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A B S T R A C T

This thesis contributes to the understanding of the ‘Description - Experience
(DE) gap’, which posits that risky decisions depend on the way information
about uncertainty is communicated: from description or from experience. The
canonical interpretation of findings in this literature suggests that when peo-
ple make decisions from description, they behave as if overweighting rare
events relative to their probability, whereas, when they make decisions from
experiential formats, they behave as if underweighting them.

Chapter 1 provides an overview of the main topics and research method-
ologies presented in Chapters 2, 3 and 4.

Chapter 2 reports the results of an experimental study that provides a co-
hesive account of the forces behind the DE gap. Our experimental protocol al-
lows us to quantify the effect of each factor in isolation. Moreover, to address
methodological concerns in this literature, we employ an elicitation method
which allows us to measure these effects both with and without the mediation
of a behavioural model that accounts for probability weighting. We find an
overall significant DE gap which is equal in size with the literature’s average.
Despite being mostly driven by an informational asymmetry (sampling bias),
other factors pertaining to preferential (ambiguity) and cognitive (likelihood
representation and memory) aspects of decision making proved important.
Examining the shape and relative position of probability weighting curves we
discuss intriguing behavioural implications of our findings.

Chapter 3 focuses on how people search for information in decisions from
experience and examines how different search patterns influence ensuing
risky choices. In a lab-experiment we find that people search more from op-
tions with rarer events. We also find that sampling amount decreases over
time periods. Both of these findings become less salient however after the in-
troduction of a history table which records and displays previously sampled
outcomes during the lottery evaluation. The cue that dominates the treatment
where such a table was present, is the table’s maximum capacity. With respect
to choices, we elicit and compare probability weighting functions from treat-
ments where decisions were made from experience with a treatment where
decisions were made from description. Our treatment comparison reveals evi-
dence for a variant of the canonical interpretation of the gap. We refer to it as
the ‘relative underweighting hypothesis’, which states that rare events in in-
dividual risky decisions are overweighted in Experience too, but less so than
in Description.



Chapter 4 explores the DE gap in a social context, where we investigate
whether the format in which social information is obtained -descriptive or
experiential- influences cooperation in social dilemmas and if so, how. We de-
velop and implement in an online experiment, a variation of the prisoner’s
dilemma game that allows us to observe cooperative responses over a range
of likelihoods of cooperation. The likelihoods are communicated either in de-
scriptive or experiential formats. We find that conditional cooperation - the
willingness to cooperate if others do the same - is prevalent in our study as
cooperation rates increase with the probability of cooperation across treat-
ments. Nonetheless, there are significant differences in the cooperation pat-
terns between Description and Experience. Interestingly, we find evidence
that this gap in social decision making, is in the opposite direction from what
the canonical interpretation in the individual context would have predicted.
Rare events (of cooperation or defection) appear to be more overweighted in
Experience rather than in Description. Another asymmetry with the individ-
ual domain is that sampling bias, the predominant driver of the DE gap in
risky choices, does not affect the gap in the social domain. We conclude that
this reversal is due to people being less sensitive towards social information,
when they receive this information experientially compared to receiving it de-
scriptively. Lastly, we discuss why such reversals are less likely to occur in
individual decision settings.

Chapter 5 provides a summary of the previous chapters’ results, identifies
their limitations and discusses potentially interesting directions for future re-
search.
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1
G E N E R A L I N T R O D U C T I O N

“Hofstadter’s Law: It always takes longer than you expect,
even when you take into account Hofstadter’s Law.”

— Douglas Hofstadter, Gödel, Escher, Bach: An Eternal Golden Braid (1979)

Uncertainty pervades our world and taming it has been an integral goal
of societies throughout the millennia. The task has not been an easy one. For
the most part of human history, people would address the question of what
tomorrow might bring to oracles and priests rather than to philosophers and
scientists. The fact that a formal treatise of the theory of probability appeared
only as late as in the 17th century (see Ore, 1960, for a private correspondence
between Blaise Pascal and Pierre de Fermat) is perhaps indicative on how
counter-intuitive the notion of stochasticity was at the time.

Today, social scientists have at their disposal a wide variety of theoretical
tools to study and predict people’s risky behaviour. Models such as Expected
Utility (EU) theory (Bernoulli, 1954; Savage, 1972; Von Neumann and Morgen-
stern, 2007) and Cumulative Prospect Theory (CPT; Tversky and Kahneman,
1992) are readily available to help practitioners design health care plans, fi-
nancial products and insurance policies that are customized to idiosyncratic
risk preferences. Notwithstanding, there are still important challenges to over-
come. Empirical findings, from the lab and from the field, arise every so often
and challenge different aspects of the established theory, forcing the disci-
pline to advance its account of human behaviour. This thesis focuses on one
such case, namely, the ‘Description - Experience (DE) gap’ (Barron and Erev,
2003; Hertwig et al., 2004; Weber et al., 2004), which posits that people’s risky
choices are - at least partly - dependent on the way information about uncer-
tainty is communicated: from description or from experience.

Over the past years, this discrepancy has been established in experimen-
tal studies where participants are assigned to one of two conditions. In the
Description condition, they make choices between gambles whose properties
(outcomes and outcome-probabilities) are explicitly and completely described
in numerical form. Conversely, in the Experience condition, this information is
inferred through a sequential sampling process. The key finding relates to the
role of rare (low probability) events. According to the canonical interpretation
of this finding, people in Description tend to make decisions as if overweight-
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ing such events, relative to their probability, whereas in Experience they tend
to make decisions consistent with underweighting them (Hertwig et al., 2004).

The following chapters present a series of lab and online experiments that
address open questions in the DE gap literature. Investigating this phenomenon
offers potential benefits that transcend experimental methodological concerns.
Throughout the following chapters, we mention instances where the gap could
be relevant for phenomena such as insurance policies and tax-compliance.

From a methodological perspective, a key feature of the analysis through-
out the next chapters is the ability to estimate a function that monitors sub-
jective reactions to underlying probabilities. This approach is motivated by
the recognition that the gap is at its core a phenomenon emerging from dif-
ferential responses towards probabilistic events. Most of the key results in
this thesis therefore, stem from the comparison of these functions across treat-
ments. These treatments vary with respect to how this probability was com-
municated: through descriptive or experiential formats.

In Chapters 2 and 3, the construction of these functions has benefited con-
siderably from theoretical and empirical work on the ‘source method’ (Abdel-
laoui et al., 2011a,b; Tversky and Fox, 1995). This method can be used to map
different sources of uncertainty onto distinct probability weighting functions.
Defining these sources at the treatment level (i.e. on variations of Description
and Experience conditions) and comparing them across treatments, we can
analyse our results through the lens of (potentially) differential attitudes to-
wards rare events. In Chapter 4, where the gap is discussed in a context of
social uncertainty, this function maps probabilities of cooperative outcomes
to average cooperation response functions. The elicitation of these functions
is based on the methods presented in Fischbacher et al. (2001).

The following paragraphs summarize the highlights of this analysis. Al-
though the DE gap is a conceptual common denominator, each chapter can
be read independently.

In Chapter 2, our goal is to understand the underpinnings of the DE gap.
To this end, our aim is to provide a cohesive account of the forces that drive
these two domains of decision making (Description and Experience) apart.
We propose a taxonomy of the contributing factors of the gap and implement
a lab-experiment that quantifies the contribution of each factor in isolation.

Moreover, to address methodological concerns in the literature, we use two
distinct methods for measuring these forces. First, we study the gap by com-
paring choice-proportions across treatments. This approach allows us to draw
inferences independent of model assumptions. Moreover, it helps us con-
nect and compare our findings with previous studies in this literature which
used a similar approach. Second, assuming a rank dependent utility model



general introduction 3

(Quiggin, 1982), we compare decision-weighting functions across treatments.
This approach allows us to address an integral component of the gap (sub-
jective distortions of probability) while controlling for other aspects of risky
behaviour (such as utility curvature).

The choice-proportions analysis, reveals an overall significant DE gap which
is compatible in direction and equal in size with the literature’s average.
This gap is mostly driven by an informational asymmetry (sampling bias).
Nonetheless, other factors pertaining to preferential (ambiguity) and cogni-
tive (likelihood representation and memory) aspects of decisions are also
important. These results are corroborated by our model-mediated approach.
Through examining the shape and relative position of probability weighting
curves we discuss two intriguing behavioural implications of our findings.

Chapter 3, focuses on an integral component of the DE gap which relates
to information search in Experience. As mentioned earlier, participants in the
Experience conditions collect information relevant to their decisions by se-
quentially drawing independent observations from a source of uncertainty. In
this chapter we explore the criteria that influence this search as well as how
different search patterns affect ensuing risky choices. We show that a lottery’s
variance is negatively correlated with the sampling amount. In our context,
this means that people sample more from options with rarer events. We also
find that sampling amount decreases over time periods. Both of these findings
become less salient however after the introduction of a history table which
records and displays previously sampled outcomes during the lottery evalua-
tion. The cue that dominates the treatment where such a table was present, is
the table’s maximum capacity.

Our analysis of risky choices captures a significant DE gap which is, how-
ever, mitigated by the presence of the history table. To the extent that the
display of previously sampled events has a similar ‘descriptive’ effect to the
numerical summaries of uncertainty in Description, this result should not
come as a surprise. We interpret this ‘bridging’ of the gap as evidence that
the DE gap should not be seen as a dichotomy between Description and Ex-
perience. Instead, we recommend that it is viewed as a continuum over dif-
ferent levels of uncertainty. Moreover, by examining the shape of probability
weighting functions across Description and Experience, we propose a variant
of the canonical interpretation. We refer to it as the ‘relative underweighting
hypothesis’, which states that rare events in individual risky decisions are
overweighted in Experience too, but less so than in Description.

In Chapter 4 we examine the DE gap in the social domain. Conditional co-
operation -the willingness to cooperate if others do the same- is a prominent
explanation for the existence of cooperation in social dilemmas (Fischbacher
and Gächter, 2010). In cases where there is uncertainty regarding others’ in-
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tentions, conditional cooperation necessitates the formation of expectations
about the likelihood of cooperation. Information about the likelihood that oth-
ers will cooperate can be obtained in different ways. In this chapter we inves-
tigate whether the format in which social information is obtained -descriptive
or experiential- influences cooperation in social dilemmas. To this end, we
develop an experimental protocol that allows systematic manipulation of the
likelihood of cooperation in a Prisoner’s Dilemma game.

In accord with past evidence in favour of conditional cooperation, we ver-
ify that a majority of subjects cooperate more if their partner is expected to
cooperate as well. Interestingly, we find evidence for a gap in social deci-
sion making, but in the opposite direction from what the canonical finding in
the individual context would have predicted. Rare events (of cooperation or
defection) appear to be more overweighted in Experience rather than in De-
scription. Another asymmetry with the individual domain is that sampling
bias, the predominant driver of the DE gap in risky choices, does not affect
the gap in the social domain.

Moreover, using a separate task to elicit cooperative types and provide some
robustness tests related to these findings findings. We verify that cooperative
behaviour maps intuitively into these types. Moreover, we confirm that the
gap in cooperation is driven by conditional cooperators. These are by defini-
tion the people who would care about social information. Similarly, we show
how conditional cooperators tend to collect significantly more social informa-
tion than free riders or unconditional cooperators.

To interpret this finding we develop indexes that analyse behaviour in two
domains. Cooperativeness captures an overall propensity to cooperate while
conditionality measures the tendency to conditionally cooperate. Through this
analysis we conclude that the reversal of the canonical DE gap is due to a
decrease in sensitivity towards social information in Experience. We propose
that a key reason why similar reversals do not happen more often in the
individual context is an asymmetry in the strength of priors (stronger in the
social context) and discuss how this hypothesis can be addressed in future
research.

Throughout the next three chapters, the reader will likely notice the rep-
etition of the terms: ‘probability’ and ‘risk’. These terms have undoubtedly
an important connection with the themes of this thesis. A search for their
etymological origin however, revealed yet another connection of these terms
with this work. The former term comes from the Latin word ‘probare’, which
means ‘to test’, while the latter, from the early Italian word ‘risicare’ which
means ‘to dare’. The most important lesson from developing this thesis, comes
from learning how to balance the two. ‘Daring’ to pursue new ideas and intu-
itions and finding reliable ways for ‘testing’ them.
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2
U N D E R S TA N D I N G T H E D E S C R I P T I O N - E X P E R I E N C E
G A P

*

“Although dichotomies promise to bring order to chaos,
they do so at the cost of being simplistic”

— Katharina Barbe. , The dilemma with dichotomies. (2001)

2.1 introduction

In early 2000, a catastrophic cyclone, “Cyclone Eline” hit the Mozambique
coast, causing devastating floods. The consequences of this event include the
death of eight hundred people, thousands without homes, two million af-
fected and the destruction of over 90% of the irrigation systems in Mozam-
bique. To reduce the vulnerability of farmers against future catastrophes, the
Ministry of Environmental Affairs (MICOA) and the Ministry of Public Work
and Housing (MOPH) spent an estimate of $13 million to build entire villages
in the hills overlooking the floodplain, for those living in areas that were most
prone to future flooding. The resettlement program however failed as merely
a few months after living in their new houses, farmers started to return to the
floodplain to farm and rebuilt their residence in their old villages (see Patt
and Schröter, 2008, for a more detailed account of these events).

At face value, this disparity could be attributed to differences in risk ap-
petites: farmers are more risk seeking than policy makers. However, accord-
ing to recent developments in the field of cognitive and experimental psy-
chology, the conflict might be arising from the way information regarding the
rare event of a flood is communicated. Farmers experience the likelihood of a
flood on a day-to-day basis. Throughout their entire lives, most farmers in the
area are likely to have never experienced a second catastrophic event, other
than the Cyclone Eline incident (this was in fact the worst flood in 50 years).
On the other hand, policy makers have access to and can process descriptive
information regarding the likelihood of a flood, such as probabilistic forecasts
provided by experts. In this case, factoring in the possibility that this flood

* This chapter is based on joint work with Robin Cubitt and Chris Starmer.
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was correlated with climate change, increased the probability that another
flood would occur soon.

According to the ‘Description - Experience (DE) gap’ (Barron and Erev,
2003; Hertwig et al., 2004; Weber et al., 2004), people’s risky choices are - at
least partly - dependent on the way information about uncertainty is commu-
nicated: from description or from experience. Over the past years, this em-
pirical discrepancy has been established in experimental laboratories. In these
studies, participants are typically divided in two conditions. In the Description
condition, they make choices between gambles whose properties (outcomes
and outcome-probabilities) are explicitly and completely described in numer-
ical form. Conversely, in the Experience condition, this information is inferred
through a sequential sampling process. The most common interpretation of
this disparity relates to the role of rare (low probability) events. People in De-
scription tend to make decisions as if overweighting such events, relative to
their probability, whereas in Experience they tend to make decisions consistent
with underweighting them (Hertwig et al., 2004).

Both tendencies are departures from expected utility (EU) theory, but in dif-
ferent directions. Overweighting rare events in Description is in line with the
tenets of Cumulative Prospect Theory (CPT; Tversky and Kahneman, 1992) -
arguably the most influential alternative of EU. The (apparent) underweight-
ing of these events in Experience however, is a surprising result which has
generated a vivid debate among decision theorists. Among the several inter-
esting open questions that this debate has instigated, this study is focusing on
the factors underpinning the DE gap.

Why do risky choices differ between Description and Experience?

Unlike in Description, information in Experience is often biased and ambigu-
ous. Even mathematically equivalent information, however, can be perceived
or processed differently due to differences in its presentation. This is numeri-
cal and simultaneous in Description but sequential and analogical in Experience.
Despite there being studies that have investigated the contribution of some of
these factors (see Hertwig (2012) for a review), the evidence has been rela-
tively scant. This study contributes to the literature, therefore, by providing a
cohesive account of how and by how much each factor contributes to the gap.
Conceptually, we distinguish between factors that pertain to informational
(sampling bias), preferential (ambiguity) and cognitive (likelihood represen-
tation and memory) differences. With this taxonomy in mind, we design a
treatment protocol and conduct a lab-experiment that allows us to isolate and
quantify each of these factors. The benefits of this endeavour are threefold.

First, it can shed light onto why conflicts of interests such as that between
the farmers and experts arise. Understanding the source of these differences



2.2 background 9

and the way they map onto ensuing choices is very likely to produce valuable
insights regarding the implementation of future relevant policies.

Second, it can inform the theoretical modelling of risky behaviour. Economists
usually elicit risk preferences in the lab by providing participants with explicit
descriptions of the uncertainty at hand. If preferences are significantly modu-
lated by the presentation of this information, that would put into question the
external validity of some of the hitherto stylized facts. For example, according
to CPT, the leading descriptive preference model for choices in the lab (Bar-
beris, 2013), people tend to overweight rare events. Is overweighting of rare
events a genuine behavioural phenomenon or is it an artefact of the descrip-
tive presentation of uncertainty? To the extent that experienced uncertainty
warrants different weighting patterns, our study can provide a roadmap to-
wards adjusting the model according to the influence of each factor. For exam-
ple, if the gap owns only to informational differences due to limited sampling
in Experience, then replacing objective probabilities with experienced relative
frequencies in CPT’s functional form should suffice to account for the gap
(see Fox and Hadar, 2006). The verdict is not as clear however with respect to
factors that pertain to preferential or cognitive aspects. We explore the impact
of such factors through the lens of a rank dependent expected utility model
(RDEU) that accounts for probability distortions. Using a large and diverse de-
cision set and applying Abdellaoui et al.’s (2008) semi-parametric method of
eliciting RDEU’s components at the individual level, we qualify and quantify
each factor’s impact.

Finally, it can address an increasingly relevant tension in the literature.
Over the past few years the size of the DE gap and even its overall direction
(Glöckner et al., 2016) have been a point of debate. Differences in the experi-
mental design, particularly related to the implementation of Experience in the
lab, as well as different ways of measuring the gap, are very likely part of the
reason for this volatility. First, different implementations could be fostering a
different mix of driving forces. In this study, instead of eliciting a singular DE
gap, we focus on the impact of specific factors that are inherently different be-
tween Experience and Description. Second, measuring the gap through direct
choice comparisons or through certainty equivalents can produce markedly
different conclusions. For this reason, by manipulating a feature of our elicita-
tion method, we measure the gap through both methods.

2.2 background

The “sampling paradigm” (Hertwig et al., 2004) is the most common lab-
setting in which the DE gap has been studied. Participants are typically di-
vided into two treatments: Description and Experience where they make one-
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off choices between a risky and a safe gamble. Importantly, the risky gamble
always contains an outcome that occurs with low probability.

In Description the properties of these gambles are explicitly and numerically
described so that there is no uncertainty regarding their possible outcomes
nor the probability distribution of these outcomes. In Experience on the other
hand, participants are asked to gather information about these properties by
themselves. The two gambles usually appear on screen in the form of two
buttons. Every time a button is pressed, one of the outcomes of the gamble
at hand appears on screen. These outcomes are tallied to appear in a relative
frequency that matches their objective probability in Description.

In this framework, the DE gap is commonly detected through direct com-
parisons between choice proportions across the two conditions. The “canonical
finding” consists of the observation that subjects in the Description condition
tend to prefer the risky option when the rare event gives a desirable outcome,
and to prefer the safe option when the rare event gives an undesirable out-
come; whereas the opposite is observed in the Experience condition. Taken
together, this pattern has been commonly interpreted as reflecting a tendency
to overweight rare events in Description but underweight rare events in Expe-
rience (Hertwig et al., 2004).

The focus of our study is the identification and comparison of candidate
forces that drive Description and Experience apart. In this section, we start by
summarizing evidence from previous literature regarding these forces. We
then describe a recently emerged discord in this literature owning to a mul-
tiplicity of DE gap manifestations and argue how our analysis contributes to
its resolution.

2.2.1 DE gap contributors

Following our conceptual taxonomy, “sampling bias” refers to the informa-
tional dimension, “ambiguity” to the preferential one while “likelihood represen-
tation” and “memory” both pertain to the cognitive aspect of decision making.
Next, we discuss these factors in greater detail.

Sampling bias refers to an information asymmetry. In Description, partici-
pants are informed accurately about the objective stochastic properties (out-
comes and their probability distribution) of each option. In Experience how-
ever, objective and experienced information does not always match. Usually,
people collect small samples (e.g. the median subject of Hills and Hertwig
(2010) samples each option 9 times) and according to a property of the bino-
mial distribution, such samples tend to under-represent rare events. If rare
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events are systematically under-represented in the samples observed by in-
dividual subjects, it would come as no surprise if their impact on choices is
also attenuated. Despite the crucial contribution that sampling bias has been
found to exert in the DE gap (Fox and Hadar, 2006; Rakow et al., 2008), there
have been several studies arguing that the phenomenon survives its removal
(Hau et al., 2010; Ungemach et al., 2009). To explore factors beyond sampling
bias, researchers typically control the sampling process so that experienced
relative frequencies and objective probabilities coincide. In this study, we fol-
low the same approach in some of our treatments. By comparing risky choices
between two conditions that differ only with respect to whether information
was biased we are able to isolate the effect of this information asymmetry.

Ambiguity refers to the fact that unlike in Description, subjects in Experience
cannot be certain about the objective parameters of the lotteries they face.
Abdellaoui et al. (2011b) estimate CPT components at the individual level
and find that decision weights elicited in Experience are systematically smaller
than those elicited in Description. Drawing a parallel with Ellsberg’s famous
urn experiments, they attribute their findings to differences in attitudes to-
wards ambiguity. Just as people prefer to gamble in the known urn over the
unknown urn, so their willingness to bet is higher in Description (known dis-
tributions) than in Experience (partially unknown distributions). In this study,
we investigate this claim further by isolating the effect of ambiguity. We do so
by introducing a treatment manipulation across which participants observe
mathematically equivalent information and which is presented in the same
format but ambiguous in one case and not in the other.

Likelihood representation refers to the format with which the stochastic prop-
erties of uncertainty are communicated. In Description, probabilities are typ-
ically communicated through percentages (e.g. “win with 10% chance”) but
in Experience this information is obtained sequentially, resulting to a repre-
sentation closer to natural frequencies (e.g. “there are 10 out of 100 winning
cards”). These differences are likely to evoke different cognitive mechanisms
and result in different actions. It has been demonstrated for example that com-
municating probabilities through natural frequencies (10 out of 100) instead
of percentages (10%), improves Bayesian inference (Gigerenzer and Hoffrage,
1995). In this study, we isolate the potential effect of this representation differ-
ence by comparing two treatments offering mathematically equivalent infor-
mation in two different formats, one based on explicit and numerical format
and the other on a form of sequential sampling.

Memory and its boundaries is the second cognitive factor we investigate.
When likelihoods are presented sequentially, claims about what information
subjects have in mind are contingent on assumptions about their recall. For
example, even a subject who has seen all the balls drawn from an urn without
replacement may not have complete information about the proportion of red
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balls, if she can only remembers some of the draws. To control for this, we
use in most of our treatments a history. table1

Typical experimental designs based on the sampling paradigm do not pro-
vide subjects with this kind of aid in the Experience condition, whereas in the
Description condition subjects have full information about the options at the
moment of choice. As a result, imperfect memory is a possible driver of any
gap in behaviour between the two conditions. We examine the impact of this
potential determinant of the DE gap by comparing risky behaviour between
two conditions that are identical except that one of them does not offer this
memory aid. Though the possible role of imperfect memory in the DE gap
has been noticed in previous literature, it has proved hard to pinpoint (see for
example the discussion by Wulff et al., 2018).

2.2.2 A robust but diverse phenomenon

In a recent meta-analysis, Wulff et al., 2018 find evidence for a significant DE
gap, showcasing thus the robustness of this phenomenon. At the same time
however, this analysis demonstrates a sizeable dispersion with respect to the
size of the gap, ranging from very small to very large. In fact, recent evidence
by Glöckner et al. (2016) has even suggested that under certain conditions,
the gap can be reversed, with subjects in Experience making choices consistent
with more overweighting than in Description.

