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Abstract

Face alignment is one of the fundamental steps in a vast number of tasks of high economical and
social value, ranging from security to health and entertainment. Despite the attention received
from the community for more than 2 decades and the success of cascaded regression based
approaches, many challenges were yet to be solved, such as the case of near-profile poses and
low resolution faces.

In this thesis, we successfully address a series of such challenges in the area of face alignment
and super-resolution, significantly pushing the state-of-the-art by proposing novel deep learning-
based architectures specially tailored for fine grained recognition tasks. In summary, we address
the following problems: (I) fitting faces found in large poses (Chapter 3), (II) in both 2D and
3D space (Chapter 4), creating in the process (III) the largest “in-the-wild” large pose 3D face
alignment dataset (Chapter 4). While the case of high resolution faces was actively explored in
the past, in this thesis we systematically study and address a new challenge: that of (IV) fitting
landmarks in very low resolution faces (Chapter 6). While deep learning based approaches
achieved remarkable results on a wide variety of tasks, they are usually slow having high
computational requirements. As such, in Chapter 5, we propose (V) a novel residual block
carefully crafted for binarized neural networks that significantly improves the speed, due to the
use of binary operations for both the weights and the activations, while maintaining a similar or
competitive accuracy.

The results presented through out this thesis set the new state-of-the-art on both 2D & 3D
face alignment and face super-resolution.
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Chapter 1

Introduction

1.1 Introduction

Analysing, localising and understanding humans is one of the long-standing problems in Com-
puter Vision, yet its roots significantly precede the domain itself. This set of human-centric
problems are usually grouped in a sub-domain of its own, called human sensing. Out of this
amalgam of problems one of them, in particular, stands out that of facial image analysis, having
a large number of use cases of high economical and cultural value. While not limited to them
alone, in the following, we will categorize its application in four broad domains: entertainment,
health, marketing and security.

In security, while fingerprint authentication is the long term standard, recently, more and
more products, ranging from laptops to smartphones, are adding face recognition based authenti-
cation due to its easy of use. Its application goes however beyond this and such technologies
could assist law enforcement agencies in identifying wanted individuals, helping prevent crimes
or improve traffic flow at border check points. In marketing, there are a plethora of software
solutions that help companies to automatically analyse the impact and efficiency of their adver-
tising campaigns, their product branding or the placement of items in the store. In the health
area, its application varies from emotion recognition, helping to identify mental disorders (e.g.
depression), to automatic pain assessment or assisted psychological problems diagnostic. Finally,
in the entertainment industry, face analysis-based technologies are ubiquitous and are present
at the hearth of the currently most popular entertainment applications (facebook, skype, snapchat
etc.) where facial analysis is used to automatically tag/identify persons, enhance or augment the
photos, generate personalised avatars and many more. While this is by no means an exhaustive
list of face analysis applications, it sheds light into its importance and its numerous application
areas.

A fundamental step in facial image analysis and by extension, in all the above mentioned
applications, is the task of facial landmark localisation also called face alignment, the aim of
which is the localisation of a pre-defined set of points of interest, also called fiducial points.
Please see Chapter 1.2 for more details regarding the problem setup and formulation.
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Given the importance of facial landmark localisation, a numerous of outstanding ideas were
proposed during the past years with the Active Appearance Model [21] and Cascaded Regression
[29] as two of the most important and influential checkpoints. These methods usually perform
well when the face is well illuminated and in a near-frontal pose. More recently, deep learning
based methods showed promising results on fine-grained recognition tasks such as the related
task of human pose estimation[8, 69, 75]. These results inspired us on our endeavour on the
problem of face alignment. Through this thesis we make reference to a series of components
(ie. Convolutional layers, Pooling etc) related to the area of artificial neural networks. To this
end we encourage the reader to check the reference book on deep learning [33] for a better
understanding.

(a) State-of-the-art results at the beginning of this PhD (2015). The examples illustrate some of
the most challenging cases solved at the time. Images taken from [103, 102].

(b) Results for some very challenging images obtained using the methods proposed in Chapter 4
and 6.

Fig. 1.1 Advancement of the state-of-the-art as a result of the methods proposed in this thesis.
Notice that the results of our work are more accurate, can handle extreme poses of faces captured
in challenging illumination conditions and can work even for very low resolution images.

Despite the success achieved by Cascaded Regression-based approaches, there were still a
large number of open research questions. While this is detailed in Section 1.3, it is important to
mention here that in this thesis we seek to address and solve the following problems/cases: (a)
detect the facial landmarks (fits) for faces found in large and extreme poses, exhibiting extreme
illumination conditions in both 2D and (b) 3D settings. (c) Provide a large scale “in-the-wild”
3D facial landmark dataset. (d) Localise the landmarks on low quality images containing faces
at very low resolution. Equally importantly, achieving all of this while (e) providing a real-time
or near real-time performance. Overall, we will try to answer the following question: “How far
are we from solving the face alignment problem?”. Note, that herein, by solving we refer to
achieving human or near-human accuracy on the available datasets (i.e. the detections fall near
the noise of human annotators).
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1.2 Problem definition

Face alignment (i.e. facial point localisation) is the process of estimating the configuration of
a given set of fiducial points from a single, usually monocular, facial image. The facial image
itself is a result of a detection process that establishes a region of interest (ROI) as follows: The
input image is passed to a face detector that returns a bounding box for each corresponding
face present in the image, which in turn is used to compute an approximative scale and location
for each face. Finally, the facial image (i.e. ROI) is defined as a function of the face scale and
location.

While the number of targeted points can vary from 5 to more than 100, most of the recent
works have agreed on a 68 points configuration (see Fig. 1.2), which is used for the experiments
reported through out this work with the exception of Chapter 3 where a 21 and 31-based point
configuration will be used.

(a) 68-points based mark-up. (b) 21 and 31-based points configuration. The
additional 10 points for the 31-configuration are
marked with blue.

Fig. 1.2 The mark-up points used in the 68-points configuration (a) and 21/31 respectively (b).

1.3 Main Challenges & Contributions

Being a long-standing problem in Computer Vision research, a multitude of approaches with
various degree of success have been proposed so far to solve the face alignment task. With
the advent of cascaded regression [29] and its application to face alignment [17, 107, 102],
the state-of-the-art (prior to the advent of Deep Learning) was considered to have reached
a satisfactory level of performance for frontal faces, including faces with relatively difficult
illumination, expression and occlusion. However, despite past efforts, a series of problems are
still present making the current methods unsuitable for an “in-the-wild” setting. In the following,
we will briefly explain each of them. Later on, in this thesis, we will present novel approaches
that advance the state-of-the-art and to some extent solve the current challenges.
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1.3.1 Large poses

Fig. 1.3 Examples of faces found in large poses.

We consider a face to be in a large pose if the head orientation (in terms of yaw, pitch and
roll) deviates significantly (usually more than 30◦) from its frontal position (see Fig. 1.3).

Despite recent efforts, the problem of face alignment under very large pose variation (up to
90o) has received little attention, with most of the regression-based methods being unable to cope
well with faces found in large poses. In addition, it is important to notice that a well-performing
method should be also able to deal well with the large variety of facial expressions and occlusions
(both object and self-occlusion). A few examples of such challenging cases can be found in
Fig. 1.3.

Main Contribution. To address this, in Chapter 3 we propose a novel deep learning based
method capable on dealing with faces found in arbitrary poses. The proposed method halved the
error on the most challenging datasets available.

1.3.2 2D vs 3D

In addition to the large facial poses problem, most of the prior work treated the face as a 2D
object. This assumption is valid only if the face is found in a frontal pose and is planar. As the
face orientation changes, this assumption does not hold any longer and the annotated landmarks
will lose correspondence. Fig. 1.4 illustrates the difference between the 2D and 3D annotations.

Main Contribution. In Section 4, we introduce a new method that detects the points in
3D space, predicting also the z coordinate(i.e. depth). The proposed approach significantly
outperforms previous methods setting a new state-of-the-art result.

1.3.3 Sensitivity to initialisation

While the regression-based approaches achieved good performance, they also tended to be
sensitive to initialisation, which is a direct consequence of the way they are initialised. Usually
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(a) 2D-perspective mark-up. (b) 3D-perspective mark-up

Fig. 1.4 The mark-up points used in the 68-points configuration for 2D (a) and 3D respectively
(b). Notice how the 2D-based annotation losses the correct spatial correspondence for larger
poses.

this is done by placing a mean shape enclosed by the detected face bounding box. Due to this,
the performance is directly linked to the face detector used at train time, with the performance
quickly degrading if a different one is used at test time.

Main Contribution. To alleviate this, in Section 3 we describe a two-stage CNN-based
approach that significantly reduces the dependency on the face detector used, with the first stage
having also the role of making the network location-invariant.

1.3.4 Training data scarcity

Prior to the LS3D-W dataset introduced in Chapter 4, most of face alignment datasets were
either small (e.g. 300-W [82]), or contained errors in the annotations (e.g. 300-VW [87], AFLW-
2000 [132]), or mainly contained faces found in frontal poses (e.g. 300-W [82], 300-VW [87]),
or they were synthetically warped to large poses (300-W-LP [132]).

For a complete review of the available face alignment datasets, including the one introduced
in this work see Section 2.3. For details regarding the newly introduced dataset that addresses
most of the aforementioned issues see Chapter 4.

1.3.5 Performance considerations

As we will see in Chapter 3 and 4, methods based on Convolutional Neural Networks demonstrate
results of remarkable accuracy even in the most challenging conditions. However, such methods
are computationally expensive, requiring one ore more high-end GPUs, thus making the method
unsuitable for real-time or mobile applications. Typically, a simple decrease in the model size
will result in a noticeable performance drop, especially for the cases found at the edge of the
distribution and as such is suboptimal.

Main Contribution. To address this, in Chapter 5 we propose a novel residual-block,
specially designed for binary networks and optimised for fine-grained tasks. Not only is the
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proposed method up to 53× faster on a CPU, but it also outperforms previous top performing
methods, such as the one presented in Chapter 3.

1.3.6 Low resolution faces

Fig. 1.5 Examples of natural low resolution faces.

When evaluated on low and very low resolution images, with a face resolution as low as
10×10px, the current top performing face alignment methods suffer an extreme degradation in
performance as shown in Chapter 4. Examples of such naturally occurring images can be found
in Fig. 1.5.

Main Contribution. To address this, in Chapter 6, we propose a novel method that jointly
learns to perform face super-resolution and alignment simultaneously, with both tasks working
symbiotically, improving each other. The results produced significantly reduce the performance
gap between high and low resolution images.

1.3.7 Contributions

In summary, our main contributions are:

• We are the first to apply heatmap regression in the context of face alignment (Chapter 3).

• A novel, yet simple, CNN architecture for large pose face alignment which we call
Convolutional Aggregation of Local Evidence (CALE). CALE by-passes the requirement
for accurate face detection by firstly using a CNN detector to perform facial landmark
detection. Next, CALE aggregates the local evidence for each facial landmark through
joint CNN regression of the confidence scores, in order to refine the landmarks’ location.
The proposed system achieves large performance improvement over the state-of-the-art
(Chapter 3).

• We construct, for the first time, a very strong baseline by combining a state-of-the-art
architecture for landmark localization with a state-of-the-art residual block and train it on
a very large yet synthetically expanded 2D facial landmark dataset. Then, we evaluate it
on all other 2D datasets ( 230,000 images), investigating how far are we from solving 2D
and 3D face alignment (Chapter 4).
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• In order to overcome the scarcity of 3D face alignment datasets, we propose a guided-by-
2D landmarks CNN which converts 2D annotations to 3D and use it to create LS3D-W,
the largest and most challenging 3D facial landmark dataset to date ( 230,000 images),
obtained from unifying almost all existing datasets to date (Chapter 4).

• We are the first to study the effect of binarization on state-of-the-art CNN architectures
for the problem of face alignment. To this end, we exhaustively evaluate various design
choices, and identify performance bottlenecks, describing multiple orthogonal ways to
boost performance (Chapter 5).

• We propose Super-FAN: the very first end-to-end system that addresses face super-
resolution and alignment simultaneously, via integrating a sub-network for facial landmark
localization through heatmap regression into a GAN-based super-resolution network, and
incorporating a novel heatmap loss (Chapter 6).

• Quantitatively, we report, for the first time, results across the whole spectrum of facial
poses on the LS3D-W dataset, and show large improvement over the state-of-the-art on
both super-resolution and face alignment. Qualitatively, we show, for the first time, good
visual results on real-world low resolution facial images taken from the WiderFace dataset
(Chapter 6).

1.4 Publications

The research presented in this thesis has been published in the following conferences:

• A. Bulat and G. Tzimiropoulos. Convolutional aggregation of local evidence for large
pose face alignment. In British Machine Vision Conference (BMVC), 2016

• A. Bulat and G. Tzimiropoulos. How far are we from solving the 2d & 3d face alignment
problem?(and a dataset of 230,000 3d facial landmarks). In International Conference on
Computer Vision (ICCV), 2017

• A. Bulat and G. Tzimiropoulos. Binarized convolutional landmark localizers for human
pose estimation and face alignment with limited resources. In International Conference on
Computer Vision (ICCV), 2017 (ORAL)

• A. Bulat and G. Tzimiropoulos. Super-fan: Integrated facial landmark localization and
super-resolution of real-world low resolution faces in arbitrary poses with gans. In IEEE
Conference on ComputerVision and Pattern Recognition (CVPR), 2018 (SPOTLIGHT)

• A. Bulat and Y. Tzimiropoulos. Hierarchical binary cnns for landmark localization with
limited resources. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018
(Best of ICCV17 SI)
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In addition to them, while not being directly included in this thesis, the following publications
were monumental toward achieving the results described in this work:

• A. Bulat and G. Tzimiropoulos. Human pose estimation via convolutional part heatmap
regression. In European Conference on Computer Vision, pages 717–732. Springer, 2016

• A. Bulat and G. Tzimiropoulos. Two-stage convolutional part heatmap regression for the
1st 3d face alignment in the wild (3dfaw) challenge. In European Conference on Computer
Vision (ECCV), pages 616–624. Springer, 2016 (Challenge Winner)



Chapter 2

Literature review

This chapter reviews related work on human sensing focusing on the more recent deep learning
based approaches. In particular, firstly, we start by offering an overview of the more generic
problem of CNN heatmap regression (Section 2.1). Secondly, we delve into the face alignment
problem (both 2D & 3D) reviewing the existing methods and datasets alongside their current
limitations (Section 2.2). Then, we analyse the problem at hand from a performance perspective,
reviewing the recent work on network quantization (Section 2.4). Finally, in Section 2.5 we
review related work in image and face super-resolution.

2.1 CNN heatmap regression

This section offers a review of the related work on heatmap-based regression using CNNs.
Recently, methods based on CNNs have been shown to produce state-of-the-art results for

many Computer Vision tasks like image recognition [88], object detection [32] and semantic
image segmentation [66]. In the context of landmark localisation, it is natural to formulate the
problem as a regression one in which CNN features are regressed in order to provide a joint
prediction of the landmarks, see for example recent works on human pose estimation [100, 74,
5, 8]. A notable development has been the replacement of the standard L2 loss between the
predicted and ground truth part locations with the so-called confidence map regression which
defines an L2 loss between predicted and ground truth confidence maps encoded as 2D Gaussians
centred at the part locations [99, 74]. As a mapping from CNN features to part locations might
be difficult to learn in one shot, regression-based methods can be also applied sequentially (i.e.
in a cascaded manner) [100, 19, 105]. In the context of human pose estimation, [74] performs
confidence map regression (based on a L2 loss). Then, the pre-confidence maps are used as
input to a subsequent regression network, however such maps are too localised providing small
spatial support. In order to improve performance, regression methods applied in a sequential,
cascaded fashion have been recently proposed in [19, 105]. In particular, [105] has recently
reported outstanding results on both LSP [52] and MPII [1] data sets using a six-stage CNN
cascade.
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Notably, all the aforementioned methods were developed prior to the advent of residual
learning [38]. Very recently, residual learning was applied for the problem of human pose esti-
mation in [45] and [69]. Residual learning was used for part detection in the system of [45]. The
“stacked hourglass network” of [69] elegantly extends FCN [66] and deconvolution nets [121]
within residual learning, also allowing for a more sophisticated and heavy processing during
top-down processing.

In the context of face alignment, while CNNs have been applied recently to it [94, 124], we
are the first to explore heatmap-based regression for 2D & 3D face alignment. The work in [124]
proposes to combine facial landmark localisation with attribute classification through multi-task
learning. One limitation of above methods is that they can detect 5 landmarks only. Very recent
work includes [132, 54] and [101] which extends [108] within recurrent neural networks. We
will further detail this in section 2.2.

2.2 Face Alignment

This section reviews related work on 2D & 3D face alignment.

2.2.1 2D face alignment

Prior to the advent of Deep Learning, methods based on cascaded regression have emerged as
the state-of-the-art in 2D face alignment, see for example [17, 108, 129, 102]. Most commonly,
such methods rely on hand-crafted features, are sensitive to face detection initialisation [111],
might require a cascade with many steps, and most notably have been shown to work well
mainly for frontal datasets like LFPW [6], Helen [60] and 300-W [83] in which most of the
landmarks are visible. On the contrary, our method, presented in Chapter 3, does not rely on
accurate face detection, uses a single regression step and can cope well with arbitrary poses
and severe self-occlusion. This method will be further improved and expanded in Chapter 4
to 3D face alignment. Notably, the idea of aggregating local evidence for facial landmark
localisation has been explored within methods based on the so-called Constrained Local Model
(CLM) [26, 86, 3, 4]. Note that all CLM-based methods use hand-crafted features and have been
shown to be largely outperformed by cascaded regression methods. On the contrary, we show
that the proposed methods largely outperforms all prior work on 2D and 3D large pose face
alignment.

