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Highlights

- ELSA is a new local statistic can be used for both categorical and continuous spatial 

data.

- ELSA quantifies the degree of local spatial association of a variable at each location.

- Entrogram quantifies global spatial structure and represent as a variogram-like 

graph.

- ELSA is a non-parametric reliable and robust statistic.

- The R package, elsa, provides the tools for calculation of ELSA and entrogram.
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22 Abstract

23 Research on spatial data analysis has developed a number of local indicators of spatial association 

24 (LISA), which allow exploration of local patterns in spatial data.  These include local Moran’s  and 𝐼

25 local Geary’s , as well as  and  that can be used for continuous or interval variables only. 𝑐 𝐺𝑖 𝐺 ∗
𝑖

26 Despite numerous situations where qualitative (nominal/categorical) variables are encountered, few 

27 attempts have been devoted to the development of methods to explore the local spatial pattern in 

28 categorical data. To our knowledge, there is no indicator of local spatial association that can be used 

29 for both continuous and categorical data at the same time.

30 In this paper, we propose a new local indicator of spatial association, called the entropy-based local 

31 indicator of spatial association (ELSA), can be used for both categorical and continuous spatial data. 

32 ELSA quantifies the degree of spatial association of a variable at each location relative to the same 

33 variable at the neighbouring locations. This indicator simultaneously incorporates both spatial and 

34 attribute aspects of spatial association into account. The values of ELSA vary between 0 and 1, which 

35 denote highest and lowest spatial association, respectively. We compare ELSA to existing statistics 

36 such as Local Moran’s I and test the power and size of the new statistic. We also introduce the 

37 "entrogram", a novel approach for exploring the global spatial structure within the entire area (like a 

38 variogram). This study showed that the ELSA is consistent and robust, and is therefore suitable for 

39 applications in a wide range of disciplines. The ELSA algorithm is made available as an R-package 

40 (elsa).

41
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42 1. Introduction

43 Spatial analysis is concerned with exploration and identification of associations over geographical 

44 space. Such associations quantify the degree to which a value of a variable measured at one location 

45 is dependent on the values of the same variable measured at a specific geographic distance from 

46 that location (Cliff and Ord 1981; Goodchild 1986). If such dependency exists in a dataset, the 

47 variable is said to exhibit spatial autocorrelation (Sokal and Oden 1978). Several statistics have been 

48 developed to quantify spatial autocorrelation both globally and locally. Global measures provide a 

49 statistic for the entire field under the assumption of spatial stationarity, i.e. the mean and 

50 covariance do not vary over space. This assumption is often unrealistic.  Recent advances have 

51 addressed non-stationarity in the mean through spatially varying coefficient modelling (Finley 2011; 

52 Gelfand et al. 2003; Hamm et al. 2015a).  Heteroskedasticity in the variance can be addressed 

53 through a weighting function (Hamm et al. 2012; Lark 2009) and further efforts have been directed 

54 at modelling non-stationary covariance functions (Haskard and Lark 2009; Paciorek and Schervish 

55 2006). Models that address non-stationary are often difficult to implement and there is a lack of 

56 standard software tools.  Further, these models all provide a global measure of autocorrelation. This 

57 may be of limited relevance when local areas are of interest.

58 Research studies on spatial data analysis developed a number of local spatial statistics (Anselin 1995; 

59 Boots 2003; Getis and Ord 1992; Ord and Getis 1995).  In contrast to global measures, these 

60 statistics allow exploration of local patterns in spatial association (Lloyd 2007).  They do not rely on 

61 the assumption of global stationarity. Anselin (1995) introduced a set of statistics, called local 

62 indicators of spatial association (LISA), including local Moran’s I and local Geary’s c, that decompose 

63 a single global measure into the contribution of each individual location to explore the locations that 

64 are major contributors to the global autocorrelation. These statistics can be used to test if local 

65 spatial clustering of similar values around the observation is significantly different from the global 

66 mean. Getis and Ord (1992) and Ord and Getis (1995) also defined two local statistics,  and , 𝐺𝑖 𝐺 ∗
𝑖
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67 which are somewhat different from Anselin’s LISAs, indicating local clustering of high and low values. 

68 These allow detection of pockets of spatial association that may not be evident when using global 

69 statistics (Getis and Ord 1992; Ord and Getis 1995). These methods, however, can be used for 

70 continuous or interval variables only. Despite numerous situations where qualitative 

71 (nominal/categorical) variables are encountered, only a few attempts have been devoted to develop 

72 methods to explore the spatial pattern for categorical data.  Examples include early works using joint 

73 count statistics (Dacey 1968; Dale 2000; Iyer 1949; Moran 1948), extension of the Moran Coefficient 

74 to a wide variety of probability models and linking continuous and discrete variables (Griffith 2010), 

75 and more recent works including local indicators for categorical data (LICD) by Boots (2003) and 

76 symbolic entropy by Ruiz et al. (2010). The purpose of LICD is to identify the nature and spatial 

77 extent of local neighbourhoods that are distinctive or unusual compared to a priori expectation in 

78 binary categorical data (Boots 2003, 2006). To our knowledge, there is no statistic of local spatial 

79 association that can be used for both continuous and categorical data. 

80 In this paper, we propose a new local indicator of spatial association, called the entropy-based local 

81 indicator of spatial association (ELSA), for exploratory analysis and testing the significance of local 

82 spatial association of both categorical and continuous spatial data. In doing so, we address the gaps 

83 in the research literature highlighted above.  Entropy has its root in thermodynamic and information 

84 theory. Entropy based approaches have been applied in many disciplines, as a measure of 

85 complexity in physics (Shannon and Weaver 1949), as a measure of diversity or structural complexity 

86 in ecology (Anand and Orloci 1996; Ricotta and Anand 2006), and as a measure of information 

87 content or uncertainty in information theory (Yeung 2008). This concept has also been used by 

88 geographers, economists and social scientists to describe spatial phenomena (Batty 1974, 1976; 

89 Heikkila and Hu 2006). Recently, some attempts have been conducted to use the concept of entropy 

90 as a measure of spatial contiguity for qualitative data (Ruiz et al. 2010), or to detect spatially varying 

91 multivariate relationships (Guo 2010). Matilla-García et al. (2011) highlighted the potential role that 
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92 entropy-based measures might play in detecting spatial structure. They used spatial symbolic 

93 entropy for detecting the order of contiguity (spatial lag) of a spatial dependent process (Matilla-

94 García and Marín 2011).

95 Although entropy-based approaches have been used widely for categorical data (e.g. soil type, 

96 classified data), there is a challenge in using entropy for exploratory analysis of continuous data. For 

97 these data, the probability density function is often unknown, which is necessary to calculate 

98 entropy (Guo 2010). A common solution to this problem in most practical applications is to construct 

99 a contingency table by binning (discretizing) a continuous variable into a finite number of classes 

100 (Guo 2003; Journel and Deutsch 1993), which then are used as categorical data in the entropy 

101 measure. This, however, raises two new challenges. Firstly, binning continuous variables causes 

102 information loss in data. Secondly, dissimilarity between binned data is not the same as it is in 

103 categorical data. For example, when using a categorical land use map in spatial analysis, no 

104 difference in the level of dissimilarity between pairs of classes is assumed. If a continuous variable 

105 binned into, for example, five categories (C1, …, C5), then C1 is more similar to C2 than to C5.  In this 

106 paper, we illustrate how ELSA addresses these challenges. 

107 The main objectives of our study are: (1) to introduce a new statistic for measuring and testing local 

108 spatial association (ELSA) that can be used for both continuous and categorical spatial data; (2) to 

109 explore the application of ELSA for calculating local spatial association and comparing this with other 

110 indicators; (3) to demonstrate the usability of ELSA to detect global patterns as well, and calculate a 

111 variogram-like global spatial structure, named ‘entrogram’. In addition, we developed a new 

112 software package, ‘elsa’, in the R environment of statistical computing (R Development Core Team 

113 2017) to freely provide the tools required for calculation of the ELSA statistic and the entrogram. 

114

115
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116 2. Entropy

117 In information theory, the concept of complexity is closely related to predictability. It is the amount 

118 of information required to achieve an optimal prediction (Boschetti 2008). The entropy measure is 

119 also known as the information content. The Shannon entropy has been defined as an average 

120 amount of information to eliminate uncertainty, given by a finite number of events:

121 𝐻 =‒
𝑚

∑
𝑘 = 1

𝑝𝑘log2 𝑝𝑘               (5)

122 where measures the entropy of a system with a finite number of  possible events, and  𝐻 𝑚 𝑝𝑘

123 represents the probability of event .  is at a maximum when all events occur in equal abundance 𝑘 𝐻

124 and can be quantified by . This measure can be standardized by dividing by , providing log2 𝑚 log2 𝑚

125 a measure of relative entropy ranging between 0 and 1. The function is dimensionless and depends 

126 only upon the number of events, not upon any other invariant property of the system to which it is 

127 applied (Batty 1976).

128 3. ELSA statistic

129 The Entropy based Local indicator of Spatial Association, ELSA, extends the above described entropy 

130 measure using a term that summarizes the attribute distance between a location and its 

131 neighbourhood locations over a given geographical distance.