This diversity is common also in studies that go beyond direct choice com-
parisons by fitting a model accounting for probability weighting. Although
there is a consensus regarding the inverse S-shaped probability weighting
curve - consistent with overweighting - in Description, the same is not true for
the shape of the curves elicited in Experience. For example, Ungemach et al.
(2009) estimated parameters that are compatible with a probability weighting
curve that is S-shaped, which is indicative of underweighting of rare events.
Hau et al. (2008) on the other hand, found this curve to be linear. Further-
more, Abdellaoui et al. (2011b), find the curve from Experience to be inverse
S-shaped but lying beneath that from Description throughout the probability
interval.

We distinguish between two factors that may underlie the diversity of this
evidence. The first pertains to differences in the experimental design - partic-
ularly with respect to how Experience is implemented. The second attributes
this diversity to differences in the way the gap is measured.

1 The idea of using a history table as a memory aid in Experience originates with Hau et al.
(2010). This table records the sampled events for the subject to observe after the sampling
process is completed, enabling thus perfect recall.
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First, adaptations of its canonical designs are quite common. For example,
Glöckner et al. (2016) fix sampling so that objective probabilities (in Descrip-
tion) and experienced ones (in Experience) coincide. They also focus on choices
between non-degenerate binary lotteries, excluding choices between gambles
and certainties that were part of the decision set of previous studies. Abdel-
laoui et al. (2011b) allow subjects to sample freely but only from one option
at a time. They then evaluate these options through the method of certainty
equivalents. The methodological diversity in the previous literature motivates
our experimental design as this enables the isolation of the different factors by
sequentially comparing treatments which differ in only one aspect at a time.

Second, most studies in this literature use direct choice comparisons while
others have used the mediation of a behavioural model that accounts for prob-
ability weighting, such as CPT. To increase the precision of this estimation
and to be able to separate between probability weighting and other aspects
of risky behaviour such as subjective transformation of outcomes, Abdellaoui
et al. (2011b) introduce a method that relies on the elicitation of certainty
equivalents. To reconcile these differences, we measure the gap with multi-
ple approaches. To achieve this, we manipulate Abdellaoui et al.’s (2011b)
elicitation method in order to obtain both direct choice comparison scores
and non-parametric decision weights at the individual level through certainty
equivalents.

The next section provides details on the implementation of these methods.
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2.3 design and methods

2.3.1 Treatments and decision problems

Our experimental design includes one Description (Desc) treatment and four
variations of Experience: Unambiguous (E-Unamb), Ambiguous (E-Amb), No
Records (E-NR) and Restricted (E-Res). In each treatment, subjects evaluate a
series of binary gambles. These are represented by virtual decks, each contain-
ing two types of card demarcated by different colours. The probability of each
outcome in this gamble is equal to the relative frequency of its corresponding
colour. The valuation of each gamble takes place right after subjects receive
information about these probabilities. During this evaluation, participants in
all five treatments are able to see which outcome corresponds to which colour.

Treatments differ with respect to the type of information available to partic-
ipants regarding the probabilities of different outcomes in a given gamble and
the way this information is communicated. In Desc, it is provided in explicit
and numerical form (percentages) at the time of evaluation. In our Experience
treatments on the other hand, subjects discover this information by sampling
sequentially through the content of each deck on a screen.

Figure 2.1 summarizes the key properties of each treatment (top panel) and
the comparisons that isolate the potential DE gap factors (bottom panel).

Figure 2.1: Summary of treatments and treatment - comparisons

Desc Decisions from description with numerical (percentages)
likelihood-representations

E-Unamb Subjects knowingly sample all 40 cards in each deck with a his-
tory table

E-NR Same as E-Unamb but without the history table
E-Amb Same as E-Unamb but subjects are unaware that they sample

all cards
E-Res Same as E-Amb but sampling restricted to 18 instead of 40

cards

Note. Each link represents an effect, isolated from a pairwise, treatment-comparison.
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More specifically, E-Unamb is designed to remove ambiguity regarding the
properties of lotteries (outcomes and their likelihoods) but also sampling bias
and memory limitations. Therefore, comparing risky choices between Desc
and E-Unamb, isolates the effect of likelihood representation. To remove sam-
pling bias, we fix sampling amount so that the final sampling distribution
matches the objective probabilities in Desc. We do this by fixing the size of
the deck (to 40 cards) and implement a protocol of sampling without replace-
ment. To remove memory limitations, we introduce a history table during the
valuation screen, that records the colours of cards that were sampled in the or-
der they were sampled. Finally, to remove ambiguity we stress to participants
during instructions that the cards they sample are not replaced in the deck
so that each card in the deck will be encountered exactly once. To highlight
this, a pop-up message appears at the end of each sampling process reassur-
ing people that this was the last card in the deck. They are reminded of this
fact during the valuation stage where the message on top of the history table
reads: “This is the entire deck with its cards displayed in the order you sam-
pled them”. Figure 2.2 depicts three instances of the experimental procedure
for E-Unamb. Panels a. and b. capture the before and after of the sampling
process while panel c. demonstrates an example of the valuation process.

Figure 2.2: Instances of E-Unamb’s interface

Similarly, the other three versions of Experience are designed so that the ap-
propriate binary treatment comparisons isolate the remaining effects. E-NR is
identical to E-Unamb, except that there is no history table. To the extent that
the history table removes memory constraints, the comparison of E-Unamb
with E-NR captures the effect of memory boundaries. E-Amb is identical to
E-Unamb except that participants are no longer informed that they sample
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the entire deck of cards. There is no pop-up message at the end of their sam-
pling process and the message on top of the history table is less informative,
reading: “These are the colours you sampled in the order you sampled them”.
Therefore, participants in E-Amb are not aware that the relative frequencies
they experience are accurate (although, importantly, in fact they are) and thus
the comparison between E-Unamb and E-Amb isolates the effect of ambigu-
ity. Lastly, E-Res has been designed to be identical to E-Amb, except that the
sampling amount is restricted to a smaller amount2 and therefore the expe-
rienced relative frequency does not match the objective one. Consequently,
comparing E-Amb with E-Res isolates the effect of sampling bias. Notice that
sampling bias can take two directions: people can over- or under- represent a
certain event in their sample. We find this distinction important and therefore
split observations in E-Res into two subsets: E-Over and E-Under. Since rare
events are the loci of our interest, we taxonomize observations in E-Over and
E-Under according to whether the event with the smallest probability to occur
was over- or under-represented.3

Besides isolating the factors of the DE gap, this treatment protocol enables
us to study a variety of DE gaps. Comparing Desc with each E-variation, we
obtain a distinct DE gap. Notice that the number of factors underlying each
gap are increasing as we move from left to right in Figure 2.1. Comparing
Desc with E-Unamb reveals a potential gap due to differences in likelihood
representation. Moving further to the right, comparing Desc with E-Amb, one
obtains a potential gap that combines likelihood representation and ambigu-
ity, whereas the comparison between Desc with E-Res would add sampling
bias to this mix. The comparison between Desc and E-NR is somewhat less
straight-forward (thus not represented on the same line). In principle, this
gap would be combining the factors of likelihood representation and mem-
ory. Nonetheless, to the extent that memory limitations induce uncertainty
regarding the gamble’s properties, ambiguity should also be included as a po-
tential factor underlying this comparison. Lastly, in order to get an estimate
of the average DE gap we elicit, we compare Desc with E-All, a compilation
of observations across all 4 variations of Experience.

The valuation of each gamble took place at the bottom of the screen - just as
it is depicted in Figure 2.2 - and the protocol was similar for all five treatments.
The risky option (Option A) is associated with the deck of cards while the
safe option (Option B) comprises of a certain amount. As in Abdellaoui et al.
(2011b), we implement the bisection method whereby the certain amount is
updated according to the previous choice of each subject. During the first iter-

2 This restriction is implemented by taking subsets of 18 cards from the unbiased 40-card
distribution that was used in E-Unamb, E-NR and E-Amb.

3 There is one gamble with a 50-50 probability distribution that cannot fit this criterion. In this
case, we taxonomize the observation according to observed relative frequency of the event
corresponding to the highest of the two outcomes.
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ation of each valuation, the certain amount is the expected value of Option A.
In the second iteration, this amount is updated upwards (downwards) to the
mid-point of the gamble’s highest (lowest) outcome and the certain amount
just rejected (accepted). The certainty equivalent is the certain amount of Op-
tion B after 5 such iterations.

Participants evaluated the lotteries summarized in Table 2.1. The order of
these lotteries was randomized within two clusters for each subject. The order
of the cards within each deck was also randomized for each subject. Lotteries
in the first cluster (1.1 - 1.7) had a winning probability fixed at p = 0.25 and
varying outcomes. Lotteries in the second cluster had a pair of fixed outcomes
and varying probability. It is in this second cluster that we focus explicitly on
the role of rare events.4 Following the convention in this literature we con-
sider an event rare5 if its corresponding probability is less than p < 0.20 (see
Hertwig et al., 2004). Among the lotteries in Table 2.1, the subset of lotteries
containing a rare event includes problems: {2.4, 2.5, 2.6}, where p < 0.20 and
problems: 2.7, 2.8, 2.9 where (1− p) < 0.20. Since p represents the probability
of the highest of the two outcomes in each gamble the first cluster of problems
contains a desirable rare event while the second cluster contains undesirable
rare events.

In total, 198 participants were recruited through ORSEE (Greiner, 2015) and
randomly assigned to one of the five treatments summarized in Table 2.1. All
sessions were conducted in CeDEx’s laboratory at the University of Notting-
ham and lasted for approximately one hour. On average, subjects were paid
£11.50, with each subject’s payment dependent on their choices and on the
resolution of gambles. The experiment was computerized, having been pro-
grammed in Z-tree (Fischbacher, 2007).

2.3.2 Analysis

We distinguish between two levels of analysis. The model-free analysis op-
erates through direct choice comparisons. The advantage of this approach is
that it facilitates the comparison of our findings with those in early literature,
where the DE gap was established. The model mediated analysis operates
through comparisons of RDEU components (utility curvature and weighting

4 As we explain in the estimation section, it was important that subjects realized that lotteries
in this first cluster are related to the same probability distribution but different outcomes. To
communicate this in the Experience treatments, these lotteries were associated with only one
deck and one sampling process, but seven valuations. See Appendix A.1 for the instructions
that were handed to participants in this experiment.

5 Since what constitutes a rare event is usually context dependent, using a specific threshold
for this distinction might seem somewhat arbitrary. Nonetheless, since the goal of this section
of the analysis is to compare findings with previous literature, we adopt this convention.
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Table 2.1: Decision problems and characterisation

Decision Problem Risky Safe (1st iteration)

1.1 (4, 0.25; 0) 1.0
1.2 (8, 0.25; 0) 2.0
1.3 (12, 0.25; 0) 3.0
1.4 (16, 0.25; 0) 4.0
1.5 (16, 0.25; 4) 8.0
1.6 (16, 0.25; 8) 10.0
1.7 (16, 0.25; 12) 13.0
2.1 (16, 0.25; 0) 4.0
2.2 (16, 0.5; 0) 8.0
2.3 (16, 0.75; 0) 12.0
2.4 (16, 0.025; 0) 0.4
2.5 (16, 0.05; 0 0.8
2.6 (16, 0.1; 0) 1.6
2.7 (16, 0.90; 0) 14.4
2.8 (16, 0.95; 0) 15.2
2.9 (16, 0.975; 0) 15.6

Note. Decision problems in grey cells contain a rare event.

curves, estimated semi-parametrically and at the individual level). The advan-
tage of this approach is that we can examine the effect of probability weighting
while controlling for other aspects of risky behaviour.

2.3.2.1 Model-free analysis

In the model-free analysis, we use tests that do not rely on any behavioural
model and instead perform only cross-treatment comparisons of choices. We
consider choices from the first iteration of each bisection. These are choices
between the gamble (risky choice) and the certain amount (safe choice) equal
to the gamble’s expected value. This choice structure is similar to that of the
early studies in the sampling paradigm. As these early studies focused only
on situations involving rare events, this part of the analysis will focus only on
the subset of decision problems containing a rare event (see decision problems
in grey from Table 2.1).

We monitor risky behaviour through the “OVRW” index6. This index takes
the value 1 if the risky option was chosen over the safe one in problems
containing desirable rare events or if the safe option was chosen over the
risky one in problems containing undesirable rare events. Intuitively, this in-

6 This is an abbreviation of “overweighting”. Glöckner et al. (2016) refer to the same index as
p(overweighting)”.
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dex accounts for the influence of rare events. According to Wulff et al. (2018):
“this scoring follows from the assumed as-if over (description) versus under-
weighting (experience) of rare events”. Summing up OVRW for each subject
and dividing with the total of relevant choices (6) we obtain a measure of
propensity to overweight which does not suffer from repeated observations.
We refer to this index as %OVRW. Aggregating this propensity for each treat-
ment we obtain the %OVRW score for each treatment. Therefore, according to
canonical DE gap every time the %OVRW score is higher in Description than
in Experience, that is an instance of the DE gap.

2.3.2.2 Model-mediated analysis: RDEU

In this section we provide a brief account of the formal requirements that
are necessary to study the DE gap through a RDEU model (Quiggin, 1982).
Since the canonical finding in this literature relates to how people treat rare
events (underweight or overweight them), we decided that a model that can
incorporate probability weighting is the most appropriate choice. Therefore,
although expected utility (EU) theory is considered by many economists the
benchmark for studying risky behaviour, in this study we employ a RDEU
model that accounts for probability distortions.

More formally, let xEp y stand for a binary gamble where x, y are non-
negative outcomes, contingent on mutually exclusive events and x > y, so
that x is the high (or desirable) outcome and y is the low (or undesirable out-
come). Let Ep stand for an event occurring with probability p. For example,
E0.25 can represent the event of drawing a yellow card from a deck contain-
ing 100 cards where only 25 of those are yellow. According to RDEU, given a
strictly increasing utility function: u and a probability weighting function W,
subjects maximize:

W(Ep)u(x) + (1−W(Ep))u(y) (2.1)

An additional advantage of RDEU is that it allows preferences consistent
with EU to emerge, in the special case where probabilities are weighted lin-
early so that: W(Ep) = p, ∀p. Moreover, for the type of non-negative, binary
lotteries that we consider in this study, the RDEU model has the same func-
tional form with most transitive non-expected utility models (Ghirardato and
Marinacci, 2001; Luce, 1991; Miyamoto, 1988; Tversky and Kahneman, 1992).

To study the DE gap through the lens of a RDEU model, we use the source
method (Abdellaoui et al., 2011a; Tversky and Fox, 1995). This method was
later developed to accommodate the DE gap by Abdellaoui et al. (2011b). Ac-
cording to this approach, sufficiently different environments -or equivalently,
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sources of uncertainty- give rise to different probability weighting curves. In
our setting, these environments are defined at the treatment level. More for-
mally, for an event Ep, such as drawing a yellow card from a deck in a specific
treatment, where (100 × p)% of its cards are yellow, the decision weight is
given by:

W(Ep) = wσ(π(Ep)) (2.2)

In Equation 2.2, W(Ep) is the decision weight associated with event Ep, wσ

is the source function which transforms probabilities into decision weights
according to the source of uncertainty σ. In our experiment, each treatment
corresponds to a different such source. Moreover, π() is the belief of the likeli-
hood of Ep. It is commonly assumed that in Description, π(Ep) = p. In Experi-
ence on the other hand, this belief depends on the observed relative frequency
( fp) of each event Ep. We therefore assume that π(Ep) = fp for our Experience
treatments7. Since in most of our Experience variations, fp = p, it follows that
π(Ep) = p. Therefore, Equation 2.2 can be re-written simply as:

W(Ep) = wσ(p)) (2.3)

Notice that conditions that include observations drawn from biased sam-
ples are an exception to this. In these cases, although fp 6= p, we are still
operating under Equation 2.3. In these cases, p corresponds to the probability
that would have generated the accurate fp had it not been pre-maturely in-
terrupted. Therefore, we take the difference between wσ(p) and wσ( fp) to be
capturing the effect of sampling bias.

To study these source functions, we need to estimate the utility curvature
and decision weights at the individual level. We use the seven certainty equiv-
alents elicited from decision problems: 1.1 - 1.7, to fit the utility curvature
parameter of the power utility function: U(x) = xα. We do so by minimiz-
ing the non-linear least squares: (||z − ẑ||)2 where zi refers to the observed
certainty equivalent of risky gamble i, and ẑi is the estimated certainty equiv-
alent. An important feature of this estimation protocol is that the event Ep∗

corresponding to outcome xi is common for i = 1, . . . , 7 (and therefore associ-
ated with the same probability: p∗). Therefore, we can treat the corresponding
decision weight: W(Ep∗) as a free parameter to be estimated together with the
utility curvature parameter: α. We can therefore re-write Equation 2.2 as:

7 This is a common assumption in the literature and it is founded in findings reporting high
correlations between judged probabilities and observed relative frequencies (e.g. Fox and
Hadar, 2006).
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ẑi = [W(Ep∗)(xα
i − yα

i ) + yα
i ]

1
α (2.4)

Having obtained an estimate of each subject’s utility curvature, we pro-
ceed to calculate non-parametrically decision weights for lotteries in 2.1 - 2.9.
Notice that these lotteries have fixed outcomes: x∗ = 16 and y∗ = 0 and vary-
ing probability: pj. Deriving Equation 2.4, we can calculate therefore decision
weights for each pj level according to:

W(Epj) =

(
z
′
j

x∗

)α

(2.5)

Where, z
′
j stands for the elicited CE from risky option j, with j = 1, 2, . . . , 9.

Aggregating weights across individuals, we obtain an aggregated source func-
tion under each treatment. By studying the shape of the elicited weighting
curves and comparing them across treatments, we examine the DE gap and
its driving forces from the perspective of a model that accounts for weight-
ing8.

8 For more details on the theoretical background and its implementation, see Abdellaoui et al.
(2011b) and Abdellaoui et al. (2011a).
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2.4 results

2.4.1 Model-free analysis

We begin our analysis by examining choice proportions through %OVRW
scores. These scores derive from the choice made in the first iteration of each
bisection process. As detailed in Section 2.3.2.1, a popular interpretation of
this score is that it captures a propensity to overweight rare events. According
to this interpretation, taking the average %OVRW for each treatment captures
a treatment-level propensity to overweight. Figure 2.3 plots average %OVRW
scores across all 5 treatments, including our 3 treatment derivatives: E-Over,
E-Under and E-All.

As we can see from Figure 2.3, the propensity to overweight is higher in
Desc than in any variation of Experience. This is in line with the canonical
finding. To examine the size and statistical significance of the ensuing DE
gaps as well as the isolation of the factors that drive them, we report the
appropriate treatment comparisons in Table 2.2.

Table 2.2: Treatment comparisons and effect size measured in %OVRW

Treatment comparisons Difference in %OVRW P− value+

D
E

ga
ps

Desc vs. E-All 9.35∗∗ 0.041

Desc vs. E-Unamb 3.91 0.284
Desc vs. E-NR 10.58 0.121
Desc vs. E-Amb 6.00 0.209
Desc vs. E-Res 17.09∗∗∗ 0.008

Desc vs. E-Over 4.87 0.555
Desc vs. E-Under 39.34∗∗∗ 0.000

Ef
fe

ct
s

Likelihood representation 3.91 0.284
Memory 6.67 0.468
Ambiguity 2.08 0.727
Sampling Bias 11.10 0.126

Overrepresentation -1.12 0.579
Underrepresentation 33.35∗∗∗ 0.000

Note. + Reported P-values from 2-sided, Exact Wilcoxon Rank Sum tests on %OVRW
differences. We obtain only one %OVRW per subject so there is no concern regarding

repeated observations. ∗∗∗P < 0.01;∗∗ P < 0.05;∗ P < 0.1.

The top rows of Table 2.2 report a series of DE gaps. The average DE gap
(derived from Desc vs. E-All) was 9.35 percentage points wide and significant
(P = 0.041; MW exact). The size of our average gap is very close to this
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Figure 2.3: Average %OVRW scores across treatments

Note. Average %OVRW scores plotted across treatments (Desc, E-Unamb, E-Amb, E-NR,
E-Res) and treatment-derivatives (E-Over, E-Under, E-All).

literature’s average (9.7 percentage points) which was calculated in a large
meta-analysis from 80 data sets (Wulff et al., 2018).

Result 1. “A standard DE gap”
The average DE gap we elicit is in accord with the canonical finding and of similar

size with the literature’s average.

Comparing Desc with each Experience-treatment separately, we observe that
the strongest evidence for the gap stems from the “Desc vs. E-Res” compari-
son, where sampling bias is present. Not surprisingly, the gap is widest when
rare events are under-represented rather than when they are over-represented.
In comparisons that do not involve sampling bias we find no evidence for a
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statistically significant DE gap, although the comparison between Desc and
E-NR comes close (P = 0.121; MW test).

Interestingly, the two widest gaps derive from the comparisons in which
most factors were at play. The “Desc vs. E-NR” comparison combines the ef-
fects of: memory, likelihood representation and, potentially, ambiguity (to the
extent that someone is aware of her memory limitations during the valuation
of a gamble). The “Desc vs. E-Restr” comparison combines the effects of: sam-
pling bias, likelihood representation and ambiguity. This suggests that there
is a synergistic relation between the factors we isolate: DE gaps comprised of
more factors are wider than DE gaps comprised of fewer factors.

Our isolation protocol sheds some light on this finding. Looking at the
bottom panel of Table 2.2 (“Effects”), we see that all effects, besides overrep-
resentation, have a positive sign. This means that each factor contributes to
the gap in the direction predicted by the canonical finding: each reducing
%OVRW and therefore the propensity to overweight rare events. As a result,
comparing treatments that vary in more than one factor at a time, is bound to
capture wider effect sizes.

Result 2. “Stronger together”
Every factor we isolate contributes positively to the canonical DE gap. Therefore,

combining the effect of multiple factors together produces wider gaps.

In terms of magnitude, the effect of sampling bias is the most impactful one,
especially when focusing on the subset of cases where rare events have been
under-represented. This is in fact the only instance where a factor in isolation
is significant (P < 0.01, MW-exact). Not surprisingly, over-representation of
rare events acts in the opposite direction (albeit, not significantly) mitigating
the contribution of sampling bias to the gap.

Result 3. “Key driver: under-representation”
Sampling bias driven from under-representation of rare events is the largest and

only significant factor in isolation.

To summarize, our direct choice comparison analysis revealed that the av-
erage DE gap we elicited, coincides both in terms of direction and in terms
of size with the literature’s average finding (Result 1). We interpret this as
evidence that the phenomenon is robust even though we applied significant
adaptations to the sampling paradigm - the original experimental set up for
studying the DE gap. Our isolation protocol revealed that each of the factors
we set to analyse contributes to the canonical gap positively. Consequently,
the DE gaps we elicited widen as a function of the number of factors they
comprise of (Result 2). However, the effect of sampling bias stemming from
under-representation of rare events is the key and only significant driving
force (Result 3) in isolation.
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Does this imply that the sampling bias is the only significant driver of the
gap, as some papers have suggested (e.g. Fox and Hadar, 2006; Rakow et al.,
2008) or are other factors also relevant as another section of the literature
maintains (Hau et al., 2008; Ungemach et al., 2009)?

To explore this question, we turn to a more detailed examination of the
DE gap and its factors. Mediating a risky preferences decision model to our
data allows us to examine probability weighting while controlling first for
other potentially confounding factors such as subjective transformation of
outcomes (utility curvature). Moreover, our non-parametric calculation of de-
cision weights, allows us to zero-in on sub-intervals of the unit interval, elab-
orating therefore the search for the DE gap and the effect of its drivers.

2.4.2 Analysis through the RDEU model

In this analysis we use CEs which we derive from all choices made throughout
each bisection process. We then use these CEs to estimate for each individual:
utility curvature first (as per Equation 2.4) and then calculate decision weights
(as per Equation 2.5).