2.2.2 Large pose face alignment

State-of-the-art methods for large pose face alignment include techniques that attempt to perform
face alignment by fitting a 3D Morphable Model (3DMM) to a 2D facial image [53, 54, 132].
The work in [53] aligns faces using a sparse 3D point distribution model the parameters of which
along with the projection matrix are estimated by cascaded regression. Notably, [53] introduces
AFLW-PIFA, a challenging dataset for large pose unconstrained face alignment. The work
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in [54] extends [53] by fitting a dense 3DMM using a cascade of CNNs. A similar approach
to [54] has been also proposed in [132]. Besides 3DMM-based approaches, the work in [132]
performs large pose 2D face alignment based on compositional cascaded learning, a novel way
to perform model averaging within cascaded regression. Despite its elegant formulation, [132]
completely avoids regressing non-visible landmarks and suffers from many of the problems
common in all cascaded regression techniques (please see above). Compared to [53, 54, 132], our
system by-passes the burden of fitting a 3D model and compared to [132], our method avoids the
limitations of cascaded regression. On AFLW-PIFA, the system proposed in Chapter 3 reduces
the error reported in [53, 54, 132] by more than 50% ([132] does not report performance on this
dataset). This performance is further improved in Chapter 4 where we set the new state-of-the-art
on 300-W, AFLW2000-3D, Menpo and the newly introduced dataset from the present work,
LS3D-W.

2.2.3 3D face alignment

In the case of 2D face alignment, the face is treated as a 2D planar object, which causes the
annotated points to lose correspondence as the face departs from a frontal pose. To alleviate this,
recently, 3D face alignment was proposed as a solution. Traditionally, for both 3D and 2D large
pose face alignment a 3DMM was fitted to a given input image [132, 54]. Given the scarcity
of available 3D data, an important milestone was the the release of the Workshop on 3D Face
Alignment in the Wild(3DFAW) Dataset & Challenge [49]. We participated in this challenge
and we were the challenge winners [9]. To this end, we built on top of the network architecture
we introduced in [8] expanding it for the 3D case by appending an auxiliary regression network,
based on a ResNet-202 [39], that given the predicted 2D landmarks and the input image estimates
the depth for each landmark. In this thesis, we further improve on top of our work in [9] in
Chapter 4, significantly outperforming the state-of-the-art method from [132]. At the same time
we introduce the largest 3D face alignment dataset.

2.2.4 Dataset expansion by transferring landmark annotations

There are a few works that have attempted to unify facial alignment datasets by transferring land-
mark annotations, typically through exploiting common landmarks across datasets [128, 90, 122].
Such methods have been primarily shown to be successful when landmarks are transferred from
more challenging to less challenging images, for example in [128] the target dataset is LFW [43]
or [90] provides annotations only for the relatively easy images of AFLW [57]. Hence, the
community primarily relies on the unification performed manually by the 300-W challenge [82]
which contains less than 5,000 near frontal images annotated from a 2D perspective.

Using 300-W-LP [132] as a basis, Chapter 4 presents the first attempt to provide 3D annota-
tions for all other datasets, namely AFLW-2000 [132] (2,000 images), 300-W test set [81] (600
images), 300-VW [87] (218,595 frames), and Menpo training set (9,000 images). To this end,
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we propose in Chapter 4 a guided-by-2D landmarks CNN which converts 2D annotations to 3D
and unifies all aforementioned datasets.

2.3 Face Alignment Datasets

In this Section, an in-depth description of existing 2D and 3D datasets is provided. We note
that the 3D annotations preserve correspondence across pose as opposed to the 2D ones and, in
general, they should be preferred. We emphasize that the 3D annotations are actually the 2D
projections of the 3D facial landmark coordinates but for simplicity we will just call them 3D
and refer to the actual 3D ones explictly in the text.

Dataset Size pose annot. synt.

300-W 4,000 [−45◦, 45◦] 2D No

300-W-LP-2D 61,225 [−90◦, 90◦] 2D Yes

300-W-LP-3D 61,225 [−90◦, 90◦] 3D Yes

AFLW 25,993 [−90◦, 90◦] 2D No

AFLW-PIFA 5,200 [−90◦, 90◦] 3D No

AFLW2000-3D 2,000 [−90◦, 90◦] 3D No

Menpo 9,000 [−90◦, 90◦] 2D&3D No

300-VW 218,595 [−45◦, 45◦] 2D No

LS3D-W (ours) 230,000 [−90◦, 90◦] 3D No

LS3D-W-balanced (ours) 7,800 [−90◦, 90◦] 3D No

Table 2.1 Summary of the most popular face alignment datasets and their main characteristics.

2.3.1 2D datasets

300-W. The 300-W dataset was introduced in [82] by combining the images from LFPW[6],
AFW[133], HELEN[60] and XM2VTS[68] and re-annotating them in a consistent manner using
the 68 points based configuration depicted in Fig. 1.2a. In addition to this another 135 images
exhibiting difficult poses and expression were added, totalling 3000 images.
300-W test set. The 300-W test set consists of the 600 images used for the evaluation purposes
of the 300-W Challenge [81]. The images are split in two categories: Indoor and Outdoor. All
images were annotated with the same 68 2D landmarks as the ones used in the 300-W data set.
300-VW. 300-VW[87] is a large-scale face tracking dataset, containing 114 videos and in total
218,595 frames. From the total of 114 videos, 64 are used for testing and 50 for training. The
test videos are further separated into three categories (A, B, and C) with the last one being the
most challenging. It is worth noting that some videos (especially from category C) contain very
low resolution/poor quality faces. Due to the semi-automatic annotation approach (see [87] for
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more details), in some cases, the annotations for these videos are not so accurate (see Fig. 4.4).
Another source of annotation error is caused by facial pose, i.e. large poses are also not accurately
annotated (see Fig. 4.4).
Menpo. Menpo is a recently introduced dataset [119] containing landmark annotations for about
9,000 faces from FDDB [48] and ALFW. Frontal faces were annotated in terms of 68 landmarks
using the same annotation policy as the one of 300-W but profile faces in terms of 39 different
landmarks which are not in correspondence with the landmarks from the 68-point mark-up.
AFLW is a large-scale face alignment dataset that contains faces in various poses and expressions
collected from Flickr. All 25,993 faces present in the dataset were annotated with up to 21 points.

2.3.2 3D datasets

Prior to the work presented in Chapter 4, the existing 3D face alignment datasets were either
small or artificially rendered from frontal poses and as such were often unrealistic and inaccurate.
Bellow, the current datasets are listed alongside the newly introduced LS3D-W dataset.
300-W-LP is a synthetically expanded dataset obtained by artificially rendering the faces from
300-W [82] into large poses (−900 to 900). While the dataset contains 61,225 images, there are
only about 3,000 unique faces. Also, the images are affected by artefacts caused by the warping
procedure. We included the entire dataset in our training set.
AFLW-PIFA is a subset of 5,200 grayscale images selected from AFLW and re-annotated with
up to 34 points and occlusion labels [53]. The dataset has a balanced distribution of yaw angles
(from −90◦ to 90◦).
AFLW2000-3D. AFLW2000-3D [132] is a dataset constructed by re-annotating the first 2000
images from AFLW [57] using 68 3D landmarks in a consistent manner with the ones from
300-W-LP-3D. The faces of this dataset contain large-pose variations (yaw from −90o to 90o),
with various expressions and illumination conditions. However, some annotations, especially for
larger poses or occluded faces are not so accurate (see Fig. 4.7).
LS3D-W. LS3D-W is the dataset introduced in this work (Chapter 4), being the largest up-to-
date 3D face alignment dataset containing more than 230,000 images found in arbitrary/natural
conditions. Full details regarding its content and the method used to create it are described in
Chapter 4.
LS3D-W balanced is a subset of the LS3D-W dataset, containing 7,200 images captured in-
the-wild, in which each pose range ([00 −300], [300 −600], [600 −900]) is equally represented
(2,400 images each).

2.3.3 Other related datasets

In addition to the above mentioned face alignment datasets, for the work on joint super-resolution
and face alignment presented in Chapter 6, we used a few additional datasets required for the
task at hand that are described bellow.
Celeb-A is a large-scale facial attribute dataset containing 10,177 unique identities and 202,599
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facial images in total. Most of the images are occlusion-free and in frontal or near-frontal poses.
To avoid biasing the training set towards frontal poses, we only used a randomly selected subset
of approx. 20,000 faces.
WiderFace is a face detection dataset containing 32,203 images with faces that exhibit a high
degree of variability in pose, occlusion and quality. In order to assess the performance of our
super-resolution method on in-the-wild, real-world images, we randomly selected 200 very low
resolution, heavily blurred faces for qualitative evaluation.

2.4 Efficient Convolutional Neural Networks

Despite their unprecedented accuracy, most of the deep learning-based methods remain slow and
are unsuitable for devices with limited computational resources (i.e. smartphones, FPGAs etc).
To alleviate this, recently, a series of techniques were proposed. In this section an overview of
such approaches is presented in the following two subsections.

2.4.1 Network quantization

Prior work [40] suggests that high precision parameters are not essential for obtaining top results
for image classification. In light of this, [22, 62] propose 16- and 8-bit quantization, showing
negligible performance drop on a few small datasets [58]. [126] proposes a technique which
allocates different numbers of bits (1-2-6) for the network parameters, activations and gradients.

Binarization (i.e. the extreme case of quantization) was long considered to be impractical
due to the destructive property of such a representation [22]. Recently [93] showed this not to be
the case and that by quantizing to {−1,1} good results can be actually obtained. [23] introduces
a new technique for training CNNs that uses binary weights for both forward and backward
passes, however, the real parameters are still required during training. The work of [24] goes
one step further and binarizes both parameters and activations. In this case multiplications can
be replaced with elementary binary operations [24]. By estimating the binary weights with the
help of a scaling factor, [79] is the first work to report good results on a large dataset (ImageNet).
Notably, our method, presented in Chapter 5, makes use of the recent findings from [79] and [24]
using the same way of quantizing the weights and replacing multiplications with bit-wise xor
operations.

Our method (Chapter 5) differs from all aforementioned works in two key respects: (a)
instead of focusing on image classification, we are the first to study neural network binarization
in the context of a fine-grained computer vision task namely landmark localization (human pose
estimation and facial alignment) by predicting a dense output (heatmaps) in a fully convolutional
manner, and (b) instead of enhancing the results by improving the quantization method, we follow
a completely different path, by enhancing the performance via proposing a novel architectural
design for a hierarchical, parallel and multi-scale residual block.
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2.4.2 Block design

Most of the work presented in this thesis uses a residual-based architecture and hence the starting
point of our work is the bottleneck block described in [38, 39]. More recently, [106] explores the
idea of increasing the cardinality of the residual block by splitting it into a series of c parallel
(and much smaller so that the number of parameters remains roughly the same) sub-blocks with
the same topology which behave as an ensemble. Beyond bottleneck layers, Szegedy et. al. [96]
propose the inception block which introduces parallel paths with different receptive field sizes
and various ways of lowering the number of parameters by factorizing convolutional layers with
large filters into smaller ones. In a follow-up paper [95], the authors introduce a number of
inception-residual architectures. The latter work is the most related one to the proposed method.

Our method, described in Chapter 5, is different from the aforementioned architectures in the
following ways: we create a hierarchical, parallel and multi-scale structure that (a) increases the
receptive field size inside the block and (b) improves gradient flow, (c) is specifically designed to
have (almost) the same number of parameters as the original bottleneck, (d) our block does not
contain 1×1 convolutions, and (e) our block is derived from the perspective of improving the
performance and efficiency of binary networks.

2.5 Image and face resolution enhancement

2.5.1 Image super-resolution.

Early attempts on super-resolution using CNNs [30, 56] used standard Lp losses for training
which result in blurry super-resolved images. To alleviate this, rather than using an MSE over
pixels (between the super-resolved and the ground truth HR image), the authors of [51] proposed
an MSE over feature maps, coined perceptual loss. Notably, in our method presented in Chapter 6,
we also use a perceptual loss. More recently, in [61], the authors presented a GAN-based [34]
approach which uses a discriminator to differentiate between the super-resolved and the original
HR images and the perceptual loss. In [84], a patch-based texture loss is proposed to improve
reconstruction quality.

Notice that all the aforementioned image super-resolution methods can be applied to all types
of images and hence do not incorporate face-specific information, as it will be proposed in the
present work in Chapter 6. Also, in most cases, the aim is to produce high-fidelity images given
an image which is already of good resolution (usually 128×128) while face super-resolution
methods typically report results on very low resolution faces (16×16 or 32×32).

From all the above mentioned methods, our work, presented in Chapter 6, is more closely
related to [51] and [61]. In particular, one of our contributions is to describe an improved
GAN-based architecture for super-resolution, which we used as a strong baseline on top of which
we built our integrated face super-resolution and alignment network.
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2.5.2 Face super-resolution

The recent work of [117] uses a GAN-based approach (like the one of [61] without the perceptual
loss) to super-resolve very low-resolution faces. The method was shown to work well for frontal
and pre-aligned faces taken from the CelebA dataset [65]. In [118], the same authors proposed a
two-step decoder-encoder-decoder architecture which incorporates a spatial transformer network
to undo translation, scale and rotation misalignments. Their method was tested on pre-aligned,
synthetically generated LR images from the frontal dataset of CelebA [65]. Notably, our network
described in Chapter 6 does not try to undo misalignment but simply learns how to super-resolve,
respecting at the same time the structure of the human face by integrating a landmark localization
sub-network.

The closest work to our method presented in Chapter 6 is [131] which performs face super-
resolution and dense facial correspondence in an alternating manner. Their algorithm was tested
on the frontal faces of PubFig [59] and Helen [60] while few results on real images (4 in total)
were also shown with less success. The main difference with our work is that, in [131], the
dense correspondence algorithm is not based on neural networks, but on cascaded regression,
is pre-learned disjointly from the super-resolution network and remains fixed. As such, [131]
suffers from the same problem of having to detect landmarks on blurry faces which is particularly
evident for the first iterations of the algorithm. On the contrary, in Chapter 6, we propose learning
both super-resolution and facial landmark localization jointly in an end-to-end fashion, and use
just one shot to jointly super-resolve the image and localize the facial landmarks. See Fig. 6.2.
As it is shown, this results in large performance improvement and generates images of high
fidelity across the whole spectrum of facial poses.

It is worth noting that, in Chapter 6, we go beyond the state-of-the-art and rigorously evaluate
super-resolution and facial landmark localization across facial pose both quantitatively and
qualitatively. As opposed to prior work which primarily uses frontal datasets [118, 16, 44, 131,
117, 110] (e.g. CelebA, Helen, LFW, BioID) to report results, the low resolution images in our
experiments were generated using the newly created LS3D-W balanced dataset [11] introduced
in Chapter 4 which contains an even number of facial images per facial pose. We also report
qualitatively results on more than 200 real-world low resolution facial images taken from the
WiderFace dataset [112]. To our knowledge, this is the most comprehensive evaluation of face
super-resolution algorithms on real images.
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Face alignment via Convolutional Part
Heatmap Regression

stacked
part

heatmaps

256x256px point heatmaps

regression heatmaps

detection network

regression network

Fig. 3.1 Proposed architecture: Our CNN cascade consists of two connected deep sub-networks.
The first one (upper part in the figure) is a detection network trained to detect the individual
fiducial points using a per-pixel sigmoid loss. Its output is a set of N point heatmaps. The second
one is a regression subnetwork that jointly regresses the detection heatmaps stacked along with
the input image to confidence maps representing the location of the keypoints.

This Chapter presents a novel approach for large pose face alignment based on heatmap
regression that addresses for the first time, to a satisfactory extent, two of the most important
face alignment requirements simultaneously: (a) the method must not rely on accurate initial-
isation/face detection and (b) it should perform equally well for the whole spectrum of facial
poses. We note that this method will be further developed and expanded in Chapter 4 for 3D
face alignment. In Chapter 5, the concept will be further adapted using a novel architecture to
devices with low computational resources.

In particular, to remove the requirement for accurate face detection, our system firstly
performs facial part detection, providing confidence scores for the location of each of the facial
landmarks (local evidence). Next, these score maps along with early CNN features are aggregated
by our system through joint regression in order to refine the landmarks’ location. Besides playing
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the role of a graphical model, CNN regression is a key feature of our system, guiding the network
to rely on context for predicting the location of occluded landmarks, typically encountered in
very large poses. Through the chapter, we will be referring to the proposed method as CALE
(Convolutional Aggregation of Local Evidence).

When applied to one of the most challenging human face alignment test sets, our method
provides more than 50% gain in localisation accuracy when compared to other recently published
methods for large pose face alignment. Lastly, in this chapter we go beyond human faces,
demonstrating that the proposed method is effective in dealing with very large changes in shape
and appearance, typically encountered in animal faces.

The contributions of this Chapter have been published at BMVC 2016 in [7].

3.1 Method

The proposed heatmap regression is a CNN cascade illustrated in Fig. 3.1. Our cascade consists
of two connected subnetworks. The first subnetwork is a landmark detection network trained to
detect individual fiducial points using a per-pixel softmax loss, thus by-passing the requirement
for accurate face detection. The output of this network is a set of N detection heatmaps. The
second subnetwork is a regression subnetwork that jointly regresses the detection heatmaps
stacked with the image/CNN features to confidence maps representing the location of the facial
landmarks.