132 Assume  are  observations related to a spatial process at locations x = (x1,x2, …, xn)' 𝑛 u =

133 . Further, denote by  the set of possible categories that  can take. (u1,u2,…, un)' α = (α1,α2,…, αm) xi

134 For a categorical variable, it is usually assumed that pairs of categories are equally dissimilar. There 

135 are, however, situations where the level of dissimilarity varies for different pairs of categories. For 

136 example, ‘dense forest’ and ’sparse forest’ in a land use map are more similar than a pair of either of 
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137 these two classes and ‘lake’ (for more details, see the Section "ELSA for categorical data"). Likewise, 

138 when the values of a continuous variable are binned (discretized) into categories, the level of 

139 dissimilarity varies between categories. By ranking the binned values, the difference between rank 

140 numbers can be interpreted as the level of dissimilarity. These levels of dissimilarity between 

141 categories are taken into account in the calculation of ELSA. 

142 ELSA (E statistic) at site  is defined as:𝑖

𝐸𝑖 =  𝐸𝑎𝑖 × 𝐸𝑐𝑖

𝐸𝑎𝑖 =  

∑
𝑗

𝜔𝑖𝑗𝑑𝑖𝑗

max {𝑑}∑
𝑗

𝜔𝑖𝑗

, 𝑗 ≠ 𝑖

𝐸𝑐𝑖 =  ‒  
∑𝑚𝜔

𝑘 = 1
𝑝𝑘log2 (𝑝𝑘)

log2 𝑚𝑖
, 𝑗 ≠ 𝑖

𝑚𝑖 = { 𝑚 if ∑
𝑗

𝜔𝑖𝑗 > 𝑚

∑
𝑗

𝜔𝑖𝑗, otherwise

𝑑𝑖𝑗 = |𝑐𝑖 ‒ 𝑐𝑗|

143 where  is a binary weight which specifies whether the site  is within a specified distance (defines 𝜔𝑖𝑗 𝑗

144 the neighbourhood size) from site .  describes the dissimilarity between  and , which is 𝑖 𝑑𝑖𝑗 𝑥𝑖 𝑥𝑗

145 calculated as the absolute difference of the ranks assigned to the categories at sites  and  (i.e.,  𝑖 𝑗 𝑐𝑖

146 and ), and  is the maximum possible dissimilarity between any pair of observations in the 𝑐𝑗 max {𝑑}

147 entire dataset.  This is discussed for continuous and categorical variables in the upcoming sections. 

148 There are  categories in the entire dataset, is the probability of th category from the  𝑚 𝑝𝑘 𝑘 𝑚𝜔

(6)
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149 categories within the local distance from site , and is the maximum possible number of 𝑖 𝑚𝑖

150 categories within the local distance from site . This means that if the number of observations within 𝑖

151 the local distance from site , including site , is greater than the number of categories in the entire 𝑖 𝑖

152 dataset ( ), then  is equal to the number of categories, otherwise it is equal to the ∑
𝑗𝜔𝑖𝑗 > 𝑚 𝑚𝑖

153 number of observations ( ) within the local distance from site . ∑
𝑗𝜔𝑖𝑗 𝑖

154 The first term in the equation 6 ( ) summarizes the attribute distance (dissimilarity) between site  𝐸𝑎𝑖 𝑖

155 and the neighbouring sites. This coefficient is bounded between 0 and 1. Low values indicate high 

156 similarity of site to neighbouring sites, and high values indicate low similarity with neighbouring 𝑖 

157 sites. 

158 The second term of the  statistic (i.e., ) is the Shannon entropy (equation 5), normalized by 𝐸𝑖 𝐸𝑐𝑖

159 . This term ranges between 0 and 1. By normalizing, values are invariant to the number of log2 (𝑚𝑖)

160 categories present in a dataset. In other words, datasets with different numbers of categories are 

161 comparable. For normalizing,  is defined in relation to the global number of categories in the 𝑚𝑖

162 entire dataset. This term quantifies composition or diversity of the categories within the local 

163 distance from site , but it is not sensitive to the level of dissimilarities between pairs of 𝑖

164 observations.

165 Fig. 1 shows the behaviour of the two terms in ELSA as well as ELSA itself at site  in the centre of a 3 𝑖

166 x 3 window under five scenarios. When a location is surrounded by similar locations (example a), 

167 both the dissimilarity and composition statistics (i.e.,  and , respectively) would be calculated 𝐸𝑎𝑖 𝐸𝑐𝑖

168 as 0. The composition in the binary maps in examples b and c, is the same, while the dissimilarity 

169 between site  and its neighbour locations in the two maps is different. In example b, the site is 𝑖

170 surrounded by 8 dissimilar locations to the site, while in the example c, the site is surrounded by 7 

171 similar and only one dissimilar locations. Therefore,  is at its maximum value in example b, while 𝐸𝑎𝑖

172 it is much lower in example c. In the two maps (examples d and e) with three categories, the 
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173 dissimilarity is the same for both as the site  is surrounded by 8 dissimilar locations to the site. The 𝑖

174 composition, however, is different in these two maps. 

175 [Fig. 1]

176 These five examples show the complementarity of the two terms in the ELSA statistic in different 

177 situations. The role of these terms would even be more important if the categories have different 

178 levels of dissimilarity (see the upcoming section). It also suggests that either of these terms would be 

179 informative on their own for the purpose they are designed for. For instance, if one needs to identify 

180 locations with extreme or outlier values, compared to their neighbour locations, the  term in 𝐸𝑎𝑖

181 ELSA would be the statistic that fulfils the need, while if only the composition (i.e., diversity) of the 

182 values within a local neighbourhood is the purpose of the study, the  term in ELSA can be used.  𝐸𝑐𝑖

183

184 3.1. ELSA for categorical data

185 Categorical variables are typically conceptualized as having no inherent ordering (Ahlqvist and 

186 Shortridge 2010), which means that all pairs of categories are equally dissimilar. When using this 

187 simplification of class differences and denoting the dissimilarity as  (as in equation 6): , 𝑑 max (𝑑) = 1

188 if  and if . 𝑑𝑖𝑗 = 1 𝑥𝑖 ≠ 𝑥𝑗 𝑑𝑖𝑗 = 0 𝑥𝑖 = 𝑥𝑗

189 The assumption that all categories are equally dissimilar is often an oversimplification.  Several 

190 studies have been conducted to estimate a measure of dissimilarity between categories (Romme 

191 1982; Uuemaa et al. 2008). Categories may also be classified into a hierarchical structure. For 

192 example, the United Nations Food and Agricultural Organization’s (FAO) land cover classification 

193 system arranges classes hierarchically (Di Gregorio and Jansen 2009). Such hierarchies may be used 

194 to describe the level of dissimilarity. Consider a categorical map with four categories: ‘mixed forest’ (

195 ), ‘coniferous forest’ ( ), ‘olive groves’ ( ) and ‘vineyards’ ( ). These can be grouped under 𝛼1 𝛼2 𝛼3 𝛼4
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196 primary categories such that ‘mixed forest’ and ‘coniferous forest’ belong to the primary category 

197 ‘forests’ (denoted ) and ‘olive groves’ and ‘vineyards’ belong to ‘agricultural areas’ (denoted ).  𝛽1 𝛽2

198 To calculate  for this categorical map,  (the rank number for site ) is set to 1 (always), and  is 𝐸𝑖 𝑐𝑖 𝑖 𝑐𝑗

199 set to 1 (if sites  and  are the same), or 2 (if the categories in sites  and  are different, but belong 𝑖 𝑗 𝑖 𝑗

200 to the same primary category), or 3 (if the categories in sites  and  are different and also belong to 𝑖 𝑗

201 different primary categories). Consequently, the level of dissimilarity, , between two different 𝑑𝑖𝑗

202 subcategories of the same primary category is set as   (e.g., 𝑑𝑖𝑗 = 1 𝑑(coniferous forest, mixed forest)

203 ) , and between two different subcategories from different primary categories is set = 𝑑(𝛼1,𝛼2) = 1

204 as  (e.g., ). 𝑑𝑖𝑗 = 2 𝑑(coniferous forest, vineyards) = 𝑑(𝛼1,𝛼4) = 2

205 To develop this algorithm, we specify the dissimilarity for categorical data as 

206 1) If  then  & therefore 𝛼𝑖 =  𝛼𝑗 𝑐𝑖 = 1 𝑐𝑗 = 1 𝑑𝑖𝑗 = 0

207 2) If ( ) & )  then   &  therefore 𝛼𝑖 ≠  𝛼𝑗 (𝛽𝑖 = 𝛽𝑗 𝑐𝑖 = 1 𝑐𝑗 = 2 𝑑𝑖𝑗 = 1

208 3) If ( ) & )  then   &  therefore 𝛼𝑖 ≠  𝛼𝑗 (𝛽𝑖 ≠ 𝛽𝑗 𝑐𝑖 = 1 𝑐𝑗 = 3 𝑑𝑖𝑗 = 2

209 The level of dissimilarity between pairs of categories can be illustrated in a matrix (Table 1). This 

210 makes ELSA flexible enough to handle situations where the level of dissimilarity can be specified for 

211 pairs of categories or when categories are hierarchically ordered.

212 [Table 1]

213 The above situation can be extended to the case where there are more levels in the hierarchy.  The 

214 maximum level of dissimilarity is then equal to the degree of hierarchy. In Fig. 2, the level of 

215 dissimilarity is presented schematically for a hierarchical system that contains 3 levels.

