The voting ability of node v7 decreases as vav7 = 0 and it does
not participate in the subsequent voting processes. Each node is voted by
its neighboring nodes again. v1 with the largest voting score is selected as
the spreader in the second round (sv1 = 4.33). Similarly v8 is selected as the
third spreader shown in Figure 1 (c).

7



3. Experimental Results

In this section, both synthetic and real weighted networks are used to
compare WVoteRank with several well-known algorithms.

To evaluate the accuracy of WVoteRank, some well-known methods such
as weighted coreness, weighted H-index, weighted degree centrality and weighted
betweenness centrality are selected as benchmark methods. One approach is
to apply such four methods directly to select top-ranked nodes on weighted
networks. However, such a way might not always be effective due to the
rich club phenomenon. As a result another greedy approach is applied to
such four methods. Given a weighted network, the node with the highest
score measured by a specific measure (weighted coreness, weighted H-index,
weighted degree centrality or weighted betweenness) is selected as the first
node. Then neighboring nodes of the first node cannot be selected in the sub-
sequent rounds to ensure spreaders are not connected directly. The second
node is selected according to a specific measure from the left nodes and its
neighbors are not considered at the subsequent rounds as well. This process
continues until enough nodes are selected using a predefined measure from
weighted coreness, weighted degree centrality, weighted H-index or weighted
betweenness. The influences of these selected spreaders can be evaluated on
specific propagation models. Next, a brief description will be given to explain
the main idea of the propagation model SIR.

3.1. Propagation Model

We mainly use Susceptible-Infected-Recovery (SIR) model [48, 49] to com-
pare the performance of various methods. Each node can be in one of the
three statuses: susceptible, infected or recovered. At the very beginning,
a set of spreaders (p percent nodes) are targeted as spreading sources and
other nodes (1 − p percent nodes) are regarded as susceptible nodes. At
each time step, each infected node contacts one susceptible neighboring node
with transmission rate µ. Meanwhile infected nodes can be recovered with a
probability β. Recovered nodes will not be affected by infected nodes again.
λ = µ/β is the infected rate governing the propagation process in SIR model.

Measure The evaluation of these methods are highly determined by the
number of infected nodes. One possible way to measure infection scale is a
function F (t) with respect to t where t is the time step in SIR model and
F (t) is the number of infected and recovered nodes at step t. At the end
of propagation, the number of infected nodes tends to become stable. Final
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Table 1: Basic topological features of 4 synthetic networks by LFR model. n is the number
of vertices, m is the number of non self-loop edges, c is the average clustering coefficient
and r is assortative mixing coefficient of the networks, µt(µw) are the mixing parameters
for topology and weight in LFR model.

Net n m 〈w〉 c r µt(µw)
LFR1 898 2251 6.26 0.08 0.48 0.1
LFR2 941 2493 6.99 0.05 0.39 0.3
LFR3 4523 10770 5.89 0.06 0.55 0.1
LFR4 4699 12204 6.84 0.03 0.35 0.3

affected scale F (tc) is proposed to measure this effect, which is determined
by the number of final recovered nodes nR(tc) and total node number n in
Eq. 3. To evaluate the extent that spreaders are decentralized in the net-
work, weighted average shortest path length Lws is introduced as the average
weighted distance of every two spreaders u, v in spreader set S from Eq.4.

F (tc) =
nR(tc)

n
(3)

Lws =
1

|S|(|S| − 1)

∑
u,vεS,u6=v

lws(u, v) (4)

It is shown in Eq. 4 that Lws indicates the weighted average shortest
path length to evaluate the extent to which selected spreaders from set S
are decentralized distributed. lws(u, v) indicates the weighted shortest path
length from each pair of nodes (u, v) in the spreader set S. The sum of all
of them is normalized by a factor 1

|S|(|S|−1) .

3.2. Synthetic networks

We test the performance of WVoteRank on four synthetic scale-free weighted
networks generated by LFR model [47]. In the LFR model, the weight distri-
butions is power laws distribution which is set as α = 1.5 in our experiment.
The difference for four synthetic networks are the mixing parameter for the
topology µt, mixing parameter for the weight µw, and the number of node n.

It is shown in Table 1 that LFR1 is a small network with small mixing
values µt = µw = 0.1, LFR2 is a small network with large mixing values µt =

9



µw = 0.3, LFR3 is a large network with small mixing values µt = µw = 0.1,
LFR4 is a large network with large mixing values µt = µw = 0.3.