Table 2.3 reports median values for the utility curvature parameter (α) across
treatments. On aggregate, our findings suggest a near linear9 utility over
money. Median values are very similar across treatments; a Kruskal-Wallis
test does not reject the null hypothesis that utility curvature does not differ
across treatments (P = 0.613). Absence of difference with respect to utility cur-
vature suggests that potential treatment effects are more likely to occur due
to differences in probability weighting rather than due to differences in pref-
erences over money. Nonetheless, the interquartile ranges provide evidence
of significant heterogeneity within each treatment. This verifies our concerns
that inferring probability weighting from direct choice comparisons may be
ignoring a significant source of behavioural heterogeneity.

Table 2.3: Utility curvature across treatments (medians)

Desc E-Unamb E-NR E-Amb E-Res

Median 1.06 1.08 1.07 1.10 0.98
IQR 0.84-1.38 0.82-1.47 0.81-1.89 0.83-1.35 0.66-1.17

Note. Parametric estimations of utility curvature: α from xα. These estimates derive from a
non-linear least squares algorithm, commonly specified for all 198 subjects.

9 These estimates fall within the range of contemporaneous studies, reporting the power of the
utility function to be between 0.8 and 1.1 (Abdellaoui, 2000; Booij et al., 2010; Etchart-Vincent,
2004; Fehr-Duda et al., 2006; Murad et al., 2016).
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Next, we calculate decision weights for each subject at each probability level,
following Equation 2.5. Table 2.4 reports median values for these decision
weights and statistical comparisons with the diagonal.



2.4 results 27

Ta
bl

e
2.

4:
M

ed
ia

n
de

ci
si

on
w

ei
gh

ts
an

d
co

m
pa

ri
so

n
w

it
h

th
e

di
ag

on
al

p
D

es
c

E-
U

na
m

b
E-

A
m

b
E-

N
R

E-
R

es
+

E-
O

ve
r+

E-
U

nd
er

+
E-

A
ll
+

0.
02

5
0.

09
6∗
∗∗

0.
04

5∗
∗∗

0.
04

7∗
∗∗

0.
01

7ns
0.

05
1∗
∗∗

0.
06

4∗
∗∗

0.
01

2ns
0.

03
9∗
∗∗

0.
05

0
0.

12
5∗
∗∗

0.
10

0∗
∗∗

0.
07

1∗
∗∗

0.
06

4∗
∗

0.
06

9∗
0.

07
0∗

0.
03

8ns
0.

06
1∗
∗∗

0.
10

0
0.

18
5∗
∗∗

0.
14

6∗
∗∗

0.
09

0ns
0.

06
3ns

0.
10

1ns
0.

14
6ns

0.
08

3ns
0.

09
8ns

0.
25

0
0.

18
4ns

0.
23

8ns
0.

19
6∗
∗

0.
18

7ns
0.

17
7ns

0.
20

0ns
0.

17
2ns

0.
20

4ns

0.
50

0
0.

35
8∗
∗∗

0.
33

6∗
∗

0.
34

9∗
∗∗

0.
30

6∗
∗∗

0.
35

3∗
∗∗

0.
41

3ns
0.

38
5∗

0.
33

6∗
∗∗

0.
75

0
0.

47
4∗
∗∗

0.
49

6∗
∗∗

0.
44

6∗
∗∗

0.
37

0∗
∗∗

0.
49

0∗
∗∗

0.
51

2∗
∗∗

0.
49

3∗
∗∗

0.
46

8∗
∗∗

0.
90

0
0.

76
4∗
∗∗

0.
72

7∗
∗∗

0.
60

3∗
∗∗

0.
55

9∗
∗∗

0.
75

4∗
∗∗

0.
63

7∗
∗∗

0.
99

6ns
0.

65
8∗
∗∗

0.
95

0
0.

62
8∗
∗∗

0.
69

3∗
∗∗

0.
72

9∗
∗∗

0.
83

9∗
∗∗

0.
79

1∗
∗∗

0.
74

2∗
∗∗

0.
99

7∗
0.

77
5∗
∗∗

0.
97

5
0.

84
2∗
∗∗

0.
89

8∗
∗∗

0.
82

2∗
∗∗

0.
89

4∗
∗∗

0.
94

3∗
∗∗

0.
86

2∗
∗∗

0.
99

9ns
0.

89
0∗
∗∗

N
ot

e.
D

iff
er

en
ce

s
w

it
h

th
e

di
ag

on
al

de
ri

ve
fr

om
M

W
te

st
s

fo
r:

H
0

:W
(E

p j
)
=

p j
vs

.H
1

:W
(E

p j
)
6=

p j
“∗
∗
∗”

:s
ig

ni
fic

an
tl

y
di

ff
er

en
t

fr
om

th
e

di
ag

on
al

at
P
<

0.
01

“∗
∗”

:s
ig

ni
fic

an
tl

y
di

ff
er

en
t

fr
om

th
e

di
ag

on
al

at
P
<

0.
05

“∗
”:

si
gn

ifi
ca

nt
ly

di
ff

er
en

t
fr

om
th

e
di

ag
on

al
at

P
<

0.
10

“n
s”

:n
ot

si
gn

ifi
ca

nt
ly

di
ff

er
en

t
fr

om
th

e
di

ag
on

al
at

P
<

0.
10

+
C

on
ta

in
in

g
ca

se
s

w
he

re
ob

je
ct

iv
e

an
d

ob
se

rv
ed

re
la

ti
ve

fr
eq

ue
nc

ie
s

do
no

t
(a

lw
ay

s)
co

in
ci

de
.



2.4 results 28

Recall that rare events can be found in two regions: for p ∈ {0.025, 0.05, 0.10}
and for p ∈ {0.90, 0.95, 0.975}. As p is associated with x, the highest of the two
possible outcomes, rare events in the first interval are associated with desir-
able outcomes and their decision weight corresponds to W(Ep). Conversely,
rare events associated with probabilities in the second interval are associated
with the probability of not obtaining x and are therefore characterised as unde-
sirable. According to RDEU, their associated decision weight is calculated by
1−W(Ep). Since Table 2.4 reports only W(Ep), overweighting of rare events
is compatible with W(Ep) > p for p < 0.25 and W(Ep) < p for p > 0.75.
Conversely, rare events are underweighted when W(Ep) < p for p < 0.25 and
W(Ep) > p for p > 0.75.

As we see in Table 2.4, decision weights are almost everywhere above the di-
agonal for low values of p (positive values for t-statistics) and under it for high
values of p (negative values for t-statistics), with a crossover near p = 0.25.
This is evidence that probability weighting takes an inverse S-shaped form,
suggesting overweighting. There are two exceptions to this pattern. First, in
E-NR, the weighting curve is under the diagonal for small values of p, sug-
gesting underweighting of rare events (except for p = 0.05). Second, and even
more strikingly, in E-Under, the weighting curve appears to be S-shaped: de-
cision weights are below the diagonal for p < 0.25 and above it for p > 0.75.
There is a caveat to these two exceptions. Even though nominally there seems
to be a case for underweighting in E-Under and E-NR, statistical analysis sug-
gests otherwise. In these cases, decision weights are in fact not significantly
different from the diagonal (see Table 2.4 for how H0 : W(Epj) = pj cannot be
rejected in these cases).

Result 4. “Mostly overweighting”
Aggregate decision weighting functions reveal a pattern consistent with overweight-

ing of rare events both in Description and in Experience. Rare events in E-Under and
desirable rare events in E-NR are two notable exceptions to this pattern.

Result 4 suggests that CPT’s claim that people overweight rare events, can
be found beyond the narrow frame of described risk. In fact, overweighting
seems compatible with cases where uncertainty is experienced. Nonetheless,
the two exceptions: E-NR and E-Under, warrant a note of caution. Examining
more closely the effects that shape these curves is likely to shed more light on
the behavioural implications of these two deviations.

Table 2.5 reports the P-values from MW tests for the same treatment com-
parisons as those summarized in Table 2.2. This time however, we can distin-
guish between different points of the probability interval. From the top panel
of Table 2.5, we see that the largest and most significant DE gap stems from
the Desc vs. E-Under comparison, where sampling bias is present in the form
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of under-representation of rare events. These findings corroborate our model-
free conclusions.
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However, the RDEU mediated analysis offers some new insights too. We
now can detect a significant DE gap in cases where there was no sampling
bias. This version of the DE gap derives from the Desc vs. E-NR comparison
for small values of p. Not surprisingly, this is the same region where E-NR
exhibits apparent underweighting of rare events.

The Desc vs. E-NR version of the gap is the only one that features memory
limitations, suggesting that this cognitive dimension of the gap is important.
Nonetheless, we cannot attribute the entirety of this effect to the absence of
the history table. As we discussed in Section 2.3, this treatment comparison
is likely fostering effects that can be attributed to differences in likelihood
representation and ambiguity.

Result 5. “Beyond sampling bias”
When the role of memory limitations is coupled with that of presentation format

and (potentially) that of ambiguity, we find a significant DE gap for desirable rare
events, even when we control for sampling bias.

The fact that memory limitations cannot account entirely for the Desc vs.
E-NR gap is also evident from the treatment comparisons that isolate each
factor. In the bottom rows of Table 2.5, we see that Memory alone can produce
a weakly significant effect only when p = 0.10. We interpret this as further
support of the “stronger together” finding as summarized in Result 2. Our
model free analysis findings are also echoed in our isolation of sampling bias.
There, similarly to Result 3, we verify that sampling bias, stemming from
under-representation of rare events is producing the widest effect.

Next, we proceed with providing a visual counterpart to the hitherto RDEU
analysis. Figure 2.4 plots weighting curves across all treatments and treatment
derivatives. These curves derive from the median decision weights reported in
Table 2.4. To facilitate their presentation, we fitted a parametric specification
of the weighting curve through a simple non-linear least squares minimisa-
tion, applied at the level of the median decision weight for each treatment
at each probability level. We use the linear-in-log-odds specification of the
weighting curve: w(p) = δpγ

δpγ+(1−p)γ . This parametric function was introduced
by Goldstein and Einhorn (1987) (see also Gonzalez and Wu, 1999) and has
since gained popularity primarily due to its tractability. Parameter δ controls
for the elevation of the curve while parameter γ for its curvature.

Figure 2.4 includes pairwise plots of the weighting curves, according to our
isolation protocol (see Figure 2.1) as well as a comparison between Desc and
E-All. Plotting the shape of each treatment’s curve offers an easy to process,
pictorial counterpart of Table 2.4. This makes it easy to compare the relevant
position of each weighting curve pair so that we can draw qualitative infer-
ences for the effects driving the two curves apart. For instance, focusing on
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Figure 2.4: Weighting curves across treatments

Note. Top row: Comparisons without sampling bias. Bottom row: Comparisons with sampling
bias. Centre: Desc vs. E-All. Legends report the parameters of the weighting function that was
used to fit the curves.

the effect of ambiguity, we find that it exerts a downward force on the weight-
ing curve (wE−Amb tends to be below that of wE−Unamb). This decline is in line
with the suggestion that ambiguous information reduces the willingness to
pay for a given gamble, independently of its winning probability (see Abdel-
laoui et al., 2011b).

The role of likelihood representation does not seem to leave a distinguishable
footprint in our data by itself. Nonetheless, as we saw earlier, its effect could
be interpreted as a type of “catalyst” that amplifies the impact of other effects
when in contact, most noticeably, that of memory.



2.4 results 33

Right after Result 4, which stated that E-Res and E-NR are the only excep-
tions to the typical inverse S-shaped weighting pattern, we asked what where
the behavioural implications from these deviations. We now return to this
question by zeroing in on the weighting curve patterns that isolate the effects
of sampling bias and memory. Notice that E-Res and E-NR are the conditions
that drive the effects of sampling bias and memory. The former forcing par-
ticipants to collect biased samples and the latter depriving them of a memory
aid. Examining the rightmost panels of Figure 2.4 (top right: “Memory”; bot-
tom right:“Sampling Bias/ Under”) reveals that these two factors induce a
tendency towards underweighting. Recall that over-weighting occurs when a
weighting curve is above the diagonal for small values of p and below the
diagonal for high values of p. This pattern is violated in the case of sampling
bias (albeit less strikingly for high values of p) and in the case of memory for
small values of p.

Regarding sampling bias, it might come as little surprise that overweight-
ing of rare events is mitigated when these events are under-represented. From
this perspective, we find the similarity between the effect of memory and that
of sampling bias stemming from under-representation, potentially suggestive
of the mechanism through which memory limitations affect risky decisions in
Experience. If people can only recollect parts of the sequences they sampled,
then their recollections are likely to suffer from the same under-representation
effect that the binomial distribution “imposes” on small samples. Therefore,
memory limitations can be viewed as a special case of cognitive sampling
bias. The fact that this similarity is observed only at the leftmost end of the
interval is likely related to the size of the stakes. The expected value of the
lotteries that contain desirable rare events (small p) is on average £0.9 while
that of the lotteries containing undesirable rare events (high p) £15.1. One
possibility therefore is that in light of these higher stakes, participants exerted
higher effort to retrieve previously encountered information, rendering cog-
nitive under-representation discernible only at the low-stakes region, where
desirable events are rare.

Another intriguing behavioural interpretation of these two exceptions stems
from the statistical comparison of the wE−Under and wE−NR with the diagonal
in the domains of rare events. There, we observe that the apparent under-
weighting is (from a statistical perspective) indistinguishable from the diag-
onal. To the extent that non-linear probability weighting is a distortion of
optimal behaviour10 one could interpret this finding as the product of the
clash of two opposing biases. The behavioural bias to overweight rare events,
partially cancels out the statistical (and/or cognitive) bias to under-represent
rare events in small - collected or recollected - samples. The idea of bias-
complementarity, where an individual can be better off under two antago-

10 For a discussion on the normative superiority of Expected Utility Theory - which emerges as
a special case of CPT with linear weighting - see Wakker (2010).



2.5 conclusion 34

nistic biases rather than only one, is not novel in economics literature. For
example, Waldman (1994) discusses how overconfidence and aversion to ef-
fort can harmoniously coexist. Although tentative, we find the remark that
the behavioural tendency to overweight rare events is nature’s antidote for
our limited memory capacity or our tendency to under-represent rare phe-
nomena in our brief and finite life-spans, a promising future direction.

Lastly, we turn to the central panel of Figure 2.4 where wDesc is plotted
next to wE−All. Unlike the top and bottom row of this figure, this comparison
does not isolate one effect. Rather, it displays the average DE gap we elicit in
this study by juxtaposing Desc with an amalgamation of all Experience treat-
ments. Although both curves are inverse S-shaped, we can see that wE−All lies
beneath (above) wDesc for small (high) levels of p. It follows that:

Result 6. “The Relative Underweighting Hypothesis”
Rare events appear to be overweighted in Experience, but less so than in Descrip-

tion.

According to Result 6, the average DE gap we elicited is not of the type:
“over- vs. under- weighting” but rather of the type: “over- vs. less over- weight-
ing”. Given how the magnitude of our average DE gap coincides with the
literature’s average, it is likely that the “relative underweighting hypothesis”
is overall, an accurate picture of the DE gap.

2.5 conclusion

We reported the results of a lab experiment that investigated the Description
- Experience (DE) gap, a recent empirical phenomenon pointing to a discrep-
ancy of risk attitudes when these are elicited from Description or from Expe-
rience. According to the most popular interpretation of the canonical finding
in this literature, people in Description behave as if overweighting rare events,
relative to their probability. Conversely, people in Experience tend to make
decisions consistent with underweighting rare events.

We taxonomized what we believe are the key factors driving this empiri-
cal discrepancy in three broad categories by distinguishing between factors
pertaining to: informational (sampling bias), preferential (ambiguity) or cog-
nitive (likelihood representation and memory limitations) aspects of decision
making. Then, we implemented a novel 5-treatment design comprising of one
standard version of Description and 4 variations of Experience. Our treatment
protocol was designed to isolate these factors through a series of pairwise
comparisons. At the same time, this design allowed us to elicit a series of DE
gap variants; one for each comparison of Description with a variant of Experi-
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ence. Moreover, to address certain methodological concerns in this literature,
we employed two measuring approaches.

First, we study the gap in the absence of any behavioural model assump-
tions, by focusing only on choice proportions from pair gamble questions. In
doing so, we find that despite our adaptations to the “sampling paradigm” -
the leading experimental framework for studying the phenomenon - our av-
erage elicited DE gap coincides in direction and size with the literature’s av-
erage suggesting that the phenomenon is robust. Moreover, we find that each
factor contributes positively to the phenomenon and therefore, comparisons
entailing more than one factor, induce bigger effects. Among those factors, the
most potent in isolation is sampling bias due to under-representation of rare
events.

Second, assuming a rank dependent utility model, we compare decision-
weighting functions across treatments. These are elicited semi-parametrically
and at the individual level with the use of certainty equivalents. This level
of analysis allowed us to examine probability weighting while controlling for
other aspects of risky behaviour, as well as to explore a variety of probability
regions separately.

We find the two levels of analysis to be complimentary. The model-mediated
approach replicates the findings of the model-free analysis while the use of
weighting functions and their shape allows us to shed some more light on
aspects of behaviour that would otherwise be inaccessible. Most notably, we
observe that a significant DE gap can be found even when controlling for
sampling bias; a result that runs opposite to some previous claims. The role
of memory limitations appears to be pivotal for this gap, especially when com-
bined with the effect of likelihood representation and ambiguity. This finding
has the following two implications.

On the one hand, it serves as a reminder that cognitive aspects of behaviour
are not to be discounted when eliciting risky preferences nor when extrapo-
lating lab findings to policy decisions. To this end, we discussed two intrigu-
ing interpretations of our finding. The first interpretation, parallels memory
limitations to a type of cognitive sampling bias. The statistical property of
the binomial distribution under which rare events are under-represented in
small samples, might also be a property of the brain. Limited recollections of
past events may also under-represent the rare ones. The second interpretation,
draws from the evolutionary principle of bias complementarity. Specifically,
we discuss the possibility that the behavioural bias to overweight rare events
(as captured by several non - EU models such as CPT) may be countering the
statistical (and/or cognitive) bias to under-represent them in small - collected
or recollected - samples. As a result, the corresponding weighting curves are
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often statistically indistinguishable from the diagonal - and therefore from the
normative EU benchmark - in the region of rare events.

On the other hand, despite finding that seeking for a DE gap beyond sam-
pling bias is not a “fool’s errand”, our results recommend that the seeker be
equipped with a magnifying glass, for the gap is small, and a compass, for
it is not ubiquitous. Nonetheless, it is conceivable that outside the lab, these
effects are likely to be amplified on the merit that the experiential elements
we introduce in our Experience variations are not as potent as in every day life.

Lastly, except for when statistical or cognitive under-representations were
present, we find that the standard inverse S-shaped probability weighting pat-
tern is a good fit for Description as well as for Experience. We interpret this
as evidence that CPT’s behavioural tenet that rare events are overweighted,
can be found beyond the narrow frame of described uncertainty. Indeed, our
average DE gap is best summarized by a relative underweighting hypothe-
sis, whereby rare events are overweighted in Experience, only less so than in
Description. Given how our elicited DE gap is very similar to the literature’s
average, we suggest that the external validity of this hypothesis goes well
beyond the context of this study.
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3
T H E R O L E O F I N F O R M AT I O N S E A R C H A N D I T S
I N F L U E N C E O N R I S K P R E F E R E N C E S

*

‘(...) the determination of the value of an item must not be based on its price,
but rather on the utility it yields.’

— Daniel Bernoulli, Specimen Theoriae Novae de Mensura Sortis (1738)

3.1 introduction

Uncertainty pervades almost every sphere of economic activity and under-
standing and predicting the choices people make under uncertain circum-
stances has been a central goal for decision theorists. Among the plethora
of theories of risky behaviour, Cumulative Prospect Theory (henceforth CPT;
Tversky and Kahneman, 1992), has emerged as the descriptive benchmark
for laboratory experiments where lotteries’ properties (list of all possible out-
comes and associated probabilities) are fully described (Barberis, 2013). One
of its key tenets is the claim that people tend to overweight low probability
events. However, outside of the laboratory people do not often have access to
such explicit numerical summaries of uncertainty.

To study more naturalistic situations, psychologists have recently revived
the concept of ‘Decisions From Experience’ (DFE). Within this programme,
the ‘sampling paradigm’ (Hertwig et al., 2004) has emerged as the most com-
mon lab-implementation of DFE. Unlike ‘Decisions From Description’ (DFD)
where the properties of lotteries are explicitly described, subjects in DFE have
to explore risky options by sampling from their content (in a computerised set-
ting) prior to making a decision. On each screen, there are typically two such
options, each with up to two different possible outcomes. Subjects can experi-
ence these outcomes and their relative frequency by clicking on each option.
Sampling helps subjects decide which option they want to draw from in a
final trial involving real monetary consequences. Unlike this final trial, none
of the draws during sampling has any monetary effect. Comparing choices

* A version of Chapter 3 has been published in Theory and Decision:
Kopsacheilis, O. (2018). The role of information search and its influence on risk preferences.
Theory and Decision, 84(3):311-339.

https://doi.org/10.1007/s11238-017-9623-y
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between DFD and DFE, a consistent discrepancy has emerged: in DFD - and
in accord with CPT’s tenets - people make choices as if they overweight rare1

events; whereas, in DFE, it is as if they underweight them (Hertwig et al., 2004).

Several studies (e.g. Hau et al., 2008; Ungemach et al., 2009) have since
replicated and explored the underpinnings of the ‘Description - Experience
gap’ (DE gap), offering both a wealth of insights and some important open
questions (see de Palma et al., 2014, for a recent review). In this study we
address some of those questions by conducting a laboratory experiment with
three treatments: a standard version of DFD and two variations of DFE. Our
contribution to this literature is threefold.

First, we look at sampling patterns in DFE. One of the earliest and most ro-
bust findings is that subjects typically rely on small samples where rare events
tend to be under-represented (Hertwig, 2012). We investigate how people ad-
just their search strategy as a function of the rarity of an event by looking at
the correlation between sampling amount and a lottery’s variance: low vari-
ance lotteries in our context contain rarer events.

Lejarraga et al. (2012) study the similar concept of ‘experienced outcome
variability’ which occurs when a subject samples more than one outcome from
a given option. The authors find that this variability correlates with higher lev-
els of sampling and conclude that people are motivated to sample more from
lotteries for which they have experienced more than one outcome. Mehlhorn
et al. (2014) however, question the direction of this causality by pointing to
an endogeneity concern: the likelihood of observing more than one outcome
increases with the sampling amount. It is therefore possible that high levels
of sampling are causing subjects to experience more than one outcome rather
than the other way around and conclude that the driver of search effort is
‘anticipated’ rather than ‘experienced’ outcome variability. Studying the rela-
tionship between sampling amount and variance contributes to this dialogue
in the following way. First, variance is a structural property of the lottery
and therefore, unlike experienced variability, remains unaffected by sampling
amount. Moreover high variance causes variability: a subject is more likely to
experience more than one outcome from a ‘50− 50’ rather than from a ‘99− 1’
distribution. Therefore, if Lejarraga et al.’s (2012) thesis holds true, we would
expect search effort to correlate positively both with experienced outcome
variability and with variance. If however sampling amount is positively cor-
related with variability but negatively correlated with variance, the evidence
would favour Mehlhorn et al.’s (2014) objection. Given the relation between
variance and rare events, this is equivalent to asking whether subjects sample
more from lotteries with rarer events.

1 It is a convention within this literature to refer to events occurring with p ≤ 0.20 as ‘rare’.
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Another key novelty of our design is the introduction of a history table in
one of our DFE variations: DFE-HT. This table records sampled events and dis-
plays them to subjects when they later evaluate the lottery. We examine how
its presence influences search by comparing DFE-HT with a more standard
version of DFE, DFE-NoHT where there is no such record2. One of the rea-
sons we include this table relates to the role of memory constraints. If subjects
rely significantly on memorisation during sampling then the history table will
help them alleviate part of the associated cognitive load. If this is the case, we
would expect to observe larger samples in DFE-HT than in DFE-NoHT. Be-
cause the role of memory is elusive to pinpoint (Wulff et al., 2018) we tackle
it from two additional angles: by including a test of working memory and by
examining whether sampling undertaken just before the moment of decision
has more impact than sampling undertaken earlier (‘recency effect’).