216 [Fig. 2]

217



11

218 3.2. ELSA for continuous data

219 A key step to calculate ELSA for continuous data is that the variable should be first categorized 

220 (binned or discretized) into a number of categories; a procedure that may cause information loss. 

221 Inspired by Morrison (1972), we propose an estimation of the optimum number of categories that 

222 minimizes the information loss. This optimum is the minimum number of categories that is able to 

223 reproduce the spatial data statistically (i.e., that minimizes the loss of information through 

224 categorization). To find the optimum number of categories, our procedure uses Spearman's rank 

225 correlation coefficient, , as a measure of information between the continuous variable and the 𝜌

226 categorized variable. If the amount of information is not affected through categorizing, the observed 

227 correlation should be equal to one. Any loss of information would result in the observed correlation 

228 to be less than one. Therefore, the magnitude of the difference  provides a measure of 1 ‒ 𝜌

229 information loss (Quester and Dion 1997). The procedure of selecting the optimum number involves 

230 the following steps:

231 1) The categorization procedure starts with a minimum number of categories  𝑚 = 2

232 2) The procedure assigns a rank number (between 1 and , where  is the total number of 𝑚 𝑚

233 categories) to each category. 

234 3) The  coefficient between the continuous values and the assigned ranks is calculated for 𝜌

235 each iteration. 

236 4) The steps 1 to 3 are repeated, every time by considering one more category (i.e., increasing 

237 ), until a convergence threshold (e.g., 0.005) is reached. The convergence is defined as the 𝑚

238 difference between the  coefficients of the current and previous iterations. 𝜌

239 5) The one-standard-error rule (James et al. 2013) is applied to select the optimum number of 

240 categories. First, the standard error of the  coefficients is calculated, and then the optimum 𝜌

241 number of categories would be the lowest number for which the  coefficient is within one 𝜌

242 standard error of the highest  coefficient.𝜌
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243 It is assumed that the information loss due to the categorization is not substantial when the 

244 optimum number is used. Fig. 3, illustrates an example of using this procedure for a continuous 

245 variable.

246 [Fig. 3]

247 To calculate ELSA for the continuous map using equation 6, the original continuous data  are then 𝐱

248 mapped into the ranked categories:   with ranks , where  and 𝛂 = (𝛼1,𝛼2,…, 𝛼𝑚)' 𝑐1,𝑐2,…, 𝑐𝑚 𝑐1 = 1 𝑐𝑚

249 . The maximum level of dissimilarity in the entire map is therefore:  and the = 𝑚 max (𝑑) = 𝑐𝑚 ‒ 1

250 dissimilarity between the categories at two locations  and  is .   𝐮𝑖 𝐮𝑗 𝑑𝑖𝑗 = |𝑐𝑖 ‒ 𝑐𝑗|

251

252 4. Inference for ELSA statistic

253 In this section we propose a non-parametric bootstrap randomization approach to test the local 

254 spatial association against a null distribution. The approach is based on repeated resampling from a 

255 distribution, , which satisfies the relevant null hypothesis (Davison and Hinkley 1997). Suppose 𝐹0 α

256  are the possible events, outcomes of a spatial process, that  observations  = (α1,α2,…, αm) 𝑛 x =

257 can take at locations . The null surface can be constructed by (x1,x2, …, xn)' u = (u1,u2,…, un)'

258 rearranging or shuffling the locations (Anselin 1995). Once the null surface  is constructed, a 𝐹0

259 Monte Carlo simulation with  runs is used to draw a sample with size  from the null distribution 𝑅 𝑛

260 through a bootstrap resampling procedure (sampling with replacement) for each run. The observed 

261 ELSA statistic at site  ( ) can be compared to  independent values of the statistic obtained from 𝑖 𝐸𝑖 𝑅

262 the corresponding samples independently simulated under the null hypothesis (i.e., no spatial 

263 autocorrelation). If these simulated values at site  are denoted by , then the probability of 𝑖 𝐸 ∗
1𝑖,…,𝐸 ∗

𝑅𝑖

264 accepting the null hypothesis (P-value) at site  ( ) can be approximated by (Davison and Hinkley 𝑖 𝑃𝑖

265 1997):
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𝑃𝑖 =
1 + #{𝐸𝑖 ≥ 𝐸 ∗

𝑖𝑟}
𝑅 + 1

(7)

266 where  indicates number of times the observed ELSA at site  is greater than or equal to #{𝐸𝑖 ≥ 𝐸 ∗
𝑖𝑟} 𝑖

267 the ELSA values calculated for the bootstrap samples drawn from the null distribution.

268 4.1. Size and power of the test

269 We analysed the size and power of our non-parametric test based on the ELSA statistic to investigate 

270 whether the test correctly rejects the null hypothesis only when it should be rejected (Bivand 2009). 

271 To do so, we conducted a comprehensive set of data simulations to generate both continuous and 

272 categorical variables with various levels of no to high spatial autocorrelation. We used an 

273 unconditional simulation to construct regular grids of  grid cells for each variable. 50 × 50

274 Unconditional simulation is a geostatistical technique that generates a realization of a spatially 

275 correlated variable, where the spatial correlation is defined by a variogram (Dungan 1999). The 

276 circulant-embedding algorithm (Dietrich and Newsam 1993) implemented in the RandomFields 

277 package v. 3.0.44 (Schlather 2009) in the R programming environment, v.3.0.1, was used to conduct 

278 the unconditional simulation.  The effective variogram range (the maximum geographic separation 

279 where two points are expected to be autocorrelated) is determined by the scale parameter, .  The 𝜙

280 variability is determined by the sill, , where  is the partial sill and is the nugget and 𝐶 + 𝐶0 𝐶 𝐶0 𝛾 =  

281  is the proportion of the variability that has spatial structure.  An exponential variogram 𝐶 (𝐶 + 𝐶0)

282 model with an effective autocorrelation range of  cells and an arbitrary sill of 10 was used 3𝜙 =  50

283 for all datasets. We controlled the degree of spatial autocorrelation by changing   in the variogram 𝛾

284 models. Five levels of  = 0, 0.25, 0.5, 0.75, and 1 were used to define the variogram models (Fig. 4), 𝛾

285 giving a transition from no to high spatial autocorrelation, respectively. To generate the categorical 

286 variable, we followed a second step where the continuous spatially autocorrelated variable  was 𝑌
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287 used to define a discrete spatial process as follows Ruiz et al. (2010). Let  be breaking point in 𝑏𝑖𝑘 𝑖𝑡ℎ 

288 discretizing into  categories, and defined as:𝑌 𝑘

𝑝(𝑌 ≤ 𝑏𝑖𝑘) =
𝑖
𝑘     𝑤𝑖𝑡ℎ 𝑖 < 𝑘 (8)

289 Let  and define the discrete spatial process as:𝐴 = {𝛼1,𝛼2,…,𝛼𝑘}

290

291

292 where  is the value of discretized  at location . For each level of spatial autocorrelation, we 𝑋u 𝑌 u

293 generated three sets of categorical variables with =2, 3, and 4 categories, and a set of continuous 𝑘

294 variables (Fig. 5). 

295 [Fig. 4]

296

297 [Fig. 5]

298 For each set of data, 999 replicates were simulated and a test with 999 (=R) runs was applied to each 

299 replicate at a level of significance . We applied the test at the center of the image with 𝛼 = 0.05

300 different local neighbourhood sizes  = 1.5, 3, 5, 10, and 15 cells. We then recorded the number of 𝑁𝑒

301 times that the null hypothesis is rejected (i.e., when ) to quantify the rejection rate. We 𝑃 ≤ 0.05

302 would expect that the statistic fails to reject the null hypothesis most of the times when the level of 

303 spatial autocorrelation is zero (size of the statistic). At the same time, we would expect that it rejects 

304 the null hypothesis more frequently (power of the statistic) as the level of autocorrelation goes up 

305 (Ruiz et al. 2010).

𝑋u = {𝛼1
𝛼𝑖 
𝛼𝑘

𝑖𝑓 𝑌u ≤ 𝑏1𝑘
𝑖𝑓 𝑏𝑖 ‒ 1𝑘 ≤ 𝑌u ≤ 𝑏𝑖𝑘
𝑖𝑓 𝑌u ≥ 𝑏𝑘 ‒ 1𝑘

(9)
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306 [Table 2]

307 The results of the numerical analyses are illustrated in Table 2 for different settings. For the all cases, 

308 the power and size of the test showed that the statistic performed reasonably well. The power of 

309 the test goes up when the level of spatial autocorrelation increases. The power was slightly higher 

310 for the continuous variables compared to the categorical variables. The size was also slightly higher 

311 for the continuous variables with smaller neighbourhood sizes, indicating a slightly greater risk for 

312 false positive compared to the categorical variables. The results showed that increasing the number 

313 of categories in the categorical variables has less effect on the power and size of the statistic. Not 

314 surprisingly, there is a loss in the power of the statistic when the neighbourhood size is increased 

315 because as the distance is increased, the level of spatial association in decreased. The reason is that 

316 as the distance is increased, the level of spatial association is decreased (i.e., increasing the variance 

317 in the variogram model). 

318  

319 5. Application of ELSA to assess local spatial association

320 In this section, we illustrate the use of ELSA by means of several examples using real and synthetic 

321 datasets, covering both continuous and categorical variables.