A1 A2 A3 A4 A5 A6 A7 A9 A9
A9

+ +

A8

A8

Fig. 3.2 The VGG-FCN subnetwork used for facial landmark detection. The subnetwork takes
as input the facial image and outputs a set of N heatmaps, each detecting an individual part. The
blocks A1-A9 are defined in Table 3.1.

3.1.1 Detection subnetwork

One of the main issues with almost all prior techniques on face alignment is face detection
initialisation. It is well-known that face alignment methods are sensitive to how accurate the face
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A1 A2 A3 A4 A5 A6 A7 A8 A9

2× conv
layer (64,
3×3, 1×1),
pooling

2× conv
layer (128,
3×3, 1×1),
pooling

3× conv
layer (256,
3×3, 1×1),
pooling

3× conv
layer (512,
3×3, 1×1),
pooling

3× conv
layer(512,
1×1, 1×1),
pooling

conv layer
(4096,
7×7, 1×1)

conv layer
(4096,
1×1, 1×1)

conv
layer(16,
1×1, 1×1)

bilinear
upsample

Table 3.1 Block specification for the VGG-FCN facial landmark detection subnetwork. Torch
notations (channels, kernel, stride) and (kernel, stride) are used to define the conv and pooling
layers.

detection algorithm is, with faces in difficult poses being usually detected with less accuracy. A
second important, but not so well-discussed, issue is that typically face alignment methods are
tight with a specific face detector, with alignment accuracy rapidly deteriorating if a different face
detector (than the one that the face alignment algorithm was trained on) is used. Notably, face
alignment methods are usually tight to both the statistics of the face detector and the definition
of the face region that the detector was trained on.

To overcome the strong dependency on the face detector, we propose to firstly perform
detection of the individual facial landmarks. While [66] uses a per-pixel softmax loss encoding
different classes with different numeric levels, in practice, for faces this is suboptimal because
the points are usually within close proximity to each other, having high chance of overlapping.
Therefore, we follow an approach similar to [123] and encode landmark label information as a
set of N binary maps, one for each point, in which the values within a certain radius around the
provided ground truth location are set to 1 and the values for the remaining background are set to
0. This way, we thus tackle the problem of having multiple points in the very same region. Note
that the detection network is trained using visible points only, which is fundamentally different
from the previous regression-based approaches[74, 99, 98] applied to human pose estimation.

The radius defining “correct location” was selected so that the targeted point is fully included
inside. Empirically, we determined that a value of 10px to be optimal for a face size of 200px
computed as the square root of the tight bounding box.

We train our keypoints detectors jointly using pixelwise sigmoid cross entropy loss function:

l1 =
1
N

N

∑
n=1

W

∑
i=1

H

∑
j=1

[pn
i j log p̂n

i j +(1− pn
i j) log(1− p̂n

i j)], (3.1)

where pn
i j denotes the ground truth map of the nth landmark at pixel location (i, j) (constructed

as described above) and p̂n
i j is the corresponding sigmoid output at the same location.

In terms of architecture, we based our landmark detection network architecture on the VGG-
16 network [88] converted to fully convolutional by replacing the fully connected layers with
convolutional layers of kernel size of 1 [66]. Because the localization accuracy offered by the
32px stride is insufficient, we make use of the entire algorithm as in [66] by combining the earlier
level CNN features, thus reducing the stride to 8px. For convenience, the network is shown in
Fig. 3.2 and Table 3.1.
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C1C2 C3 C4 C5 C6 C7
C8

Fig. 3.3 The VGG-based subnetwork used for regression. The subnetwork takes as input the
image stacked alongside the heatmaps produced by the detection subnetwork and outputs the
final regressed heatmaps. The blocks C1-C8 are defined in Table 3.2.

C1 C2 C3 C4 C5 C6 C7 C8

conv
layer(64,
9×9, 1×1)

conv
layer(64,
13×13, 1×1)

conv
layer(128,
13×13, 1×1)

conv
layer(256,
15×15, 1×1)

conv
layer(512,
1×1, 1×1)

conv
layer(512,
1×1, 1×1)

conv
layer(16,
1×1, 1×1)

deconv layer
(16, 8×8,
4×4)

Table 3.2 Block specification for the VGG-based regression subnetwork. Torch notations
(channels, kernel, stride) and (kernel, stride) are used to define the conv and pooling layers.

3.1.2 Regression subnetwork

While the detectors alone provide good performance, they lack a strong relationship model
that is required to improve (a) accuracy and (b) robustness particularly required in situations
where specific landmarks are occluded. To this end, we propose an additional subnetwork that
jointly regresses the location of all landmarks (both visible and occluded). The input of this
subnetwork is a multi-channel representation produced by stacking the N heatmaps produced
by the detection subnetwork, along with the input image (see Fig. 3.1). This multichannel
representation guides the network where to focus and encodes structural landmark relationships.
Additionally, it ensures that our network does not suffer from the problem of regressing occluded
landmark appearances: because the detection heatmaps for the occluded landmarks provide
low confidence scores, they subsequently guide the regression part of our network to rely on
contextual information (provided by the remaining landmarks) in order to predict the location of
these landmarks.

The goal of our regression subnetwork is to predict the points’ location via regression.
However, direct regression of the points is a difficult and highly non-linear problem caused
mainly by the fact that only one single correct value needs to be predicted. We address this by
following a simpler alternative route [99, 74], regressing a set of confidence maps located in the
immediate vicinity of the correct location (instead of regressing a single value). The ground truth
consists of a set of N layers, one for each (see Fig. 5.1b), in which the correct location of each
landmark, be it visible or not is represented by Gaussian with a standard deviation of 5px.

We train our subnetwork to regress the location of all landmarks jointly using the following
L2 loss:
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l2 =
1
N

N

∑
n=1

W

∑
i=1

H

∑
j=1

∥∥∥p̂n
i, j − pn

i, j

∥∥∥2
, (3.2)

where p̂n
i, j and pn

i, j represent the predicted and the ground truth confidence maps at pixel location
(i, j) for the nth landmark, respectively.

For the regression subnetwork, we have chosen a very simple architecture, consisting of 7
convolutional layers. The network is shown in Fig. 3.3 and Table 3.2. The first 4 of these layers
use a large kernel size that varies from 7 to 15, in order to capture a sufficient local context and
to increase the receptive field size which is crucial for learning long-range relationships. The last
3 layers have a kernel size equal to 1.

3.1.3 Detection vs regression

While the detection stage targets only the visible parts, ignoring the rest (i.e. it detects the
presence or the absence of a part), it does not develop strong relations between them. Additionally,
to emphasize its detection nature, the ground truth is represented as a disc with values of 1 in
the vicinity of the exact location being centered around it. As opposed to this, the regression
stage targets all the keypoints, both visible and occluded, trying to learn an implicit model in the
process. The ground truth is more localised penalising the distance from the current pixel to the
correct one. In practice, as mentioned in the previous subsection, this is represented using a 2D
gaussian centered around the ground truth location.

3.1.4 Training

We trained our CNN landmark detectors by fine-tuning from a VGG-16 network that was
previously trained on ImageNet [28]. We followed a training procedure similar to the one
described in [66] by firstly, performing a “network surgery” which converts VGG-16 to a fully
convolutional network. We firstly trained the 32-stride model with a learning rate of 1e−7 for
10 epochs. Because the 32-stride version of the network does not provide enough resolution, we
went all the way down to 8-stride. The detectors were trained under this setting for 20 epochs
(25 for the Cats&Dogs dataset) with a learning rate of 1e−8. Then, we gradually reduced the
learning rate twice, down to 1e− 10. All the new learned layers were initialised with zeros.
In order to avoid early divergence, we froze the learning for all CNN detector layers and set
temporary the learning rate to 0, training only the CNN regressor. We trained the sub-network
for 30 epochs with a learning rate of 1e− 6. After 20 epochs, we lowered it to 1e− 7 and
continued the training until convergence was reached. The entire network (CNN detector and
CNN regressor) was then trained jointly, in an end-to-end fashion for 5 more epochs. All the
new layers added were initialised with a random Gaussian distribution with standard deviation of
0.01. For face alignment, the network was trained on the entire training set of AFLW-PIFA (10%
of images that were kept for validation). We followed a similar approach on the Cats&Dogs
Dataset, holding 10% of the total of 3000 images for validation and 250 images for testing.
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Regarding data augmentation, we applied image flipping and scale jittering (0.8-1.2). Because
the images provided in the AFLW-PIFA dataset were grayscale, the human face alignment model
was trained with grayscale images, while the one for animals using colour images.

All models were trained and tested using Caffe[50] on a single Titan X GPU.

3.2 Results

We firstly report results on the most challenging and large scale dataset (at the time the method
was developed) for large pose human face alignment, namely AFLW-PIFA [53], illustrating that
CALE reduces the error achieved by state-of-the-art methods [132, 130] by more than 50%.
Then, we report results on our Cats&Dogs dataset, illustrating, for the first time, that a face
alignment method is capable of achieving similar performance on both animal and human faces.

3.2.1 Human faces

We have opted not to report results on LFPW [6], Helen [60] and 300-W [83] which are all
frontal datasets containing a small portion of test images and are currently being considered
as saturated [132, 130]. Instead we report performance on AFLW-PIFA which was at the time
the method was developed the most challenging dataset for large pose face alignment [53]. In
particular, the authors of [53] created a subset of AFLW [57] that has a balanced distribution
of yaw angles (from -90 degrees to 90 degrees) including 3901 images for training and a large
number of 1299 for testing. Notably, besides the existing 21 key points, this subset contains 13
new landmarks, making the total number of annotated keypoints equal to 34. All the images
are annotated from a 3D perspective which makes the landmark location prediction even more
difficult, making AFLW-PIFA the most challenging dataset for face alignment. We report results
on the original 21 point annotations [53] as well as on the new ones, based on 34 points [54].

The evaluation metric used for AFLW-PIFA subset is the Normalized Mean Error (NME),
which is the average of the normalized (by the face size as defined in [54]) estimation error of
the visible landmarks:

NME =
1
N

N

∑
i=1

1
fi|vi|1

Nk

∑
j

vi( j)
∥∥∥L̃i(:, j)−Li(:, j)

∥∥∥ , (3.3)

where we denoted by L̃i the estimated landmarks location, Li the corresponding ground truth
2D landmarks, vi the visibility label and |vi|1 the number of visible landmarks of image Ii. L(:, j)
and L̃(:, j) is the jth column of Li and L̃i respectively. N is the total number of faces and Nk the
number of keypoints. For each image, the error is normalized by fi, which for ALFW-PIFA is
the square root of the face size calculated from the bounding box as in [54].

Firstly, we compare the performance of our CNN detector alone with that of the overall CNN
architecture (CALE). We opted to report performance on both occluded and visible points. The
results on AFLW-PIFA are given in Table 3.3 and Fig. 3.4. We observe that although the CNN
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Method 21 points (vis.) 21 points 34 points (vis) 34 points

CNN detector 3.32 5.53 3.63 5.96

CALE 2.63 4.38 2.96 4.97

Table 3.3 Performance analysis of CALE on AFLW-PIFA using NME (%). Results are reported
on both 21 and 34 points. Results marked with (vis) are calculated on visible points only, while
the rest are calculated on both occluded and visible landmarks.

detector alone performs very well, CALE largely outperforms it achieving very high alignment
accuracy. The performance improvement offered by CALE is even greater on the occluded
points, verifying the usefulness of the CNN regressor for the difficult poses and occlusions of
AFLW-PIFA.

Next, we compare the performance of our method with that of currently considered state-of-
the-art methods for large pose face alignment, also including the very recent works of [54] and
[130]. Tables 3.4 and 3.5 summarise our results on AFLW-PIFA on both 21 and 34 points for the
visible points only. From Table 3.4, we observe that CALE largely outperforms all other methods
by a remarkable more than 50%, reducing the error of the second best performing method [130]
to more than half. Similarly, from Table 3.5, we observe that the improvement over the second
best performing method approaches 37%. Note that prior work reports on visible points, only.
To the best of our knowledge we are the first to report results on non-visible (i.e. either occluded
or self-occluded due to the pose) landmarks too (see Table 3.3). Remarkably, the performance of
CALE when evaluated on all points - both visible and occluded (see Table 3.3) surpasses the
performance of all existing methods when these are evaluated on visible points only (see Tables
3.4 and 3.5). Fitting results from AFLW-PIFA can be seen in Fig. 3.5.
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Fig. 3.4 NME-based (%) comparison between CNN detector and CALE on AFLW-PIFA on 34
points.
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CDM [116] CFSS [127] ERT [55] SDM [108] PIFA [53] CCL [130] Ours

8.59 6.75 7.03 6.96 6.52 5.81 2.63

Table 3.4 NME-based (%) comparison on AFLW-PIFA on 21 points (visible landmarks only).
The results for CFSS, ERT and SDM are taken from [130].

Evaluation PIFA [53] RCPR [14] PAWF [54] Ours

AFLW-PIFA 8.04 6.26 4.72 2.96

Table 3.5 NME-based (%) comparison on AFLW-PIFA evaluated on 34 points (visible landmarks
only). The results for PIFA, RCPR and PAWF are taken from [54].

Fig. 3.5 Qualitative fitting results produced by CALE on AFLW-PIFA test set. Observe that
our method copes well for both occlusions and difficult poses. Blue/Yellow points indicate
visible/invisible landmarks. All the keypoints are detected from a 3D perspective, so the
non-visible (yellow) points are actually accurately localised for the majority of cases.
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Evaluation Ours

Cats&Dogs (Cats subset) 2.72
Cats&Dogs (Dogs subset) 2.71

Table 3.6 NME-based (%) performance on Cats&Dogs on 22 points.

3.2.2 Animal faces

While human face alignment is a well-studied problem, the problem of animal face alignment, to
the best of our knowledge, has never been systematically explored in the past by the Computer
Vision community. As animal faces exhibit a much larger degree of variability in shape and
appearance as well as in pose and expression, animal face alignment is considered a much more
difficult problem. Cats and dogs, the two species chosen here, are the most popular companion
animals, worldwide and of enormous societal and economic importance. Motivated by our
results on human face alignment, we investigate CALE’s performance on cat and dog face
alignment. Although drawing a direct comparison is not possible, our results, both quantitative
and qualitative (see Figs 3.5 and 3.7), show that CALE’s performance on animal faces is not far
from that on human faces.

Our Cats&Dogs dataset is a subset of the Oxford-IIIT-Pet dataset [72] which contains a rich
variety of cats/dogs breeds, making the dataset particularly challenging. Our dataset contains
1511 images of cats and 1514 of dogs. For both animals, we kept 250 images for testing and
used the rest for training. We used 22 landmarks similarly defined for both species (see 3.7). To
measure performance, we used the same metric as the one used for AFLW-PIFA.

Fig. 3.6 and Table 3.6 summarise our results on 22 points. As we may observe, CALE
literally produces the same fitting accuracy for both species.
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Fig. 3.6 NME-based (%) performance on Cats&Dogs on 22 points.
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Fig. 3.7 Qualitative results produced by CALE on our Cats&Dogs dataset.



Chapter 4

Toward solving the 2D & 3D face
alignment problem (and a dataset of
230.000 images)

This chapter investigates how far a very deep neural network is from attaining close to saturating
performance on existing 2D and 3D face alignment datasets. To this end, we construct, for
the first time, a very strong baseline by combining a state-of-the-art architecture for landmark
localization with a state-of-the-art residual block introduced in Chapter 5, train it on a very large
yet synthetically expanded 2D facial landmark dataset and finally evaluate it on all other 2D
facial landmark datasets. We then create a guided by 2D landmarks network which converts
2D landmark annotations to 3D and unifies all existing datasets, leading to the creation of
LS3D-W, the largest and most challenging 3D facial landmark dataset to date (~230,000 images).
Following that, we train a neural network for 3D face alignment and evaluate it on the newly
introduced LS3D-W. We further look into the effect of all “traditional” factors affecting face
alignment performance like large pose, initialization and resolution, and introduce a “new” one,
namely the size of the network. Finally, we show that both 2D and 3D face alignment networks
achieve performance of remarkable accuracy which is probably close to saturating the datasets
used.

The contributions of this Chapter have been published at ICCV 2017 in [11].

4.1 Datasets

In this Section, we provide a description of how existing 2D and 3D datasets were used for
training and testing for the purposes of our experiments. We note that the 3D annotations preserve
correspondence (i.e. their location corresponds to the actual one and the points are not simply
placed at the visible edge of the face as in the 2D case, see also Fig. 1.4) across pose as opposed
to the 2D ones and, in general, they should be preferred. We emphasize that the 3D annotations
are actually the 2D projections of the 3D facial landmark coordinates but for simplicity we
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will just call them 3D. In Section 4.8, we present a method for extending these annotations to
full 3D. Finally, we emphasize that we performed cross-database experiments only. A detailed
description of the datasets mentioned bellow can be found in Section 2.2.

4.1.1 Training datasets

For training and validation, we used 300-W-LP [132], a synthetically expanded version of
300-W [82]. 300-W-LP provides both 2D and 3D landmarks allowing for training models and
conducting experiments using both types of annotations. For some 2D experiments, we also used
the original 300-W dataset [82] and 300-VW dataset [87] for fine tuning, only. This is because
the 2D landmarks of 300-W-LP are not entirely compatible with the 2D landmarks of the test
sets used in our experiments (i.e. 300-W test set, [81], 300-VW [87] and Menpo [119]), but the
original annotations from 300-W are. 10% of the training data was held out for validation.