Second, we search for potential differences on revealed preferences between
these three ways of acquiring information: from description and from au-
tonomous sampling with or without a history table. We record these prefer-
ences via a method of repeated choices between a risky and a safe option (see
bisection method under Section 3.2.1). By comparing choice patterns across
these three treatments we examine whether there is a DE gap in our data and
if so, whether it is amplified or mitigated by the presence of the history table.
Moreover, we elicit CPT’s components (in the gains domain only) at the indi-
vidual level. For this we rely on the methodology introduced by Abdellaoui,
L’Haridon and Paraschiv (2011b), henceforth AHP, who recently applied the
‘source method’ (Abdellaoui et al., 2011a; Tversky and Fox, 1995) to study this
gap. This method maps different sources of uncertainty (such as DFD and
DFE) onto distinct probability weighting functions (weighting functions for
short). By examining the shape of the elicited aggregate weighting functions
we revisit an interesting tension in this literature: if subjects really under-
weight in DFE then CPT would prescribe a S-shaped weighting function as
opposed to the standard inverse S-shaped curve assigned to DFD. We refer to
this potential contrast between the weighting functions in DFD and DFE as
the ’Underweighting Hypothesis’.

Recent papers were unsuccessful in validating this pattern. AHP for exam-
ple report that CPT’s standard inverse S-shaped weighting function fits both
DFD and DFE well and find that the aggregate weighting function in DFE
lies systematically below the function elicited in DFD. They attribute this pat-
tern to a reduced willingness to bet in DFE which is induced by ambiguity
aversion: subjects in DFE are less confident about the properties of the sam-
pled options than subjects in DFD. We will refer to this pattern of the DE

2 Hau et al. (2010) use a similar recording device but in their Records-Treatment subjects were
only allowed to sample a fixed amount of cards and hence its influence to search cannot be
inferred. In our framework subjects can choose instead how much they want to sample.
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gap where both weighting functions are inverse-S shaped but that of DFE lies
beneath that of DFD as the ‘Ambiguity Aversion Hypothesis’.

An attractive feature of AHP’s methodology is that it allows the elicitation
of decision weighting functions at the individual level both parametrically
and non-parametrically. Additionally, this elicitation permits the manipula-
tion of the degree and precision of the elicited curve. We follow this method
and address the tension between the two hypotheses regarding the shape of
weighting curves. Suspecting that rare events may hold the key to this investi-
gation, we build on AHP’s method by eliciting significantly more observations
in the neighbourhood of rare events.

Third, we address an important methodological question that derives from
AHP’s adaptations of the sampling paradigm. There are four noticeable dif-
ferences between the two approaches. First, if an event is never experienced in
the sampling paradigm the subject is likely to remain ignorant about its exis-
tence. This is not the case with the AHP method where the list of outcomes is
always eventually presented to the subject. Second, in the sampling paradigm
sampled events reveal corresponding pecuniary outcomes. In contrast, sam-
pled events are represented by different pairs of colours in the AHP method
which are only later associated with monetary outcomes. Third, in the sam-
pling paradigm subjects sample from two options at a time while in AHP
only from one. Fourth and perhaps most importantly, there is a sharp distinc-
tion between the ways the two methods infer the DE gap. In the sampling
paradigm this is done by comparing frequencies with which riskier options
are chosen over safer ones between DFD and DFE. This comparison does not
need to assume a preference model. In contrast, AHP elicit certainty equiv-
alents (CEs) that make subjects indifferent between keeping or trading the
lottery being evaluated. CEs are then used to estimate CPT’s weighting func-
tions and the DE gap is inferred by comparing their shape between DFD and
DFE.

These differences raise the question of whether the sampling paradigm’s
DE gap is qualitatively similar to that reported by AHP or perhaps a differ-
ent phenomenon altogether. We take a first step in answering this question
by identifying the key DE gap properties inferred through choice proportion
comparisons. We then examine how well they replicate under our valuation
framework which is similar to the one AHP used to infer the DE gap in weight-
ing. We do so by exploiting a feature of AHP’s implementation of the bisection
method: a hybrid between valuation and choice methods that elicits CEs by
repeated choices between a risky and a safe option.

In what follows, Section 3.2.1 describes in detail our experimental and elic-
itation methods. Section 3.3 presents the ensuing results and Section 3.4 dis-
cusses their implications. Lastly, Section 3.5 concludes.
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3.2 methods

3.2.1 Experimental design

We conduct a laboratory experiment with three treatments using a between-
subjects protocol3. These treatments are: a standard version of DFD and two
variations of DFE, DFE-NoHT and DFE-HT.

Treatments consist of 19 time periods and in each period subjects evaluate
a lottery. These lotteries are represented by virtual decks of cards, each con-
taining two types of cards demarcated by different pairs of colours. In each
period subjects first learn about the relative frequency of each colour. These
colours are then linked with monetary outcomes and subjects are asked to
evaluate the corresponding lottery.

The key difference between DFD and the two DFE treatments lies in the way
subjects learn about these relative frequencies. In DFD subjects are informed
via numerical descriptions, framed as one shot probabilities (E.g. ‘90% of the
cards are blue and 10% are red’; see Appendix B.1 for an instance of this).
In contrast, both DFE-treatments require that subjects find out about these
likelihoods by sampling colours from the content of the deck in a separate
sampling stage (Fig. 3.1).

Figure 3.1: Sampling stage

Note. Screen before (left) and after (right) a card is drawn. After drawing a card and seeing
its colour, subjects can replace it in the deck where it gets re-shuffled. They can repeat this
for as long as they want. This sampling process is identical in DFE-NoHT and DFE-HT and
it appears on a separate screen from the evaluation part. Unlike most sampling technologies,
there was no time delay between two consecutive draws. Subjects regulate the time the card
remains on screen by pressing on the ‘replace’ and ‘sample’ buttons at their own discretion.

The first 7 periods correspond to lotteries with the same probability dis-
tribution (but differing outcomes). To communicate this, subjects in DFE go
through only one sampling stage, linked to 7 evaluation parts. Therefore there
were only 13 sampling stages in total in DFE. Lotteries and colour-pairs are
randomized for each subject across periods. The first 7 lotteries are random-
ized only within that first cluster.

3 This is a difference with AHP’s study which uses a within-subjects design where subjects
always made description-based decisions prior to experience-based ones.
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The only difference between the two DFE treatments is the presence (or
absence) of the history table during the evaluation part. After subjects in
DFE-HT finish sampling and proceed to the next screen associated with the
evaluation part, they see a table that has recorded the colours of cards they
encountered during sampling, in the order they saw them (see Fig. 3.2). This
history table could only record up to a fixed number of cards. When during
sampling this capacity was reached, a message appeared on screen informing
subjects that they can continue sampling should they want to, but that their
observations past this point would not be recorded. We chose a maximum
capacity of 57 with the intention of avoiding a straight-forward calculation of
a relative frequency in numeric form, resembling the information in DFD.

Figure 3.2: Evaluation part in DFE-HT

Note. Sampled events from the sampling stage are recorded and dispayed on the top of the
evaluation screen in DFE-HT. This part of the screen remained blank in DFE-NoHT.

The evaluation protocol is common for all three treatments. In this section
events (such as ‘Drawing a yellow card’) are associated with monetary con-
sequences. We use the bisection method as applied by AHP to elicit CEs for
each lottery. An instance of this can be seen at the bottom of Fig. 3.2. Every
bisection process starts with a choice between a lottery and its expected value
offered with certainty. In our experiment there were 5 such iterations for each
lottery. Lotteries are presented under Option A while certain amounts under
Option B. The method proceeds by updating Option B until a value close to
indifference is reached. In Fig. 3.2’s example, if the subject chooses Option
B then the certain outcome will be updated to £9, the midpoint between the
lowest outcome of the lottery and the certain outcome that was just chosen.
If instead Option A is selected, then Option B will be updated to £13, the
midpoint between the highest outcome of the lottery and the certain outcome
that was just rejected.

This elicitation through iterative one-shot choices makes the bisection ro-
bust against the criticism that methods such as the multiple price list have
received (see Erev et al. (2008) for such a criticism). Most importantly for our
analysis is the fact that the very first choice in each new evaluation is always
between a lottery and a monetary outcome of equivalent expected value (EV)
offered with certainty. This is much like the setup that studies in the sampling
paradigm have used to infer the DE gap in choice.
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Finally, after all lotteries were evaluated, subjects go through a standard
forward digit span task where they are asked to recall sequences of digits.
Reporting correctly a digit awards the participant a point4 and increases the
sequence by one digit. After three errors the process is terminated. We use
this task as a proxy for memory capacity.

Sessions were conducted in CeDEx’s laboratory at the University of Not-
tingham. All treatments were programmed in z-Tree (Fischbacher, 2007). In
total, 118 subjects took part in only one of these three treatments: 40 in DFE-
HT, 39 DFE-NoHT and 39 in DFD. We used ORSEE (Greiner, 2015) for the re-
cruitment process. At the end of the experiment one question was randomly
selected and each subject would get paid according to their choice in that
question. Average payment was £11, including a £3 participation fee, for ap-
proximately one-hour sessions.

3.2.2 Elicitation of CPT in DFD and DFE

3.2.2.1 Preliminaries

Let xEp y stand for a binary lottery where x, y are non-negative outcomes5

contingent on mutually exclusive events and x > y. Ep represents an event
occuring with objective probability p and the high (or desirable) outcome x is
always contingent to Ep. According to CPT, given a strictly increasing utility
function: u and a weighting function W, subjects maximize:

xEp y 7→W(Ep)u(x) + (1−W(Ep))u(y) (3.1)

To make (3.1) operational we use the two-stage model idea proposed by
Tversky and Fox (1995) and later developed into the ‘source method’ by Ab-
dellaoui et al. (2011a). According to this model a decision maker first forms a
subjective belief for an uncertain event (P(Ep)) and then transforms this value
into willingness to bet via a probability weighting function:

W(Ep) = wσ(P(Ep)) (3.2)

In (3.2), wσ(·) is the probability weighting function which depends on σ,
the source of uncertainty. Applying (3.2) to (3.1) we get:

xEp y 7→ wσ(P(Ep))u(x) + (1− wσ(P(Ep)))u(y) (3.3)

4 This task was not monetarily incentivised.
5 Restricting analysis to gains reduces CPT to the Rank Dependent Utility model (Quiggin,

1982).
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We can break down (3.3) into: (i) utility over monetary outcomes, u(·), (ii)
probability measure over outcome distribution, P(·) and (iii) source-dependent
probability weighting function, wσ(·). The source method adjusts this third
component according to the environment where the risky choice takes place.

In DFD we are in an environment where probabilities are completely known
and so p = Ep. When analysing DFE on the other hand, we are referring to
an environment where probabilities cannot be calculated exactly but can in-
stead be assessed in an empirical manner by the subject. To apply (3.3) in DFE,
given that the belief P(Ep) is essentially unobservable, we consider the follow-
ing two proxies: objective (or true) probability (p) and experienced probability
( fp). The latter stands for the relative frequency with which an event has been
observed in a sample.

Using true probabilities as proxies for beliefs, although convenient and
widely used in this literature, can be problematic - especially in cases where
sampling bias is prevalent. Therefore our analysis proceeds by reporting (mostly)
experienced probabilities. Although this proxy might still not be perfect, there
has been evidence for a high correlation between elicited beliefs and fp (Fox
and Hadar, 2006).

3.2.2.2 Estimation

Our approach is based on AHP’s adaptation of the semi-parametric method
developed by Abdellaoui et al. (2008). We use 16 lotteries (Table 3.1; lotteries
1-16) which we separate into two clusters. In the first cluster subjects evaluate
7 lotteries with a fixed probability p = 0.25. The reported CEs are then used
for the estimation of a utility function. Assuming the power-function specifi-
cation: u(x) = xα, we need only estimate (W(E0.25), α) for each subject, where
α captures the curvature of the utility function and W(E0.25) the weight as-
signed to E0.25. We do so by minimizing the non-linear least square function:
‖z− ẑ‖2, where zi refers to the observed CE and ẑi:

ẑi = [W(E0.25)(xα
i − yα

i ) + yα
i ]

1
α (3.4)

Table 3.1: Lotteries

Utility Decision weights Control
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

x 4 8 12 16 16 16 16 16 16 16 16 16 16 16 16 16 3 4 4
p .25 .25 .25 .25 .25 .25 .25 .025 .05 .10 .25 .50 .75 .90 .95 .975 .25 .20 .80
y 0 0 0 0 4 8 12 0 0 0 0 0 0 0 0 0 0 0 0

Note. Lotteries 1-7 were used to estimate the utility function while lotteries 8-16 to elicit
weighting functions (both parametrically and non-parametrically). Lotteries 17-19 are not
relevant for the estimation and were included as control tasks due to their similarity with
some of the commonly used lotteries in the early DE gap studies.

In the second cluster subjects evaluate a total of 9 lotteries with fixed high
(x = £16) and low (y = £0) outcomes and varying p. Subsequently, using the
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estimated α from the first cluster of lotteries, we can control for risk curvature
and calculate non-parametrically decision weights6 for each level of p.

Let z′j stand for the observed CE elicited from this second cluster of lotteries.
Then from (3.4) we get that:

W(Epj) =
( z′j

16

)α
, f orj = 1, ..., 9 (3.5)

Finally, we used these decision weights in order to fit the following two-
parameter, linear-in-log-odds weighting function introduced by Goldstein and
Einhorn (1987).

w(p) =
δpγ

δpγ + (1− p)γ
(3.6)

This is the same weighting function that AHP used. Parameter γ controls
curvature with γ < 1 indicating an inverse S-shaped weighting function while
γ > 1 a S-shaped one (values close to 1 point to no curvature). Parameter δ

controls elevation with δ < 1, δ > 1 and δ = 1 pointing to ‘low’, ‘high’
and ‘no’ elevation respectively. Gonzalez and Wu (1999) offer an interesting
psychophysical interpretation for these parameters according to which γ is
interpreted as a measure of probabilistic sophistication while δ as a degree of
optimism.

3.3 results

3.3.1 Sampling

We start by comparing sampling patterns between the two DFE treatments.
Fig. 3.3 foreshadows the importance of the history table in influencing sub-
jects’ search.

In Fig. 3.3, sampling amounts for each subject and in each period are plot-
ted across the two treatments. The spike in DFE-HT occurs right when the
participant has filled this sampling-round’s history table. We infer from this
that the history table’s maximum capacity (always set at 57 draws) was a
very potent cue for search termination in DFE-HT. In its absence, participants’
search-effort followed a more normal-like distribution.

6 Similarly to AHP, decision weights based on Ep for probability targets that were not repre-
sented in subjects’ samples, were obtained by a linear interpolation of the weighting function
at the individual level.
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Figure 3.3: Distribution of draws across DFE-treatments

Note. ‘Max HT’ points to the maximum capacity of the history table (57 draws). Subjects could
sample past that point but their observations would not be recorded in the history table.

Variance and experienced variability

We first examine the effect of experienced-outcome7 variability (variabil-
ity for short). Following Lejarraga et al. (2012) we distinguish between: pos-
itive variability if someone sampled more than one type of cards in a deck
and no variability otherwise. Comparing the means of these two groups we
verify that experiencing positive variability correlates positively with higher
amounts of sampling. Specifically, sampling amount for positive variability
averaged 33.5 draws per lottery while that for no variability 19.5 (p-value
< 0.01, MW test).

We turn next to the relation between sampling amount and a lottery’s vari-
ance where we compute averages of sampling amount for each level of vari-
ance and examine how the two correlate in each sampling treatments. Subjects
only sampled binary lotteries and hence their variance was always strictly pos-
itive. As mentioned earlier, low variance is associated with rare events. For
example a binary lottery offering 1 with probability p and 0 otherwise has
variance: p(1− p) which is maximized when p = 1/2, i.e. when the rarity of
the rarer event is minimized.

In both DFE treatments variance correlates negatively with search effort.
Interestingly, this correlation is significant in DFE-NoHT (Spearman’s ρ =
−0.89, p-value = 0.03) but not in DFE-HT (ρ = −0.6, p-value = 0.24). Fig. 3.4
displays this information.

7 In our study this phenomenon is more accurately described as experienced event variability.
Outcomes refer to monetary consequences while in our sampling stage subjects sampled
events which were only later assigned to outcomes.
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Figure 3.4: Average sampling amount over levels of variance

Note. Points represent average sampling - across all subjects - for different levels of variance in
DFE-NoHT (left panel) and DFE-HT (right panel). The solid straight lines have been estimated
by OLS at the aggregate level. Lotteries like: (x, Ep; y) and (x, E1−p; y) are indistinguishable
during sampling and were pooled together. Lotteries and hence levels of variance were ran-
domized for each subject and so this effect is independent of time period.

Individual level analysis corroborates this finding. We estimate slopes for
each subject from a simple linear regression, where average sampling over
all rounds is regressed on levels of variance (a slope similar to the one in
Fig. 3.4 but for each individual). Although average slopes are negative in
both treatments (DFE-NoHT:−29.61 vs. DFE-HT:−6.98), only in DFE-NoHT
this coefficient is significantly smaller than 0 (p-value < 0.01 for DFE-NoHT
and p-value = 0.146 for DFE-HT, one-sided MW tests). Moreover, the slope is
steeper in DFE-NoHT than in DFE-HT (p-value = 0.043, one-sided MW-test).
Estimating rank correlation coefficients instead of slopes replicates this analy-
sis. In both treatments the average correlation is negative (DFE-NoHT:−0.219,
DFE-HT:−0.053) but only in DFE-NoHT this coefficient is significantly smaller
than 0 (p-value < 0.01 for DFE-NoHT and p-value = 0.259 for DFE-HT, one-
sided MW-tests). Recall from the introduction that lotteries with rarer events
are associated with lower variance. With this in mind we can state the follow-
ing:

Result 1. Decks containing rarer events instigate higher search-effort. The history
table partially mitigates this effect.

Result 1 runs opposite to Lejarraga et al.’s (2012) hypothesis that experi-
enced variability causes higher amount of sampling. We return to this point
in the Discussion.
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Time periods

Fig. 3.5 plots average sampling amount over time. We see that in DFE-NoHT
there is a clear negative trend: subjects possibly get tired of sampling over
time. In DFE-HT the pattern is inverted U-shaped. It is possible that subjects
realize the benefits of the history table after the end of the first sampling
round and adjust their strategy to collecting larger samples. After this orig-
inal upwards-adjustment, sampling amount stabilizes at a high level until it
eventually decays in the last periods.

Figure 3.5: Average sampling amount over periods

Note. Points represent average sampling - across all subjects - for different time-periods in
DFE-NoHT (left panel) and DFE-HT (right panel). Arguably the OLS at the aggregate level
that is used to plot the solid straight lines is not informative for the DFE-HT treatment where
the shape is inverted U.

We detect a significant negative time trend in search effort in DFE-NoHT
(ρ = −0.78; p-value < 0.01). We found no significant such trend in DFE-HT
(ρ = −0.13, p-value = 0.66). This is most likely due to the fact that with the
exception of the first and last periods, sampling amount remained relatively
unaffected by time in DFE-HT. Comparing the variances of average sampling
amounts from periods 2 to 12, we find that the variance in DFE-HT (1.81) is
smaller than the one in DFE-NoHT (6.97). Levene’s test for variance equal-
ity shows that the two variances are significantly different (p-value = 0.028).
When we look only at the second half of the time periods, we verify that even-
tually time affected subjects in DFE-HT too (Spearman’s ρ = −0.90 , p-value
< 0.01). In summary:

Result 2. Sampling amount diminishes over time. This effect is less prominent in
DFE-HT.

Slope and rank correlation analysis at the individual level verify this result.
For brevity we report only rank correlation coefficients. For DFE-NoHT this
coefficient was on average significantly smaller than 0 (ρ = −0.14, p-value
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= 0.033, one-sided MW-test) and significantly smaller than the average for
DFE-HT (p-value = 0.033, one-sided MW-test). The average rank correlation
coefficient for DFE-HT is not significantly different than 0 (rho = 0.04, p-value
= 0.492) but once again, when we focus on the second half of the periods, it
becomes significantly (albeit weakly) negative (ρ = −0.127, p-value = 0.051,
one-sided MW-test).

Memory

We examine whether the history table boosted search effort across the two
treatments. First, we find that the median sampling amount across both treat-
ments was 30, which is unusually high. This number was 7± 2 in most studies
in the sampling paradigm (Hertwig and Pleskac, 2010) and between 15 and 21
in AHP. Consequently, in the current study subjects did not sample both types
of cards in only 10% of the cases (9% in DFE-HT, 11% in DFE-NoHT). In Her-
twig et al. (2004) that number is 44%. Nevertheless, sampling levels were not
significantly different between the two DFE treatments. The median number
of draws for DFE-HT was 30 while that for DFE-NoHT was 28 (p-value= 0.158,
two-sided MW-test). Moreover, the forward digit span task, which served as
our proxy for working memory, did not correlate with sampling amount in
either treatment (ρ = 0.13, p-value = 0.41 and ρ = 0.22, p-value = 0.15 for
DFE-NoHT and DFE-HT respectively).

3.3.2 Choices and preferences

3.3.2.1 The DE gap in choice

In this section we examine the DE gap in choice over lotteries without the
mediation of a preference model. We first look at the choice patterns reported
by two important early studies in this literature: Hertwig et al. (2004) and
Hau et al. (2008). These studies share a common set of decision problems
where a subject is asked to choose between two options with similar EV but
differing variance. We refer to the high variance option as ‘Risky’ and the
low variance option as ‘Safe’. To increase comparability with our study we
consider only those decision problems that entail non-negative outcomes and
where the ‘Safe’ option is a certain outcome (see Appendix A/ Table B.2 for
the full list of decision problems). This restricts the analysis to 2 decision
problems (from a total of 6) which we then characterize according to the de-
sirability of the rare outcome of the ‘Risky’ option. Decision problems with
a rare (un)desirable outcome are referred to as ‘(un)desirable rare’. Let ‘%R’
stand for the percentage with which subjects chose ‘Risky’ over ‘Safe’. Fig.
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3.6 plots %R across treatments in these two studies for ‘desirable rare’ and
‘undesirable rare’.

Figure 3.6: Choice patterns in early DE gap studies

Note. Percentage choosing ‘Risky’ over ‘Safe’ across studies ((a) and (b)), treatments (DFD
and DFE) and decision problems (‘desirable rare’ and ‘undesirable rare’). (a) Hertwig et al.
(2004) (b) Hau et al. (2008). Desirable rare: Risky= (32, E0.1; 0) vs. Safe= (3, E1.0). Undesirable
rare: Risky= (4, E0.8; 0) vs. Safe= (3, E1.0).

Table 3.2 lists the properties of the early DE gap according to the observed
choice-patterns. Properties 1 and 2 derive from comparisons between DFD
and DFE while Properties 3 and 4 from comparisons within each treatment.
Property 1 is that people choose ‘Risky’ over ‘Safe’ more often in DFD than in
DFE when the rare outcome is desirable while Property 2 is that the opposite
holds true when the rare outcome is undesirable instead. Property 3 is that
subjects in DFD choose ‘Risky’ over ‘Safe’ more often when the rare outcome
is undesirable than when it is desirable while Property 4 is that this pattern is
reversed when subjects make decisions in DFE.