322 5.1. Experiment with categorical data with the same level of dissimilarity between classes

323 A land cover map in a raster layer including 2769 grid cells of 1 x 1 km from southern Spain was used 

324 for this experiment (Fig. 6-a). The map consists of 6 land cover classes. It is assumed that the level of 

325 dissimilarity between pairs of classes is equal. In this experiment, the ELSA was calculated at each 

326 cell within a local distance of 5 km (Fig. 6-b). As it was expected, the ELSA statistic becomes 0 for 

327 homogenous areas with only one class (mostly at the western part of the area), and when the area 
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328 becomes more heterogeneous, the ELSA value becomes higher as it is obvious at the center and 

329 eastern parts of the area. 

330  [Fig. 6]

331 The three specified locations in Fig. 6 (i.e., A, B, and C) and the ELSA values at these locations show 

332 how this statistic changes when the landscape changes. By looking at these locations on the land 

333 cover map, it can be recognized that the level of heterogeneity changes from low to high from 

334 location A to location C.

335

336

337 5.2. Experiment with categorical data with non-equal level of dissimilarity between classes

338 There are numerous situations where the level of dissimilarity between pairs of classes in a 

339 categorical variable is not equal. To show how to deal with these situations, we illustrate two 

340 experiments using both synthetic and real data. 

341 -Synthetic data: We generated a synthetic categorical raster consisting of 1024 grid cells (32 rows × 

342 32 columns) and four classes (i.e., A1, A2, B1, and B2). The first and second two classes belong to the 

343 main categories of A and B, respectively. So, A1 is more similar to A2 than to B1 or B2. The level of 

344 dissimilarity between different pairs from the same main category (i.e., A1-A2 or B1-B2) is set to 1, 

345 and from different main categories (e.g., A1-B1, A1-B2, etc.) is set to 2 (Fig. 7).

346

347 [Fig. 7]

348
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349 The region is divided into four zones with different combinations of categories. This shows how ELSA 

350 changes under these controlled situations. Zone 1 includes only one class (i.e., A1), Zone 2 includes a 

351 random distribution of A1 and A2 (i.e., from the same primary category), Zone 3 includes a random 

352 distribution of A1 and B1 (i.e., from two different primary categories), and Zone 4 includes random 

353 distribution of all four categories.

354 The maximum level of dissimilarity ( ) for this experiment is 2. We calculated ELSA at each max {𝑑}

355 grid cell using a 3 × 3 window as the local neighbourhood (including diagonal neighbours, i.e., 

356 queen’s case). We also calculated the mean ELSA for each zone to provide a base for comparison 

357 (Fig.8). The results show that the mean ELSA over the two extreme zones are the minimum (Zone 1) 

358 and maximum (Zone 4), respectively. The other two zones both follow the same structure (a random 

359 distribution of the two classes, but with a different attribute distances). Since Zone 2 consists of two 

360 more similar classes than Zone 3, it is expected that the ELSA statistic for the Zone 2 should be lower 

361 than Zone 3.  This is backed up by the empirical results (Fig. 8-b and Fig. 8-c).

362

363 [Fig. 8]

364

365 - Real data: We used the CORINE [Coordination of Information on the Environment of the European 

366 Environmental Agency (EEA 2007)] 2006 land cover map from central Spain including 392336 grid 

367 cells of 250 x 250 m. The land cover classes in the map were described using a hierarchical scheme 

368 with three levels. The first level indicates the primary land cover class (e.g., agricultural area), which 

369 are subdivided to more specific types of land cover classes at the second and third levels (e.g., 

370 permanent crops and vineyards at the second and third levels, respectively). A three-digit code is 

371 used for each land cover, specifying the class at the three levels from left to right (e.g., 221 and 223 
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372 are ‘vineyards’ and ‘olive groves’ respectively, i.e., class 1 and 3 specified at the third level, 

373 respectively, but both belong to the same classes of ‘agricultural areas’ [class 2] at level 1, and 

374 ‘Permanent crops’ [class 2] at level 2). A list of the classes at the three levels for the codes is 

375 provided in Table A1 in Appendix A.

376  [Fig. 9]

377 The categories were ordered hierarchically at the three levels based on the three-digit codes. The 

378 attribute distance (level of dissimilarity) between each pair of categories was calculated based on 

379 their position on the hierarchical scheme. The maximum level of dissimilarity is 3 (e.g., between class 

380 132 and 211). The dissimilarity between pairs of classes is illustrated in Fig. A1 (the table) & A2 (the 

381 hierarchical view) in Appendix A.

382 We calculated ELSA at each grid cell within a local distance of 5 km (Fig. 10). A visual interpretation 

383 of the three specified locations on the land cover map (Fig. 9) show that the local association among 

384 the three locations is expected to be minimum and maximum at the locations B and C, respectively. 

385 The values of the ELSA map at these locations are consistent with the visual interpretation.

386

387 [Fig. 10]

388

389 5.3. Experiment with continuous data

390 We simulated two synthetic continuous rasters with two levels of no and positive spatial 

391 autocorrelation. We used unconditional simulation (see Section 4.1) to construct regular grids of 30

392  cells for each variable (Fig. 11 & 12). For each raster, we calculated a Moran scatterplot × 30

393 (Anselin 1993), along with global Moran’s  (Moran 1948) to quantify the global spatial 𝐼
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394 autocorrelation and summarize the overall pattern of spatial structure. We calculated ELSA at each 

395 cell given a queen contiguity neighbourhood. For comparison, we also quantified other commonly 

396 used local indicators of spatial association; , local Moran’s  and local Geary’s . These statistics 𝐺 ∗
𝑖 𝐼 𝑐

397 were compared pairwised to explore to what extent these measures are related. A Spearman 

398 statistic was used to test and estimate a rank-based measure of association test between each pair 

399 of statistics. 

400 [Fig. 11]

401

402 [Fig. 12]

403

404 The results from the comparison between different local statistics (Fig. 11 & 12) indicate that when 

405 the global spatial autocorrelation is positive, ELSA is only related significantly to local Geary’s c ( = 

406 0.675) while the other local indicators are not related either to ELSA or to each other according to 

407 the pairwise comparison. When there is no global spatial autocorrelation, ELSA is related 

408 significantly to both local Geary’s c and local Moran’s I. The former is a positive ( = 0.807), and the 

409 later is a negative relationship ( = -0.563). Local Geary’s c is also negatively related to local Moran’s 

410 I ( = -0.509). The results showed that the Local G* statistic is not related to any of the other 

411 statistics including ELSA. It has been argued that local statistics are sensitive to the existence of 

412 global spatial autocorrelation in the dataset (Ord and Getis 2001), that might be the reason to have 

413 varying behaviours between the different cases with the positive and no global spatial 

414 autocorrelation. For example, we expect a negative relationship between local Moran’s I and local 

415 Geary’s c, that is shown in the results only when there is no global spatial autocorrelation. The 

416 relationship between ELSA and local Geary’s c is also stronger when there is no autocorrelation 
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417 compared to the case with positive autocorrelation. The maps of P-values based on both ELSA and 

418 local Moran’s I showed that ELSA performed better by resulting in lower P-values for most of the 

419 grid cells compared to the local Moran’s I results, for the case with the positive spatial 

420 autocorrelation, that might be because of the sensitivity of the local Moran’s I to global spatial 

421 autocorrelation.

422

423 6. Application of ELSA to assess global spatial structure

424 In this section we explore if global spatial structure can be assessed by employing ELSA into a 

425 procedure of generating a sample variogram-like diagram, called ‘entrogram’. The idea is that by 

426 assessing ELSA with increasing local distances (lags) and putting the averaged values against these 

427 distances in a diagram, we can explore spatial structure. The sample variogram is a well-known 

428 approach for exploring spatial structure in continuous variables or binary categorical variables (i.e. 

429 indicator variogram; Journel 1983). The semantic sample variogram has been developed for 

430 multinomial categorical variables (Ahlqvist and Shortridge 2006). If ELSA can be used for this 

431 purpose, then the spatial structure for both continuous and categorical variables can be explored 

432 with the same technique. The entrogram for lag distance  is calculated as the mean of the ELSA ℎ

433 statistics at different sites within the distance equal to the lag size. The entrogram is calculated as 

434 follows:

435 E(ℎ) =

nℎ

∑
i = 1

Ei(ℎ)

nℎ
                (7)
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436 where  is the value of the entrogram for distance class ,   is the ELSA statistic at site  E(ℎ) ℎ Ei(ℎ) i

437 within local distance ,  is the total number of sites within the distance  for which the ELSA ℎ nℎ ℎ

438 statistic is calculated.

439 In the following experiments we explored the behaviour of the entrogram for both continuous and 

440 categorical data. 

441

442 6.1. Entrogram for categorical data

443 We generated five synthetic categorical maps, on a 20 x 20 raster grid, to explore the capability of 

444 the entrogram for calculating the spatial structure of categorical maps. The first three maps were 

445 binary, one with randomly distributed classes, and the other two with spatially structured classes. 

446 These binary maps provide the opportunity to compare the entrogram with the existing method of 

447 exploring the spatial structure for a binary categorical variable (i.e. an indicator variogram). The two 

448 spatially structured binary maps were constructed using an unconditional simulation with spherical 

449 variogram models varying in their autocorrelation range. We used the range of 3 and 8 grid cells to 

450 construct the maps with relatively low and high spatial autocorrelation, respectively (Fig. 13).  