4.1.2 Test datasets

While there is a large number of 2D datasets this type of annotations is problematic since for
moderately large poses 2D landmarks lose correspondence. Currently, the only in-the-wild
3D test set is AFLW2000-3D [132] 1 We address this significant gap in 3D face alignment
datasets in Section 4.5 by introducing a new testing dataset, LS3D-W-Balanced and re-annotate
automatically the AFLW2000-3D dataset that is relatively noisy for some difficult cases. As
such, in this chapter, we test the performance of our method on the original AFLW2000-3D
dataset (containing 2,000 images), on its re-annotated version and on the newly introduced
LS3D-W-Balanced dataset (consisting of 7,200 images).

4.1.3 Metrics

Traditionally, the metric used for face alignment is the point-to-point Euclidean distance nor-
malized by the interocular distance [25, 82, 87]. However, as noted in [133], this error metric is
biased for profile faces for which the interocular distance can be very small. Hence, we normalize
by the bounding box size. In particular, we used the Normalized Mean Error defined as:

NME =
1
N

N

∑
i=1

∥∥∥L̃i −Li

∥∥∥
2

d
, (4.1)

where Li denotes the ground truth landmarks for a given face, L̃i the corresponding prediction
and d is the square-root of the ground truth bounding box, computed as d =

√
wbbox ∗hbbox.

Although we conducted both 2D and 3D experiments, we opted to use the same bounding box
definition for both experiments; in particular we used the bounding box calculated from the 2D
landmarks. This way, we can readily compare the accuracy achieved in 2D and 3D.

1The data from [49] includes mainly images collected in the lab and do not cover the full spectrum of facial
poses.
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4.2 Background

The residual block is the main building block of the Hourglass (HG) network, shown in Fig. 4.1,
which is a state-of-the-art architecture for landmark localization that predicts a set of heatmaps
(one for each landmark) in a fully convolutional fashion. The HG network is an extension of
[66] allowing however for a more symmetric top-down and bottom-up processing. See also [69].

Heatmaps

Fig. 4.1 The architecture of a single Hour-Glass (HG) network [69]. The network takes as input
the features and the heatmaps produced at the l − 1 stage and outputs a new set of heatmaps
(predictions). Throughout this chapter the hourglass itself operates at a resolution of 64×64px

.

4.3 Method

This Section describes the main idea of our method introducing all the architectural variations
used to localise the 2D and 3D landmarks and to construct the very large scale 3D face alignment
dataset (LS3D-W) containing more than 230,000 3D landmark annotations. Namely we present
the following networks:

• 2D-FAN The network consists of up to 4 HGs, taking as input a facial image and producing
a set of heatmaps containing the 2D locations of the points. Note: the 2D points follow
the visible boundary of the face and as such, for faces found in large poses, they lose the
correspondence with the actual location, for more details please see Section 1.3.2.

• 3D-FAN The network takes as input the facial image and outputs a set of heatmaps
containing the 2D projection of the 3D points.

• 2D-to-3D-FAN This network takes as input the heatmaps produced by 2D-FAN, stacks
them alongside the facial image and produces a set of heatmaps that contain the 2D
projection of the 3D points.

• 3D-FAN-full This variant consists of a 3D-FAN network followed by a ResNet. As
opposed to 3D-FAN, 3D-FAN-full also predicts the depth (i.e. the z coordinate) alongside
(x,y) with the help of the ResNet subnetwork.
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• 2D-to-3D-FAN-full Combines 2D-to-3D-FAN with 3D-FAN-full. The network takes as
input the 2D heatmaps produced by 2D-FAN alongside the facial image and outputs the
(x,y,z) location of the points.

Heatmaps

4

Fig. 4.2 The Face Alignment Network (FAN) constructed by stacking four HGs in which all
bottleneck blocks (depicted as rectangles) were replaced with the hierarchical, parallel and multi-
scale block of [10]. The network takes as input a facial image (at a resolution of 256×256px)
and outputs a set of heatmaps, one for each landmark.

4.3.1 2D and 3D Face Alignment Networks

2D Heatmaps
C

3D Heatmaps

4

Fig. 4.3 The 2D-to-3D-FAN network used for the creation of the LS3D-W dataset. The network
takes as input the RGB image and the 2D landmarks and outputs the corresponding 2D projections
of the 3D landmarks. Note: ‘3D heatmaps’ denotes the 2D projection of the 3D points represented
using 2D heatmaps.

We coin the network used for our experiments simply Face Alignment Network (FAN). To
our knowledge, it is the first time that such a powerful network (in terms of depth and capacity)
is trained and evaluated for large scale 2D/3D face alignment experiments.

We construct FAN based on one of the state-of-the-art architectures for human pose esti-
mation, namely the Hour-Glass (HG) network of [69]. In particularly, we used a stack of four
HG networks (see Fig. 4.3). While [69] uses the bottleneck block of [38] as the main building
block for the HG, we go one step further and replace the bottleneck block with our recently
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introduced hierarchical, parallel and multi-scale block presented in Chapter 5. As we will show
in Chapter 5, this block outperforms the original bottleneck of [38] when the same number
of network parameter were used. Finally, we used 300-W-LP-2D and 300-W-LP-3D to train
2D-FAN and 3D-FAN, respectively.

Our aim is to create the very first very large scale dataset of 3D facial landmarks for which
annotations are scarce. To this end, we followed a guided-based approach in which a FAN for
predicting 3D landmarks is guided by 2D landmarks. In particular, we created a 3D-FAN in
which the input RGB channels have been augmented with 68 additional channels, one for each
2D landmark, containing a 2D Gaussian with std = 1px centred at each landmark’s location. We
call this network 2D-to-3D FAN. Given the 2D facial landmarks for an image, 2D-to-3D FAN
converts them to 3D. To train 2D-to-3D FAN, we used 300-W-LP which provides both 2D and
3D annotations for the same image. We emphasize again that the 3D annotations are actually the
2D projections of the 3D coordinates but for simplicity we call them 3D. Please see Section 4.8
for extending these annotations to full 3D.

4.3.2 Training

For all of our experiments, we independently trained three distinct networks on the 300-W-LP
dataset (holding 10% of the data for validation): 2D-FAN, 3D-FAN, and 2D-to-3D-FAN. Note,
that the networks where further finetuned on 300-W and 300-VW dataset when evaluated on
300-W-testset and on the testset 300-VW respectively. For the first two networks, we set the
initial learning rate to 10−4 and used a minibatch of 10. During the process, we dropped the
learning rate to 10−5 after 15 epochs and to 10−6 after another 15, training for a total of 40
epochs. We also applied random augmentation: flipping, rotation (from −50◦ to 50◦), colour
jittering, scale noise (from 0.8 to 1.2) and random occlusion. The 2D-to-3D-FAN model was
trained by following a similar procedure increasing the amount of augmentation even further:
rotation (from −70◦ to 70◦) and scale (from 0.7 to 1.3). Additionally, the learning rate initially
was set to 10−3. All networks were implemented in Torch7 [20] and trained using rmsprop [97].

4.4 2D face alignment

This Section evaluates 2D-FAN (trained on 300-W-LP-2D), on 300-W test set, 300-VW (both
training and test sets), and Menpo (frontal subset). Overall, 2D-FAN is evaluated on more than
220,000 images. Prior to reporting our results, the following points need to be emphasized:

1. 300-W-LP-2D contains a wide range of poses (yaw angles in [−90◦,90◦]), yet it is still a
synthetically generated dataset as this wide spectrum of poses were produced by warping
the nearly frontal images of the 300-W dataset. It is evident that this lack of real data
largely increases the difficulty of the experiment.

2. The 2D landmarks of 300-W-LP-2D that 2D-FAN was trained on are slightly different
from the 2D landmarks of the 300-W test set, 300-VW and Menpo. To alleviate this,
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Fig. 4.4 Fittings with the highest error from 300-VW (NME 6.8-7%). Red: ground truth. White:
our predictions. In most cases, our predictions are more accurate than the ground truth.

the 2D-FAN was further fine-tuned on the original 300-W training set for a few epochs.
Although this seems to resolve the issue, this discrepancy obviously increases the difficulty
of the experiment.

3. We compare the performance of 2D-FAN on all the aforementioned datasets with that of
an unconventional baseline: the performance of a recent state-of-the-art method, namely
MDM [101] on LFPW test set, initialized with the ground truth bounding boxes. We
call this result MDM-on-LFPW. As there is very little performance progress made on the
frontal dataset of LFPW over the past years, we assume that a state-of-the-art method like
MDM (nearly) saturates it. Hence, we use the produced error curve to compare how well
our method does on the much more challenging aforementioned test sets.

The cumulative error curves for our 2D experiments on 300-VW, 300-W test set and Menpo
are shown in Fig. 4.8. We additionally report the performance of MDM on all datasets initialized
by ground truth bounding boxes, ICCR, the state-of-the-art face tracker of [85], on 300-VW (the
only tracking dataset), and our unconventional baseline (called MDM-on-LFPW). Comparison
with a number of methods in terms of AUC are also provided in Table 4.1.

With the exception of Category C of 300-VW, it is evident that 2D-FAN achieves literally the
same performance on all datasets, outperforming MDM and ICCR, and, notably, matching the
performance of MDM-on-LFPW. Out of 7,200 images (from Menpo and 300-W test set), there
are in total only 18 failure cases, which represent 0.25% of the images (we consider a failure a
fitting with NME > 7%). After removing these cases, the 8 fittings with the highest error for
each dataset are shown in Fig. 4.5.

Regarding the Category C of 300-VW, we found that the main reason for this performance
drop is the quality of the annotations which were obtained in a semi-automatic manner. Af-
ter removing all failure cases (101 frames representing 0.38% of the total number of frames),
Fig. 4.4 shows the quality of our predictions vs the ground truth landmarks for the 8 fittings with



4.4 2D face alignment 33

Dataset 2D-FAN(Ours) MDM[101] iCCR[85] TCDCN[124] CFSS[127]

300-VW-A 72.1% 70.2 % 65.9% - -

300-VW-B 71.2% 67.9 % 65.5% - -

300-VW-C 64.1% 54.6% 58.1% - -

Menpo 67.5% 67.1% - 47.9% 60.5%

300-W 66.9% 58.1% - 41.7% 55.9%

Table 4.1 AUC (calculated for a threshold of 7%) on all major 2D face alignment datasets. MDM,
CFSS and TCDCN were evaluated using ground truth bounding boxes and the openly available
code.

Fig. 4.5 Fittings with the highest error from 300-W test set (first row) and Menpo (second row)
(NME 6.5-7%). Red: ground truth. White: our predictions. In most cases, our predictions are
more accurate than the ground truth.
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Fig. 4.6 NME on AFLW2000-3D, between the original annotations of [132] and the ones
generated by 2D-to-3D-FAN. The error is mainly introduced by the automatic annotation process
of [132]. See Fig. 4.7 for visual examples.

the highest error for this dataset. It is evident that in most cases our predictions are more accurate.

Conclusion: Given that 2D-FAN matches the performance of MDM-on-LFPW, we conclude
that 2D-FAN achieves near saturating performance on the above 2D datasets. Notably, this result
was obtained by training 2D-FAN primarily on synthetic data, and there was a mismatch between
training and testing landmark annotations.

4.5 Large Scale 3D Faces in-the-Wild dataset

Motivated by the scarcity of 3D face alignment annotations and the remarkable performance of
2D-FAN, we opted to create a large scale 3D face alignment dataset by converting all existing
2D face alignment annotations to 3D. To this end, we trained a 2D-to-3D FAN as described in
Subsection 4.3.2 and guided it using the predictions of 2D-FAN, creating 3D landmarks for:
300-W test set, 300-VW (both training and all 3 testing datasets), Menpo (the whole dataset).

Evaluating 2D-to-3D is difficult: the only available 3D face alignment in-the-wild dataset
(not used for training) is AFLW2000-3D [132]. Hence, we applied our pipeline (consisting
of applying 2D-FAN for producing the 2D landmarks and then 2D-to-3D FAN for converting
them to 3D) on AFLW2000-3D and then calculated the error, shown in Fig. 4.6 (note that for
normalization purposes, 2D bounding box annotations are still used). The results show that there
is discrepancy between our 3D landmarks and the ones provided by [132]. After removing a few
failure cases (19 in total, which represent 0.9% of the data), Fig. 4.7 shows 8 images with the
highest error between our 3D landmarks and the ones of [132]. It is evident, that this discrepancy
is mainly caused from the semi-automatic annotation pipeline of [132] which does not produce
accurate landmarks especially for images with difficult poses.

By additionally including AFLW2000-3D into the aforementioned datasets, overall, ~230,000
images were annotated in terms of 3D landmarks leading to the creation of the Large Scale 3D
Faces in-the-Wild dataset (LS3D-W), the largest 3D face alignment dataset to date.
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Fig. 4.7 Fittings with the highest error from AFLW2000-3D (NME 7-8%). Red: ground truth
from [132]. White: predictions of 2D-to-3D-FAN. In most cases, our predictions are more
accurate than the ground truth.

4.6 3D face alignment

This Section evaluates 3D-FAN trained on 300-W-LP-3D, on LS3D-W (described in the previous
Section) i.e. on the 3D landmarks of the 300-W test set, 300-VW (both training and test sets), and
Menpo (the whole dataset) and AFLW2000-3D (re-annotated). Overall, 3D-FAN is evaluated
on ~230,000 images. Note that compared to the 2D experiments reported in Section 4.4, more
images in large poses have been used as our 3D experiments also include AFLW2000-3D and
the profile images of Menpo (~2000 more images in total).

The results of our 3D face alignment experiments on 300-W test set, 300-VW, Menpo and
AFLW2000-3D are shown in Fig. 4.9. We additionally report the performance of the state-of-
the-art method of 3DDFA (trained on the same dataset as 3D-FAN) on all datasets.
Conclusion: 3D-FAN essentially produces the same accuracy on all datasets largely outper-
forming 3DDFA. This accuracy is slightly increased compared to the one achieved by 2D-FAN,
especially for the part of the error curve for which the error is less than 2% something which is
not surprising as now the training and testing datasets are annotated using the same mark-up.

4.7 Ablation studies

To further investigate the performance of 3D-FAN under challenging conditions, we firstly
created a dataset of 7,200 images from LS3D-W so that there is an equal number of images
in yaw angles [0◦−30◦], [30◦−60◦] and [60◦−90◦]. We call this dataset LS3D-W Balanced.
Then, we conducted the following experiments:

Performance across pose. We report the performance of 3D-FAN on LS3D-W Balanced
for each pose separately in terms of the Area Under the Curve (AUC) (calculated for a threshold
of 7%) in Table 4.2. We observe only a slight degradation of performance for very large poses
([60◦−90◦]). We believe that this is to some extent to be expected as 3D-FAN was largely trained
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(a) 300-VW-Category A (b) 300-VW-Category B (c) 300-VW-Category C

(d) 300-W Testset (Indoor and Outdoor subset). (e) Menpo (on faces annotated with 68 points).

Fig. 4.8 2D face alignment experiments: NME (all 68 points used) on 300-VW (a-c), 300-W
Testset (d) and Menpo (e). Our model is called 2D-FAN. MDM is initialized with ground
truth bounding boxes. Note: MDM-on-LFPW is not a method but the curve produced by
running MDM on LFPW test set, initialized with the ground truth bounding boxes.

Yaw #images 3D-FAN (Ours)

[0◦−30◦] 2400 73.5%

[30◦−60◦] 2400 74.6%

[60◦−90◦] 2400 68.8%

Table 4.2 AUC (calculated for a threshold of 7%) on the LS3D-W Balanced for different yaw
angles.
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(a) 300-W-3D Test set (b) AFLW2000-3D, re-
annotated using 2D-to-3D
FAN.

(c) Menpo-3D

(d) 300-VW-3D Category A (e) 300-VW-3D Category B (f) 300-VW-3D Category C

Fig. 4.9 3D face alignment experiments: NME (all 68 points used) on the newly introduced
LS3D-W dataset.
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Noise [0◦−30◦] [30◦−60◦] [60◦−90◦]

0% 74.5% 75.2% 69.8%

10% 73.5% 74.6% 68.8%

20% 70.8% 71.7% 66.1%

30% 63.8% 63.5% 57.2%

Table 4.3 AUC on the LS3D-W Balanced for different levels of initialization noise. The network
was trained with a noise level of up to 20% (the noise is drawn from a uniform distribution that
perturbs the bounding box shape).

with synthetic data for these poses (300-W-LP-3D). This data was produced by warping frontal
images (i.e. the ones of 300-W) to very large poses which causes face distortion especially for
the face region close to the ears.
Conclusion: Facial pose is not a major issue for 3D-FAN.
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Fig. 4.10 AUC on the LS3D-W Balanced for different face resolutions. Up to 30px, performance
remains high.

Performance across resolution. We repeated the previous experiment but for different face
resolutions (resolution is reduced relative to the face size defined by the tight bounding box) and
report the performance of 3D-FAN in terms of AUC in Fig. 4.10. Note that we did not retrain
3D-FAN to particularly work for such low resolutions. We observe significant performance drop
for all poses only when the face size is as low as 30 pixels.
Conclusion: Resolution is not a major issue for 3D-FAN.