Table 3.2: Properties of the original DE gap in choice

# Choice pattern Condition

1. %RDFD > %RDFE Desirable rare
2. %RDFD < %RDFE Undesirable rare
3. %RDesirable > %RUndesirable DFD
4. %RDesirable < %RUndesirable DFE

Fig. 3.7 plots results from our study using an analysis similar to that summa-
rized in Fig. 3.6. Recall that although our method relies on lottery-valuations,
these valuations take place via repeated choices. For this analysis we use lot-
teries 8-16 from Table 3.1). These are the same lotteries which we later use in
order to elicit weighting functions and therefore appropriate to compare the
two types of DE gap: that inferred by choice-patterns (sampling paradigm)
and that inferred by weighting patterns (AHP). We separate these lotteries
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into two clusters: those with p ≤ 0.25 and those with p ≥ 0.75. Decision
problems entailing a choice between a lottery with p ≤ 0.25 and its EV are
characterised as ‘desirable rare’ since the rare8 event is associated with the
high outcome (£16). Decision problems entailing a choice between a lottery
with p ≥ 0.25 and its EV are characterised as ‘undesirable rare’ since the rare
event is associated with the low outcome (£0). This analysis leaves out only
the lottery with the 50− 50 distribution where no event can be considered to
be rarer than the other.

Figure 3.7: Choice patterns in this study

Note. Percentage choosing ‘Risky’ (%R) over ‘Safe’ in the current study across treatments
(DFD, DFE-HT and DFE-NoHT) and types of decision problems (desirable and undesirable
rare). ‘Risky’ refers always to the lottery and ‘Safe’ to its expected value. We consider lotteries
8-16 from Table 3.1 and cluster choices in the following way: ‘Desirable rare’: Risky = (16, Ep; 0)
for p ≤ 0.25. ‘Undesirable rare’: Risky = (16, Ep; 0) for p ≥ 0.75. ‘ns’: not significant, ‘***’: p-
value< 0.01, ‘**’: p-value< 0.05

According to Fig. 3.7, choice patterns in DFD are significantly different
than in DFE-HT and DFE-NoHT for ‘desirable rare’ (p-value = 0.016 and
p=value=0.018 for DFD vs. DFE-HT and DFD vs. DFE-NoHT respectively,
two-sided MW-test9). For the ‘undesirable rare’ however, only the DFD vs.
DFE-NoHT comparison is significant (p-value < 0.01 for DFD vs. DFE-NoHT
and p-value = 0.504 for DFD vs. DFE-HT, two-sided MW-test). Result 3 sum-
marizes this analysis.

Result 3. Both versions of DFE generate a significant DE gap. This gap is smaller
in the presence of the history table.

Moreover, comparing the choice patterns in Fig. 3.7 with Table 3.2 we verify
that 3 out of these 4 properties of the early DE gap hold in this analysis.
However, the fact that %R in DFE is higher in the ‘desirable rare’ than in the
‘undesirable rare’ violates Property 4. With this in mind, we claim that:

8 We replicate our results when considering stricter thresholds for rare events such as p < 0.25
or p < 0.10.

9 To control for repeated observations, we first compute the average of %R for each individual
and then compare these averages across treatments
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Result 4. The DE gap we capture in this study is qualitatively similar but not iden-
tical to the original phenomenon.

We examine two hypotheses for the low level of %RUndesirable in DFE. First
we consider the possibility that this is due to the asymmetry in the EV of the
risky option between early DE gap studies (3.2) and the current one (14.3 on
average). Second, we conjecture that the difference is driven by information-
asymmetries between the two paradigms: unlike the sampling paradigm, sub-
jects in our study were always informed about the existence of the second
outcome. Moreover, due to the higher levels of sampling we recorded, rare
events were under-represented less often than in earlier studies.

With respect to the first hypothesis, we examine choices from control lot-
tery: (4, E0.8; 0) and observe that the pattern is very similar to that in Fig. 3.7
(%RDFD = 26%, %RDFE−HT = 30%, %RDFE−NoHT = 31%; see Appendix A/
Table B.3 for details on the choice patterns of all ‘control’ lotteries). For the
second hypothesis we repeated the analysis in Fig. 3.7 but considering only
cases in which the probability of the rare event has been under-represented.
We see that in this case all 4 properties of the early DE gap hold for the com-
parison between DFD and DFE-NoHT (but still not for that between DFD
and DFE-HT; see Appendix A/ Fig. B.2) and therefore conclude that the sec-
ond hypothesis is more likely to be the explanation behind the violation of
Property 4.

One last thing to notice about Fig. 3.7 is that risk aversion (as inferred by
%R) is probability dependent. In DFD subjects seem to be overall risk seeking
(%R > 50%) for small gain probabilities (i.e. when the rare event is desirable)
but risk averse (%R < 50%) for high gain probabilities (i.e. when the rare event
is undesirable). This is in accord with CPT’s fourfold pattern. In DFE, subjects
seem to be overall risk neutral (%R ' 50%) for small gain probabilities but risk
averse (albeit comparatively less so than in DFD) for high gain probabilities.

3.3.2.2 The DE gap in preferences

We proceed by incorporating in the analysis all iterations of the bisection and
extracting a CE for each lottery. We use these CEs in order to estimate CPT’s
components as described under Section 3.2.2.2. We start by comparing utility
curvature (α) across treatments. Median values in all treatments suggest a
near linear utility curvature (Table 3.3). These values are higher than those
reported by AHP (α = 0.79 for DFD and α = 0.82 for DFE) as well as than
the usual values reported by studies with medium to low awards (slightly
less than 1; see Booij et al., 2010). They are nevertheless within the typically
reported range (see Epper et al., 2011; Murad et al., 2016 for values of α slightly
higher than 1). By classifying subjects according to utility curvature (α < 0.9
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as concave, α ∈ [0.9, 1.1] as linear and α > 1.1 as convex), we see that overall
most of the subjects (57%) are best characterized by a utility function that
is either concave or linear rather than convex (see Appendix A/ Table B.4
for more details). There were no significant differences between α’s across
treatments (p-value= 0.77, Kruskal-Wallis).

Table 3.3: Median estimates of (α, δ, γ, )

Utility Curvature Weighting Elevation Weighting Curvature
Treatment (α) (δ) (γ)

DFD 1.06 0.53 0.49
(0.37) (0.13) (0.12)

DFE-HT 1.06 0.48 0.52
(0.35) (0.10) (0.07)

DFE-NoHT 1.02 0.44 0.67
(0.35) (0.11) (0.08)

Note. For DFE treatments, the δ’s and γ’s are estimated according to experienced probabilities.
Median standard errors from the estimation procedure are reported in parentheses. Overall,
parameters were equally dispersed across treatments; equality of variance was never rejected
(p-value=0.199 for α, 0.722 for γ and 0.804 for δ, Levene’s tests.) Interquartile ranges were:
[0.83− 1.49] for α, [0.20− 0.91] for δ and [0.37− 0.87] for γ.

Having estimated α, we can use Equation 3.5 to calculate decision weights
for each individual. Treatment-level weighting functions can be obtained ei-
ther by aggregating weights across subjects for each level of probability (non-
parametric analysis) or by fitting the parameters from Equation 3.6 for each
subject and aggregating (γ, δ) across all subjects (parametric-analysis)10. We
begin with the latter.

Parametric analysis

Kruskal-Wallis tests detect significant differences between and γ-values across
the three treatments (p-value = 0.038) but not for δ-values (p-value = 0.501).
Focusing on γ’s, the difference between γDFD and γNoHT is significant (p-value=
0.015 ,two-sided MW-test) while that between γDFD and γHT only weakly so (p-
value= 0.065, two-sided MW-test). Moreover the hypothesis that γNoHT = γHT

cannot be rejected ( p-value = 0.485, two-sided MW test).

Fig. 3.8 plots differences in weighting between description and the two ver-
sions of experience: with (left panel) and without (right panel) a history ta-
ble. The proximity between the experienced-based parameter estimates (solid
lines) and objective-based such estimates (dashed lines), holds testament to

10 See Appendix A/ Fig. B.3 for a demonstration of this process at the individual level.
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the high amount of sampling which brought experienced and objective prob-
abilities very close. In fact, with the exception of p = 0.975 for DFE-HT, we
were never able to reject the hypothesis that fp = p (see Appendix A/ Table
B.1 for details). A corollary to this is that the role of sampling bias was - at
least at the aggregate level - quite limited.

Figure 3.8: Comparison of parametric weighting functions between DFE and DFD

Note. For DFE, dashed lines are estimated according to true probabilities (p) while solid lines
are based on experienced probabilities ( fp).

Unlike what the ‘underweighting hypothesis’ would have predicted, Fig.
3.8 suggests that the common inverse S-shaped weighting function accom-
modates well DFD as well as both DFE treatments. Moreover, the relation
between wDFD and both versions of wDFE provides little support for the ‘am-
biguity aversion hypothesis’ according to which wDFE should lie beneath
wDFD throughout the probability interval. Although this is true for small to
medium values of p, the pattern reverses for high values of p (this is arguably
clearer in the case of DFE-NoHT where the turning point occurs somewhere in
p ∈ [0.6, 0.8]). Keeping in mind that rare events are located near the edges of
the probability interval (desirable rare events close to p = 0 and undesirable
rare events close to p = 1), we can summarize Fig. 3.8’s pattern as follows:

Result 5. The ‘Relative Underweighting Hypothesis’: Subjects overweight rare events
in DFD and in DFE; this overweighting is less pronounced in DFE.

At the individual level, we categorize the curvature of weighting functions
as ‘inverse-S’ when γ < 0.9, as ‘S-shaped’ when γ > 1.1 and as ‘no curvature’
when γ ∈ [0.9, 1.1]. There are approximately twice as many subjects com-
patible with an ‘S-shaped’ weighting function in DFE (DFE-HT: 10 subjects,
DFE-NoHT: 9 subjects) as in DFD (5 subjects). Interestingly, most of these S-
shaped curves come from subjects who sampled less than the median amount
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of that treatment: 60% in DFE-HT and 89% in DFE-NoHT (see more details
of this classification in Appendix A/ Table B.4). A rank correlation test be-
tween sampling behaviour (1 if someone sampled less or equal to the median
amount and 0 if more) and curvature of the weighting function (1 if γ > 1.1
and 0 otherwise) verifies that there is a significant correlation between the two
(ρ = 0.318, p− value < 0.01)11. No such correlation was detected for similar
classifications of δ (ρ = −0.038, p− value = 0.736).

Result 6. S-shaped weighting curves are more common to subjects who sample less.

Result 6 may be very useful in explaining why we find so little support
of the ‘underweighting hypothesis’; we return to this point in the discussion
section.

Non-parametric analysis

Table 3.4 reports average decision weights - computed according to experi-
enced probabilities ( fp) - across individuals according to probability level and
treatment12.

Table 3.4: Non-parametric decision weights (averages)

Probability DFD DFE-HT DFE-NoHT DFD vs. p DFE-HT vs. p DFE-NoHT vs. p
p wDFD wHT wNoHT t39 t40 t39

0.025 0.16 0.11 0.09 4.58*** 2.38** 2.35**
0.05 0.18 0.16 0.12 4.24*** 2.99*** 2.82***
0.10 0.20 0.18 0.15 3.23*** 2.36** 2.12**
0.25 0.25 0.21 0.21 -0.09ns -1.43ns 1.44ns

0.50 0.36 0.30 0.31 -3.64*** -5.52*** -5.52***
0.75 0.49 0.47 0.49 -6.41*** -6.31*** -6.31***
0.90 0.63 0.65 0.65 -5.48*** -5.20*** -5.19***
0.95 0.60 0.69 0.69 -7.11*** -5.07*** -5.02***

0.975 0.71 0.72 0.74 -5.43*** -4.07*** -4.07***
Columns 2-4: Average decision weights for each level of probability (p). For brevity, only
weights that have been estimated according to experienced probabilities ( fp) are reported.
Columns 5-7: two-sided t-statistics for the comparison with the identity line. With the excep-
tion of p = 0.25, low probabilities are significantly overweighted (see ‘+’ sign on t-statistic)
and medium to high probabilities significantly underweighted (see ‘−’ sign on t-statistic).
Two sided MW-tests confirm this analysis.

Qualitatively the non-parametric analysis corroborates Result 5: aggregate
decision weights point to inverse S-shaped weighting functions in all treat-

11 This result is robust for different classifications of S-shaped curves such as with γ > 1. We
used γ’s based on decision weights from objective probabilities. The reason we did not use
weights corrected for fp was so that we capture the effect of mis-representing objective prob-
abilities (p) in low sampling cases. When we perform the same analysis adjusted for fp we
find that the correlation is reduced but still significant (ρ = 0.245, p-value = 0.029).

12 See Appendix A/ Table B.5 for a comparison of the median decision weights between this
study and AHP.
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ments with a cross-over point in the vicinity of p = 0.25. This is supported
by statistical analysis comparing decision weights with the diagonal (see last
three columns of Table 3.4). Moreover, this overweighting appears to be par-
tially mitigated for rare events: wDFE < wDFD for p < 0.25 and (1− wDFE) <
(1−wDFD) for p > 0.75. Statistical analysis however warrants a note of caution
regarding the last assertion. A 3× 9 ANOVA does not detect any significant
differences between the 3 treatments (p-value=0.412)13.

3.3.2.3 Recency effects

We explore whether events experienced towards the end of the sampling pro-
cess influenced choices more than events that were sampled in the beginning.
Incorporating a similar idea with AHP, we first compute decision weights
corresponding to the experienced probability of the first ( f 1) and second ( f 2)
half of the sampling process.14 We then compare those decision weights with
that corresponding to the experienced probability of the entire sampling pro-
cess ( f ). Had recency effects been present, we would expect the final deci-
sion weight to be closer to the decision weight from the second half so that:
|wσ( f )− wσ( f 1)| > |wσ( f )− wσ( f 2)|.

Notwithstanding, parametric (2 × 9 ANOVA with repeated measures for
the first and second half) and non parametric (two-sided MW-tests for each
level of p with Bonferroni corrections) did not detect significant asymmetries
between the early and the later observations of the sampling process. We thus
conclude that there were no recency effects.

3.4 discussion

Variance vs. Variability

We began by exploring the effect on sampling amount of two related con-
cepts: experienced event variability and a lottery’s variance. We verify that
experienced variability correlates with higher levels of sampling. Does that
mean however that experiencing variability causes subjects to sample more as
Lejarraga et al. (2012) have claimed? Or is it rather that high levels of sam-
pling lead subjects to sample more than one event? To clarify the direction

13 Similarly, conducting two-sided MW-tests with Bonferroni corrections, we can never reject
the hypothesis that decision weights are equal between DFD and DFE-HT nor between DFD
and DFE-NoHT for any level of p.

14 AHP use a similar approach but by comparing absolute differences between revealed and ex-
perienced probabilities. Revealed probabilities are estimates of P(Ep), the likelihood assigned
by the subject to event Ep (see expression (3.2) in Section 3.2.2.1). For more details see AHP
pp. 1890.
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of causality we examined the role of variance which is a proxy for experi-
enced variability: lotteries with higher variance are more likely to generate
experienced variability. At the same time, unlike experienced variability, vari-
ance is a structural property of the lottery and thus cannot be affected by
the amount of sampling. In our setting, low variance is associated with rarer
events. Therefore, if experienced variability causes higher levels of sampling,
we would expect high-variance lotteries to be associated with higher levels of
sampling. Instead, Fig. 3.4 and Result 1 point to the opposite: subjects sam-
ple more from lotteries with low variance, or equivalently, lotteries containing
rarer events. According to a property of the binomial distribution, rare events
tend to be revealed later on during search. Consequently, Result 1 has more in
common with Mehlhorn et al.’s (2014) suggestion that it is anticipated rather
than experienced variability that instigates higher levels of sampling.

Does the History Table crowd out attention from the sampling process?

As Result 1 suggests, the increased sensitivity towards rare events was at-
tenuated in the anticipation of the history table. Result 2, highlights another
such search-policy rigidity in DFE-HT. Unlike the clear negative time-trend
in DFE-NoHT, average sampling in DFE-HT has a significantly less steep de-
cline. In fact, excluding first and last periods, average sampling remained
relatively stable in DFE-HT (we observed significantly lower variance of av-
erage sampling compared to DFE-NoHT during these periods). One possible
overarching explanation for these results is that the anticipation of the history
table makes cues unrelated to it less salient. Fig. 3.3 can perhaps be inter-
preted along these lines. The frequency with which subjects in DFE-HT chose
to collect a sample just equal to the table’s maximum capacity, corroborates
the hypothesis that cues such as time and variance were overriden by that of
filling up the history table.

Memory limits

Taking into account their elusive nature we chose to approach the potential
effects of memory bounds from three different angles. First, we asked whether
alleviating the cognitive load of memorizing via the history table can boost
search effort. Second, we examined whether individual idiosyncratic mem-
ory capacity correlates with the size of drawn samples. Finally, we examined
whether later observations exert more influence on final decisions when com-
pared to earlier ones. Despite this multidimensional approach we were unable
to detect a clear effect in all three accounts. Subjects’ sample size did not vary
significantly between DFE-HT and DFE-NoHT nor did it correlate with the
forward digit span task. Lastly, we find no evidence for recency effects.
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Given the intuitive appeal of the role of memory bounds this absence of
effects may seem counter-intuitive. This impression is only strengthened by
the fact that in our study samples were unusually high, which should have
amplified the impact of the role of memory. However, these results add to
an increasing amount of evidence that challenges the importance of memory
bounds (e.g. Rakow et al., 2008; Wulff et al., 2018, for a relevant discussion).
To this end we welcome studies that seek to understand how decisions are
informed by exploring mechanisms beyond plain memorisation.

Why so much sampling?

Subjects in both versions of our DFE treatments, were much more eager
to explore options than what has commonly been reported. One explanation
for this search ‘explosion’ relates to the absence of waiting time between two
consecutive draws. In our experiment subjects were able to regulate the time
the card remains on their screen. On the one hand, this feature increased click-
ing effort as subjects had to click twice -instead of only once which is more
typical- before observing a new card: first to replace the previously drawn
card and then to sample a new one. On the other hand, this adaptation made
subjects’ role during exploration more active and potentially faster (should
subjects choose to make it so). It has been argued that in DFE, subjects are
the ‘masters of their information search’ (Hills and Hertwig, 2010) and in this
sense this study’s framework takes this exploration-ownership one step fur-
ther. Perhaps the more subjects relate to the role of an actor instead of that of
an observer, the more encouraged they feel to explore further. A more prosaic
explanation would be that the cost of clicking twice is a small price to pay
for removing waiting time and therefore our intervention simply reduced the
opportunity cost of sampling.

The DE gap across different elicitation methods

The differences between AHP’s methodology (which this study adopts)
with that of the sampling paradigm in inferring a DE gap, have raised con-
cerns regarding the compatibility of the findings within these two approaches.
Results 3 and 4 are reassuring in that respect. Result 3 shows that our method
can detect a significant DE gap even without the mediation of a preference
model, by focusing only on choice patterns. These choices are elicited from
the first iteration of the bisection method which entails a choice between a
risky and a safe option of equal EV; a setting very similar to that in early DE
gap studies. Moreover, according to Result 4 this DE gap is qualitatively sim-
ilar to that elicited in the sampling paradigm. Just as in Hertwig et al. (2004),
subjects in our study chose the risky option more frequently in DFD than
in DFE when rare events were associated with desirable outcomes while the



3.4 discussion 62

opposite was true when the outcomes were undesirable. However, unlike in
the early DE gap studies, subjects in our DFE treatments were overly hesitant
in choosing ‘Risky’ in ‘undesirable rare’ decision problems. We discuss two
possible explanations for this.

First, the fact that subjects knew about the existence of the (rare) undesir-
able outcome might have contributed to their hesitation of choosing ‘Risky’.
This is in accord with the ‘mere presentation effect’ discussed in Erev et al.
(2008). Unlike the sampling paradigm where if this outcome was never sam-
pled subjects might had never inferred its existence, AHP’s method requires
that subjects eventually found out about this outcome. Moreover, the fact that
subjects in our study sampled a lot and were overall very well informed about
the likelihood of the undesirable outcome might have amplified this effect.
Indeed, when we look only in samples where this probability was under-
represented we see that subjects become more willing to take the risky option
in such ‘undesirable rare’ decision problems. Second, we consider the dis-
crepancy between the EV of lotteries under consideration. In earlier studies,
subjects typically faced lotteries with an EV of approximately £3 (or less). In
our study that EV was somewhere between £12 and £15.6 which could have
made subjects more hesitant to reject the safe option. Given however that our
analysis of the control lottery: (4, E0.8; 0) replicated this unusually high hesita-
tion we believe that our first hypothesis is more likely to be the case.

The relative underweighting hypothesis

Our elicited weighting patterns provided little support for both the ‘un-
derweighting’ and the ‘ambiguity aversion’ hypotheses. With respect to the
first, our data in all treatments reveal -at the aggregate level- an inverse S-
shaped weighting function which prescribes overweighting instead of under-
weighting of rare events. Moreover, unlike the second hypothesis, DFE-elicited
weighting curves do not lie entirely beneath that elicited in DFD. Instead, our
pattern seems to fit best under a third hypothesis that can be interpreted as a
modest version of the underweighting one. The ‘relative underweighting hy-
pothesis’ as summarized by Result 5 posits that although subjects overweight
rare events in DFE, they do it less so than in DFD.

Regarding the discord with the ‘underweighting hypothesis’, Result 5 is not
entirely surprising. Over the last few years, an increasing amount of studies
have also failed to detect a S-shaped weighting curve, irrespective of the elic-
itation method they followed (e.g. AHP; Aydogan and Gao, 2016; Glöckner
et al., 2016). One possible explanation for the absence of a S-shaped pat-
tern in our DFE treatments is related to the high levels of sampling amount
we recorded. Indeed, Result 6 seems to point in that direction as S-shaped
weighting functions are prevalent among subjects who sample less. This is
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not surprising: subjects who do not sample enough are more likely to under-
represent and thus underweight rare events. It is therefore plausible that if
our levels of sampling had been significantly lower, we might have seen more
evidence for the ‘underweighting hypothesis’.

With respect to the disagreement with the ‘ambiguity aversion hypothe-
sis’ we suggest the following explanation. The fact that subjects in our study
collected larger samples than those in AHP might have affected their confi-
dence during the evaluation of the lotteries. It is true that subjects in DFE
can never be entirely certain regarding the underlying probability distribu-
tion. Nevertheless, richer information sets - such as the ones collected in our
study - could have increased their confidence about those likelihoods and con-
sequently reduced the associated ambiguity aversion.

Does the history table bridge the DE gap?

Lastly, we turn to a comparison of the DE gap between the two versions of
experience that caused it. Result 3 suggests that although the gap is significant
in both cases, its size is not symmetric. Specifically, our choice patterns reveal
a bigger DE gap between DFD and DFE-NoHT. This asymmetry is corrobo-
rated by the weighting function comparison -wDFD and wHT are ‘closer’ than
wDFD and wNoHT- as well as by the resistance of DFE-HT to ‘conform’ to all 4
properties of the original DE gap, even when we focus on under-represented
probabilities.

To the extent that the analogical display of previously sampled events in
DFE-HT has a similar ‘descriptive’ effect to the numerical summaries of un-
certainty in DFD, this result should not come as a surprise. We interpret this
‘bridging’ of the gap as evidence that the DE gap should not be seen as a
dichotomy but rather as a continuum over different levels of uncertainty.

3.5 conclusion

We conduct a lab-experiment and examine how people search for informa-
tion about uncertainty and how this influences their ensuing risky choices.
We find that besides the properties of the risky options at hand, the environ-
ment in which these options are presented and evaluated is also important.
With respect to search patterns in DFE, we show that a lottery’s variance is
negatively correlated with sampling amount which in this context means that
people sample more from options with rarer events. We also find that sam-
pling amount decreases over time periods. Both of these findings become less
salient after the introduction of a history table which records and displays
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previously sampled outcomes at the time of the lottery evaluation. The cue
that stands out in that case is the maximum capacity of that table. Moreover,
our examination of the role of memory in sampling suggests that memory
bounds were not very influential on search policies.