451 We quantified both the entrogram, using our developed R package (i.e. elsa), and the indicator 

452 variogram using the gstat package v. 1.1-3 (Pebesma 2004) in the R development environment (R 

453 Development Core Team 2017). For both, we used a lag size equal to one grid cell and the cutoff 

454 values (number of lags) equal to 12 grid cells. The graphs are then visually interpreted and compared 

455 (Fig. 12). The results showed that the entrograms indicate the same patterns as the indicator 

456 variograms, and therefore can be used to interpret global spatial structure in binary categorical 

457 maps.

458
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459 [Fig. 13]

460

461 The last two categorical maps were generated with four classes. We assumed that these four classes 

462 were equally dissimilar. The classes in the first map were spatially structured, giving a maximum 

463 degree of spatial clustering, while in the second map they were distributed randomly. This dataset 

464 allowed us to illustrate the capability of the entrogram for exploring the spatial structure of 

465 multinomial data. We quantified the entrogram with a lag distance equal to one grid cell and the 

466 cutoff value (number of lags) equal to 12 grid cells. The visual interpretation of the graphs (Fig. 14) 

467 for the spatially clustered map shows that the mean ELSA value is low within the lower distances and 

468 increases when the lag distance increases as would be expected. For the randomly distributed 

469 classes, on the other hand, this value remains at the maximum level, showing there is no spatial 

470 structure.

471 [Fig. 14]

472

473 6.2. Entrogram for continuous data

474 We generated five continuous raster maps with different ranges of spatial autocorrelation. We used 

475 unconditional simulation to construct regular grids of  cells for each variable. Two 200 × 200

476 variogram models, a Spherical and a Gaussian model, were used with varying values for the sill (𝐶 +

477 ), nugget ( ) and scale ( ) parameters for different maps. We assigned  different values 𝐶0 𝐶0 𝜙 𝜙

478 including  = 10 and  = 30 grid cells giving relative low and high values for the spatial 𝜙 𝜙

479 autocorrelation. A total sill, , was used for all the datasets, with  = 0 for two maps and 𝐶 + 𝐶0 = 10 𝐶0

480  = 3 and  = 5 for the other two maps. Additionally, a white-noise surface (  = 0) was simulated, 𝐶0 𝐶0 𝜙

481 giving a total of five maps with different levels of spatial autocorrelation. We then quantified and 
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482 visualized the empirical variogram and entrogram for each surface (Fig. 15). The visual comparisons 

483 of the graphs showed that the entrogram describes a global spatial structure similar to the empirical 

484 variogram.

485

486 [Fig. 15]

487

488 7. Discussion

489 ELSA allows for exploring and testing the local spatial association for both categorical and 

490 continuous variables. This provides the opportunity of using one statistic for a study where both 

491 types of variables are used, e.g., in species distribution modelling (Naimi and Araújo 2016; Naimi et 

492 al. 2014; Naimi et al. 2011), environmental epidemiology (Araujo Navas et al. 2016; Hamm et al. 

493 2015b), and for predicting soil properties (Hengl et al. 2015). The ELSA statistic measures the local 

494 spatial associations within the same range (between 0 and 1) for both types of data, making the 

495 outputs comparable.

496 We developed a nonparametric bootstrap test based on the ELSA statistic that is useful to test the 

497 hypothesis of independence among spatially distributed quantitative (continuous) and qualitative 

498 (categorical) data. Our extensive experiments to demonstrate the size and power of the statistic 

499 under a range of conditions suggest the usefulness of the statistic for measuring the local spatial 

500 association. In addition, we compared the results of our ELSA test based on a Monte Carlo 

501 simulation with the well-known Moran’s I test. The ELSA test behaved consistent when the global 

502 spatial autocorrelation was either positive or zero. The other LISAs showed inconsistent behaviour, 

503 i.e., local Moran’s I and local Geary’s c only showed the expected negative relationship when the 
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504 global autocorrelation was zero. The same holds with the p-values generated by the local Moran’s I 

505 (Fig. 11 & 12). It has been argued that testing the hypothesis of spatial dependence based on LISAs 

506 will give incorrect significance levels in the presence of global spatial association (Anselin 1995). This 

507 explains why the tests based on local Moran’s I statistic did not generate the expected p-values 

508 when the global spatial autocorrelation was positive. In contrast, our results showed that the ELSA 

509 statistic was not sensitive to the presence of the global spatial association that can be considered as 

510 an advantage of ELSA over the LISA statistics.

511 The ELSA calculation for categorical data supports different levels of dissimilarities. This allows 

512 evaluation of the dissimilarity between nominal categories in a graded fashion. Several authors in 

513 the field of landscape ecology have considered graded differences for measuring landscape 

514 patchiness (DeGraaf and Yamasaki 2002; Desrochers et al. 2003). Use of this approach allows 

515 transformation from a nominal to an ordered or numerical scale, and provides a foundation for 

516 handling attribute distances for categorical data. This is important when quantifying spatial structure 

517 for categorical data, since without this aspect all categories are considered equally dissimilar. This 

518 approach, however, relies on the subjective evaluation of the class similarity (Ahlqvist and 

519 Shortridge 2010), and requires additional data and a guiding theory. Multi-criteria decision making, 

520 the analytic hierarchy process, and conjoint analysis are well-known frameworks for evaluating class 

521 similarities in categorical maps (Ahlqvist and Shortridge 2010; Schwering 2008). Further studies are 

522 needed to characterize and compare these methods, but in this study, we introduced a more 

523 general and simple approach to handle class dissimilarities based on a hierarchical scheme of 

524 classes. Given additional knowledge about the meaning of class definitions, a more formal 

525 evaluation of the categorical dissimilarities can be used to calculate the ELSA statistic for categorical 

526 maps.

527 To measure spatial association, a majority of studies were devoted to the development of statistics 

528 for continuous data. In this study, we addressed three of these commonly used statistics and 
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529 explored how ELSA relates to them. Although all of these statistics have been used widely as 

530 measures of local spatial associations, they quantify different properties. Therefore, the appropriate 

531 technique for identification of the spatial association should correspond to the nature of the 

532 question concerning dependence/independence (Getis and Ord 1996). Our results confirmed these 

533 differences and revealed that ELSA is more related to local Geary’s c. Local Geary’s c (like in a 

534 variogram) is based on differences between pairs of observations. Analogous to variance, entropy is 

535 a measure of dissimilarity and diversity, and their equivalence has been explored and discussed in 

536 several studies (e.g. Ebrahimi et al. 1999; Lindley 1956).

537 Despite the early specific work in geographical analysis (Batty 1974), entropy has been mainly used 

538 in other fields, perhaps mostly in the fields of physics and information theory. The most relevant 

539 research (to spatial data) in these disciplines introduced several extensions of the entropy measure 

540 that apply to calculating the structural complexity or patterns of two-dimensional dynamical systems 

541 (Feldman and Crutchfield 2003; Robinson et al. 2011). In recent years, there were several efforts to 

542 develop some entropy-based methods for detecting (global) spatial association and patterns of 

543 complexity for univariate data (Matilla-García and Marín 2011; Matilla-García et al. 2012; Pham 

544 2010; Ruiz et al. 2010), or as a spatial weighted information measure of global and local spatial 

545 association (Karlström and Ceccato 2000), or to discover different forms of local multivariate 

546 relationships (Guo 2010). Similar to these methods, ELSA is also based on the entropy measure, but 

547 can be considered as a novel approach that offers some unique features, as described in the 

548 manuscript. 

549 Together with ELSA, this study introduced the entrogram, an approach for exploring the global 

550 spatial structure within the entire area (like a variogram). Such explorations are applied in many 

551 fields, such as landscape ecology, geography, and soil science. The entrogram uses the ELSA statistic, 

552 and therefore, has the advantage over variogram that can be used for different forms of categorical 

553 data (e.g., binary-, multinomial-, or hierarchical-classes) as well as continuous data. The indicator 
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554 variogram is a known technique to measure the spatial variability of classes in categorical variables. 

555 However, it has been argued that the binary treatment of categorical variables in this technique is an 

556 unnecessary oversimplification, and that it should be replaced by ordered measures based on 

557 semantic similarity evaluations (Ahlqvist and Shortridge 2010). Semantic variograms (Ahlqvist and 

558 Shortridge 2006) were developed based on this concern and provide the capability to consider 

559 semantic distance between categories in the calculation. We showed that the entrogram is capable 

560 of this as well.

561 We showed that the entrogram can be used as an exploratory tool to characterise global spatial 

562 structure. Variograms, however, can also be used for geostatistical modelling and prediction 

563 (kriging).  Although this study introduced the entrogram as an exploratory tool, future studies may 

564 focus on investigating the use of both ELSA and the entrogram for spatial modelling. Moreover, we 

565 believe that the ELSA statistic can be adapted for measuring local temporal autocorrelation, local 

566 spatio-temporal autocorrelation and multivariate spatial and spatio-temporal autocorrelation.  

567 These might be considered as the areas for future research.

568 Although raster datasets were used in this study to simplify the illustrations, ELSA can be quantified 

569 for other types of spatial data (i.e., spatial points and polygons). Our new R package, elsa, offers the 

570 functionalities to quantify ELSA, entrogram (as well as variogram and the other LISA statistics) for all 

571 the spatial data types. The software is developed using both the R and C programming languages to 

572 speed up the computations. All the functionalities in the package are followed by the help pages 

573 where their usage and the relevant details, including some examples, are provided.