Performance across noisy initializations. For all reported results so far, we used 10% of
noise added to the ground truth bounding boxes. Note that 3D-FAN was trained with noise level
of 20%. Herein, we repeated the previous experiment but for different noise levels and report
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#params [0◦−30◦] [30◦−60◦] [60◦−90◦]

2M 70.9% 69.9% 55.8%

4M 71.0% 70.5% 57.0%

6M 71.5% 71.1% 58.3%

12M 72.7% 72.7% 67.1%

18M 73.4% 74.2% 68.3%

24M 73.5% 74.6% 68.8%

Table 4.4 AUC on the LS3D-W Balanced for various network sizes. Between 12-24M parameters,
performance remains almost the same.

the performance of 3D-FAN in terms of AUC in Table 4.3. We observe only small performance
decrease for noise level equal to 30% which is greater than the level of noise that the network
was trained with.
Conclusion: Initialization is not a major issue for 3D-FAN.
Performance across different network sizes. For all reported results so far, we used a very
powerful 3D-FAN with 24M parameters. Herein, we repeated the previous experiment varying
the number of network parameters and report the performance of 3D-FAN in terms of AUC in
Table 4.4. The number of parameters is varied by firstly reducing the number of HG networks
used from 4 to 1. Then, the number of parameters was dropped further by reducing the number
of channels inside the building block. It is important to note that even then biggest network is
able to run on 28-30 fps on a TitanX GPU while the smallest one can reach 150 fps. We observe
that up to 12M, there is only a small performance drop and that the network’s performance starts
to drop significantly only when the number of parameters becomes as low as 6M.
Conclusion: There is a moderate performance drop vs the number of parameters of 3D-FAN.
We believe that this is an interesting direction for future work.

4.8 Full 3D face alignment

In this Section, we present an extension of 2D-to-3D-FAN capable of additionally predicting the
z coordinate of the facial landmarks.

Similarly to [9], we construct Full-2D-to-3D-FAN by introducing a second subnetwork for
estimating the z coordinate (i.e. the depth of each keypoint) on top of 2D-to-3D-FAN. The input
to the new subnetwork is the stacked heatmaps produced by 2D-to-3D-FAN alongside the RGB
image. The heatmaps play a key role by showing the network where to “look” (i.e at which
location should the depth be predicted) incorporating, at the same time, additional pose related
information. The proposed subnetwork is based on a ResNet-152 [38] adapted to accept 3+N
input channels and to output a vector N ×1 instead of 1000×1. The network was trained using
the L2 loss for 50 epochs and the same learning rates used for the rest of the networks. Fig. 4.12
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2D Heatmaps
C

3D Heatmaps
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C

Fig. 4.11 The Full-2D-to-3D-FAN network used for the prediction of the x,y,z coordinates,
where the z coordinate is the 1D vector produced by the ResNet subnetwork. The network takes
as input an RGB image and the 2D landmarks and outputs the corresponding 3D landmarks.

Fig. 4.12 NME on AFLW2000-3D, between the original annotations of [132] and the ones
generated by 3D-FAN-Full for depth (z coordinate). Notice that FAN estimates both the depth
(z) and x,y locations with similar accuracy, often generating in the process more accurate results.

reports the numerical error of Full-2D-to-3D-FAN on AFLW2000-3D. For visual results, see
Fig. 4.15.
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Fig. 4.13 Fitting examples produced by 2D-FAN on LS3D-W balanced dataset.

Fig. 4.14 Fitting examples produced by 3D-FAN on LS3D-W balanced dataset.
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Fig. 4.15 Full 3D fitting examples produced by Full-2D-to-3D-FAN on AFLW2000-3D dataset.



Chapter 5

Hierarchical binary CNNs for landmark
localization with limited resources

Very recently, work based on Convolutional Neural Networks (CNNs) has revolutionized land-
mark localization, demonstrating results of remarkable accuracy even on the most challenging
datasets for human pose estimation [8, 69, 105] and face alignment [9] (see Chapter 3 and 4).
However, deploying (and training) such methods is computationally expensive, requiring one
or more high-end GPUs, while the learned models typically require hundreds of MBs, thus
rendering them completely unsuitable for real-time or mobile applications. This chapter presents
a highly accurate and robust yet efficient and lightweight method for landmark localization using
binarized CNNs.

To this end, we study the effect of neural network binarization on localization tasks, focusing
on face alignment, exhaustively evaluating various design choices, identifying performance
bottlenecks, and more importantly proposing multiple orthogonal ways to boost performance.
Based on our analysis, we then propose a novel hierarchical, parallel and multi-scale residual
architecture that yields large performance improvement over the standard bottleneck block while
having the same number of parameters, thus bridging the gap between the original network and
its binarized counterpart. When evaluated on the most challenging datasets for face alignment,
we report in many cases state-of-the-art performance.

The contributions of this Chapter have been published at ICCV 2017 (as an Oral) in [10].

5.1 Background

The ResNet consists of two types of blocks: basic and bottleneck. We are interested only in
the latter one which was designed to reduce the number of parameters and keep the network
memory footprint under control. We use the “pre-activation” version of [39], in which batch
normalization [46] and the activation function precede the convolutional layer. Note that we used
the version of bottleneck defined in [69] and shown in Fig. 5.1a the middle layer of which has
128 channels (vs 64 used in [39]). For details regarding HG see Section 4.2 or [69].
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1x1, 256 -> 128

3x3, 128 -> 128

1x1, 128 -> 256

+

BN, ReLU

BN, ReLU

BN, ReLU

(a) original

3x3, 192 -> 96

3x3, 96 -> 48

3x3, 48 -> 48

C

+

BN, Binary

BN, Binary

BN, Binary

(b) proposed

Fig. 5.1 (a) The original bottleneck layer of [39]. (b) The proposed hierarchical parallel & multi-
scale structure: our block increases the receptive field size, improves gradient flow, is specifically
designed to have (almost) the same number of parameters as the original bottleneck, does not
contain 1× 1 convolutions, and in general is derived from the perspective of improving the
performance and efficiency for binary networks. Note: a layer is depicted as a rectangular block
containing: its filter size, the number of input and output channels; “C” - denotes concatenation
and “+” an element-wise sum.

5.2 Method

Herein, we describe how we derive the proposed binary hierarchical, parallel and multi-scale
block of Fig. 5.3e. In Section 5.3.1, by reducing the number of its parameters to match the ones
of the original bottleneck, we further derive the block of Fig. 5.1b. This Section is organized as
follows:

• We start by analyzing the performance of the binarized HG in Subsection 5.2.1 which
provides the motivation as well as the baseline for our method.

• Then, we propose a series of architectural innovations in Subsections 5.2.2, 5.2.3, 5.2.4
and 5.2.5 (shown in Figs. 5.3b, 5.3c and 5.3d) each of which is evaluated and compared
against the binarized residual block of Subsection 5.2.1.

• Finally, by combining ideas from these architectures, we propose the binary hierarchical,
parallel and multi-scale block of Fig. 5.3e. Note that the proposed block is not a trivial
combination of the aforementioned architectures but a completely new structure.

We note that all results for this Section were generated for the task of 3D face alignment
using the newly introduced dataset from Chapter 4, LS3D-W-Balanced.
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block type AUC # parameters

Bottleneck (real) 62.3% 3.5M

Bottleneck (binary) 46.2% 3.5M

Table 5.1 AUC@7% on LS3D-W-Balanced dataset for real-valued and binary bottleneck blocks
within the HG network.

5.2.1 Binarized HG

The binarization is accomplished using:

I∗W ≈ (sign(I)⊛ sign(W))∗α, (5.1)

where I is the input tensor, W represents the layer weights and ⊛ denotes the binary convolution
operation which can be efficiently implemented with XNOR. α ∈R+ is a scaling factor computed
as the average of the absolute weight values:

α =
1
n
∥W∥ℓ1

, (5.2)

We start from the original bottleneck blocks of the HG network and, following [79], we
binarize them keeping only the first and last layers of the network real. See also Fig. 4.1. This
is crucial, especially for the very last layer where higher precision is required for producing a
dense output (heatmaps). Note that these layers account for less than 0.01% of the total number
of parameters.

The performance of the original (real-valued) and the binarized HG networks can be seen
in Table 5.1. We observe that binarization results in significant performance drop, noticing a
large difference in performance which clearly indicates that the binary network has significant
less representational power(in terms of number of unique values that it can represent). This
drop in representational power is mostly caused by the limited number of unique 2D filters (2k2

,
where k is the kernel size). Since we make use of convolutional layers with a filter size of 1×1
and 3×3, the maximum number of unique combinations is 21 = 2 and 29 = 512 respectively.
However, the actual filter is a 3D matrix. As such, assuming that we have have Cl filters in the
l-th convolutional layer, we store in practice a 4D matrix of size Cl ×Cl−1 × k× k, hence the
number of total unique filters is 2k2Cl−1 . Still, this is a significantly lower number of unique
possibilities compared with the real valued case. We address this limitation and performance gap
with a better architecture as detailed in the next four Subsections.

5.2.2 On the Width of Residual Blocks

The original bottleneck block of Fig. 5.3a is composed of 3 convolutional layers with a filter
size of 1×1, 3×3 and 1×1, with the first layer having the role of limiting the width (i.e. the
number of channels) of the second layer, thus greatly reducing the number of parameters inside
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the module. However, it is unclear whether the idea of having a bottleneck structure will be also
successful for the binary case, too. Due to the limited representational power of the binary layers,
greatly reducing the number of channels might reduce the amount of information that can be
passed from one layer to another, leading to lower performance.

To investigate this, we modify the bottleneck block by increasing the number of channels in
the thin 3×3 layer from 128 to 256. By doing so, we match the number of channels from the first
and last layer, effectively removing the “bottleneck”, and increasing the amount of information
that can be passed from one block to another. The resulting wider block is shown in Fig. 5.3b.
Here, “wider”1 refers to the increased number of channels over the initial thin layer.

As Table 5.2 illustrates, while this improves performance against the baseline, it also raises
the memory requirements.
Conclusion: Widening the thin layer offers tangible performance improvement, however at a
high computational cost.

5.2.3 On Multi-Scale Filtering

Small filters have been shown both effective and efficient [88, 96] with models being solely made
up by a combination of convolutional layers with 3×3 and/or 1×1 filters [38, 39, 88]. For the
case of real-valued networks, a large number of kernels can be learned. However, for the binary
case, the number of possible unique convolutional kernels is limited to 2k states only, where k is
the size of the filter. Examples of such 3×3 learned filters are shown in Fig. 5.2.

Fig. 5.2 Examples of learned 3×3 binary filters.

To address the limited representation power of 3×3 filters for the binary case, and similarly
to [95], we largely depart from the block of Fig. 5.3b by proposing the multi-scale structure of
Fig. 5.3c. Note that we implement our multi-scale approach using both larger filter sizes and
max-pooling, which greatly increase the effective receptive field within the block. Also, because
our goal is to analyze the impact of a multi-scale approach alone, we intentionally keep the
number of parameters to a similar level to that of the original bottleneck block of Fig. 5.3a. To
this end, we avoid a leap in the number of parameters, by (a) decomposing the 5×5 filters into
two layers of 3×3 filters, and (b) by preserving the presence of thin layer(s) in the middle of the
block.

1The term wider here strictly refers to a “moderate” increase in the number of channels in the thin layer (up to
256), effectively removing the “bottleneck”. Except for the naming there is no other resemblance with [120] which
performs a study of wide vs deep, using a different building block alongside a much higher number of channels (up
to 2048) and without any form of quantization. A similar study falls outside the scope of our work.
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Given the above, we split the input into two branches. The first (left) branch works at the
same scale as the original bottleneck of Fig. 5.3a but has a 1× 1 layer that projects the 256
channels into 64 (instead of 128) before going to the 3× 3 one. The second (right) branch
performs a multi-scale analysis by firstly passing the input through a max-pooling layer and then
creating two branches, one using a 3×3 filter and a second one using a 5×5 decomposed into
two 3×3. By concatenating the outputs of these two sub-branches, we obtain the remaining 64
channels (out of the 128 of the original bottleneck block). Finally, the two main branches are
concatenated adding up to 128 channels, which are again back-projected to 256 with the help of
a convolutional layer with 1×1 filters.

The accuracy of the proposed structure can be found in Table 5.2. We can observe a healthy
performance improvement at little additional cost and similar computational requirements to the
original bottleneck of Fig. 5.3a.
Conclusion: When designing binarized networks, multi-scale filters should be preferred.

5.2.4 On 1×1 Convolutions

In the previously proposed block of Fig. 5.3c, we opted to avoid an increase in the number
of parameters, by retaining the two convolutional layers with 1×1 filters. In this Subsection,
by relaxing this restriction, we analyze the influence of 1× 1 filters on the overall network
performance.

In particular, we remove all convolutional layers with 1×1 filters from the multi-scale block
of Fig. 5.3c, leading to the structure of Fig. 5.3d. Our motivation to remove 1×1 convolutions
for the binary case is the following: because 1×1 filters are limited to two states only (either 1
or -1) they have a very limited learning power. Due to their nature, they behave as simple filters
deciding when a certain value should be passed or not. In practice, this allows the input to pass
through the layer with little modifications, sometimes actually blocking “good features” and
hurting the overall performance by a noticeable amount. This is particularly problematic for the
task of landmark localization, where a high level of detail is required for successful localization.

Results reported in Table 5.2 show that by removing 1×1 convolutions, performance over
the baseline is increased by almost 4%. Even more interestingly, the newly introduced block
matches the performance of the one of Subsection 5.2.2, while having less parameters, which
shows that the presence of 1×1 filters limits the performance of binarized CNNs.
Conclusion: The use of 1×1 convolutional filters on binarized CNNs has a detrimental effect
on performance and should be avoided.

5.2.5 On Hierarchical, Parallel & Multi-Scale

Binary networks are even more sensitive to the problem of fading gradients [24, 79], and for
our network we found that the gradients are up to 10 times smaller than those corresponding to
its real-valued counterpart. To alleviate this, we design a new module which has the form of a
hierarchical, parallel multi-scale structure allowing, for each resolution, the gradients to have 2
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Block type # params AUC@7%

Bottleneck (original) (Fig. 5.3a) 3.5M 46.2%

Wider (Fig. 5.3b) 11.3M 52.9%

Multi-Scale (MS) (Fig. 5.3c) 4.0M 51.8%

MS without 1x1 filters (Fig. 5.3d) 9.3M 54.5%

Hierarchical, Parallel & MS
(Ours, Final) (Fig. 5.3e)

6.2M 54.6%

Table 5.2 AUC-based comparison of different blocks on LS3D-W-Balanced dataset. # params
refers to the number of parameters of the whole network.

different paths to follow, the shortest of them being always 1. The proposed block is depicted in
Fig. 5.3e. Note that, in addition to better gradient flow, our design encompasses all the findings
from the previous Subsections: (a) no convolutional layers with 1×1 filters should be used, (b)
the block should preserve its width as much as possible (avoiding large drops in the number of
channels), and (c) multi-scale filters should be used.

Contrary to the blocks described in Subsections 5.2.2 - 5.2.4, where the gradients may need
to pass through two more layers before reaching the output of the block, in the newly proposed
module, each convolutional layer has a direct path that links it to the output, so that at any given
time and for all the layers within the module the shortest possible path is equal to 1. The presence
of a hierarchical structure inside the module efficiently accommodates larger filters (up to 7×7),
decomposed into convolutional layers with 3× 3 filters. Furthermore, our design avoids the
usage of an element-wise summation layer as for example in [106, 95], further improving the
gradient flow and keeping the complexity under control.

As we can see in Table 5.2, the proposed block matches and even outperforms the block
proposed in Section 5.2.3 having far less parameters.
Conclusion: Good gradient flow and hierarchical multi-scale filtering are crucial for high
performance without excessive increase in the parameters of the binarized network.

5.3 Proposed vs Bottleneck

In this Section, we attempt to make a fair comparison between the performance of the proposed
block (Ours, Final, as in Fig. 5.3e) against that of the original bottleneck module (Fig. 5.3a) by
taking two important factors into account:

• Both blocks should have the same number of parameters.

• The two blocks should be compared for the case of binary but also real-valued networks.

With this in mind, in the following Sections, we show that:

• The proposed block largely outperforms a bottleneck with the same number of parameters
for the binary case.
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1x1, 256 -> 128

3x3, 128 -> 128

1x1, 128 -> 256

+

BN, Binary

BN, Binary

BN, Binary

(a) The Original Bottleneck
block with pre-activation, as
defined in [39]. Its binarized
version is described in Sec-
tion 5.2.1.

1x1, 256 -> 256

3x3, 256 -> 256

1x1, 256 -> 256

+

BN, Binary

BN, Binary

BN, Binary

(b) The Wider version of (a)
produced by increasing the
number of filters in the second
layer. See Subsection 5.2.2.

1x1, 256 -> 64

3x3, 64 -> 64

POOL

3x3, 256 -> 323x3, 256 -> 32

3x3, 32-> 32

UP

C

C

1x1, 128 -> 256

+

BN, Binary

BN, Binary

BN, Binary

BN, Binary

BN, Binary

BN, Binary

(c) Largely departing from (b),
this block consists of Multi-
Scale (MS) filters for analyzing
the input at multiple scales. See
Subsection 5.2.3.

3x3, 256 -> 192

POOL

3x3, 256 -> 323x3, 256 -> 32

3x3, 32-> 32

UP

C

C

+

BN, Binary

BN, Binary

BN, Binary

BN, Binary

(d) A variant of the MS block introduced in
(c) after removing all convolutional layers with
1× 1 filters (MS Without 1× 1 filters). See
Subsection 5.2.3.

3x3, 256 -> 128

3x3, 128 -> 64

3x3, 64 -> 64

C

+

BN, Binary

BN, Binary

BN, Binary

(e) The proposed Hierarchical, Parallel & MS
(denoted in this chapter as (Ours, final) block
incorporates all ideas from (b), (c) and (d) with
an improved gradient flow. See Subsection 5.2.5

Fig. 5.3 Different types of blocks described and evaluated. Our best performing block is shown
in figure (e). A layer is depicted as a rectangular block containing: its filter size, number of input
channels and the number of output channels). “C” - denotes concatenation operation and “+” an
element-wise sum.
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Layer type # parameters AUC

Bottleneck (Original) (Fig. 5.3a) 3.5M 46.2%

Wider (Fig. 5.3b) 11.3M 52.9%

Bottleneck (wider) + no 1×1 5.8M 51.8%

(Ours, Final) (Fig. 5.3e) 6.2M 54.6%

Table 5.3 AUC-based performance on LS3D-W-Balanced dataset for binary blocks: the #
parameters of the original bottleneck are increased to match the # parameters of the proposed
block. This firstly gives rise to the Wider block and its variant without the 1×1 Convolutions.