With respect to choices and preferences we compare responses between two
variations of DFE: with (DFE-HT) and without a history table (DFE-NoHT)
and compare them with those elicited from a standard version of DFD. Both of
these comparisons generate a significant DE gap which is mitigated, however,
by the inclusion of the history table. We interpret these choices through the
CPT preference model by eliciting risk curvature (parametrically) and weight-
ing functions (both parametrically and non-parametrically) at the individual
level. Although utility curvature does not differ across treatments, the shape
of decision weighting functions does. In our version of the DE gap in weight-
ing, subjects in DFE overweight rare events but less so than in DFD. We show
that the absence of under-weighting in DFE can partially be explained by the
unusually high levels of sampling observed in our study.

Lastly, we report a measure that allows us to compare the type of gap found
in studies using valuation methods -like this one- with the type of gap elicited
in studies that use choice methods. We show that the phenomenon is qualita-
tively similar but not identical between the two methods.
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4
T H E D E S C R I P T I O N - E X P E R I E N C E G A P I N
C O O P E R AT I O N

*

“In critical moments men sometimes see exactly what they wish to see”

— Mr. Spock, Star Trek - The Tholian Web’ (1968)

4.1 introduction

Social dilemmas are situations where individually rational actions lead to
undesirable social outcomes. The human tendency to neglect their immedi-
ate material interests and cooperate in anonymous, one-shot such situations
-like the one-shot Prisoner’s Dilemma (PD) game- although puzzling, is well-
documented (Sally, 1995). One prominent explanation argues that people are
conditionally cooperative (Fehr and Fischbacher, 2003; Fehr and Gächter, 2002;
Fischbacher and Gächter, 2010). They are willing to cooperate if they believe
others will do the same. In many circumstances however, the parties involved
in a social interaction are uncertain about others’ intentions. In these cases,
conditional cooperation necessitates the formation of expectations about the
likelihood of cooperation by others. Although the importance of such expecta-
tions in social dilemmas has been highlighted before (Dijkstra and van Assen,
2017), the question of how cooperation depends on the format in which un-
certain information is obtained remains relatively unexplored.

As recent evidence from individual risky decisions suggests, the distinc-
tion can be important. According to a series of lab and online experiments,
summarized hereon under the umbrella term: the ‘Description – Experience
(DE) gap’, risky decisions might differ markedly as a function of how infor-
mation about uncertainty was obtained (Barron and Erev, 2003; Hertwig et al.,
2004; Weber et al., 2004). In these experiments, participants make a series of
choices between risky options. In the Description condition, the properties of
these options are communicated through explicit and numerical formats. Con-
versely, in the Experience condition, participants are asked to discover these
properties by sampling from these options’ distribution of outcomes.

* This chapter is based on joint work with Ozan Isler and Dennie van Dolder.
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The most prevalent interpretation of the canonical finding in this literature
posits that when people make decisions from description –like when consult-
ing statistics on house fires prior to deciding whether to purchase the corre-
sponding insurance— they tend to behave as if overweighting the impact of
rare events. Conversely, when decisions are informed from past experiences
–like contemplating to buy a high security bike lock based on experience with
bike theft— people tend to behave as if underweighting the impact of rare
events.

Sampling bias seems to be (at least) part of the explanation for this empirical
disparity. Participants in Experience usually collect small samples that tend
to underrepresent rare events. However, the gap has been found to persist
even when sampling bias is eliminated (Hau et al., 2008). One of the leading
explanations for the existence of a gap beyond sampling bias is attributed
to attitudes towards ambiguity (Abdellaoui et al., 2011). When people make
decisions from description they are fully aware of outcomes and outcome-
probabilities. In decisions from experience however, this information is am-
biguous. Ever since the famous urn-experiments by Ellsberg (1961), we know
that the two domains can give rise to very different choices.

Despite voluminous research on the DE gap in individual risky decision
making (see Wulff et al., 2018, for a recent review), its potential implications
for social decision making remain largely unexplored. In this study, we ask
whether the format in which social information is obtained -descriptive or
experiential- influences cooperation in social dilemmas. According to the in-
sights drawn from the canonical finding in the DE gap literature, we might
expect that conditional cooperators would put more emphasis on rare events
when these are described rather than experienced. Consequently, we hypoth-
esize that conditional cooperators in Description will cooperate more when
cooperation is rare and defect more when defection is rare than conditional
cooperators in Experience. On the other hand, it is also possible that drivers of
the DE gap in individual risky decisions, influence behaviour differentially in
a social context. For example, Bolton and Ockenfels (2010) show that people’s
risk attitudes are affected by social comparisons .

To examine these hypotheses, we conduct an online experiment where par-
ticipants play versions of the one-shot PD. In standard implementations of
this game, people infer others’ actions from the payoff matrix. In our study,
participants have an additional source to consult. Specifically, they can learn
something about the likelihood that their match cooperates. This modification
allows us to systematically vary the likelihood of being matched with a coop-
erative agent. The information about this cooperation likelihood, is acquired
by each participant through one of three conditions: Description or one of two
Experience conditions. We introduce two variations of Experience to examine
the properties of a potential DE gap in this social context beyond sampling
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bias. One in which participants can make as many observations as they wish
and one in which the sample size of observations is fixed to match the relative
frequency that was communicated to participants in Description.

This study’s contribution is twofold. First, we explore if and how the format
of acquiring information about the cooperation rates in one’s environment af-
fects ensuing cooperative behaviour. Information formats have been found to
systematically influence behaviour in individual decision making. Given that
the vast literature on social dilemma experiments does not make this distinc-
tion explicitly, it is important to know if information format affects behaviour
in such social contexts. Second, we develop an experimental protocol that al-
lows systematic manipulations of expectations regarding the likelihood of co-
operation. Our protocol has the added methodological advantage of making
the provision of false information unnecessary. Previous experimental designs
achieve similar manipulations by telling people that they interact with other
humans when in fact their interaction is with a computer algorithm (Santa
et al., 2018). In our experiment actions and payoffs are interlinked among
participants and our instructions do not contain untrue statements.

In what follows, Section 4.2 reviews the relevant background in greater de-
tail, Section 4.3 describes the experimental design while Section 4.4 presents
our results. Finally, Section 4.5 discusses these results and Section 4.6 con-
cludes.

4.2 background

There is sizeable evidence that people often behave cooperatively even when
the selfish action offers a higher material payoff. This finding holds even in
one-shot interactions where reputation effects and other factors are meticu-
lously muted. A relevant meta-analysis finds that approximately half (47%) of
participants cooperate in such situations (Sally, 1995).

The principal driver of this cooperative behaviour has been argued to rest
on people who cooperate as long as others are doing the same (Fehr and
Fischbacher, 2003). We refer to these people as conditional cooperators. As
Dijkstra and van Assen (2017) point out, under uncertainty, when the action
of one’s match is unknown, conditional cooperators will cooperate as long as
they believe that there is a good enough chance of a mutual cooperative out-
come. What constitutes a ‘good enough chance’ varies across people with
some maintaining lower cooperation thresholds than others. On the other
hand, there are also people who do not condition their behaviour on others’
cooperative actions (or intentions thereof). We refer to people who cooper-
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ate unconditionally as unconditional cooperators while people who would
always defect as free riders.1

In this study our goal is to examine whether the way people infer the likeli-
hood of cooperation can influence their cooperative behaviour. To this end, we
need a framework where such cooperative expectations can be exogenously
manipulated. Popular designs in this literature typically do not much these
criteria precisely. For example, in the repeated PD game with feedback, one
can find out over time about the likelihood of her match cooperating (An-
dreoni and Miller, 1993). But this probability is endogenous as choosing to
cooperate or defect in time t affects behaviour in t + 1.

One-shot games have the advantage of controlling for these strategic con-
cerns. One way to manipulate expectations in a one-shot game is to allow
participants to play the game repeatedly but employ a matching protocol that
randomly assigns them to a new match. If participants receive anonymous
feedback for the actions selected at the end of each round (Cooper et al., 1996)
then in the long run, they could estimate the likelihood of cooperation in
their environment and by extension in future encounters. The limitation of
this approach, however, is that the experimenter does not have control over
this likelihood. Moreover, it would be highly time consuming to try and ex-
tracting a cooperative profile across a variety of such likelihoods.

The manipulation used by Santa et al. (2018) is the closest to the one we
are interested in. In their study, the authors develop an experimental design
that manipulates beliefs about the likelihood of cooperation in a one-shot PD
in order to elicit response times and test the intuitiveness of the cooperative
action. Participant i is matched with participant j and together they play a
simultaneous, one-shot PD. Prior to playing the game, i receives a summary
statistic for the likelihood that j will cooperate. Although i is told that j is a
fellow participant, in fact, j is always a computer algorithm that cooperates
with a predetermined frequency.

We develop a framework that achieves the same exogenous and flexible ma-
nipulation of expectations regarding the likelihood of cooperation as in Santa
et al. (2018) without the need to give false information to participants. Based
on the one-shot PD, our framework manipulates i’s expectations through vary-
ing the probability that her match j cooperates. However, in our experiment,
both i and j are real participants that have participated in the same experiment.
Using a variation of the strategy method (Selten, 1967), we can vary the coop-
eration likelihood exogenously for a variety of different probability scenarios.

1 Technically, there is a fourth category that includes people who will cooperate when others
defect and defect when others cooperate. Most studies, however, tend to not warrant too
much attention to this type and treat as an error of understanding from the participant’s
perspective.
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Our design is also flexible. Since all tasks in our experiment are one-shot, they
did not require giving immediate feedback to participants. This alleviates our
experimental protocol from the complexity of real-time interactions.

This framework allows us to investigate our main research goal. Namely,
to examine if and how the way in which people receive information about
the likelihood of cooperation - from description or from experience - affects
ensuing cooperative behaviour.

The literature on the DE gap in individual risky decisions is a good source
to inform our hypotheses. The most common experimental setup in this liter-
ature is the sampling paradigm (Hertwig et al., 2004). There, participants are
allocated either in Description or in Experience and are asked to make a series
of choices between two gambles: a risky and a safe one. The risky option typi-
cally contains a rare event which can be either desirable or undesirable while
the safe one usually consists of an outcome offered with certainty. The differ-
ence between the two treatments pertains to how the properties of these gam-
bles are discovered. In Description, participants learn about these properties
through numerical and explicit formats (e.g. there is a 10% chance that event
A will occur). In Experience on the other hand, they discover this information
by drawing independent observations sequentially from a source of uncer-
tainty. This source has been tallied to generate events with the same relative
frequency as the objective probability in Description. Whether participants
observe this information accurately, however, rests upon their willingness to
collect sufficiently large samples.

The canonical finding in this literature is that people in Description prefer
the risky over the safe option when the rare event is desirable and the safe op-
tion over the risky one, when the rare event is undesirable. The opposite holds
true when people make this decision in Experience. The most common inter-
pretation of this pattern is that people in Description assign more weight to
rare events than their objective probabilities warrant, whereas in Experience,
these events are underweighted (Hertwig and Erev, 2009).

Exporting the intuitions from the DE gap in the individual context to a so-
cial dilemma, one may predict higher sensitivity to information about rare
events when this information is obtained descriptively rather than experien-
tially. In the context of the PD, this would imply that when cooperation (de-
fection) is rare, people in Description will cooperate (defect) more than those
in Experience. We refer to this as the ‘canonical hypothesis’ as it is grounded
in the expectation that the canonical finding -as well as its most common
interpretation- from the DE gap literature in the individual context, also ap-
plies to the social context.



4.2 background 73

Notwithstanding, the ‘canonical hypothesis’ is not the only candidate. Glöckner
et al. (2016) report that sufficiently complex choice environments can lead
to reversals of the canonical gap, so that rare events can appear to be over-
weighted in Experience more than in Description. Examples of such complex
environments include cases where all available gambles are non-reduced (i.e.
containing each at least two possible outcomes). According to the authors,
noisy probability evaluations induce a ‘regression towards the mean’ effect to
probability estimates and by extension to the weights people assign to those
probabilities. Similar to Glöckner et al., participants in our Experience treat-
ments are likely to believe that there were always facing two possibilities: their
match could have cooperated or defected. Therefore, high enough probabilis-
tic distortions can lead to more overweighting of rare events in Experience
compared to Description.

As Glöckner et al. report, eliminating sampling bias is essential for this
‘reversal’ of the canonical gap. Sampling bias refers to the fact that partici-
pants in Experience often collect small samples that tend to under-represent
rare events. It comes therefore as little surprise that under-represented rare
events are underweighted. Indeed, as we show in Chapter 3 and as a recent
meta-analysis demonstrates (Wulff et al., 2018), sampling bias is the most sig-
nificant contributor to the gap in individual choices. Other studies that have
also controlled for sampling bias, however, find somewhat different patterns.
For example Abdellaoui et al. (2011), find an overall reduction in the willing-
ness to gamble in Experience which they attribute to ambiguity aversion. This
pattern distinguishes between rare events according to their desirability. De-
sirable rare events are overweighted more in Description but undesirable rare
events are overweighted more in Experience.

To explore this aspect of the DE gap, we employ two variations of Experi-
ence, one in which participants can sample freely (E-Free) and one in which
sampling has been fixed so that it always matches the objective probability
(E-Fixed). To the extent that sampling bias is as pivotal to the gap as indicated
by studies in the individual context, we might expect the canonical hypothesis
to hold in the comparison between Description with E-Free but not between
Description and E-Fixed.

Despite the voluminous research on the DE gap in individual risky deci-
sions, to the best of our knowledge there have been only two studies that
examine the gap in a social context. Fleischhut et al. (2014) investigate the DE
gap in the context of an Ultimatum Game. Proposers, prior to making their
offers, are informed —either through descriptions or by sampling— about the
relative frequency with which each allocation had been accepted or rejected
in previous experiments. The authors report that people tend to prefer the
riskier option less often in Experience than in Description (independently of
whether that rare event was desirable or undesirable) but treatment differ-



4.3 methods 74

ences are almost never significant. Artinger et al. (2012) use a public good
game for their social context with a stochastic payoff from cooperation. The
payoff is low with probability p and high with 1− p. Similarly to Fleishhut
et al., they find little evidence for significant differences between Description
and Experience.

Taken together, the evidence in favour of a significant gap in the social
context is weak. In this study we revisit the question by taking steps towards
making the social component more salient. To this end, unlike Fleishhut et
al., the actions taken from participants in our experiment influence the payoff
of fellow participants. Becoming aware of payoff interdependence has been
shown to stimulate the social component of behaviour (Martin et al., 2014).
Moreover, unlike Artinger et al., we manipulate the likelihood of cooperation
rather than the payoff structure of the game. We suspect that placing the locus
of uncertainty on the action of a fellow decision maker highlights the social
character of the decision.

Lastly, as a robustness check for the interpretation of our findings, we
would like to distinguish between people according to their cooperative pref-
erences. One would expect for example, that if a DE gap does exist in this
social dilemma, then it ought to be driven by conditional cooperators rather
than unconditional types (free riders or unconditional cooperators), as they
are the ones who by definition care for social information. For the same rea-
son, we expect that conditional cooperators are more eager to search longer in
E-Free. Eliciting these types in the two Experience treatments is problematic
as beliefs regarding the underlying probability of cooperation may not coin-
cide with observed relative frequencies. This can be true even if people have
collected representative samples.2 We therefore include a separate task that
allows us to elicit such preferences at the end of the experiment. This task
is inspired from Fischbacher et al. (2001) who use a variant of the strategy
method to elicit a profile of cooperative responses to a variety of scenarios
that differ with respect to others’ contributions. They then use these profiles
to elicit cooperative types (such as conditional cooperators or free riders). We
adopt their design for the PD game.

4.3 methods

This is a between-subjects experiment. Participants are randomly assigned to
one of three treatments: decisions from description (Description), decisions
from experience with free sampling (E-Free) and decisions from experience
with fixed sampling (E-Fixed). Our experimental design comprises of three

2 This is less of an issue in Description where it is generally accepted that described information
coincides with participants’ beliefs.
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stages.3 All stages comprise of PD games with the same underlying payoff
structure as the one in Table 4.1. In our framing of the game, ‘Keep’ is the non-
cooperative action while ‘Share’ is the cooperative one. As all games are one-
shot and there was no feedback between stages, the data collection process
does not rely on real-time interactions.

Table 4.1: Payoff matrix for the Prisoner’s Dilemma game

If you choose & If your match chooses: Then you get: & Your match gets:

Keep Keep 50 p 50 p
Share Share 100 p 100 p
Keep Share 150 p 0 p
Share Keep 0 p 150 p

Note. This payoff structure was common for the tasks in all 3 stages. This table appeared in
every stage as a reminder.

In Stage 1, all participants are told that they are matched with a fellow
participant and are asked to play the simultaneous one-shot PD game shown
in Table 4.1.

Stage 2 consists of the main task for this study. This is a modified PD game
that systematically and exogenously manipulates the likelihood of coopera-
tion in a social environment through a variant of the strategy method. Par-
ticipants play the one-shot PD game in Table 4.1 in seven different scenarios.
These scenarios differ with respect to the likelihood of cooperation.

Specifically, in every scenario, participant i is assigned to a sub-population
of participants. She is then informed that she has been matched with another
participant, j, from this sub-population. A crucial aspect of our manipulation
is the ability to provide i with information about the likelihood that j will
cooperate. To this end, we inform i that she will play a one-shot PD with j’s
action from Stage 1.4 Although i does not know j’s Stage 1-action, she can
form an expectation about it by accessing information about this scenario’s
sub-population probability of cooperation (SPoC , measured in %). SPoC sum-
marizes the proportion of Stage 1 cooperative actions of all participants except
i in a given sub-population. Therefore, it represents the objective probability

3 Participants know this from the start but instructions for each stage are provided only at the
beginning of each stage.

4 From a temporal perspective, this makes the PD game in Stage 2 a sequential PD game with
imperfect information about the other player’s action. Note that this situation is conceptually
equivalent to a simultaneous PD game with partial information about the other player’s
intention. There has been some evidence that despite this logical equivalence, people are
less prone to cooperate if they can infer that their match has already decided on her action,
even when they have no way of knowing what this action was (Shafir and Tversky, 1992).
Since this sequential feature is constant across treatments, any treatment effect should remain
unaffected by it.
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that i is facing a cooperative agent j in that scenario. There are seven levels
of SPoC: {0, 10, 30, 50, 70, 90, 100} and their order is randomized for each par-
ticipant. Similarly to the strategy method, participants are informed that only
one of these seven scenarios is real and that only the real scenario can be rele-
vant for their final payment.5 Importantly however, there is no way of making
sure which scenario that is.

The way i accesses information about SPoC is treatment dependent. In De-
scription she learns about it through numerical descriptions. When SPoC=50
for example, she will read on her screen that ‘50% of your group chose to
Keep and 50% of your group chose to Share’.6 In E-Free, they obtained this
information through a sampling process. Every time they pressed a button
on the screen they observed the Stage 1 action taken by a randomly chosen
member of their sub-population. This sampling process was with replacement.
Therefore, given enough draws, the observed relative frequency of coopera-
tion converges to the objective SPoC. In E-Fixed, participants also sampled
Stage 1 actions but unlike in E-Free, their sampling was tallied so that the
sample distribution of cooperative actions coincides with the objective SPoC.
To achieve this, participants in E-Fixed were required to sample exactly ten
times in each scenario.

Finally, in Stage 3 we ask i to state her responses in a sequential PD game
(with the same payoff structure as in Table 4.1) where her match has: a) Co-
operated and b) Defected. Similarly to Stage 2, the actions of i’s match are
drawn from Stage 1. This is a variation -adapted for a PD game- of the task
that Fischbacher et al. (2001) use to elicit cooperative types in the context
of a public goods game. In the absence of uncertainty regarding the other
person’s intentions, preferences are separated from beliefs. We therefore cat-
egorize participants into four types: ‘conditional cooperators’ who match the
other player’s action, ‘free riders’ who always defect, ‘unconditional coopera-
tors’ who always cooperate, and ‘others’.

For our online experiment, we recruited 1094 participants from Prolific
(Peer et al., 2017) and collected data using Qualtrics. On average, sessions
lasted approximately 20 minutes. Average payment was about £2, which in-
cludes a £1.25 participation fee and a variable payment that was determined
by their payoff in a randomly selected task. For more details on how pay-
ments were executed according to the matching protocol see Appendix C.2.
Although allocation between the three information format conditions was ran-
dom, we chose to collect approximately 1.5 more participants in E-Free (n =
473) than in Description (308) or E-Fixed (317). This was due to a need for

5 The real sub-population according to which payments were carried out comprised of three
participants. Therefore, the only potentially real scenarios are SPoC={0, 50, 100}.

6 Although the term ‘sub-population’ is technically more accurate, the term ‘group’ was pre-
ferred as it was deemed easier to internalize by participants.
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higher statistical power in E-Free, which was associated with more hypothe-
ses (e.g. regarding sampling behaviour ). Approximately 9.8% of participants
that were recruited were excluded either due to incomplete submissions or
due to failure to answer control questions in the beginning of the experiment.
These questions were designed to assess their understanding of the instruc-
tions. Participants who repeatedly failed to answer these questions correctly,
were given a participation fee but were not allowed to proceed with the exper-
iment. The number of excluded participants did not vary across treatments
(P = 0.872, χ2 − test). In our final analysis, we use data from 990 participants
(279; 435; 276, for Description, E-Free and E-Fixed respectively). Instructions
of the experiment can be found in Appendix C.1.

4.4 results

In Stage 1, 57.9% of our overall sample cooperated (chose to “Share”) and this
measure was not significantly different across treatments (P = 0.141, χ2test).
This is a high cooperation rate which nonetheless falls well within the range
of commonly reported values (Dawes and Thaler, 1988; Sally, 1995).

Next, we turn to the main task in our study: the modified PD game in Stage
2. Figure 4.1 summarizes our main findings. Since individual responses were
binary (Share=1, Keep=0), each point in Figure 4.1 represents the percentage
of people who chose to cooperate in the corresponding treatment and scenario
of SPoC. We refer to the line that connects these cooperation rates for a given
condition as the ‘response function’. Each panel juxtaposes the Description
treatment with one of the Experience treatments. These comparisons point
towards a significant gap between Description and E-Free (left panel) and
between Description and E-Fixed (right panel).

Overall, cooperation rate increases with SPoC, suggesting that many people
care about the cooperativeness of the environment and are in fact more likely
to cooperate when the probability of being matched to another cooperator is
higher. This relation is indicative of conditional cooperation. Nonetheless, we
can also infer tendencies for unconditional behaviour as there is a sizeable
portion of people who cooperate even when SPoC=0 and defect even when
SPoC=100.

Average cooperation differs significantly between Description and E-Free
for SPoC≤ 70 and between Description and E-Fixed for SPoC≤ 50. Overall,
we see that both Experience curves lie above Description for low SPoC values
(when cooperation is rare) and below Description for medium to high SPoC
values (when defection is rare). Interestingly, and to some perhaps surpris-
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Figure 4.1: Response functions

Note. Pearson’s χ2 tests. ‘***’: P < 0.001; ‘**’:P < 0.05;‘*’:P < 0.1. Error bars represent standard
errors.

ingly, this pattern is the opposite of what the ‘canonical hypothesis’ would
have predicted.

Another interesting feature of this gap is that it does not appear to be af-
fected by sampling bias, the leading driver of the gap in individual risky deci-
sions. If sampling bias were an important moderator in this social context, we
would expect the pattern between Description and E-Free (where sampling
bias is present) to be markedly different than that between Description and
E-Fixed (where sampling bias is ruled out by design). In fact, average cooper-
ation rates do not differ between E-Free and E-Fixed in any scenario. This lack
of difference occured despite significant sampling bias in E-Free. Participants
in E-Free sampled relatively little, the median being 4 cards per round. As a
result, in 63% of all cases where a sample was obtained, the relative observed
frequency misrepresented SPoC by 10 percentage points or more. Hence, our
first two results can be summarized as follows

Result 1. There is a significant DE gap in cooperation. When the likelihood of coop-
eration (defection) is low, people in Experience cooperate (defect) more than those in
Description.

Result 2. Sampling bias does not drive the DE gap in cooperation.