574

575 8. Conclusion
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576 This paper focused on the development of an entropy-based statistic (ELSA) for the quantification of 

577 local spatial association. The ELSA statistic presented in this paper showed to be a robust and 

578 reliable method for identifying and testing the degree of spatial association. The method provides 

579 the advantage of using one statistic for both continuous and categorical data. This makes 

580 comparisons between spatial structures of both types of data possible. Another advantage of ELSA, 

581 compared to the LISA statistics, is that it is not sensitive to the presence of the global spatial 

582 autocorrelation. In addition, this statistic provides the ability to incorporate both spatial and 

583 attribute aspects of spatial association into the statistic for both continuous and categorical data. It 

584 can be tested for significance, as demonstrated by a power test in this article. By introducing the 

585 ‘entrogram’ we demonstrated that ELSA can also be used to measure global spatial structure of both 

586 continuous and categorical data.

587 References

588 Ahlqvist, O., & Shortridge, A. (2006). Characterizing Land Cover Structure with Semantic Variograms. 

589 In A. Riedl, W. Kainz, & G. Elmes (Eds.), Progress in Spatial Data Handling (pp. 401-415): Springer 

590 Berlin Heidelberg

591 Ahlqvist, O., & Shortridge, A. (2010). Spatial and semantic dimensions of landscape heterogeneity. 

592 Landscape Ecology, 25, 573-590

593 Anand, M., & Orloci, L. (1996). Complexity in plant communities: The notion and quantification. 

594 Journal of Theoretical Biology, 179, 179-186

595 Anselin, L. (1993). The Moran scatterplot as an ESDA tool to assess local instability in spatial 

596 association. Regional Research Institute, West Virginia University Morgantown, WV

597 Anselin, L. (1995). Local indicators of spatial association—LISA. Geographical Analysis, 27, 93-115

598 Araujo Navas, A.L., Hamm, N.A.S., Soares Magalhães, R.J., & Stein, A. (2016). Mapping Soil 

599 Transmitted Helminths and Schistosomiasis under Uncertainty: A Systematic Review and Critical 

600 Appraisal of Evidence. PLOS Neglected Tropical Diseases, 10, e0005208

601 Batty, M. (1974). Spatial Entropy. Geographical Analysis, 6, 1-31

602 Batty, M. (1976). Entropy in Spatial Aggregation. Geographical Analysis, 8, 1-21

603 Bivand, R. (2009). Applying Measures of Spatial Autocorrelation: Computation and Simulation. 

604 Geographical Analysis, 41, 375-384



28

605 Boots, B. (2003). Developing local measures of spatial association for categorical data. Journal of 

606 Geographical Systems, 5, 139-160

607 Boots, B. (2006). Local configuration measures for categorical spatial data: binary regular lattices. 

608 Journal of Geographical Systems, 8, 1-24

609 Boschetti, F. (2008). Mapping the complexity of ecological models. Ecological Complexity, 5, 37-47

610 Cliff, A.D., & Ord, J.K. (1981). Spatial processes: models and applications. London: Pion

611 Dacey, M.F. (1968). A review on measures of  contiguity for two and k-color maps. In B.J.L. Berry, & 

612 D.F. Marble (Eds.), Spatial analysis: a reader in statistical geography (pp. 479-495). New Jersey: 

613 Prentice-Hall Englewood Cliff

614 Dale, M.R. (2000). Spatial pattern analysis in plant ecology. Cambridge university press

615 Davison, A.C., & Hinkley, D.V. (1997). Bootstrap methods and their application. Cambridge university 

616 press

617 DeGraaf, R.M., & Yamasaki, M. (2002). Effects of edge contrast on redback salamander distribution 

618 in even-aged northern hardwoods. Forest Science, 48, 351-363

619 Desrochers, A., Hanski, I.K., & Selonen, V. (2003). Siberian flying squirrel responses to high-and low-

620 contrast forest edges. Landscape Ecology, 18, 543-552

621 Di Gregorio, A., & Jansen, L.J. (2009). Land cover classification system: LCCS: classification concepts 

622 and user manual. Rome: Food and Agriculture Organization of the United Nations

623 Dietrich, C.R., & Newsam, G.N. (1993). A fast and exact method for multidimensional gaussian 

624 stochastic simulations. Water Resources Research, 29, 2861-2869

625 Dungan, J. (1999). Conditional Simulation: An alternative to estimation for achieving mapping 

626 objectives. In A. Stein, F. Meer, & B. Gorte (Eds.), Spatial Statistics for Remote Sensing (pp. 135-152): 

627 Springer Netherlands

628 Ebrahimi, N., Maasoumi, E., & Soofi, E.S. (1999). Measuring informativeness of data by entropy and 

629 variance. Advances in Econometrics, Income Distribution and Scientific Methodology (pp. 61-77): 

630 Springer

631 Feldman, D.P., & Crutchfield, J.P. (2003). Structural information in two-dimensional patterns: 

632 Entropy convergence and excess entropy. Physical Review E, 67, 051104

633 Finley, A.O. (2011). Comparing spatially-varying coefficients models for analysis of ecological data 

634 with non-stationary and anisotropic residual dependence. Methods in Ecology and Evolution, 2, 143-

635 154

636 Gelfand, A.E., Kim, H.-J., Sirmans, C.F., & Banerjee, S. (2003). Spatial Modeling With Spatially Varying 

637 Coefficient Processes. Journal of the American Statistical Association, 98, 387-396



29

638 Getis, A., & Ord, J.K. (1992). The analysis of spatial association by use of distance statistics. 

639 Geographical Analysis, 24, 189-206

640 Getis, A., & Ord, J.K. (1996). Local spatial statistics: an overview. In P. Longley, & M. Batty (Eds.), 

641 Spatial analysis: Modelling in a GIS environment (pp. 261-277). New York: John Wiley

642 Goodchild, M.F. (1986). Spatial autocorrelation. Norwich: Geo Books

643 Griffith, D.A. (2010). The Moran coefficient for non-normal data. Journal of Statistical Planning and 

644 Inference, 140, 2980-2990

645 Guo, D. (2003). Coordinating computational and visual approaches for interactive feature selection 

646 and multivariate clustering. Information Visualization, 2, 232-246

647 Guo, D.S. (2010). Local entropy map: a nonparametric approach to detecting spatially varying 

648 multivariate relationships. International Journal of Geographical Information Science, 24, 1367-1389

649 Hamm, N.A.S., Atkinson, P.M., & Milton, E.J. (2012). A per-pixel, non-stationary mixed model for 

650 empirical line atmospheric correction in remote sensing. Remote sensing of environment, 124, 666-

651 678

652 Hamm, N.A.S., Finley, A.O., Schaap, M., & Stein, A. (2015a). A spatially varying coefficient model for 

653 mapping PM10 air quality at the European scale. Atmospheric Environment, 102, 393-405

654 Hamm, N.A.S., Soares Magalhães, R.J., & Clements, A.C.A. (2015b). Earth Observation, Spatial Data 

655 Quality, and Neglected Tropical Diseases. PLOS Neglected Tropical Diseases, 9, e0004164

656 Haskard, K.A., & Lark, R.M. (2009). Modelling non-stationary variance of soil properties by tempering 

657 an empirical spectrum. Geoderma, 153, 18-28

658 Heikkila, E.J., & Hu, L. (2006). Adjusting spatial-entropy measures for scale and resolution effects. 

659 Environment and Planning B: Planning and Design, 33, 845-861

660 Hengl, T., Heuvelink, G.B.M., Kempen, B., Leenaars, J.G.B., Walsh, M.G., Shepherd, K.D., Sila, A., 

661 MacMillan, R.A., Mendes de Jesus, J., Tamene, L., & Tondoh, J.E. (2015). Mapping Soil Properties of 

662 Africa at 250 m Resolution: Random Forests Significantly Improve Current Predictions. PloS one, 10, 

663 e0125814

664 Iyer, P.K. (1949). The first and second moments of some probability distributions arising from points 

665 on a lattice and their application. Biometrika, 135-141

666 James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning. 

667 Springer

668 Journel, A.G. (1983). Nonparametric estimation of spatial distributions. Journal of the International 

669 Association for Mathematical Geology, 15, 445-468

670 Journel, A.G., & Deutsch, C.V. (1993). ENTROPY AND SPATIAL DISORDER. Mathematical Geology, 25, 

671 329-355



30

672 Karlström, A., & Ceccato, V. (2000). A new information theoretical measure of global and local 

673 spatial association

674 Lark, R.M. (2009). Kriging a soil variable with a simple nonstationary variance model. Journal of 

675 Agricultural, Biological, and Environmental Statistics, 14, 301-321

676 Lindley, D.V. (1956). On a Measure of the Information Provided by an Experiment. The Annals of 

677 Mathematical Statistics, 27, 986-1005

678 Lloyd, C.D. (2007). Local models for spatial analysis. CRC/Taylor & Francis London

679 López-Ruiz, R., Mancini, H.L., & Calbet, X. (1995). A statistical measure of complexity. Physics Letters 

680 A, 209, 321-326

681 Matilla-García, M., & Marín, M.R. (2011). Spatial Symbolic Entropy: A Tool for Detecting the Order of 

682 Contiguity. Geographical Analysis, 43, 228-239

683 Matilla-García, M., Ruiz, J.R., & Marín, M.R. (2012). Detecting the order of spatial dependence via 

684 symbolic analysis. International Journal of Geographical Information Science, 26, 1015-1029

685 Moran, P.A.P. (1948). The interpretation of statistical maps. Journal of the Royal Statistical Society. 

686 Series B (Methodological), 10, 243-251

687 Morrison, D.G. (1972). Regressions with Discrete Dependent Variables: The Effect on R2. Journal of 

688 Marketing Research, 9, 338-340

689 Naimi, B., & Araújo, M.B. (2016). sdm: a reproducible and extensible R platform for species 

690 distribution modelling. Ecography, 39, 368-375

691 Naimi, B., Hamm, N.A.S., Groen, T.A., Skidmore, A.K., & Toxopeus, A.G. (2014). Where is positional 

692 uncertainty a problem for species distribution modelling? Ecography, 37, 191-203

693 Naimi, B., Skidmore, A.K., Groen, T.A., & Hamm, N.A.S. (2011). Spatial autocorrelation in predictors 

694 reduces the impact of positional uncertainty in occurrence data on species distribution modelling. 