Layer type # parameters AUC

Bottleneck (original) 3.5M 46.2%

(Ours, Final) (Fig. 5.1b) 4.0M 51.5%

Table 5.4 AUC-based performance on LS3D-W-Balanced dataset for binary blocks: the #
parameters of the proposed block are decreased to match the # parameters of the bottleneck.

• The proposed block also outperforms a bottleneck with the same number of parameters for
the real case but in this case the performance difference is smaller.

We conclude that, for the real case, increasing the number of parameters (by increasing width)
results in performance increase; however this is not the case for binary networks where a tailored
design as the one proposed here is needed.

5.3.1 Binary

To match the number of parameters between the proposed and bottleneck block, we follow two
paths. Firstly, we increase the number of parameters of the bottleneck: (a) a first way to do this
is to make the block wider as described in Section 5.2.2. Note that in order to keep the number
or input-output channels equal to 256, the resulting block of Fig. 5.3b has a far higher number
of parameters than the proposed block. Despite this, the performance gain is only moderate
(see Section 5.2.2 and Table 5.3). (b) Because we found that the 1×1 convolutional layers have
detrimental effect to the performance of the Multi-Scale block of Fig. 5.3c, we opted to remove
them from the bottleneck block, too. To this end, we modified the Wider module by (a) removing
the 1×1 convolutions and (b) halving the number of parameters in order to match the number of
parameters of the proposed block. The results in Table 5.3 clearly show that this modification is
helpful but far from being close to the performance achieved by the proposed block.

Secondly, we decrease the number of parameters in the proposed block to match the number
of parameters of the original bottleneck. This block is shown in Fig. 5.1b. To this end, we
reduced the number of input-output channels of the proposed block from 256 to 192 so that
the number of channels in the first layer are modified from [256 → 128, 3× 3] to [192→96,
3×3], in the second layer from [128→64, 3×3] to [96→48, 3×3] and in the third layer from
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Layer type # parameters AUC

Bottleneck (wider) 7.0M 66.1%

(Ours, Final) 6.2M 69.6%

Table 5.5 AUC-based performance on LS3D-W-Balanced dataset for real-valued blocks: Our
block is compared with a wider version of the original bottleneck so that both blocks have similar
# parameters.

[64→64, 3×3] to [48→48, 3×3]. Notice, that even in this case, the proposed binarized module
outperforms the original bottleneck block by more than 6% (in absolute terms) while both have
very similar number of parameters (see Table 5.4).

5.3.2 Real

While the proposed block was derived from a binary perspective, Table 5.5 shows that a significant
performance gain is also observed for the case of real-valued networks. In order to quantify this
performance improvement and to allow for a fair comparison, we increase the number of channels
inside the original bottleneck block so that both networks have the same depth and a similar
number of parameters. Even in this case, our block outperforms the original block although
the gain is smaller than that observed for the binary case. We conclude that for real-valued
networks performance increase can be more easily obtained by simply increasing the number of
parameters, but for the binary case a better design is needed as proposed in this work.

5.4 Ablation studies

In this Section, we present a series of other architectural variations and their effect on the
performance of our binary network. All reported results are obtained using the proposed block
of Fig. 5.3e coined Ours, Final. We focus on the effect of augmentation and different losses
which are novel experiments not reported in [79], and then comment on the effect of pooling,
ReLUs and performance speed-up.

Is Augmentation required? Recent works have suggested that binarization is an extreme
case of regularization [23, 24, 67]. In light of this, one might wonder whether data augmentation
is still required. Table 5.6 shows that in order to accommodate the presence of new poses
and/or scale variations, data augmentation is very helpful providing a large increase (4%) in
performance.

The effect of loss. We trained our binary network to predict a set of heatmaps, one for
each landmark [99]. To this end, we experimented with two types of losses: the first one
places a Gaussian around the correct location of each landmark and trains using a pixel-wise L2
loss [99]. However, the gradients generated by this loss are usually small even for the case of a
real-valued network. Because binarized networks tend to amplify this problem, as an alternative,
we also experimented with the Sigmoid cross-entropy pixel-wise loss typically used for detection



5.4 Ablation studies 52

Layer type # parameters AUC

(Ours, Final) (No Aug.) 6.2M 52.3%

(Ours, Final) + Aug. 6.2M 54.6%

Table 5.6 The effect of using augmentation when training our binary network in terms of
AUC-based performance on LS3D-W-Balanced dataset.

Layer type # parameters AUC

(Ours, Final) + L2 6.2M 53.7%

(Ours, Final) + Sigmoid 6.2M 54.6%

Table 5.7 The effect of using different losses (Sigmoid vs L2) when training our binary network
in terms ofAUC-based performance on LS3D-W-Balanced dataset.

tasks [123]. We found that the use of the Sigmoid cross-entropy pixel-wise loss increased the
gradients by 10-15x (when compared to the L2 loss), offering a 1% improvement (see Table 5.7),
after being trained for the same number of epochs.

Pooling type. In the context of binary networks, and because the output is restricted to 1
and -1, max-pooling might result in outputs full of 1s only. To limit this effect, we placed the
activation function before the convolutional layers as proposed in [39, 79]. Additionally, we
opted to replace max-pooling with average pooling. However, this leads to slightly worse results
(see Table 5.8). In practice, we found that the use of blocks with pre-activation suffices and that
the ratio of 1 and -1 is close to 50% even after max-pooling.

With or without ReLU. Because during the binarization process all ReLU layers are re-
placed with the Sign function, one might wonder if ReLUs are still useful for the binary case.
Our findings are in line with the ones reported in [79]. By adding a ReLU activation after each
convolutional layer, we observe a 3% performance improvement (see Table 5.9), which can be
attributed to the added non-linearity, particularly useful for training very deep architectures.

Performance. In theory, by replacing all floating-point multiplications with bitwise XOR
and making use of the SWAR (Single instruction, multiple data within a register) [79, 24], the
number of operations can be reduced up to 32x when compared against the multiplication-based
convolution. However, in our tests, we observed speedups of up to 3.5x, when compared against
cuBLAS, for matrix multiplications, a result being in accordance with those reported in [24]. We
note that we did not conduct experiments on CPUs. However, given the fact that we used the

Layer type # parameters AUC

(Ours, Final) + Average 6.2M 52.8%

(Ours, Final) + Max 6.2M 54.6%

Table 5.8 The effect of using different pooling methods when training our binary network in
terms of AUC-based performance on LS3D-W-Balanced dataset.
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Layer type # parameters AUC

(Ours, Final) 6.2M 54.6%

(Ours, Final) + ReLU 6.2M 57.1%

Table 5.9 The effect of using ReLUs when training our binary network in terms of AUC-based
performance on LS3D-W-Balanced dataset.

same method for binarization as in [79], similar improvements in terms of speed, of the order of
58x, are to be expected: as the real-valued network takes 0.67 seconds to do a forward pass on a
i7-3820 using a single core, a speedup close to x58 will allow the system to run in real-time.

In terms of memory compression, by removing the biases, which have minimum impact
(or no impact at all) on performance, and by grouping and storing every 32 weights in one
variable, we can achieve a compression rate of 39x when compared against the single precision
counterpart of Torch7. See also Fig. 5.4.

Single precision Binary precision
0

10

20

30

40

50
50.2 MB

1.3 MB

Fig. 5.4 Memory compression ratio. By binarizing the weights and removing the biases, we
achieve a compression rate of 39x when compared against the single precision model.

5.5 Additional face alignment experiments

In addition to the experiments of the previous Section, in this Section, we compare our method
against a few state-of-the-art methods for 3D face alignment. Our final system comprises a single
HG network but replaces the real-valued bottleneck block used in [69] with the proposed binary,
parallel, multi-scale block trained with the improvements detailed in Section 5.4.

We used three very challenging datasets for large pose face alignment, namely AFLW [57],
AFLW-PIFA [53], and AFLW2000-3D [132]. The evaluation metric is the Normalized Mean
Error (NME) [53].

AFLW is a large-scale face alignment dataset consisting of 25,993 faces annotated with up to
21 landmarks. The images are captured in arbitrary conditions exhibiting a large variety of poses
and expressions. As Table 5.10 shows, our binarized network outperforms the state-of-the-art
methods of [77] and [78], both of which use large real-valued CNNs.
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(a) (b)

Fig. 5.5 Cumulative error curves (a) on AFLW-PIFA, evaluated on all 34 points (CALE is the
method of [7]), (b) on AFLW2000-3D on all points computed on a random subset of 696 images
equally represented in [0◦,30◦], [30◦,60◦], [60◦,90◦] (see also [132]).

Method [0◦,30◦] [30◦,60◦] [60◦,90◦] mean

HyperFace [77] 3.93 4.14 4.71 4.26

AIO [78] 2.84 2.94 3.09 2.96

Ours 2.77 2.86 2.90 2.85

Table 5.10 NME-based (%) comparison on AFLW test set. The evaluation is done on the test set
used in [78].

AFLW-PIFA [53] is a gray-scale subset of AFLW [57], consisting of 5,200 images (3,901
for training and 1,299 for testing) selected so that there is a balanced number of images for
yaw angle in [0◦,30◦], [30◦,60◦] and [60◦,90◦]. All images are annotated with 34 points from
a 3D perspective. Fig. 5.5a and Tables 5.11 and 5.12 show our results on AFLW-PIFA. When
evaluated on both visible and occluded points, our method improves upon the current best result
of [7] (which uses real weights) by more than 10%.

AFLW2000-3D is a subset of AFLW re-annotated by [132] from a 3D perspective with 68
points. We used this dataset only for evaluation. The training was done using the first 40,000
images from 300-W-LP [132]. As Fig. 5.5b shows, on AFLW2000-3D, the improvement over
the state-of-the-art method of [132] (real-valued) is even larger. As further results in Fig. 5.13
show, while our method improves over the entire range of poses, the gain is noticeably higher for
large poses ([60◦−90◦]), where we outperform [132] by more than 40%.

PIFA [53] RCPR [14] PAWF [54] CALE [7] Ours

8.04 6.26 4.72 2.96 3.02

Table 5.11 NME-based (%) comparison on AFLW-PIFA evaluated on visible landmarks only.
The results for PIFA, RCPR and PAWF are taken from [54].
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CALE [7] Ours

4.97 4.47

Table 5.12 NME-based (%) based comparison on AFLW-PIFA evaluated on all 34 points, both
visible and occluded.

5.5.1 Training

All 3D face alignment models were trained on 300-W-LP (holding 10% of the data for validation)
from scratch following the algorithm described in [79] and using rmsprop [97]. The initialization
was done as in [38]. We randomly augmented the data with rotation (between -40o and 40o

degrees), flipping and scale jittering (between 0.7 and 1.3). We trained the network for 55 epochs,
dropping the learning rate four times, from 2.5e-4 to 5e-5. The input was normalized between 0
and 1 and all described networks were trained using the binary cross-entropy loss, defined as:

l =
1
N

N

∑
n=1

W

∑
i=1

H

∑
j=1

pn
i j log p̂n

i j +(1− pn
i j) log(1− p̂n

i j), (5.3)

where pn
i j denotes the ground truth confidence map of the n−th landmark at the output pixel

location (i, j) and p̂n
i j is the corresponding predicted output at the same location.

In terms of wall-clock training time, the real-valued network (with 6.2M parameters) takes
around 12 hours to train on a single nVidia 1080Ti GPU. Due to the additional quantization
operations, such as weight and input normalization and sign-based quantization, and the fact that
the gradients are kept real, the binary network requires up to 50% more time to train.

The models were implemented with Torch7 [20].

Method [0,30] [30,60] [60,90] Mean

RCPR(300-W) [14] 4.16 9.88 22.58 12.21

RCPR(300-W-LP) [14] 4.26 5.96 13.18 7.80

ESR(300-W) [18] 4.38 10.47 20.31 11.72

ESR(300-W-LP) [18] 4.60 6.70 12.67 7.99

SDM(300-W) [107] 3.56 7.08 17.48 9.37

SDM(300-W-LP) [107] 3.67 4.94 9.76 6.12

3DDFA [132] 3.78 4.54 7.93 5.42

3DDFA+SDM [132] 3.43 4.24 7.17 4.94

Ours 2.47 3.01 4.31 3.26

Table 5.13 NME-based (%) based comparison on AFLW2000-3D evaluated on all 68 points,
both visible and occluded. The results for RCPR, ESR and SDM are taken from [132].
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5.6 Advanced block architectures

In this section, we explore the effectiveness of two architectural changes applied to our best
performing block (Ours, final), namely varying its depth and its cardinality. Again, we used the
standard training-validation partition of LS3D-W-Balanced.

5.6.1 On the depth of the proposed block

To further explore the importance of the multi-scale component in the overall structure of the
proposed block, we gradually increase its depth and as a result, the number of its layers, as shown
in Fig. 5.7b. The advantage of doing this is twofold: (a) it increases the receptive field within the
block, and (b) it analyses the input simultaneously at multiple scales. We ensure that by doing so
the number of parameters remains (approximately) constant. To this end, we halve the number of
channels of the last layer at each stage. In the most extreme case, the last layer will have a single
channel. Because, the representational power of such a small layer is insignificant, in practice
we stop at a minimum of 4, which corresponds to a depth equal to 8. The results, reported in
Fig. 5.7b, show that the performance gradually improves up to 55.1% for a depth equal to 6, and
then, further on, it saturates and eventually gradually degrades as the depth increases.

Conclusion: The depth of the multi-scale component is an important factor on the overall
module performance. Increasing it, up to a certain point, is beneficial and can further improve
the performance at no additional cost.

5.6.2 On the cardinality of the proposed block

Inspired by the recent innovations of [106] for real-valued networks, in this section we explore the
behavior of an increased cardinality (defined as in [106] as the size of the set of transformations)
when applied to our binary hierarchical, parallel & multi-scale block.

Starting again from our block of Fig. 5.3e, we replicate its structure C times making the
following adjustments in the process: (1) While the number of input channels of the first layer
remains the same, the output and the input of the subsequent layers are reduced by a factor of C,
and (2) the output of the replicated blocks is recombined via concatenation. The final module
structure is depicted in Fig. 5.8a.

The full results with respect to the network size and the block cardinality (ranging from 1
to 16) are shown in Fig. 5.8b. Our findings are that increasing the block cardinality, provides
good improvement also for the case of binary networks for the task of face alignment. In
particular, when incorporated into the structure of our block with a similar number of parameters,
the module out-performs by 1-2% compared to the block of similat size. As the number of
parameters decreases, the performance gain tend to increase.
Conclusion: For the binary case, further increasing the block cardinality can help especially in
the low number of parameters regime.
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5.7 Improved network architectures

In all previous sections, we investigated the performance of the various blocks by incorporating
them into a single hourglass network, i.e. by keeping the network architecture fixed. In this
section, we explore a series of architectural changes applied to the overall network structure.
First, inspired by [80], we simplify the HG model, improving its performance without sacrificing
accuracy for the binary case. Then, we study the effect of stacking multiple networks together
and analyze their behavior.

5.7.1 Improved HG architecture

C C C C

Heatmaps

Fig. 5.6 Improved, U-Net inspired, HG architecture. The dark-green modules were left un-
changed, while for the light-green ones we doubled the number of their input channels from 256
to 512.

Motivated by the findings of Subsection 5.2.5 that shed light on the importance of the gradient
flow and suggested that skip connections with shorter paths should be used where possible, we
adopt a similar approach to the overall HG architecture.

In particular, to improve the overall gradient flow, we removed the residual blocks in the
upsampling branches that are tasked with the “injection” of high resolution information into
the later stages of the network. To adjust to that change, the number of input channels of the
first layer from the modules that are immediately after the point where the branch is merged
via concatenation is increased by two times (to accommodate to the increase in the number
of channels). The resulting architecture is depicted in Fig. 5.6. A similar approach, with
up-sampling skip connections, was used in the U-Net architecture [80].

The results, reported in Table 5.14, show that by removing the residual blocks from the
upsampling branches, the performance, over the baseline HG is increased by 0.5%, further solid-
ifying the importance of the gradient flow in the performance of binary networks. Furthermore,
due to the decrease in the number of layers and parameters, an up to 20% speedup is observed.
The network is trained using the same procedure described previously, for 55 epochs.
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Network architecture # parameters AUC

HG (Fig. 4.1) 6.2M 54.6%

Improved HG (Fig. 5.6) 5.8M 55.1%

Table 5.14 Comparison between HG and Improved HG on the LS3D-W dataset. Both networks
are built with our proposed binarized block.
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(a) Depth vs AUC-based performance on the
LS2D-W dataset.
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Fig. 5.7 The effect of varying the depth of the proposed binary block on performance. While in
general fewer weights result in a faster network, due to the the introduction of additional layers,
in practice, the network experiences a small slowdown.
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(a) ResNetXt-like extension of (Ours, final) bi-
nary block. C represents the cardinality of the
block. See also Subsection 5.6.2.
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Fig. 5.8 The effect of varying the cardinality of the proposed binary block on performance.
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# stacks # parameters AUC

1 6.2M 54.6%

2 11.0M 61.0%

3 17.8M 63.9%

Table 5.15 Accuracy of stacked networks on LS3D-W dataset. All networks are built with our
proposed binarized block.