To better understand these results, we introduce two indexes: cooperative-
ness and conditionality. The cooperativeness index is constructed by calculat-
ing the average cooperation rate across all levels of SPoC for each treatment.
Intuitively, this score represents the overall cooperative tendency in a treat-
ment. Conditionality is constructed by calculating the difference of coopera-
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tion rate at SPoC= 100 and at SPoC= 0. It captures, thus, the overall elevation
of the response curve. The closest to 1 this score is for a given treatment, the
higher the propensity to conditionally cooperate.

Table 4.2: Cooperativeness and conditionality indexes across treatments

COOPERATIVENESS CONDITIONALITY

DESCRIPTION 0.416 0.558
(0.016) (0.034)

E-FREE 0.427 0.432
(0.015) (0.026)

E-FIXED 0.415 0.486
(0.019) (0.033)

P-VALUE 0.909 <0.01***
Note. Standard errors in parentheses. P-values derive from Kruskal-Wallis tests across

treatments.

Table 4.2 reports values for these two indexes across treatments. Coopera-
tiveness does not differ across the three treatments (P = 0.909, Kruskal-Wallis
test) but conditionality does (P = 0.005, Kruskal-Wallis test). The effect on con-
ditionality originates from differences between Description and E-Free and
between Description and E-Fixed and not between the two experience treat-
ments (P=0.001, P=0.071 and P=0.218, Wilcoxon rank sum tests for each binary
comparison).

We examine this asymmetry in conditionality further by looking at be-
haviour at the individual level. Specifically, we distinguish between people
who scored ‘1’ (cooperated at SPoC= 100 but not at SPoC= 0), ‘0’ (did not
change their behaviour from one scenario to the other) and ‘-1’ (people who
cooperated at SPoC= 0 and defected at SPoC= 100). Figure 4.2 plots the dis-
tribution of these scores across treatments.

As we see in Figure 4.2, the percentage of people who do not update their
action between SPoC= 0 and SPoC= 100 is significantly higher in the Experi-
ence treatments. In contrast, there are significantly more people in Description
who switch from defection at SPoC= 0 to cooperation at SPoC= 100.7 There
is no statistical difference between the two Experience treatments. A small
percentage of people (less than 4% overall) chose to cooperate when SPoC=0
but defect when SPoC=100. We are agnostic about the interpretation of this
behaviour: it can reflect a type of ‘reverse conditionality’ or simply be due to

7 It is worth noting however that there is a sizeable proportion of people (approximately a third
of the total sample) who would switch their action more than once if we were to consider
intermediate SPoC scenarios. Although we could have imposed a single switching protocol,
we decided that it is best to let participants’ choices unmediated. Appendix C.2.2 delves into
this issue further. Nonetheless, the conditionality index is unaffected by these inconsistencies
as it ignores such intermediate switches.
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Figure 4.2: Conditionality at the individual level

Note. Pearson’s χ2 tests. ‘***’: P < 0.001; ‘**’:P < 0.05;‘*’:P < 0.1.

people who misunderstood the task. In either case, this behaviour is very rare
and its existence does not significantly differ across treatments.

Result 3. People in Experience are less prone to condition their behaviour on social
information compared to those in Description.

The insensitivity to social information in Experience is also evidenced by
difference in cooperation at SPoC=50 in Figure 4.1, where we observe a steep
‘jump’ in cooperation responses in Description but not in Experience. One in-
terpretation of this asymmetry is that a sizeable fraction of participants want
to follow a simple heuristic to cooperate if the chance that their match will do
the same is at least 50%, but participants in the Experience treatment cannot
discern this probability with sufficient certainty. To examine this pattern more
closely, we plot in Figure 4.3 the slope of the response function at each transi-
tion from SPoC(x) to SPoC(x+1). Intuitively, the steeper the slope, the sharper
the reaction to a given level of SPoC.

Figure 4.3 verifies that participants in Description display a distinctly sharper
reaction when they encounter the signal SPoC= 50. No other signal in De-
scription, and no signal in general in Experience, is nearly as impactful. Most
people who chose to switch from cooperation to defection in Description, did
so when receiving the signal that there was at least a 50% chance of a coop-
erative outcome. On the other hand, when this signal was ambiguous, people
were significantly less sensitive to it. Statistical analysis corroborates this. The
difference in slopes is significant across treatments only at SPoC= 50 (P< 0.01,
Kruskal-Wallis test).
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Figure 4.3: Response function slopes

Note. ‘0-10’: Slope of the cooperation function between SPoC=0 and SPoC=10. Whiskers
represent standard errors that derive from the calculation of this slope for each individual.

Lastly, we look at differences in behaviour between different types of play-
ers, as revealed from choices in Stage 3. Overall, the majority of participants
was categorized as conditional cooperators (Description: 63.4%; E-Free: 59.3%;
E-Fixed: 50.7%). The second most frequent category was that of ‘free riders’
(Description: 31.5%; E-Free: 32.0%; E-Fixed: 36.6%) while ‘unconditional coop-
erators’ were in the minority (3.9%; 6.2%; 10.9%).8

Although there is no difference in the distribution of ‘free riders’ (P =
0.352; χ2-test) and ‘Others’ (P = 0.380; χ2-test) across treatments, we do ob-
serve a significant asymmetry in the distribution of ‘conditional cooperators’
(P < 0.01; χ2-test) and ‘unconditional cooperators (P < 0.01; Chi2-test). This
asymmetry stems from E-Fixed, where there is a significant increase of ‘un-
conditional cooperators’ compared to Description and E-Free (P < 0.01 and
P = 0.036 respectively; χ2-tests) and a significant drop in ‘conditional co-
operators’ compared to Description (P < 0.01 and P = 0.030, respectively;
χ2-tests). There is no statistical difference in the distribution of types between
Description and E-Free (P = 0.973, P = 0.305, P = 0.252 and P = 0.275 for
‘free riders’, ‘conditional cooperators’, ‘unconditional cooperators’ and ‘oth-
ers’, respectively; χ2- tests). We return to this asymmetry in E-Fixed in the
Discussion section.

8 There was also an almost negligible percentage of people that do not fit in any of these
three categories (Description: 1.0%; E-Free: 2.6%; E-Fixed 1.8%). These are people who would
cooperate when their match defects and who would defect when their match cooperates
(similar to the people who score ‘-1’ in our conditionality index). We refer to those people as
‘Others’.
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Figure 4.4: Aggregate cooperation rates conditioned on types

Note. ‘UC’: Unconditional cooperators; ‘CC’: Conditional Cooperators; ‘FR’: Free riders.
Linear models between SPoC and cooperation rate have been fitted for each type in each
treatment as a visual aid.

Table 4.3: Cooperation indexes conditioned on types

COOPERATIVENESS CONDITIONALITY

CC FR UC CC FR UC
DESCRIPTION 49.6 20.4 77.9 76.1 16.0 45.4

(1.7) (2.2) (8.2) (3.8) (5.4) (16.5)
E-FREE 51.2 20.3 77.8 57.8 20.8 26.0

(1.8) (2.1) (4.9) (3.8) (4.5) (8.8)
E-FIXED 49.2 20.9 74.8 68.5 24.8 40.0

(2.2) (2.7) (3.8) (4.3) (4.6) (10.5)

P-VALUE 0.768 0.877 0.788 P<0.01*** 0.528 0.402
Note. Standard errors in parentheses. P-values derive from Kruskal-Wallis tests across

treatments.

Figure 4.4 depicts Stage 2 cooperative behaviour, conditioned on Stage 3
typology while Table 4.3 reports cooperation indexes for each type across
treatments. Aggregate behaviour in Stage 2 is overall consistent with type cat-
egorization.9 Those who are categorized as conditional cooperators in Stage
3 are indeed more prone to condition their behaviour on social information
in Stage 2. Likewise, those categorized as unconditional cooperators score the
highest in cooperativeness and score low on conditionality, while those who
are categorized as free riders have the lowest cooperative score and are also
scoring low on conditionality.

Statistical comparisons in Table 4.3 provide some robustness tests for earlier
intuitions. Specifically, we find that all treatment differences are driven from
conditional cooperators who exhibit different degrees of conditionality (and

9 In fact, as we show in Appendix C.2.2, these types are highly predictive of Stage 2 behaviour
at the individual level as well.
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not cooperativeness) across treatments. There are no significant treatment dif-
ferences for free riders or conditional cooperators. This is in line with the
expectation that the DE gap in cooperation can only be driven by people who
care about social information. Moreover, in support of Result 3, conditional
cooperators are significantly more sensitive to SPoC in Description compared
to E-Free and E-Fixed (P < 0.01, P = 0.090; Wilcoxon rank sum tests).

One noticeable difference with our previous analysis, however, is that now
we also observe a significant difference between E-Free and E-Fixed (P =
0.0395; Wilcoxon rank sum test). Taking this result at face value, it suggests
that people in E-Free were less likely to condition their behaviour on the true
underlying SPoC. This could be the case either because of sampling bias in E-
Free, or because the low amounts of sampling made the information in E-Free
more ambiguous than the information received in E-Fixed. This difference,
however, should be taken with a grain of salt due to the fact that the type
distribution in E-Fixed is significantly different from that in the other two
treatments. This suggest that Stage 2 affected the Stage 3 elicitation. We will
return to this issue in the discussion.

In the E-Free treatment, participants could decide how much information
they would sample. Although such sampling did not entail any monetary cost,
it does involve exerting more effort and spending more time on the task. The-
oretically, we would expect that different types have a different willingness to
spend this time and effort in order to get the social information. In particular,
conditional cooperators should be more interested in others’ behaviour than
unconditional cooperators or free-riders. As a result, we would expect them
to collect bigger samples.

Figure 4.5 plots the cumulative distribution of sampling amount across dif-
ferent types. Although the overall sampling amount is low, we do observe that
conditional cooperators sample more than the other types. Sampling amount
for conditional cooperators was indeed the highest, with an average of 4.1
draws per round vs. 3.7 for free riders and 3.1 for unconditional cooperators.
These differences were statistically significant (P = 0.032 for the first compar-
ison and P = 0.019 for the second; Wilcoxon test for clustered data).10

10 See Rosner et al. (2006) for more details on this test.
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Figure 4.5: Cumulative distributions of sampling amount across types

4.5 discussion

4.5.1 The DE gap in individual and social context

Although we find a significant DE gap in cooperation, this gap displays the
opposite pattern relative to the canonical finding in individual risky decisions
(Result 1). At face value, this finding suggests that people process informa-
tion differently when facing social decisions, than when they make individual
choices. However, recently Glöckner et al. (2016) have observed reversals sim-
ilar to ours in the individual domain. In the next two subsections we discuss
two possible explanations for this reversal. The first provides a link with the
literature of the DE gap in individual decisions while the latter introduces an
explanation unique to our experiment.
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4.5.1.1 Noisy evaluation

Glöckner et al. suggested that environments that entail a choice between two
non-reduced gambles, are likely to induce noise in the probabilistic estimates
of participants in Experience. This noise will regress probabilities and by
extension decision weights to the mean, accounting thus for increased over-
weighting in Experience relatively to Description. As we explained in Section
4.2, the similarities of our design with that of Glöckner et al., render the ‘noisy
evaluation’ hypothesis a viable explanation for the reversal of the DE gap we
observed.11 Indeed, this could explain why the social cue of SPoC=50 that
was revealed so important to participants in Description, did not register any
considerable response with participants in Experience. If noise makes every
probability seem like 50%, then it should come as little surprise if the actual
50% signal becomes less discernible. However, the fact that in our experiment
this reversal occurs even in the absence of sampling bias (Result 2) suggests
that there may be more to the story.

4.5.1.2 Strong priors

Previous studies in the DE gap in individual risky decisions, provide partic-
ipants with gambles framed in an abstract format where uncertainty is ul-
timately arbitrated by a randomness-generating machine. In our setting on
the other hand, uncertainty relates to cooperation which is arbitrated by the
actions and intentions of fellow humans. This is a much less abstract and emo-
tionally more loaded framework. People will likely hold priors regarding the
likelihood of cooperation of a potential partner.

We argue that priors regarding the likelihood of cooperation in a social
dilemma, are stronger than any priors regarding the likelihood of winning in
an abstract gamble. As a result, players will update their prior less in light
of new information in the former than in the latter frame. For example, a
person with high prior expectations regarding the likelihood of cooperation,
might be more reluctant to update her belief down to 0% when in the scenario
of SPoC=0. This is especially true when this information is ambiguous (such
as in Experience) since uncertain information is likely to be perceived as less
trustworthy and therefore assigned less weight. Assuming that people’s priors
are heterogeneous and span the entire domain, response curves in Experience
are likely to be more distorted near the edges (where rare events are) than
in Description producing thus the reversed DE gap we observed. In contrast,

11 It is true that unlike in Glöckner et al., scenarios with SPoC=0 and SPoC=100 were technically
‘reduced gambles’ in the sense that the match could have behaved only in one way. Nonethe-
less, participants in E-Free and E-Fixed could not have been certain of it, due to the inherent
ambiguity which is associated with information in Experience.
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such reversals are less likely to occur in versions of Experience where the
underlying uncertainty is framed in abstract terms. In these cases, people will
be less resistant to update their beliefs and the role of priors will be less
influential.

4.5.1.3 The verdict

It is worth noticing that the two explanations (‘noisy evaluation’ and ‘strong
priors’) can very well act synergistically towards the reversed DE gap in co-
operation. In fact, together they can explain why the effect of ambiguity in
this social context is different than that described by Abdellaoui et al. (2011)
and by the findings in Chapter 3. Both of these studies (Abdellaoui et al., and
Chapter 3) were conducted in an abstract frame where priors are malleable.
Moreover, the choice environment in those two studies was simpler as it al-
ways included one reduced gamble.

However, although the ‘noisy evaluation’ explanation has been successfully
tested before (Wulff et al., 2018), the ‘strong priors’ one remains currently ten-
tative. Fleischhut et al. (2014) provide some evidence in favour of this potential
asymmetry between the rigidity of priors in the individual and in the social
context. They find that participants tend to search information significantly
less in the social compared to the individual setting and attribute this to the
strength of priors: participants in social contexts have strong beliefs regarding
others’ behaviour and do not need to sample from their actions too much to
inform their decision. Some evidence of this can be found in the low amounts
of sampling – relative to past evidence — we observe overall in this study, but
we cannot be sure as we have no control treatment for this.

4.5.2 An effect on beliefs, not preferences

Notice how both explanations (‘noisy evaluation’ and ‘strong priors’) for the
reversal of the canonical DE gap, point to effects taking place in the domain of
beliefs rather than of preferences. More precisely, Glöckner et al. do not argue
that the treatment manipulation (described or experienced information) trans-
forms a risk averse individual to a risk seeking one (or vice versa). Rather, the
change in behaviour is due to participants’ inability in Experience to discern
signals (probabilities) as accurately as in Description. This inability regresses
their weighting functions closer to the mean, inducing a behaviour consistent
with more overweighting of rare events.

Similarly, our finding that people in Experience are less likely to condition
their behaviour on social information (Result 3), should not be interpreted
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as a claim that Experience turns conditional cooperators into unconditional
types (free riders or uncondtional cooperators). Instead, we argue that the
gap in social cooperation is due to the coexistence of ambiguous information
with strong prior beliefs. Conditional cooperators who erroneously infer that
there is a chance for cooperation (when there is none), appear as uncondi-
tional cooperators. Symmetrically, conditional cooperators that see the chance
of defection (when there is none) are likely to appear as free riders.

4.5.3 Limitations and steps forward

One potential limitation of our design can be the fact that the elicitation of
cooperation types always succeeded Stage 2 instead of having its order of
occurrence randomised. The reason for this was to avoid biasing behaviour in
Stage 2 which was this experiment’s main task. Although this decision was
deliberate, it does leave the possibility open that the typology is affected from
potential treatment spill-over effects.

We find it unlikely that such spill-over effects have affected Description and
E-Free as despite significant differences between the two treatments in Stage
2, there was no asymmetry in the distribution of Stage 3 types. This is not
the case with E-Fixed, however, where we observed significantly more people
being revealed as free riders and significantly less people being revealed as
conditional cooperators, relatively to E-Free and Description. This asymmetry
is likely behind the fact that when we try to replicate the DE gap in Result 1
with people who have been revealed as conditional cooperators by our Stage
3 task, we find a weaker version of the gap between Description and E-Fixed
than between Description and E-Free. Since Result 1 can only be driven by
conditional cooperators (by definition unconditional types should not care
about social information irrespective if this is described or experienced) this
should not have been the case.

One explanation may be that some participants in E-Fixed were feeling
somewhat anxious to finish the experiment. Their impatience might be justi-
fied in that they had to spend a larger amount of time (relatively to E-Free or
Description) in Stage 2, as they were forced to sample 10 times in each SPoC
scenario. Therefore, these participants might have rushed through the task by
clicking away their preferred action twice without reading the instructions
carefully. This would inflate the rates of revealed unconditional types in this
treatment as we observed.

With this foresight in mind, an extension of this study could entail a ver-
sion of E-Fixed where the forced sampling amount is reduced to a smaller
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threshold, so that time spent in the Stage 2 is comparable to E-Free, and test
whether the asymmetry persists.

Other extensions could entail a set of treatments similar to Description, E-
Free and E-Fixed but this time applied to individual risky decisions. This
would give us a more direct test of the underlying differences between the
two domains (social and individual). One particularly interesting aspect of
this investigation is related to the ‘strong priors’ explanation we put forward
in this study. Specifically, it would be interesting to see a study with two
different Description treatment. One in which risk is expressed in its typical
abstract frame and one in which it is framed in terms that are likely to evoke
strong predispositions (for example ‘risks of drinking and driving’ or ‘risks
of travelling by plane vs. risk of travelling by car’). According to the ‘strong
priors’ hypothesis, the ‘loaded’ version of Description will exhibit more over-
weighting of rare events than the abstract one.

4.6 conclusion

People often choose to cooperate even when the selfish action is the material
payoff dominating one. Conditional cooperation – the willingness to cooper-
ate if others do the same – is the leading explanation for this phenomenon.
Facing uncertainty, conditional cooperators act upon their expectations of oth-
ers’ intentions. To inform these expectations, people rely sometimes on de-
scriptive statistics and other times on personal experiences.

Literature from individual risky decisions suggests that the distinction be-
tween descriptive and experiential formats is important. The canonical inter-
pretation of this ‘Description - Experience gap’, is that people in Description
behave as if overweighting rare events whereas, in Experience, they behave
as if underweighting these events. The most decisive driver of this dispar-
ity owns to sampling bias: a tendency of people in Experience to collect
small samples that under-represent rare events. We know very little, however,
whether a DE gap persists in the context of social uncertainty.

The goal of our study was to examine if the way cooperation expectations
are informed, through descriptions or through experiential sampling, influ-
ences ensuing cooperative behaviour. In a large online experiment we manip-
ulated the likelihood of cooperation in a Prisoner’s Dilemma game by provid-
ing participants with aggregate information on cooperation. In Description
this information is provided explicitly in numerical presentation while in Ex-
perience (E-Free), participants find out autonomously through a sequential
sampling process. We then observe how people choose to cooperate as a func-
tion of differing cooperation likelihoods.
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In accord with past evidence in favour of conditional cooperation, we verify
that a majority of participants cooperate more if their partner is expected to
do so as well. Interestingly, we find evidence for a gap in social decision mak-
ing, but in the opposite direction than what the canoncial finding in the indi-
vidual context would have predicted. Rare events (of cooperation or defection)
appear to be more overweighted in Experience rather than in Description. In a
variation of Experience (E-Fixed) where sampling is fixed so that participants
are forced to experience mathematically equivalent information with that in
Description, we verified that sampling bias does not affect this ‘reversal’.

Moreover, using a separate task to elicit cooperative types and provide some
robustness tests related to these findings findings. We verify that cooperative
behaviour maps intuitively into these types. Moreover, we confirm that the
gap in cooperation is driven by conditional cooperators. These are by defini-
tion the people who would care about social information. Similarly, we show
how conditional cooperators tend to collect significantly more social informa-
tion than free riders or unconditional cooperators.

To interpret our key findings, we put forward a simple way to derive in-
dexes that analyze behaviour in two dimensions. Cooperativeness captures
the overall propensity of people to cooperate. Conditionality refers to their
tendency to cooperate conditionally. We find that cooperativeness does not
differ across the three treatments but conditionality does. Moreover, we show
how participants in Description were more responsive to information regard-
ing others’ behaviour. On the other hand, people in Experience were signifi-
cantly less sensitive to this information. We connect Experience’s insensitivity
to a ‘regression to the mean’ effect which can explain the reversal of the gap
in cooperation. We propose that a key reason why similar reversals do not
happen more often in the individual context is an asymmetry in the strength
of priors (stronger in the social context) and discuss how this hypothesis can
be addressed in future research.
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5
G E N E R A L C O N C L U S I O N S

“I may not have gone where I intended to go,
but I think I have ended up where I needed to be.”

— Douglas Adams, The Long Dark Tea-Time of the Soul (1988)

This thesis contributes to the understanding of the ‘Description - Experience
(DE) gap’ (Barron and Erev, 2003; Hertwig et al., 2004; Weber et al., 2004),
which posits that people’s risky choices are - at least partly - dependent on
the way information about uncertainty is communicated: from description or
from experience.

Over the past years, this discrepancy has been established in experimen-
tal studies where participants are assigned to one of two conditions. In the
Description condition, they make choices between gambles whose properties
(outcomes and outcome-probabilities) are explicitly and completely described
in numerical form. Conversely, in the Experience condition, this information is
inferred through a sequential sampling process. The key finding relates to the
role of rare (low probability) events. According to the canonical interpretation
of this finding, people in Description tend to make decisions as if overweight-
ing such events, relative to their probability, whereas in Experience they tend
to make decisions consistent with underweighting them (Hertwig et al., 2004).

In a series of lab and online experiments, we try to address some of the
most important open questions in this literature. Briefly, these questions can
be summarized as: ‘What are the underpinnings of the DE gap?’ (Chapter 2),
‘How do people search in Experience and how do different search patterns
influence ensuing risky choices?’ (Chapter 3) and ‘Is there a DE gap in social
domain and if so, what are its characteristics?’ (Chapter 4).

More specifically, in Chapter 2 we taxonomized what we believe are the
key factors driving this empirical discrepancy in three broad categories by
distinguishing between factors pertaining to: informational (sampling bias),
preferential (ambiguity) or cognitive (likelihood representation and memory
limitations) aspects of decision making. Then, we implemented a novel 5-
treatment design comprising of one standard version of Description and 4
variations of Experience. Our treatment protocol was designed to isolate these
factors through a series of pairwise comparisons. Moreover, to address cer-
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tain methodological concerns in this literature, we employed two measuring
approaches.

First, we study the gap in the absence of any behavioural model assump-
tions, by focusing only on choice proportions from pair gamble questions. We
find an overall significant DE gap which is compatible in direction and equal
in size with the literature’s average. Among the driving forces, the most po-
tent in isolation is sampling bias due to under-representation of rare events.
Second, assuming a rank dependent utility model (Quiggin, 1982) and us-
ing the ‘source method’ (Abdellaoui et al., 2011a,b), we elicit and compare
decision-weighting functions across treatments. This level of analysis allowed
us to examine an integral component of the DE gap (probability weighting)
while controlling for other aspects of risky behaviour (such as utility curva-
ture).

We find the two levels of analysis to be complimentary. The model-mediated
approach replicates the findings of the model-free analysis while the use of
weighting functions and their shape allows us to shed some more light on
aspects of behaviour that would otherwise be inaccessible. Most notably, we
observe that a significant DE gap can be found even when controlling for
sampling bias; a result that runs opposite to some previous claims (Fox and
Hadar, 2006). In the absence of sampling bias, the role of memory limitations
appears to be important, especially when combined with the effect of likeli-
hood representation and ambiguity.