695 Journal of Biogeography, 38, 1497-1509

696 Ord, J.K., & Getis, A. (1995). LOCAL SPATIAL AUTOCORRELATION STATISTICS - DISTRIBUTIONAL 

697 ISSUES AND AN APPLICATION. Geographical Analysis, 27, 286-306

698 Ord, J.K., & Getis, A. (2001). Testing for local spatial autocorrelation in the presence of global 

699 autocorrelation. Journal of Regional Science, 41, 411-432

700 Paciorek, C.J., & Schervish, M.J. (2006). Spatial modelling using a new class of nonstationary 

701 covariance functions. Environmetrics, 17, 483-506

702 Pebesma, E.J. (2004). Multivariable geostatistics in S: the gstat package. Computers & Geosciences, 

703 30, 683-691

704 Pham, T.D. (2010). GeoEntropy: A measure of complexity and similarity. Pattern Recognition, 43, 

705 887-896



31

706 Quester, P., & Dion, E. (1997). Scaling Numerical Variables and Information Loss: An Appraisal of 

707 Morrison's Work. MARKETING BULLETIN-DEPARTMENT OF MARKETING MASSEY UNIVERSITY, 8, 59-

708 65

709 R Development Core Team (2017). R: A language and environment for statistical computing. Vienna, 

710 Austria

711 Ricotta, C., & Anand, M. (2006). Spatial complexity of ecological communities: Bridging the gap 

712 between probabilistic and non-probabilistic uncertainty measures. Ecological Modelling, 197, 59-66

713 Robinson, M.D., Feldman, D.P., & McKay, S.R. (2011). Local entropy and structure in a two-

714 dimensional frustrated system. Chaos: An Interdisciplinary Journal of Nonlinear Science, 21, 037114-

715 037114-037111

716 Romme, W.H. (1982). Fire and Landscape Diversity in Subalpine Forests of Yellowstone National 

717 Park. Ecological Monographs, 52, 199-221

718 Ruiz, M., López, F., & Páez, A. (2010). Testing for spatial association of qualitative data using 

719 symbolic dynamics. Journal of Geographical Systems, 12, 281-309

720 Schlather, M. (2009). RandomFields: Simulation and analysis of random fields. In  (p. R package  

721 version 1.3.41)

722 Schwering, A. (2008). Approaches to Semantic Similarity Measurement for Geo‐Spatial Data: A 

723 Survey. Transactions in GIS, 12, 5-29

724 Shannon, C.E., & Weaver, W. (1949). The Mathematical Theory of Information. Urbana, IL:
725  University of Illinois Press

726 Sokal, R.R., & Oden, N.L. (1978). Spatial autocorrelation in biology: 1. Methodology. Biological 

727 Journal of the Linnean Society, 10, 199-228

728 Uuemaa, E., Roosaare, J., Kanal, A., & Mander, Ü. (2008). Spatial correlograms of soil cover as an 

729 indicator of landscape heterogeneity. Ecological Indicators, 8, 783-794

730 Yeung, R.W. (2008). Information theory and network coding. Springer

731

732



32

733 Tables

734 Table 1 the level of dissimilarity between pairs of categories in an exemplified land use map with 

735 four (sub)categories: ‘mixed forest’ ( ), ‘Coniferous forest’ ( ), ‘olive groves’ ( ), ‘vineyards’ ( ); 𝛼1 𝛼2 𝛼3 𝛼4

736 the first two belong to the main category of ‘Forests’ and the last two are related to ‘Agricultural 

737 areas’

738

739

740

741

Categories 𝜶𝟏 𝜶𝟐 𝜶𝟑 𝜶𝟒
𝜶𝟏 0 1 2 2
𝜶𝟐 0 2 2

𝜶𝟑 0 1

𝜶𝟒 0
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742 Table 2 Size and power of the ELSA test for continuous, and categorical variables with different 

743 degrees of spatial autocorrelation, ranging from no autocorrelation ( ) to high autocorrelation (𝛾 = 0

744 ); K specifies the number of categories in the categorical variables, and  specifies the 𝛾 = 1 𝑁𝑒

745 neighbourhood size for measuring the ELSA statistic 

746

747

748

749

750

751

752

753

754

755

756

757

758

 𝑵𝒆 𝜸 = 𝟎 𝜸 = 𝟎.𝟐𝟓 𝜸 = 𝟎.𝟓 𝜸 = 𝟎.𝟕𝟓 𝜸 = 𝟏

1.5 0.045 0.487 0.882 0.894 0.990

3 0.048 0.408 0.807 0.916 0.983

5 0.039 0.398 0.792 0.891 0.977

10 0.031 0.294 0.734 0.825 0.897Co
nt

in
uo

us

15 0.012 0.207 0.572 0.650 0.789

1.5 0.028 0.406 0.787 0.801 0.941

3 0.017 0.423 0.697 0.787 0.866

5 0.012 0.412 0.701 0.756 0.840

10 0.010 0.391 0.639 0.707 0.718

K=
2

15 0.002 0.322 0.596 0.650 0.659

1.5 0.046 0.565 0.705 0.846 0.944

3 0.005 0.511 0.717 0.827 0.903

5 0.003 0.495 0.713 0.812 0.892

10 0.002 0.425 0.601 0.729 0.856

K=
3

15 0.000 0.330 0.593 0.698 0.765

1.5 0.013 0.515 0.741 0.885 0.927

3 0.011 0.498 0.705 0.822 0.955

5 0.009 0.413 0.702 0.804 0.926

10 0.000 0.354 0.619 0.781 0.876

K=
4

15 0.000 0.283 0.532 0.773 0.792
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759 Appendix A

760 Table A1 the CORINE land cover class definitions

CORINE Code Level 1 Level 2 Level 3
111 Artificial surfaces Urban fabric Continuous urban fabric
112 Artificial surfaces Urban fabric Discontinuous urban fabric

121 Artificial surfaces Industrial, commercial and transport Industrial or commercial

122 Artificial surfaces Industrial, commercial and transport Road and rail networks

124 Artificial surfaces Industrial, commercial and transport Airports

131 Artificial surfaces Mine, dump and construction sites Mineral extraction sites

132 Artificial surfaces Mine, dump and construction sites Dump sites

133 Artificial surfaces Mine, dump and construction sites Construction sites

141 Artificial surfaces Artificial, non-agricultural vegetated Green urban areas

142 Artificial surfaces Artificial, non-agricultural vegetated Sport and leisure facilities

211 Agricultural areas Arable land Non-irrigated arable land

212 Agricultural areas Arable land Permanently irrigated land

221 Agricultural areas Permanent crops Vineyards

222 Agricultural areas Permanent crops Fruit trees and berry plantations

223 Agricultural areas Permanent crops Olive groves

231 Agricultural areas Pastures Pastures

241 Agricultural areas Heterogeneous agricultural areas Annual crops/permanent crops

242 Agricultural areas Heterogeneous agricultural areas Complex cultivation patterns

243 Agricultural areas Heterogeneous agricultural areas Land occupied by agriculture

244 Agricultural areas Heterogeneous agricultural areas Agro-forestry areas

311 Forest and semi natural Forests Broad-leaved forest

312 Forest and semi natural Forests Coniferous forest

313 Forest and semi natural Forests Mixed forest

321 Forest and semi natural Scrub and/or herbaceous vegetation Natural grasslands

323 Forest and semi natural Scrub and/or herbaceous vegetation Sclerophyllous vegetation

324 Forest and semi natural Scrub and/or herbaceous vegetation Transitional woodland-shrub

331 Forest and semi natural Open spaces with little/no vegetation Beaches, dunes, sands

332 Forest and semi natural Open spaces with little/no vegetation Bare rocks

333 Forest and semi natural Open spaces with little/no vegetation Sparsely vegetated areas

334 Forest and semi natural Open spaces with little/no vegetation Burnt areas

411 Wetlands Inland wetlands Inland marshes

511 Water bodies Inland waters Water courses

512 Water bodies Inland waters Water bodies

761
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763

764

765

766

767

768

769 Fig. A1. Hierarchical scheme of different classes in the CORINE land cover map (Fig. 7 in the main 

770 text)
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774

 111 112 121 122 124 131 132 133 141 142 211 212 221 222 223 231 241 242 243 244 311 312 313 321 323 324 331 332 333 334 411 511 512

111 0 1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
112  0 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