5.7.2 Stacked Binarized HG networks

+

Fig. 5.9 A two-stack binarized HG. All blocks are binarized, except for the very first and last
layers showed in red colour. The network takes as input an RGB facial image at a resolution
of 256× 256px and produces k heatmaps, one for each predicted keypoint, at a resolution of
64×64px.

Network stacking has been shown to be beneficial in terms of performance (see Chapter 4)
when real-valued models are used. In this subsection, we explore whether the same holds for the
binary case.

Following [69], we stack and interconnect the networks as follows: The first network takes
as input the RGB image and outputs a set of N heatmaps. The next network in the stack takes
as input the sum of: (1) the input to the previous network, (2) the projection of the previously
predicted heatmaps, and (3) the output of the last but one block from the previous level. The
resulting network for a stack of two is shown in Fig. 5.9.

As the results of Table 5.15 show, network stacking for the binary case behaves to some
extent similarly to the real-valued case, however the gains from one stage to another are smaller,
and performance seems to saturate faster. We believe that the main reason for this is that for
the case of binary networks, activations are noisier especially for the last layers of the network.
As such the feature maps for the binary case are more noisy and blurry as we move on to the
last layers of the network. As network stacking relies on features from the earlier networks of
the cascade and as these are noisy, we conclude that this has a negative impact on the overall
network’s performance.
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Training. To speedup the training process, we trained the stacked version in a sequential
manner. First, we trained the first network until convergence, then we added the second one
on top of it, freezing its weights and training the second one. The process is repeated until all
networks are added. Finally, the entire stack is trained jointly for 50 epochs.

5.8 Additional experiments

In this section, we further show that the proposed block generalizes well producing consistent
results across various datasets and tasks. To this end, we report results on the task of face parsing,
also known as semantic facial part segmentation, which is the problem of assigning a categorical
label to every pixel in a facial image. We constructed a dataset for facial part segmentation by
joining together the 68 ground truth landmarks (originally provided for face alignment) to fully
enclose each facial component. In total, we created seven classes: skin, lower lip, upper lip,
inner mouth, eyes, nose and background. Fig. 5.10 shows an example of a ground truth mask.
We trained the network on the 300-W dataset (approximately 3,000 images) and tested it on
the 300-W competition test set, both Indoor&Outdoor subsets (600 images), using the same
procedure described in Section 7.

Fig. 5.10 Example of a ground truth mask (right) produced by joining the 68 ground truth
landmarks (left). Each colour denotes one of the seven classes.

Architecture. We reused the same architecture for landmark localization, changing only the
last layer in order to accommodate the different number of output channels (from 68 to 7). We
report results for three different networks of interest: (a) a real-valued network using the original
bottleneck block (called “Real, Bottleneck”), (b) a binary network using the original bottleneck
block (called “Binary, Bottleneck”), and (c) a binary network using the proposed block (called
“Binary, Ours”). To allow for a fair comparison, all networks have a similar number of parameters
and depth. For training the networks, we used the Log-Softmax loss [66].

Results. Table 5.16 shows the obtained results reported in terms of pixel accuracy, mean
accuracy and mean IU, defined as:

pixel accuracy :∑i nii

∑i ti
(5.4)
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Network type pixel acc. mean acc. mean IU

Real, bottleneck 97.98% 77.23% 69.29%

Binary, bottleneck 97.41% 70.35% 62.49%

Binary, Ours 97.91% 76.02% 68.05%

Table 5.16 Results on 300-W (Indoor&Outdoor). The pixel acc., mean acc. and mean IU are
computed as in [66].

mean accuracy :
1

ncl
∑

i

nii

ti
(5.5)

mean IU :
1

ncl
∑

i

nii

(ti +∑ j n ji −nii)
, (5.6)

where ni j is the number of pixels of class i predicted to belong to class j, ncl represents the
number of classes present in the ground truth and ti = ∑ j ni j is the total number of pixels of class
i.

Similarly to our face alignment experiments, we observe that the binarized network based
on the proposed block significantly outperforms a similar-sized network constructed using the
original bottleneck block, almost matching the performance of the real-valued network. Most of
the performance improvement is due to the higher representation/learning capacity of our block,
which is particularly evident for difficult cases like unusual poses, occlusions or challenging
lighting conditions. For visual comparison, see Fig. 5.12.

Fig. 5.11 Fitting examples produced by our binary network on AFLW2000-3D dataset. Notice
that our method copes well with extreme poses, facial expressions and lighting conditions.
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Input

Ground truth 
segmentation 
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ours

Binary
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Fig. 5.12 Qualitative results on 300-W (Indoor&Outdoor). Observe that the proposed binarized
network significantly outperforms the original binary one, almost matching the performance of
the real-valued network.



Chapter 6

Super-FAN: Integrated facial landmark
localization and super-resolution of
real-world low resolution faces in
arbitrary poses with GANs
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Fig. 6.1 A few examples of visual results produced by our system on real-world low resolution
faces from WiderFace.

In this Chapter we describe a novel method that simultaneously addresses two challenging
tasks: (a) improving the quality of low resolution facial images and (b) accurately locating the
facial landmarks on such poor resolution images. Attempting to address both tasks simultaneously
is really a chicken-and-egg problem: On one hand, being able to detect the facial landmarks has
already been shown beneficial for face super-resolution [131, 110]; however how to accomplish
this for low resolution faces in arbitrary poses is still an open problem (see Chapter 4). On the
other hand, if one could effectively super-resolve low quality and low resolution faces across the
whole spectrum of facial poses, then facial landmarks can be localized with high accuracy.

To this end, we propose Super-FAN: the very first end-to-end system that addresses both tasks
simultaneously, i.e. both improves face resolution and detects the facial landmarks. The novelty
or Super-FAN lies in incorporating structural information in a GAN-based super-resolution
algorithm via integrating a sub-network for face alignment through heatmap regression and



6.1 Datasets 64

optimizing a novel heatmap loss. We also illustrate the benefit of training the two networks
jointly by reporting good results not only on frontal images (as in prior work) but on the whole
spectrum of facial poses, and not only on synthetic low resolution images (as in prior work)
but also on real-world images. Finally, both quantitatively and qualitatively we show large
improvement over the state-of-the-art for both face super-resolution and alignment, showing for
the first time good results on real-world low resolution images like the ones of Fig. 6.1.

The contributions of this Chapter have been published at CVPR 2018 in [12].

6.1 Datasets

In this section we briefly describe the train and test split used for the experiments reported in the
current chapter. For a in-depth description of the datasets see Section 2.3.

In order to systematically evaluate face super-resolution across pose, the training dataset
was constructed from 300-W-LP [132], AFLW [57], Celeb-A [65] and a portion of LS3D-W
balanced [11] (10% of the data was held out for validation). For testing, we used the remaining
images from LS3D-W balanced, in which each pose range ([0◦−30◦], [30◦−60◦], [60◦−90◦])
is equally represented.
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Fig. 6.2 The proposed Super-FAN architecture comprises three connected networks: the first
network is a newly proposed Super-resolution network (see sub-section 6.2.1). The second
network is a WGAN-based discriminator used to distinguish between the super-resolved and
the original HR image (see sub-section 6.2.2). The third network is FAN, a face alignment
network for localizing the facial landmarks on the super-resolved facial image and improving
super-resolution through a newly-introduced heatmap loss (see sub-section 6.2.3).

6.2 Method

In this section, we describe the proposed architecture comprising of three connected networks:
the first network is a Super-resolution network used to super-resolve the LR images. The second
network is a discriminator used to distinguish between the super-resolved and the original HR
images. The third network is FAN: the face alignment network for localizing the facial landmarks
on the super-resolved facial images. Note that at test time the discriminator is not used. Overall,
we call our network Super-FAN. See Fig. 6.2
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Notably, for super-resolution, we propose a new architecture, shown in Fig. 6.3a, and
detailed, along with the loss functions to train it, in sub-section 6.2.1. Our discriminator, based
on Wasserstein GANs [2], is described in sub-section 6.2.2. Our integrated FAN along with our
newly-introduced heatmap regression loss for super-resolution is described in sub-section 6.2.3.
Sub-section 6.2.4 provides the overall loss for training Super-FAN. Finally, sub-section 6.2.5
describes the complete training procedure.

6.2.1 Super-resolution network

In this section, we propose a new residual-based architecture for super-resolution, inspired by
[61], and provide the intuition and motivation behind our design choices. Our network as well
as the one of [61] are shown in Figs. 6.3a and 6.3b, respectively. Their differences are detailed
below. Following recent work [118, 117], the input and output resolutions are 16× 16 and
64×64, respectively.
Per-block layer distribution. The architecture of [61], shown in Fig. 6.3b, uses 16, 1 and 1
blocks (layers) operating at the original, twice the original, and 4 times the original resolution,
respectively; in particular, 16 blocks operate at a resolution 16×16, 1 at 32×32 and another 1 at
64×64. Let us denote this architecture as 16−1−1. We propose a generalized architecture of
the form N1 −N2 −N3, where N1,N2 and N3 are the number of blocks used at the original, twice
the original, and 4 times the original resolution, respectively. As opposed to the architecture
of [61] where most of the blocks (i.e. 16) work at the input resolution, we opted for a more
balanced distribution: 12-3-2, shown in Fig. 6.3a. Our motivation behind this change is as
follows: since the main goal of the network is to super-resolve its input via hallucination, using
only a single block at higher resolutions (as in [61]) is insufficient for the generation of sharp
details, especially for images found in challenging scenarios (e.g. Fig. 6.1).
Building block architecture. While we experimented with a few variants of residual blocks [38,
39], similarly to [51, 61], we used the one proposed in [36]. The block contains two 3× 3
convolutional layers, each of them followed by a batch normalization layer [46]. While [61]
uses a PReLU activation function, in our experiments, we noticed no improvements compared to
ReLU, therefore we used ReLUs throughout the network. See Fig. 6.3a.
On the “long” skip connection. The SR-ResNet of [61] groups its 16 modules operating at the
original resolution in a large block, equipped with a skip connection that links the first and the
last block, in an attempt to improve the gradient flow. We argue that the resolution increase is a
gradual process in which each layer should improve upon the representation of the previous one,
thus the infusion of lower level futures will have a small impact on the overall performance. In
practice, and at least for our network, we found very small gains when using it.

Pixel and perceptual losses

Pixel loss. Given a low resolution image ILR (of resolution 16×16px) and the corresponding high
resolution image IHR (of resolution 64×64px), we train a generator network GθG parameterized
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by θG = {W1:L;b1:L} where WL and bL denotes the weights and respectively the biases of the Lth
layer. We used the pixel-wise MSE loss to minimize the distance between the high resolution
and the super-resolved image. It is defined as follows:

lpixel =
1

r2WH

rW

∑
x=1

rH

∑
y=1

(IHR
x,y −GθG(I

LR)x,y)
2, (6.1)

where W and H denote the size of ILR and r is the upsampling factor (set to 4 in our case).
Perceptual loss. While the pixel-wise MSE loss achieves high peak signal-to-noise ratio (PSNR)
values, it often results in images which lack fine details, are blurry and unrealistic (see Fig. 6.4).
To address this, in [51, 61], a perceptual loss is proposed in which the super-resolved image
and the original image must also be close in feature space. While [61] defines this loss over the
activations of layer 5_4 (the one just before the FC layers) of VGG-19 [88], we instead used a
combination of low, middle and high level features computed after the B1, B2 and B3 blocks of
ResNet-50 [38]. The loss over the ResNet features at a given level i is defined as:

l f eature/i =
1

WiHi

Wi

∑
x=1

Hi

∑
y=1

(φi(IHR)x,y

−φi(GθG(I
LR))x,y)

2,

(6.2)

where φi denotes the feature map obtained after the last convolutional layer of the i−th block
and Wi,Hi its size.

6.2.2 Adversarial network

The idea of using a GAN [34] for face super-resolution is straightforward: the generator G in
this case is the super-resolution network which via a discriminator D and an adversarial loss is
enforced to produce more realistic super-resolved images lying in the manifold of facial images.
Prior work in image super-resolution [61] used the GAN formulation of [76]. While in our work,
we do not make an attempt to improve the GAN formulation per se, we are the first to make
use of recent advances within super-resolution and replace [76] with the Wasserstein GAN of
(WGAN) [2], as also improved in [37] (see also Eq. (6.3)).

We emphasize that our finding is that the improvement over [76] is only with respect to the
stability and easiness of training and not with the quality of the super-resolved facial images:
while training from scratch with the GAN loss of [76] is tricky and often leads to an unsatisfactory
solution, by using a WGAN loss, we stabilized the training and allowed for the introduction of
the GAN loss at earlier stages in the training process, thus reducing the overall training time.
Finally, in terms of network architecture, we used the DCGAN [76] without batch normalization.
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Fig. 6.3 A comparison between the proposed super-resolution architecture (left) and the one
described in [61] (right). See also sub-section 6.2.1.

Adversarial loss

Following [2] and [37], the WGAN loss employed in our face super-resolution network is defined
as:

lWGAN = E
Î∼Pg

[D(Î)]− E
I∼Pr

[D(IHR)]

+λ E
Î∼PÎ

[ (
∥∥∥∇ÎD(Î)

∥∥∥
2
−1)2 ],

(6.3)

where Pr is the data distribution and Pg is the generator G distribution defined by Î = G(ILR) (the
input ILR is randomly sampled from the set of low resolution facial images). PÎ is implicitly de-
fines uniformly sampling along straight lines between pairs of samples from the data distribution
Pr and the generator ones Pg.

6.2.3 Face Alignment Network

The losses defined above (pixel, perceptual and adversarial) have been used in general purpose
super-resolution and although alone do provide descent results for facial super-resolution, they
also fail to incorporate information related to the structure of the human face into the super-
resolution process. We have observed that when these losses are used alone pose or expression
related details may be missing or facial parts maybe incorrectly located (see Fig. 6.4).

To alleviate this, we propose to enforce facial structural consistency between the low and the
high resolution image via integrating a network for facial landmark localization through heatmap
regression into the super-resolution process and optimizing an appropriate heatmap loss.
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To this end, we propose to use the super-resolved image as input to a FAN and train it so
that it produces the same output as that of another FAN applied on the original high resolution
image. We note that FAN uses the concept of heatmap regression to localize the landmarks:
rather than training a network to regress a 68×2 vector of x and y coordinates, each landmark is
represented by an output channel containing a 2D Gaussian centered at the landmark’s location,
and then the network is trained to regress the 2D Gaussians, also known as heatmaps. As a
number of works have shown (e.g. [8]), these heatmaps capture shape information (e.g. pose and
expression), spatial context and structural part relationships. Enforcing the super-resolved and
the corresponding HR image to yield the same heatmaps via minimization of their distance is a
key element of our approach: not only are we able to localize the facial landmarks but actually
we impose these two images to have similar facial structure. In terms of architecture, we simply
used the pretrained FAN with 2 Hourglass modules introduced in Chapter 4.

Heatmap loss

Based on the above discussion, we propose to enforce structural consistency between the super-
resolved and the corresponding HR facial image via a heatmap loss defined as:

lheatmap =
1
N

N

∑
n=1

W

∑
i=1

H

∑
j=1

∥∥∥p̂n
i, j − pn

i, j

∥∥∥2
, (6.4)

where p̂n
i, j and pn

i, j represent theconfidence maps at pixel location (i, j) for the nth landmark
produced by running the FAN integrated into our super-resolution network on the super-resolved
image ÎHR and the heatmap obtained by running another FAN on the original image IHR, respec-
tively.

Another key feature of our heatmap loss is that its optimization does not require having
access to ground truth landmark annotations just access to a pre-trained FAN. This allows us to
train the entire super-resolution network in a weakly supervised manner which is necessary since
for some of the datasets used for training (e.g. CelebA) ground truth landmark annotations are
not available, anyway.

6.2.4 Overall training loss

The overall loss used for training Super-FAN is:

lSR = αlpixel +β l f eature + γlheatmap +ζ lWGAN , (6.5)

where α = 0.5,β = 0.5,γ = 0.1 and ζ = 0.1 are the corresponding weights.
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6.2.5 Training

All images were cropped based on the bounding box such that the face height is 50 px. Input
and output resolutions were 16×16 px and 64×64 px, respectively. To avoid overfitting, we
performed random image flipping, scaling (between 0.85 and 1.15), rotation (between −30◦ and
30◦), colour, brightness and contrast jittering. All models, except for the one trained with the
GAN loss, were trained for 60 epochs, during which the learning rate was gradually decreased
from 2.5e-4 to 1e-5. The model trained with the GAN loss was based on a previously trained
model which was fine-tuned for 5 more epochs. The ratio between running the generator and
the discriminator was kept to 1. Finally, for end-to-end training of the final model (i.e. Super-
FAN), all networks (super-resolution, discriminator and FAN) were trained jointly for 5 epochs
with a learning rate of 2.5e-4. All models, implemented in PyTorch [73], were trained using
rmsprop [97].

Ours-pixel Ours-pixel-feature
Ours-pixel-feature-

heatmap
Ours-pixel-feature-

heatmap-GANbilinear Original imageSRGAN

Fig. 6.4 Visual results on LS3D-W. Notice that: (a) The proposed Ours-pixel-feature already
provides better results than those of SR-GAN [61]. (b) By additionally adding the newly
proposed heatmap loss (Ours-pixel-feature-heatmap) the generated faces are better structured
and look far more realistic. Ours-pixel-feature-heatmap-GAN is Super-FAN which improves
upon Ours-pixel-feature-heatmap by adding the GAN loss and by end-to-end training. Best
viewed in electronic format.