This finding serves as a reminder that cognitive aspects of behaviour are
not to be discounted when eliciting risky preferences nor when extrapolating
lab findings to policy decisions. To this end, we discussed two intriguing inter-
pretations of our finding. The first interpretation parallels memory limitations
to a type of cognitive sampling bias. The statistical property of the binomial
distribution under which rare events are under-represented in small samples,
might also be a property of the brain. Limited recollections of past events may
also under-represent the rare ones. The second interpretation draws from the
evolutionary principle of bias complementarity (Waldman, 1994). Specifically,
we discuss the possibility that the behavioural bias to overweight rare events
(Tversky and Kahneman, 1992) may be countering the statistical (and/or cog-
nitive) bias to under-represent them in small - collected or recollected - sam-
ples.

Nonetheless, the size of the gap in the absence of sampling bias is relatively
small. Therefore, although seeking for a DE gap beyond sampling bias is not
a “fool’s errand”, our results recommend that the seeker be equipped with a
magnifying glass, for the gap is small, and a compass, for it is not ubiquitous.
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Lastly, except for when statistical or cognitive under-representations were
present, we find that the standard inverse S-shaped probability weighting
pattern is a good fit for Description as well as for Experience. We interpret this
as evidence that Cumulative Prospect Theory’s (Tversky and Kahneman, 1992)
behavioural tenet that rare events are overweighted, can be found beyond the
narrow frame of described uncertainty.

One of the key strengths of Chapter 2 lies in the design of an experimental
protocol that controls strictly which aspects of Experience are effective. For
example, to control the accuracy of the information that participants receive
(and therefore determine whether sampling bias is effective or not), we do
not allow participants to collect samples autonomously. This could also be
interpreted, however, as a potential limitation. The freedom to search for in-
formation without restrictions may be an important aspect of the DE gap.

In Chapter 3, we build on this idea by focusing primarily on the aspect
of search in decisions from experience. In this chapter, we conduct a lab-
experiment and examine how people search for information in Experience as
well as how do different search patterns influence ensuing risky choices. With
respect to search patterns, we show that a lottery’s variance is negatively corre-
lated with sampling amount which in this context means that people sample
more from options with rarer events. We also find that sampling amount de-
creases over time periods. Both of these findings become less salient after the
introduction of a history table which records and displays previously sam-
pled outcomes at the time of the lottery evaluation. The cue which stands out
in that case is the maximum capacity of that table.

With respect to choices, we elicit preferences over gambles from two varia-
tions of Experience: with and without a history table and compare them with
those elicited from a standard version of Description. Both of these compar-
isons generate a significant DE gap which is mitigated, however, by the in-
clusion of the history table. Similarly to Chapter 2, we interpret these choices
through a preference model that accounts for probability weighting. Analyz-
ing the weighting patterns between Description and Experience, we propose
a variant of the canonical interpretation of the DE gap. We refer to it as the
‘relative underweighting hypothesis’, which states that rare events in individ-
ual risky decisions are overweighted in Experience too, but less so than in
Description.

Extensions of this work could explore search strategies in more complex en-
vironments. The DE gap framework addresses situations where people have
to choose between only two alternatives. In many realistic scenarios however,
decision makers are faced with choice between several alternatives (e.g. buy-
ing a house, looking for the right job). This latter choice architecture scenario,
falls under a broad category of problems which is commonly referred to as
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‘optimal stopping problems’ (see Weitzman, 1979). Over the last 30 years, sig-
nificant theoretical progress has been made on identifying optimal strategies
of search in a wide variety of such problems. However, the empirical ques-
tion of how people fare with respect to these theoretical benchmarks, remains
largely unexplored (see Bearden et al., 2006, for one such exception).

Lastly, in Chapter 4, we transfer the DE gap from its usual individual-
decision setting, to a social setting. Our primary goal is to investigate whether
the format in which social information is obtained -descriptive or experiential-
influences cooperation in social dilemmas and if so, how. To address these
questions, we develop a variation of the prisoner’s dilemma game, where we
observe cooperative responses over a range of likelihoods of cooperation. The
likelihoods are communicated either in descriptive or experiential formats. In
line with previous findings in the literature of social dilemmas (Fischbacher
and Gächter, 2010), we find that conditional cooperation -the willingness to
cooperate if others do the same- is prevalent in our study. Cooperation rates
across treatments increase with the probability of cooperation. Nonetheless,
there are significant differences in the cooperation patterns between Descrip-
tion and Experience. Interestingly, we find evidence that this gap in social
decision making, is in the opposite direction from what the canonical finding
in the individual context would have predicted. Rare events (of cooperation or
defection) appear to be more overweighted in Experience rather than in De-
scription. Another asymmetry with the individual domain is that sampling
bias, the predominant driver of the DE gap in risky choices, does not affect
the gap in the social domain.

Further analysis on these, surprising at face value, results leads us to con-
clude that the reversal of the canonical DE gap in the social context is due to a
decrease in sensitivity towards social information in Experience. We attribute
this disparity between individual and social context to an asymmetry in the
strength of priors. Specifically, we argue that priors regarding the likelihood
of cooperation in a social dilemma, are stronger than any priors regarding
the likelihood of winning in an abstract gamble. Furthermore, we show how
people who are reluctant to update their beliefs in light of new information,
are (on average) more likely to overweight rare events.

An extension of this study could entail a set of treatments that provide an
empirical test of this explanation. An example in this direction could involve
two different Description treatments. One in which risk is expressed in its
typical abstract frame and one in which it is framed in terms that are likely
to evoke strong predispositions (for example ‘risks of drinking and driving’
or ‘risks of travelling by plane vs. risk of travelling by car’). According to
the ‘strong priors’ hypothesis, the ‘loaded’ version of Description will exhibit
more overweighting of rare events than the abstract one.
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Overall, this investigation surfaced a series of gaps between Description
and Experience, highlighting that besides the content of the information, the
format in which this is communicated is also important. Nonetheless, we also
discovered that the size and direction of this gap can be sensitive to a number
of parameters. We take this as evidence that the DE gap should not be seen
as a dichotomy between Description and Experience. Instead, we recommend
that it is viewed as a continuum over different levels of uncertainty. From this
perspective, the DE gap can work as a malleable experimental framework that
can help researchers navigate through the rich domain of uncertainty, while at
the same time, bring canonical experimental designs closer to real consumer
decision problems.
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A P P E N D I X F O R C H A P T E R 2

a.1 instructions

Instructions were handed to participants in printed form and were read out
loud by the experimenter prior to the start of the experiment. Before the start
of the experiment and after the instructions had been read out loud, subjects
played one trial round.

a.1.1 Instructions for Description

In this study you are asked to make choices that involve lotteries. For each
choice, just pick the option you prefer as there are no ‘right’ or ‘wrong’ an-
swers. Overall you are going to consider a total of 19 lotteries which are de-
scribed by virtual decks of cards. Each deck contains exactly two types of
cards represented by two different colours. Each deck has its own mix of
these two types of cards.

The information about the relative frequency and the monetary value of
each type of card will be provided to you (in the form of percentages) prior
to making a choice. This information is seen on the bottom of the screen.

The first 7 lotteries are all associated with the same deck of cards. This
guarantees that the relative frequency of each colour is the same for Lotteries
1 to 7. Notice however that the rewards associated with each outcome will
differ from one lottery to another.

Later in the experiment, you may have the opportunity to ‘play’ a lottery.
That would mean drawing once more from a deck you have sampled and
receiving the sum of money assigned to the colour of the drawn card.

Your task is to choose each time between playing the Lottery and receiving
the Certain Outcome. Each Lottery entails 5 such choices between the Lot-
tery (Option A) which remains constant across these 5 Choice-Rounds and
a Certain Outcome (Option B) that will be changing from each choice to the
next.
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Payoff Stage

At the end of the experiment one choice is going to be randomly selected
to be played out for real. All choices are equally likely to be drawn so each
choice you make has equal chances of affecting your final payment. There are
two cases:

Case 1: If in the randomly selected choice you chose Option B (the Certain
Outcome) then the monetary value of this choice is going to be added directly
to your final payment.

Case 2: If in the randomly selected choice you chose Option A (the Lot-
tery) then the deck of cards corresponding to that choice will reappear on the
screen. You will then be asked to draw one card from it. Then the monetary
value assigned to the colour of the card you just drew will be added to your
final payment.

a.1.2 Instructions for E-Unamb

In this study you are asked to make choices that involve lotteries. For each
choice, just pick the option you prefer as there are no ‘right’ or ‘wrong’ an-
swers. Overall you are going to consider a total of 19 lotteries which are de-
scribed by virtual decks of cards. Each deck contains exactly two types of
cards, represented by two different colours. Each deck has its own mix of
these two types of cards.

For every lottery you go through two stages:
Stage 1: the ‘Sampling Stage’
Stage 2: the ‘Choice Stage’
Exception: The first 7 Lotteries all share the same ‘Sampling Stage’ because
they relate to the same deck. This means that you will only sample once for
the first seven lotteries. Each of the lotteries 8 - 24 has its own Sampling Stage
(because it relates to its own deck).

Stage 1: Sampling Stage

In each Sampling Stage you go through a particular computerized deck
and explore one by one all of their cards. The information about the relative
frequency of each type of card is unknown to you prior to the start of the
sampling process. However by the end of the process, this information will
be completely revealed to you as you will have seen every card in the deck
exactly once. As mentioned earlier, the first 7 lotteries relate to the same deck.
This guarantees that the relative frequency of each colour is the same for
Lotteries 1 to 7. We recommend that you pay attention during this sampling
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process as this information is relevant for your decisions later on and hence
your final payment.

Every time you click on the ‘Draw’ button you will observe a new card from
the deck. Once you observe its colour click on ‘Proceed with the next card’ for
the ‘Draw’ button to reappear. You will repeat this process until you go exactly
once through all the cards in each deck. Once you have done so, a message
will appear on the screen verifying that you have seen all the cards in this
deck and a button that reads: ‘Go to the Choice Stage’ will become accessible at
the bottom of the screen. Once you click on that button you will move on to
the ‘Choice Stage’.

Stage 2: ‘Choice Stage’

At this stage a monetary value is assigned to the colour of each card. This
information is seen on the bottom of the screen. Later in the experiment, you
may have the opportunity to “play” a lottery. That would mean drawing once
more from a deck you have sampled and receiving the sum of money assigned
to the colour of the drawn card.

On the top of the screen you will observe a ‘History Table’ where you can
track your sampling history from each lottery’s ‘Sampling Stage’. As men-
tioned earlier, the first 7 lotteries are all associated with the same deck of cards
and hence share the same “History Table”. Notice however that although the
relative frequency of each colour of card is the same for lotteries 1 to 7, the
rewards associated with each outcome will differ from one lottery to another.

Your task in this stage is to choose each time between playing the Lottery
and receiving the Certain Outcome. Each Lottery entails 5 such choices be-
tween the Lottery (Option A) which remains constant across these 5 Choice-
Rounds and a Certain Outcome (Option B) that will be changing from each
choice to the next.

Payoff Stage

At the end of the experiment one choice is going to be randomly selected
to be played out for real. All choices are equally likely to be drawn so each
choice you make has equal chances of affecting your final payment. There are
two cases:

Case 1: If in the randomly selected choice you chose Option B (the Certain
Outcome) then the monetary value of this choice is going to be added directly
to your final payment.

Case 2: If in the randomly selected choice you chose Option A (the Lot-
tery) then the deck of cards corresponding to that choice will reappear on the
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screen. You will then be asked to draw one card from it. Then the monetary
value assigned to the colour of the card you just drew will be added to your
final payment.

a.1.3 Instructions for E-NR

Instructions for this treatment were identical to those for E-Unamb, except
that there was no reference to a history table.

a.1.4 Instructions for E-Amb

For every lottery you go through two stages: Stage 1: the “Sampling Stage”
Stage 2: the “Choice Stage” Exception: The first 7 Lotteries all share the same
“Sampling Stage” because they relate to the same deck. This means that you
will only sample once for the first seven lotteries. Each of the lotteries 8 - 24
has its own Sampling Stage (because it relates to its own deck).

Stage 1: Sampling Stage

In each Sampling Stage you draw a sample of cards from a particular com-
puterized deck. The information about the relative frequency of each type of
card is unknown to you prior to the start of the sampling process. However by
the end of this process you will have discovered something more about this
mix because you will have seen a selection of draws from that deck. As men-
tioned earlier, the first 7 lotteries relate to the same deck. This guarantees that
the relative frequency of each colour is the same for Lotteries 1 to 7. We recom-
mend that you pay attention during this sampling process as this information
is relevant for your decisions later on and hence your final payment.

Every time you click on the “Draw” button one of the two types of cards
will appear. Once you observe its colour click on “Draw again” for the “Draw”
button to reappear. You will repeat this process until the “Go to the Choice
Stage” button becomes available at the bottom of the screen. Once you click
on that button you will move on to the “Choice Stage”.

Stage 2: ‘Choice Stage’

At this stage a monetary value is assigned to the colour of each card. This
information is seen on the bottom of the screen. Later in the experiment, you
may have the opportunity to “play” a lottery. That would mean drawing once
more from a deck you have sampled and receiving the sum of money assigned
to the colour of the drawn card.
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On the top of the screen you will observe a ‘History Table’ where you can
track your sampling history from each lottery’s ‘Sampling Stage’. As men-
tioned earlier, the first 7 lotteries are all associated with the same deck of cards
and hence share the same “History Table”. Notice however that although the
relative frequency of each colour of card is the same for lotteries 1 to 7, the
rewards associated with each outcome will differ from one lottery to another.

Your task in this stage is to choose each time between playing the Lottery
and receiving the Certain Outcome. Each Lottery entails 5 such choices be-
tween the Lottery (Option A) which remains constant across these 5 Choice-
Rounds and a Certain Outcome (Option B) that will be changing from each
choice to the next.

Payoff Stage

At the end of the experiment one choice is going to be randomly selected
to be played out for real. All choices are equally likely to be drawn so each
choice you make has equal chances of affecting your final payment. There are
two cases:

Case 1: If in the randomly selected choice you chose Option B (the Certain
Outcome) then the monetary value of this choice is going to be added directly
to your final payment.

Case 2: If in the randomly selected choice you chose Option A (the Lot-
tery) then the deck of cards corresponding to that choice will reappear on the
screen. You will then be asked to draw one card from it. Then the monetary
value assigned to the colour of the card you just drew will be added to your
final payment.

a.1.5 Instructions for E-Restr

Instructions for E-Restr were identical to those in E-Amb.
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b.1 interface for description

Figure B.1: Instance from DFD’s information-evaluation stage

Note. Information about the deck and lottery evaluation take place in the same screen in DFD.
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b.2 choice patterns

Figure B.2: Choice patterns in cases where rare events have been under-represented

Note. ‘***’: p-value< 0.01, ‘*’: p-value< 0.10

Table B.1: Median experienced probabilities for DFE-HT and DFE-NoHT

DFE-HT DFE-NoHT
p Ep

0.025 0.030 0.025
0.050 0.069 0.052
0.100 0.089 0.103
0.250 0.231 0.230
0.500 0.521 0.504
0.750 0.753 0.752
0.900 0.915 0.889
0.950 0.951 0.947
0.975 0.983 0.977

Note. With the exception of p=0.975 for DFE-HT (p-value< 0.01, two-sided MW-test), we are
never able to reject the hypothesis that p = Ep.
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Table B.2: Decision set from Hertwig et al.(2004)

Decision Lotteries
problem Risky Safe

1 (4, E0.8; 0) (3, E1.0)
2 (4, E0.2; 0) (3, E0.25; 0)
3 (−3, E1.0) (−32, E0.1; 0)
4 (−3, E1.0) (−4, E0.8; 0)
5 (32, E0.1; 0) (3, E1.0)
6 (32, E0.025; 0) (3, E0.25; 0)

Table B.3: Choice patterns in ‘control’ lotteries

Decision Lotteries %R
problem Risky Safe DFD DFE-HT DFE-NoHT

A (4, E0.8; 0) (3.2, E1.0) 26% 30% 31%
B (4, E0.2; 0) (0.8, E1.0) 69% 73% 53%
C (3, E0.25; 0) (0.75, E1.0) 67% 65% 67%

Note. Risky options in this table were included as ‘control’ tasks due to their similarity with
some of the commonly used problems in the sampling paradigm (see Table B.2). For example
decision problem 2 in Table B.2 corresponds to a choice between the risky option in B and the
risky option in C from this table. Since these lotteries could only be evaluated separately in
this study, we can compare choice patterns only indirectly by comparing %R across problems
B and C. According to early DE gap, %R should be higher in B than in C for DFD while the
opposite must be true for DFE. This pattern is verified in the comparison between DFD and
DFE-NoHT but not between DFD and DFE-HT. Moreover, %R should be higher in DFE than
in DFD for problem A. This is indeed the case for both DFE-NoHT and DFE-HT. All of the
aforementioned differences are relatively small and not statistically significant.
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b.3 individual analysis

Figure B.3: Examples of decision weights elicitation

Note. Examples of non-parametric (circles) and parametric (curves) weighting functions. From
left to right: increasing values of γ for a relatively small range of δ - values. There are two ways
of constructing an aggregate weighting function from these five examples. The parametric ap-
proach entails aggregating across those five γ′s and δ′s while according to the non-parametric
one, we would aggregate across each level of probability.

Table B.4: Classification of subjects according to the curvature of utlity and weighting func-
tions

Utility function Weighting function

Concave Linear Convex
Inverse

S-shaped
No curvature S-shaped

α < 0.9 α ∈ [0.9, 1.1] α > 1.1 γ < 0.9 γ ∈ [0.9, 1.1] γ > 1.1

DFD 33.3% 25.6% 41.0 % 82.1 % 5.1 % 12.8 %
DFE-HT 35.0% 20.0% 45.0 % 62.5 % 12.5 % 25.0 %

DFE-NoHT 35.9% 20.5% 43.6 % 69.2 % 7.7 % 23.1 %

Note. Classification of γ’s was made according to decision weights calculated based on
objective probabilities.
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b.4 non-parametric analysis

Table B.5: Median decision weights in this study and in AHP

Current AHP
p DFD DFE-HT DFE-NoHT DFD DFE

0.05 0.12 0.06 0.06 0.11 0.08
0.25 0.18 0.18 0.18 0.26 0.19
0.50 0.36 0.26 0.30 0.42 0.37
0.75 0.47 0.51 0.54 0.63 0.57
0.95 0.62 0.74 0.81 0.79 0.80

Figure B.4: Non-parametric weighting functions in the current study and in AHP

Note. Plotting values from Table B.5. Top row: current study; bottom row: AHP. For DFE,
dashed lines are estimated according to objective probabilities (p) while solid lines according
to experienced probabilities ( fp). Only probability targets included in AHP are plotted. This
excludes observations at p ∈ {0.025, 0.10, 0.90, 0.975} from this study.
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c.1 instructions and interface

Unless specified otherwise, all screens were encountered by participants across
all three treatments.

Figure C.1: Welcome screen
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Figure C.2: Stage 1/A

Figure C.3: Stage 1/B
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Figure C.4: Stage 1: Decision

Note. This is the decision interface for Stage 1.

Figure C.5: Stage 2/A
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Figure C.6: Stage 2/B: Description only

Note. This screen was encountered only by participants in Description. Participants in
Experience saw instead the screen in the next Figure.

Figure C.7: Stage 2/B: Experience only

Note. These two screens were encountered only by participants in E-Free. Participants in
E-Fixed saw a similar demonstration but there was no ‘STOP EXPLORING AND CHOOSE’

button on the top-left of the screen. Moreover, the ‘REPLACE’ button was replaced with one
that read ‘NEXT CARD’ as in E-Fixed sampling was without replacement.
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Figure C.8: Stage 2/C
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Figure C.9: Stage 2/D

Figure C.10: Stage 2: Decision

Note. This screen follows the screen where participants learn about the distribution of each
scenario. Examples of how this is information is obtained for each scenario can be seen in

Figure C.6 for Description and Figure C.7 for Experience.
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Figure C.11: Stage 3/A
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Figure C.12: Stage 3/B
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Figure C.13: Stage 3/C
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c.2 matching protocol and payment

Participants were randomly assigned to a treatment and given an index num-
ber within this treatment (e.g. 1,2,3...). They were then assigned to sub-populations
of 3 members. To illustrate this process assume that there are 6 participants
in a treatment and that they are assigned to two sub-populations - A and B -
such that A = {1, 2, 3} and B = {4, 5, 6}. The matching algorithm consists of
the following steps:

• 1 and 2 are matched for Stage 2

• 4 and 5 are matched for Stage 3

• 3 and 6 get matched across sub-populations and get paid for Stage 1

• if there is a number that is indivisible by 3:

– if two players are left then they are matched for Stage 1

– otherwise, if one player is left unmatched, she gets the maximum
payoff (£3.75)

Matchings for Stage 2 and Stage 3 require that one of the two players acts
according to her Stage 2 action while the other according to her Stage 1 action.
This is randomly decided for each pair.
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c.2.1 Cooperation rate

Table C.1: Cooperation rates across treatment

SPoC Description E-Free E-Fixed

0 10.4 20.2 15.6
10 13.6 23.4 21.0
30 21.9 32.4 28.6
50 51.6 42.5 41.3
70 62.4 55.1 58.3
90 65.2 61.8 61.6
100 66.3 63.4 64.1

Note. The Sub-population Probability of Cooperation (SPoC) is the probability of being
matched to a cooperative agent in a given scenario. These values correspond to the

coordinates of Figure 4.1

c.2.2 Consistent behaviour in Stage 2

As we do not restrict behaviour in Stage 2, participants can switch multiple
times between cooperation and defection. A preference profile is a selection
of responses for every scenario of SPoC. We define as consistent behaviour,
preference profiles that switch at most once from cooperation to defection
as SPoC values increase from 0 to 100. In Figure C.14, consistent behaviour
can be found in the following coordinates: (0, 0) (people that never switch)
and (0, 1) (people who switch once, from defecting to cooperating). We see
that approximately a third of the participants in each treatment behaved in
an inconsistent manner (31%,%32,%40; for Description, E-Free and E-Fixed
respectively).

Figure C.14: Transitions of cooperative behaviour

Note. x-axis: counts number of transitions from Defection to Cooperation (‘C→D’). y-axis:
counts number of transitions from Cooperation to Defection (‘D→C’).

Building on this analysis, Figure C.15 displays the switching points of these
consistent participants. In accord with our main findings we see a spike of
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people in Description switching when SPoC=50. Moreover, we see that the
proportion of people who never switch is higher in Experience compared to
Description.

Figure C.15: Switch

Note. Values on the legend (10,30...) correspond to the value of SPoC where people chose to
switch from defecting to cooperating.

We can use Figure C.15 to elicit types according to cooperative preferences.
This can only be achieved in Description under the assumption that people’s
beliefs about the likelihood of cooperation coincides with the objective prob-
ability that was given to them by the experimenter. Notice that this exercise
cannot be performed for participants in Experience. The presence of ambigu-
ity (in E-Free and E-Fixed) as well as sampling bias (in E-Free) does not allow
a clear separation between beliefs and preferences.

Looking at the left cluster of barplots in Figure C.15 we can characterize as
conditional cooperators those who switch at some point. Those who always
cooperate can be characterized as unconditional cooperators while those who
never cooperate as free riders. We can then test the correlation between Stage
2 and Stage 3 typology. Each entry in the diagonal of Table C.2 reports the
percentage of people that were characterized in the same way between Stage
2 and Stage 3. This calculation is performed from the subset of participants
who exhibited a consistent behaviour in Stage 2 and were not characterized as
‘Others’ in Stage 3. This subset’s size corresponds to 64.3% of the total subject
pool. Summing the diagonal elements we observe that 84% of participants in
this subset are characterized in the same way between the two methods.
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Table C.2: Correlation between Stages 2 and 3 for Description

S2|S3 UC CC FR

UC 0.03 0.03 0.00
CC 0.02 0.62 0.07
FR 0.00 0.04 0.19

Note. Rows: types according to Stage 2. Columns: types according to Stage 3. ‘UC’:
Unconditional cooperators. ‘CC’:Conditional cooperators. ‘FR’: Free riders. Only

participants who exhibited consistent behaviour in Stage 2 and were not characterized as
‘Others’ in Stage 3 are included.
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