121   0 1 1 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

122    0 1 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

124     0 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

131      0 1 1 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

132       0 1 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

133        0 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

141         0 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

142          0 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

211           0 1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3

212            0 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3

221             0 1 1 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3

222              0 1 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3

223               0 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3

231                0 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3

241                 0 1 1 1 3 3 3 3 3 3 3 3 3 3 3 3 3

242                  0 1 1 3 3 3 3 3 3 3 3 3 3 3 3 3

243                   0 1 3 3 3 3 3 3 3 3 3 3 3 3 3

244                    0 3 3 3 3 3 3 3 3 3 3 3 3 3

311                     0 1 1 2 2 2 2 2 2 2 3 3 3

312                      0 1 2 2 2 2 2 2 2 3 3 3

313                       0 2 2 2 2 2 2 2 3 3 3

321                        0 1 1 2 2 2 2 3 3 3

323                         0 1 2 2 2 2 3 3 3

324                          0 2 2 2 2 3 3 3

331                           0 1 1 1 3 3 3

332                            0 1 1 3 3 3

333                             0 1 3 3 3

334                              0 3 3 3

411                               0 3 3

511                                0 1

512                                 0

775 Fig. A2. The level of dissimilarity between pairs of classes in the CORINE land cover map
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1 Figure Captions

2 Figure 1. The behaviour of ELSA statistic (E) and its two terms at site i (the centre of the window):  

3  (first term in ELSA refers to attribute distance or dissimilarity between the site i and the its 𝐸𝑎𝑖

4 neighbour locations),  (second term in ELSA, refers to composition of categories within the local 𝐸𝑐𝑖

5 area); (a) is a map with one category, (b, and c) are binary maps, and (d, and e) are maps with three 

6 categories.

7 Figure 2. A hierarchical way of presenting the classes in an exemplified categorical map with 3 levels 

8 of categories; the numbers in the boxes indicate  (dissimilarity) of the relevant pairs of classesd

9 Figure 3. A flow diagram showing the procedure of finding the optimum number of categories for 

10 categorizing continuous spatial data; (a) an iterative categorization procedure taking different 

11 number of categories, starts from 2 categories and continues by considering one more category at 

12 each iteration until a convergence threshold (e.g., 0.005) is reached; (b) calculating the  correlation 𝜌

13 coefficient between the continuous values and each categorical variable; the convergence is defined 

14 as the difference between the  coefficients of the current and previous iterations; (c) taking the 𝜌

15 standard error of the  coefficients is calculated; (d) the optimum number of categories would be 𝜌

16 the lowest number for which the  coefficient is within one standard error of the highest  𝜌 𝜌

17 coefficient; (e) the graph representing the  coefficients over different iterations and the optimum 𝜌

18 number of categories (dashed red line); the grey colour represents the standard error of the  𝜌

19 coefficients

20 Figure 4. Four variogram models with different nugget effects ranging between 0 and 10, used to 

21 simulate the spatial surfaces with different degrees of spatial autocorrelation

22 Figure 5. One realization (out of 999) of the simulated continuous and categorical maps with various 

23 levels of spatial autocorrelation to calculate the power and size of the ELSA statistic;  is the ratio 



2

24 between the partial sill to the sill in the variogram model used to simulate the maps (Figure 4) that 

25 controls the level of spatial autocorrelation ranging from no autocorrelation (=0), and high 

26 autocorrelation (=1); K specifies the number of classes in the categorical maps.

27 Figure 6. ELSA for a land cover map in the south of Spain; (a) the land cover map including 

28 six classes with the same level of dissimilarity between different categories; three cells 

29 within their five km neighbourhoods are specified as A, B, C; (b) the ELSA statistic for the 

30 land cover map; the values of ELSA for the three cells are represented on top

31

32 Figure 7. Synthetic land cover map including four classes which distributions are controlled into four 

33 equal zones (a); levels of dissimilarity between pairs of classes in a hierarchical view (b)

34 Figure 8. The ELSA map (a) and the Mean ELSA statistic in four zones of the region (b); the 

35 region is divided into four zones including Z1 (upper-left), Z2 (upper-right), Z3 (lower-right) 

36 and Z4 (lower-left); the boxplot (c) represents the distribution of ELSA values at grid cells 

37 over different zones

38 Figure 9. CORINE Land cover map from the central Spain; a three-digit code is used to define each 

39 land cover class (a); three randomly selected points around which the circle specifies a 5 km of their 

40 neighbors (b)

41 Figure 10. ELSA map calculated based on the CORINE land cover map in Fig. 7 (a); the ELSA value at 

42 the three specified locations (b)

43 Figure 11. Comparing local indicators of spatial association for a continuous raster map with positive 

44 global spatial autocorrelation; the panel contains 12 map/graph/table including the simulated raster 

45 map, a Moran scatterplot showing the degree of global spatial autocorrelation, four maps of local 

46 Moran’s I, local Geary’s , local , and ELSA, 2 maps representing the p-values that indicate the c G ∗
i
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47 level of significance for local spatial association based on local Moran’s I, and ELSA, respectively, and 

48 3 graphs representing the relationship between ELSA on y axis and local Geary’s , local Moran’s , c I

49 and  statistics on x axis, and finally a table representing the pairwise spearman correlation G ∗
i

50 coefficients between different local indicators of spatial association; the symbol ‘***’ indicates that 

51 the correlation coefficient is significant at the level of 99.9%

52 Figure 12. Comparing local indicators of spatial association for a continuous raster maps with no 

53 global spatial autocorrelation; the different components of the figure are declared in Fig. 11.

54

55 Figure 13. Comparing variogram and entrogram for three simulated binary categorical maps with 

56 different levels of spatial autocorrelation (  = 0, 3, 8 from left to right); the second and third rows 𝜙

57 display the corresponding theoretical and empirical variograms, respectively, and the last row 

58 displays the entrograms

59

60 Figure 14. Two categorical maps including four classes (first row) and their corresponding 

61 entrograms (second row)

62 Figure 15. Comparing variogram and entrogram; the first row displays the 5 simulated continuous 

63 fields with different levels of spatial autocorrelation (  = 0, 10, 30, 10, and 10 from left to right), and 𝜙

64 varying parameterisation in the variogram model, nugget ( ) and partial sill ( ) (as specified in the 𝐶0 𝐶

65 figure); the second row displays the corresponding variograms and the third row displays the 

66 entrograms

67



4

68 Figures

69

70

71 Figure 1

72

73

74

(a)

: 0.000𝐸𝑎𝑖

: 0.000𝐸𝑐𝑖

: 0.000𝐸𝑖

(b)

: 1.000𝐸𝑎𝑖

: 0.503𝐸𝑐𝑖

: 0.503𝐸𝑖

(c)

: 0.125𝐸𝑎𝑖

: 0.503𝐸𝑐𝑖

: 0.063𝐸𝑖

(d)

: 1.000𝐸𝑎𝑖

: 0.878𝐸𝑐𝑖

: 0.878𝐸𝑖

(e)

: 1.000𝐸𝑎𝑖

: 0.772𝐸𝑐𝑖

: 0.772𝐸𝑖



5

75

76

77

78

79

80 Figure 2.

Le
ve

l 1
Le

ve
l 2

Le
ve

l 3

1 2 3



6

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101 Figure 3.

102

103

Categorizing

"
=

2
"

=
16

"
=

3
…

…

St
op

if
th

e
Co

nv
er

ge
nc

e
is

le
ss

th
an

th
e

th
re

sh
ol

d

( coefficient

) * overall (

One) * rule

(a)

(b)

(c)

(d)

(e)

Categorized variables



7

105

106

107

108

109

110

111

112

113

114 Figure 4.

115

116

117



8

Continuous Categorical (K=2) Categorical (K=3) Categorical (K=4)
𝛾

=
0

𝛾
=

0.
25

𝛾
=

0.
5

𝛾
=

0.
75

𝛾
=

1

118 Figure 5.



9

119

120

121

122

123

124

125

126

127 Figure 6

128

129



10

130

131

132

133

134

135

136

137 Figure 7.

138

139

(b)

A1 A2 B1 B2

A B

21 1

Le
ve

l 1
Le

ve
l 2



11

140

141

142

143

144

145

146

147

148

149

150 Figure 8.

151

152

(a) (b) (c)



12

153

154

155

156

157

158

159

160

161

162

163 Figure 9.

164

165

166

(a) (b)



13

167

168

169

170

171

172

173

174

175

176 Figure 10.

177

178

A 
= 

0.
27

2
B 

= 
0.

04
2

C 
= 

0.
60

4

(a) (b)



14

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198 Figure 11

199

200
201



15

202

203

204

205

206

207

208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225 Figure 12.

226
227



16

228
229

230

231

232

233

234

235

236

237

238

239

240

241

242

243 Figure 13.

244

245



17

246

247

248

249

250

251

252

253

254

255

256

257 Figure 14.

258

259

No Spatial Autocorrelation Positive Spatial Autocorrelation

Ca
te

go
ric

al
Ra

st
er

s
En

tro
gr

am



18

260

261

262

263

264

265

266

267

268

269

270

271

272

273 Figure 15.

274

275

276

277

No Spatial
Autocorrelation

Model: Spherical
� = 10, � = 0, � = 10

Model: Spherical
� = 30, � = 0, � = 10

Model: Gaussian
� = 10, � = 3, � = 7

Model: Gaussian
� = 10, � = 5, � = 5

Co
nt

in
uo

us
Ra

st
er

s
Se

m
i-V

ar
io

gr
am

En
tro

gr
am