Further experiments with SIR propagation show the spreading scale of
selected multiple spreaders by our method WVoteRank and other methods.
All methods are evaluated on SIR (p = 0.05, λ = 1.2) and four weighted
LFR generated networks.

It is shown in Figure 2 that WVoteRank outperforms other methods in
four different LFR generated networks. It obtains an improvement of final
spreading scale over the second best method weighted H-index as much as
8.12% on LFR2 network. Similarly, it obtains an improvement of 30.71%,
29.24% and 12.21% compared with weighted coreness, weighted betweenness
and weighted degree centrality, respectively. From the study on three other
synthetic networks such as LFR1, LFR3 and LFR4, WVoteRank always out-
performs other methods as well. Thus it concludes that our experimental
studies on synthetic networks demonstrate the effectiveness and accuracy of
the presented method WVoteRank.

3.3. Real networks

In this section, we aim to evaluate the performance of WVoteRank and
other benchmark methods on 4 real networks. The basic topological features
are summarized in Table 2. US airports network is a network of flights
between US airports in 2010. The weight of each edge shows the number of
flights on that airline1. Moreno health network was created from a survey
from 1994. Each student was asked to list five best male and five best female
friends. An edge indicates two students are friends and the weight of edge
represents the strength of interaction between them2. Bitcoin alpha network
is a trust network among people who trade using Bitcoin on a platform named
Bitcoin Alpha. Members rate other members in a scale of -10 (total distrust)
and 10 (total trust) 3. Bitcoin OTC network is another network of Bitcoin
traders on a platform named Bitcoin OTC. The weight of an edge follows
the same rule of Bitcoin alpha 4.

The first experiment aims to investigate how different methods perform
in terms of final affected scale F (tc) when the percentage of spreaders p

1http://konect.uni-koblenz.de/networks/opsahl-usairport
2http://moreno.ss.uci.edu/data.html#health
3http://snap.stanford.edu/data/soc-sign-bitcoinalpha.html
4http://snap.stanford.edu/data/soc-sign-bitcoinotc.html
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Figure 2: (Color online) The final affected spreading scales of WVoteRank and four bench-
mark methods. The experimental results of LFR1, LFR2, LFR3 and LFR4 are shown in
(a), (b), (c), and (d) respectively. The results are averaged over 200 independent runs.

changes. In SIR model we set affected rate λ = 1.2 and recovered probability
β = 1

〈w〉 . It is shown in Figure 3 that weighted H-index is slightly better

than WVoteRank when p ∈ (0, 0.025]. F (tc) of WVoteRank is larger than
F (tc) of weighted coreness and other methods when p ∈ [0.025, 0.09], which
indicates WVoteRank outperforms other methods. WVoteRank obtains an
improvement of spreading influence ranging from 1.82% to 4.98% over the
second best method weighted H-index on US airports network. Especially
on Bitcoin alpha network, WVoteRank outperforms weighted H-index with
an improvement from 0.5% to 8.96% when p ∈ [0.025, 0.09]. Meanwhile
WVoteRank outperforms weighted K-shell decomposition with an improve-
ment ranging from 0.81% to 12.26%.
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Table 2: Basic topological features of 4 real networks. n is the number of vertices, m is
the number of non self-loop edges, 〈w〉 is the weighted average degree, c is the average
clustering coefficient and r is assortative mixing coefficient of the networks.

Net n m 〈w〉 c r
US airports 1574 17215 157.578 0.384 -0.113
Moreno health 2539 10455 9.769 0.05 0.264
Bitcoin alpha 3719 10363 94.952 0.064 -0.173
Bitcoin OTC 5875 21218 143.149 0.077 -0.155
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Figure 3: (Color online) The final affected scale F (tc) changes with respect to the percent-
age of source influential spreaders p. Experiments are carried out by WVoteRank, weighted
H-index, weighted degree centrality, weighted K-shell decomposition and weighted betwee-
ness centrality on four real networks respectively. In (a-d), SIR affected rate λ = 1.2, SIR
recovered probability β = 1

〈w〉 . The results are averaged over 200 independent runs.
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Figure 5: (Color online) The weighted average shortest path length of source spreaders
Lws changes with respect to the percentage of source influential spreaders p. Experiments
are carried out by WVoteRank, weighted H-index, weighted degree centrality, weighted K-
shell decomposition and weighted betweeness centrality on four real networks respectively.