6.3 Experiments

In this section, we evaluate the performance of Super-FAN. The details of our experiments are as
follows:
Training/Testing. Unless otherwise stated, all methods, including [61], were trained on the
training sets of section 6.1. We report quantitative and qualitative results on the subset of LS3D-
W balanced consisting of 3,000 images, with each pose range being equally represented. We
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report qualitative results for more than 200 images from WiderFace.
Performance metrics. In sub-section 6.3.1, we report results using the standard super-resolution
metrics, namely the SSIM [104] and PSNR defined as:

PSNR = 20 · log10(MAXI)−10 · log10(MSE), (6.6)

where MAXI is the maximum possible value of the image and the MSE = 1
WH ∑

W
i=1 ∑

H
j=1[I(i, j)−

Î(i, j)]2 is computed between the ground truth image I and the super-resolved one Î.
In the process we confirm [61] that both of them are a poor measure of the perceived image

quality. In sub-section 6.3.2, we report results on facial landmark localization accuracy. To
alleviate the issues with PSNR and SSIM, we also propose another indirect way to assess super-
resolution quality based on facial landmarks: in particular, we trained a FAN on high resolution
images and then used it to localize the landmarks on the super-resolved images produced by each
method. As our test set (LS3D-W balanced) provides the ground truth landmarks, we can use
landmark localization accuracy to assess the quality of the super-resolved images: the rationale
is that, the better the quality of the super-resolved image, the higher the localization accuracy
will be, as the FAN used saw only real high resolution images during training. The metric used
to quantify performance is the Area Under the Curve (AUC) [11].
Variants compared. In section 5.1, we presented a number of networks and losses for super-
resolution which are all evaluated herein. These methods are named as follows:

• Ours-pixel: this is the super-resolution network of sub-section 6.2.1 trained with the pixel
loss of Eq. (6.1).

• Ours-pixel-feature: this is the super-resolution network of sub-section 6.2.1 trained with
the pixel loss of Eq. (6.1) and the perceptual loss of Eq. (6.2).

• Ours-pixel-feature-heatmap: this is the super-resolution network of sub-section 6.2.1
trained with the pixel loss of Eq. (6.1), the perceptual loss of Eq. (6.2), and the newly
proposed heatmap loss of Eq. (6.4).

• Ours-Super-FAN: this improves upon ours-pixel-feature-heatmap by additionally training
with the GAN loss of Eq. (6.3) and by end-to-end training.

Comparison with the state-of-the-art. We report results for the method of [61], imple-
mented with and without the GAN loss, called SR-GAN and SR-ResNet, respectively, and for
the standard baseline based on bilinear interpolation. We also show visual results on WiderFace
by running the code from [131]1.

1It is hard in general to compare with [131] because the provided code pre-processes the facial images very
differently to our method.



6.3 Experiments 71

In
p

u
t

O
u

rs
 

fi
n

al
C

B
N

SR
G

A
N

Fig. 6.5 Results produced by our system, SR-GAN [61] and CBN [131] on real-world low
resolution faces from WiderFace.

6.3.1 Super-resolution results

Our quantitative results on LS3D-W across all facial poses are shown in Table 6.1. In terms of
PSNR, the best results are achieved by Ours-pixel-feature-heatmap. In terms of SSIM, the best
performing method seems to be Ours-pixel. From these numbers, it is hard to safely conclude
which method is the best. Visually inspecting the super-resolved images though in Fig. 6.4
clearly shows that the sharper and more detailed facial images are by far produced by Ours-pixel-
feature-heatmap and Ours-Super-FAN. Notably, Ours-pixel achieves top performance in terms
of SSIM, yet the images generated by it are blurry and unrealistic (see Fig. 6.4), and are arguably
less visually appealing than the ones produced by incorporating the other loss terms. We confirm
the findings of [61] that these metrics can sometimes be misleading.

6.3.2 Facial landmark localization results

Herein, we present facial landmark localization results (on LS3D-W), also in light of our
proposed way to evaluate super-resolution based on the accuracy of a pre-trained FAN on the
super-resolved images (see Performance metrics). We report results for the following methods:

• FAN-bilinear: this method upsamples the LR image using bilinear interpolation and then
runs FAN on it.

• Retrained FAN-bilinear: this is the same as FAN-bilinear. However, FAN was re-trained
to work exclusively with bilinearly upsampled LR images.

• FAN-SR-ResNet: the LR image is super-resolved using SR-ResNet [61] and then FAN is
run on it.

• FAN-SR-GAN: the LR image is super-resolved using using SR-GAN [61] and then FAN
is run on it.
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Method
PSNR SSIM

30 60 90 30 60 90

bilinear upsample (baseline) 20.25 21.45 22.10 0.7248 0.7618 0.7829

SR-ResNet 21.21 22.23 22.83 0.7764 0.7962 0.8077

SR-GAN 20.01 20.94 21.48 0.7269 0.7465 0.7586

Ours-pixel 21.55 22.45 23.05 0.8001 0.8127 0.8240
Ours-pixel-feature 21.50 22.51 23.10 0.7950 0.7970 0.8205

Ours-pixel-feature-heatmap 21.55 22.55 23.17 0.7960 0.8105 0.8210

Ours-Super-FAN 20.85 21.67 22.24 0.7745 0.7921 0.8025

Table 6.1 PSNR- and SSIM-based super-resolution performance on LS3D-W balanced dataset
across pose (higher is better). The results are not indicative of visual quality. See Fig. 6.4.

• FAN-Ours-pixel: the LR image is super-resolved using Ours-pixel and then FAN is run on
it.

• FAN-Ours-pixel-feature: the LR image is super-resolved using Ours-pixel-feature and
then FAN is run on it.

• FAN-Ours-pixel-feature-heatmap-GAN: the LR image is super-resolved using Ours-pixel-
feature-heatmap-GAN and then FAN is run on it. The FAN is not trained with the rest of
the super-resolution network i.e. the same FAN as above was used. This variant is included
to highlight the importance of jointly training the face alignment and super-resolution
networks as proposed in this work.

• Super-FAN: this is the same as above however, this time, FAN is jointly trained with the
rest of the network.

• FAN-HR images: this method uses directly the original HR images as input to FAN. This
method provides an upper bound in performance.

The results are summarized in Fig. 6.4 and Table 6.2. See Fig. 6.6 for examples showing the
landmark localization accuracy. From the results, we conclude that:

1. Super-FAN is by far the best performing method being the only method attaining perfor-
mance close to the upper performance bound provided by FAN-HR images.

2. Jointly training the face alignment and super-resolution networks is necessary to obtain
high performance: Super-FAN largely outperforms FAN-Ours-pixel-feature-heatmap-
GAN (second best method).

3. The performance drop of Super-FAN for large poses (> 60◦) is almost twice as much as that
of FAN-HR images. This indicates that facial pose is still an issue in face super-resolution.
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4. Even a FAN trained exclusively to work with bilinearly upsampled images (Retrained
FAN-Bilinear), clearly an unrealistic scenario, produces moderate results, and far inferior
to the ones produced by Super-FAN.

5. FAN-Ours-pixel-feature outperforms both FAN-SR-GAN and FAN-SR-ResNet. This
shows that the proposed super-resolution network of section 6.2.1 (which does not use
heatmap or WGAN losses) already outperforms the state-of-the-art.

6. From FAN-Ours-pixel to Super-FAN, each of the losses added improves performance
which is in accordance to the produced visual results of Fig. 6.4. This validates our
approach to evaluate super-resolution performance indirectly using facial landmark local-
ization accuracy.

Fig. 6.6 Fitting examples produced by Super-FAN on a few images from LS3D-W. The predic-
tions are plotted over the original low-resolution images. Notice that our method works well for
faces found in challenging conditions such as large poses or extreme illumination conditions
despite the poor image quality.
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Method [0-30] [30-60] [60-90]

FAN-bilinear 10.7% 6.9% 2.3%

FAN-SR-ResNet 48.9% 38.9% 21.4%

FAN-SR-GAN 47.1% 36.5% 19.6%

Retrained FAN-bilinear 55.9% 49.2% 37.8%

FAN-Ours-pixel 52.3% 45.3% 28.3%

FAN-Ours-pixel-feature 57.0% 50.2% 34.9%

FAN-Ours-pixel-feature-heatmap 61.0% 55.6% 42.3%

Super-FAN 67.0% 63.0% 52.5%
FAN-HR images 75.3% 72.7% 68.2%

Table 6.2 AUC across pose (calculated for a threshold of 10%; see [11]) on our LS3D-W balanced
test set. The results, in this case, are indicative of visual quality. See Fig. 6.4.
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Fig. 6.7 Failure cases of our method on WiderFace. Typically, these include extreme facial poses,
large occlusions and heavy blurring.

6.3.3 Comparison on real-world images

Most face super-resolution methods show results on synthetically generated LR images. While
these results are valuable for assessing performance, a critical aspect of any system is its
performance on real-world data captured in unconstrained conditions. To address this, in this
section we provide visual results by running our system on more than 200 low resolution blurry
images taken from the WiderFace and compare its performance with that of SR-GAN [61] and
CBN [131].

Initially, we found that the performance of our method on real images, when trained on
artificially downsampled images, was sub-optimal, with the super-resolved images often lacking
sharp details. However, retraining Super-FAN by applying additionally random Gaussian blur
(of kernel size between 3 and 7 px) to the input images, and simulating jpeg artefacts and colour
distortion, seems to largely alleviate the problem. Results of our method, SR-GAN (also retrained
in the same way as our method) and CBN can be seen in Figs. 6.1 and 6.5.



6.4 Ablation studies 75

Our method provides the sharper and more detailed results performing well across all poses.
SR-GAN fails to produce sharp results. CBN produces unrealistic results especially for the
images that landmark localization was poor.

A few failure cases of our method are shown in Fig. 6.7; mainly cases of extreme poses, large
occlusions and heavy blurring. With respect to the latter, although our augmentation strategy
seems effective, it is certainly far from optimal. Enhancing it is left for interesting future work.

6.4 Ablation studies

This section describes a series of experiments, further analysing the importance of particular
components on the overall performance. It also provides additional qualitative results.

On the pixel loss. In this section, we compare the effect of replacing the L2 loss of Eq. 6.1
with the L1 loss. While the L1 loss is known to be more robust in the presence of outliers, we
found no improvement of using it over the L2 loss. The results are shown in Table 6.3.

On the heatmap loss. Similarly to the above experiment, we also replaced the L2 heatmap
loss of Eq. 6.4 with the L1 loss. The results are shown in Table 6.5, showing descent improvement
for large poses.

On the importance of the skip connection. Herein, we analysed the impact of the long-skip
connections to the overall performance of the generator. The results, shown in Table 6.4, show
no improvement.

On network speed. Besides accuracy, another important aspect of network performance is
speed. Compared with SR-GAN [61], our generator is only 10% slower, being able to process
1,000 images in 4.6s (vs. 4.3s required by SR-GAN) on an NVIDIA Titan-X GPU.

6.4.1 Additional qualitative results

Fig. 6.9 shows the face size distribution Notice that our method copes well with pose variation
and challenging illumination conditions. There were a few failure cases, but in most of these
cases, it is impossible to tell whether the low-resolution image was actually a face.

Fig. 6.6 shows a few fitting results produced by Super-FAN on the LS3D-W Balanced dataset.
The predictions were plotted on top of the low resolution input images. We observe that our
method is capable of producing accurate results even for faces found in arbitrary poses exhibiting
various facial expressions.

We also tested our system on images from the Surveillance Cameras Face dataset (SC-
face) [35]. The dataset contains 4,160 images of 130 unique subjects taken with different
cameras from different distances. Fig. 6.8 shows a few qualitative results from this dataset.
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Fig. 6.8 Qualitative results on the SCface dataset [35].
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Fig. 6.9 Face size (defined as max(width,height)) distribution of the selected subset of low
resolution images from WiderFace.

Method
PSNR SSIM

30 60 90 30 60 90

Ours-pixel (L2) 21.55 22.45 23.05 0.8001 0.8127 0.8240

Ours-pixel (L1) 21.47 22.40 23.00 0.7988 0.8120 0.8229

Table 6.3 PSNR and SSIM when training our generator with L2 and L1 pixel-losses.
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Method
PSNR SSIM

30 60 90 30 60 90

Ours-pixel (no-skip) 21.55 22.45 23.05 0.8001 0.8127 0.8240

Ours-pixel (with skip) 21.56 22.45 23.04 0.8021 0.8132 0.8241

Table 6.4 PSNR and SSIM for “no-skip” and “with skip” versions. The “no-skip” version
indicates the absence of the long skip connection (the network depicted in Fig. 6.3a), while the
“with skip” version adds two new long skip connections, similarly to [38].

Method [0-30] [30-60] [60-90]

FAN-Ours-pixel-feature-heatmap (L2) 61.0% 55.6% 42.3%

FAN-Ours-pixel-feature-heatmap (L1) 61.1% 55.4% 42.0%

Table 6.5 AUC across pose (on our LS3D-W balanced test set) for L2 and L1 heatmap losses.



Chapter 7

Conclusions

The aim of this thesis was to address a series of challenges in the area of 2D and 3D face
alignment, significantly advancing the state-of-the-art and proposing in the process novel deep
learning-based architectures and methodologies. Mainly, we address: (a) the problem of fitting
faces in very large poses, in the −90◦− 90◦ range (Chapter 3), (b) in both 2D and 3D space
(Chapter 4), creating simultaneously (c) the largest “in-the-wild” large pose 3D face alignment
dataset - LS3D-W (Chapter 4). Additionally, we study and address a new challenge: that of
(d) fitting landmarks in very low resolution faces (Chapter 6). From a performance perspective,
we propose (e) a novel residual block specially tailored for binarized neural networks that
significantly improves the speed while maintaining a similar or competitive accuracy (Chapter 5).
The results presented through the thesis set the new state-of-the-art on 2D & 3D face alignment
as well as on face super-resolution.

This findings suggest that a carefully designed fully convolutional neural network architecture
that follows a top-down approach can achieve near saturation results, comparable with a human
annotator, for the case of 2D and 3D face alignment, even for the case of binarized neural
networks. Futhermore, we have shown the importance of facial landmarks for guiding other
tasks, in particular, we show that the keypoints help preserve the overall facial structure of
super-resolved facial images.

Alongside the publications mentioned in Section 1.4, all of our code is available on Github
at https://github.com/1adrianb under a BSD3-clause license (at the time of writing 8 unique
repositories totalling thousands of downloads and github stars). The dataset introduced, LS3D-W
was open sourced and can be downloaded from https://www.adrianbulat.com under the same
permissive BSD3-clause license. Finally, a live demo of our 3D face alignment method is
available at https://www.adrianbulat.com/face-alignment-demo.

In the beginning of this thesis, we emphasized that face alignment is one of the key steps of a
plethora of computer vision applications. Currently, our 2D and 3D face alignment approach
is widely used as part of various research tasks and topics such as: 3D face reconstruction,
either as initialization or preprocessing step [47, 64], facial expression synthesis [92], face
super-resolution [12, 115], face completion and editing [91, 109], hard examples mining [89],
talking face image generation [125], emotion recognition [31, 63], facial attribute transfer [113],

https://github.com/1adrianb
https://www.adrianbulat.com
https://www.adrianbulat.com/face-alignment-demo
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selfie video stabilization [114], abnormal behavior detection [42], deception detection [70], gaze
estimation [71], age estimation [27], facial palsy detection [41] or face frontalization [15].

7.1 Future work

The main focus of this thesis has been on addressing the key challenges for the problem of
face alignment using novel, deep learning based methods. While significant progress was made
(see Fig. 1.1 for examples of “before” and “after”), there is still room for further improvement.
As such, the work conducted in this thesis, in addition to the above mentioned contributions,
provides the basis for future work on several topics. At least four such topics were identified:

• Face tracking

• Multi-person face alignment

• Unconstrained low resolution face alignment

• Multi-task face analysis

The following sections discuss each of the proposed directions.

7.1.1 Face tracking

Although in Chapter 4 we conducted face tracking experiments on 300-VW, the work presented
in this thesis focuses on static images, treating each frame from the video independently. A direct
extension is to adapt the network to continuous data streams, exploiting the temporal relationship
that naturally occurs in a video. This can both improve the accuracy and the stability of the
method removing at the same time the requirement of running a face detector at each frame. A
possible approach toward this will be to take in consideration the previous predictions when
making the new one, exploit the optical flow or make joint predictions of multiple frames at once
with a sliding window.

7.1.2 Multi-person face alignment

The current methods proposed throughout this thesis, in Chapters 3-6, can process a single face
at one given moment (considering a batch size of 1). Therefore, if an image contains N faces, we
either need to increase the batch size to N (the efficient way) or do N forward passes. However
this can more elegantly be addressed inside the Fast-RCNN [32] framework formulation. Not
only will this speed-up the fitting process itself, but it will also incorporate the face detection
stage, previously done by a separate network.



7.1 Future work 80

7.1.3 Unconstrained low resolution face alignment

In Chapter 6, we made an initial attempt to address the problem of joint super-resolution and
face alignment in real-world low resolution images (note that all previous work use artificially
bilinearly downsampled images) by running an experiment on a subset of images from WiderFace.
While we did show improvement on certain cases, there is still significant room for further
performance gains.

7.1.4 Multi-task face analysis

Finally, all of the above methods, especially the work from Chapter 6 use different neural
networks if the problem is different. However, one can use a single network with multiple heads,
where each head will provide results for a specific task (e.g. super-resolution, 2D face alignment,
etc). This was previously shown (for other tasks) to both improve the performance of individual
tasks as well as reducing the computational requirements.
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