When the percentage of spreaders p is fixed, further experiment is carried
out to evaluate how final affected scale F (tc) changes with respect to infected
rate λ. It is shown in Figure 4(c) that when λ = 1.5, weighted H-index
is sightly better than WVoteRank on Bitcoin alpha network. Except this
special case, WVoteRank outperforms other methods on 4 networks shown in
Figure 4(a-d). Especially on US airports network, it obtains an improvement
ranging from 1.68% to 2.54% against the second best method weighted H-
index.

Next, we seek to evaluate the weighted average shortest path length Lws
over selected spreaders. It is shown in Figure 5 that weighted H-index out-
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Figure 6: (Color online) The parameters discount and voting ability of WVoteRank method
affect final influential scale F (tc). In (a-b), SIR infected rate λ = 1.2, SIR recovered
probability β = 1

〈w〉 , the percentage of source influential spreaders p = 0.05. The results

are averaged over 200 independent runs.

performs other methods on Moreno health network, Bitcoin alpha network
and Bitcoin OTC network. WVoteRank is the best method on US airports
network. Considering experimental results on final affected rates shown in
Figure 3 and Figure 4, it concludes that weighted average shortest path
length Lws is not necessarily positively related to final affected rate. But Lws
is a indicator to denote the decentralized locations of selected spreaders.

There are two parameters voting ability and discount in WVoteRank to
determine the voting process. Next, we will examine the impact of parameter
selection on final results. SIR model is setted with λ = 1.2, β = 1

〈w〉 and

p = 0.05. From Figure 6(a) it is known that final affected scale F (tc) is
relative stable with respect to discount in [0, 1]. It is shown in Figure 6(b)
that there is an increasing of F (tc) when voting ability changes from 0.1 to
0.2. But F (tc) is almost stable when voting ability changes from 0.2 to 0.9.
In this paper, discount is suggested as 1

〈w〉 and the default value of voting
ability is 1.

4. Conclusions

Even though great efforts have been contributed to the research of the
identification of multiple influential spreaders, it is still an open problem. In
this paper, we have suggested a novel method WVoteRank based on VoteR-
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ank proposed by Zhang et al [46]. VoteRank has limitations to assign spread-
ers only on unweighted networks. Thus we extend VoteRank as WVoteRank
to deal with both weighted and unweighted networks. Both node degree and
edge weights are considered in this new method in voting process.

Further experimental studies on both synthetic networks and real net-
works demonstrate two advantages compared with other methods. Firstly
WVoteRank has been evaluated on four LFR generated networks with up
to thousands of nodes and edges. It is also compared with weighted K-shell
decomposition, weighted H-index weighted degree centrality and weighted
betweeness centrality. The experimental results show that WVoteRank can
detect spreaders with maximum final affected spreading scale compared with
other methods. It obtains an improvement as much as 8.12% compared with
the second best method weighted H-index.

Further experimental studies have been carried out on four real weighted
networks in SIR propagation. The first part of the experiments aims to
investigate how WVoteRank performs with respect to the percentage of nodes
p. It concludes that when p is very small p <= 2.5%, there are no significant
differences between WVoteRank and other methods. However when 2.5% <
p <= 9%, WVoteRank always outperforms other methods. It obtains an
improvement as much as 8.96% over the second best method weighted H-
index. Furthermore, we investigate how infected rate λ influences the final
affected scale. When 1.0% <= λ <= 1.5% and p = 0.05, WVotreRank
obtains an improvement ranging from 1.68% to 2.54% over weighted H-index
centrality on US airports network.

Due to the impact of rich club phenomenon, a number of methods have
been developed to find spreaders decentralized via the underlying network.
But higher decentralization does not always lead to higher spreading scale in
our experiment. Because weighted H-index can detect spreaders with higher
average shortest path length, but the spreaders detected by WVoteRank lead
to the largest final spreading scale. Thus striking a balance between decen-
tralization and effective spreading scale provides insightful suggestions for
future research. In this paper we merely study methods on static weighted
homogeneous networks. Thus it is valuable to explore the identification of
spreaders on temporal networks [50] and multilayer networks [51] in the near
future.
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