
 High PM2.5 levels occurred in autumn and winter though annual air quality improved.

 Among WSI, nitrate grew fastest during severe aerosol pollution periods.

 Industrial emission was closely associated with the deterioration of air quality.

 Among ten types of sources, secondary source contributed most to PM2.5.

 Regional transport played a key role in enhancement of PM2.5 and chemical species.



1

1 Characteristics of fine particulate matter and its sources in an 

2 industrialized coastal city, Ningbo, Yangtze River Delta, China

3

4 Weifeng Wang1, Jie Yu1, Yang Cui2, Jun He3, Peng Xue2, Wan Cao2, Hongmei Ying1, Wenkang 

5 Gao2, 4, Yingchao Yan2, Bo Hu2, 4, Jinyuan Xin2, 4, Lili Wang2, 4, Zirui Liu2, 4, Yang Sun2, 4, 

6 Dongsheng Ji2, 4*, Yuesi Wang2, 4*

7

8 1 Environment monitoring center of Ningbo, Ningbo 315012, China

9 2 State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, 

10 Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China

11 3International Doctoral Innovation Centre, Natural Resources and Environment Research Group, 

12 Department of Chemical and Environmental Engineering, University of Nottingham Ningbo 

13 China, Ningbo, China

14 4Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, 

15 Chinese Academy of Sciences, Xiamen 361021, China.

16

17

18

19

20 *Corresponding author:

21 E-mail address: jds@mail.iap.ac.cn; wys@dq.cern.ac.cn

mailto:jds@mail.iap.ac.cn
mailto:wys@dq.cern.ac.cn


2

23 Abstract 

24 Chemical information is essential in understanding the characteristics of airborne particles, and 

25 effectively controlling airborne particulate matter pollution, but it remains unclear in some regions 

26 due to the scarcity of measurement data. In the present study, 92 daily PM2.5 (particulate matter 

27 with an aerodynamic diameter ≤ 2.5 µm) samples as well as historical observation data of air 

28 pollutants were collected in urban Ningbo, one of important industrial cities in the coastal area of 

29 the Yangtze River Delta, China in autumn and winter (from Nov. 2014 to Feb. 2015). Various 

30 chemical species in PM2.5 were determined including water soluble ions, organic and elemental 

31 carbon and elements. Positive matrix factorization model, cluster analysis of back trajectories, 

32 potential source contribution function (PSCF) model and concentration-weighted trajectory 

33 (CWT) model were used for identifying sources, apportioning contributions from each source and 

34 tracking potential areas of sources. The results showed the PM2.5 concentration has been reducing; 

35 nonetheless, the concentrations of PM2.5 are still much higher than the World Health Organization 

36 guideline with high PM2.5 concentrations observed in autumn and winter for the past few years. 

37 During the sampling period, the average PM2.5 mass concentration was 77 μg/m3 with the major 

38 components of OC, NO3
-, SO4

2-, NH4
+ and EC, accounting for 26.0, 18.8, 14.5, 11.8 and 6.4% in 

39 the total mass concentration, respectively. When the aerosol pollution got worse during the 

40 sampling period, the NO3
-, SO4

2- and NH4
+ concentrations increased accordingly and NO3

- 

41 appeared to increase at fastest rate. SO4
2- transported from industrial areas led to slight difference 

42 in spatial distribution of SO4
2- in Ningbo. More secondary organic carbon was formed and the 

43 enrichment factor values of Cu, Ag, Cd, Sn and Pb increased with the degradation of air quality. 

44 Ten types of sources were identified for PM2.5 in the autumn and winter of Ningbo, which are 

45 metallurgical industry, biomass burning and waste incineration, manufacturing related with Mo, 

46 chlor-alkli chemical industry, oil combustion, vehicular emission, secondary source, soil dust, 

47 road dust and manufacturing related with Cr, accounting for 9.4, 4.8, 9.4, 7.6, 8.1, 18.7, 27.6, 2, 

48 7.1 and 5.2% of the total sources, respectively. There were five groups of air parcels arriving in 

49 Ningbo, of which inland air masses originating from Shandong province were associated with the 

50 highest PM2.5 concentrations. Despite the slight differences, it was obvious that the north of 
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51 Jiangxi, east of Anhui, west of Jiangsu, south of Shandong were identified as major potential 

52 sources-areas of SO4
2-, NO3

-, NH4
+, Cl-, OC and EC by both PSCF and CWT models.

53

54 Keywords: PM2.5; Chemical species; Source apportionment; Yangtze River Delta
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56 1. Introduction

57 PM2.5 (particulate matter with an aerodynamic diameter ≤ 2.5 µm) is one of the most important 

58 pollutants. It not only has an adverse effect on air quality, human health and atmospheric visibility 

59 but also plays a significant role in global climate and ecosystem cycling (WHO, 2005; Fiore et al., 

60 2012; IPCC AR5, 2014; Seinfeld et al., 2016). With roaring economic development, rapid 

61 industrialization and urbanization in recent decades, frequent occurrence of haze events was 

62 recorded in the Yangtze River Delta (YRD) and the North China Plain (NCP), which was mainly 

63 caused by high concentration of PM2.5 (Xu et al., 2012; Yang et al., 2015; Zhao et al., 2011), 

64 which has attracted public and scientific attention worldwide. To gain sufficient fundamental 

65 knowledge for the improvement of regional air quality necessitates a comprehensive study on 

66 characteristics of PM2.5 and its sources in a specific region (Cheng et al., 2015). Therefore, a 

67 detailed understanding of chemical composition and origins of PM2.5 is vital for policy-makers to 

68 develop effective air pollution control strategies.

69 YRD is regarded as one of the regions with the most significant anthropogenic sources for 

70 PM2.5 in the world. Ningbo, with approximately 7.6 million inhabitants (Zhejiang statistical 

71 yearbook 2013), is one of the famous economic and industrial centers of YRD region. In addition, 

72 Ningbo is an important coastal city located 220 km south of Shanghai and approximately 150 km 

73 southeast of Hangzhou, which is a major exporter of electrical products, textiles, food and 

74 industrial tools. Although the annual average PM2.5 concentrations decreased from 49 to 39 μg/m3 

75 in Ningbo in recent five years, the PM2.5 concentrations were still far higher than the air quality 

76 guideline of World Health Organization (annual mean 10 μg/m3). In particular, severe PM2.5 

77 pollution episode frequently occurred in the seasons of autumn and winter. Thus, there is an urgent 

78 need in studying the cause of severe PM2.5 pollution episode and developing emission policy 

79 controls for effectively reducing haze pollution and PM2.5 levels in autumn and winter.

80 A number of studies were conducted to investigate chemical characteristics and potential 

81 sources of PM2.5 in Ningbo. By chemical mass balance (CMB) receptor model, Xiao et al. (2012) 

82 reported that the most important PM2.5 sources, based on samples collected in Ningbo during 

83 selected one week sampling period for each season (winter, spring, summer and autumn) in 2010, 
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84 included suspended dust, fly ash from coal combustion, sulfates, vehicle exhaust, nitrates and 

85 secondary organic carbon (SOC), with contributions of 19.9, 14.4, 16.9, 15.2, 9.78 and 8.85%, 

86 respectively. In addition, Yu et al. (2015) applied positive matrix factorization (PMF) model on 

87 aerosol samples collected in winter of 2012 at five sites in Ningbo to quantify the main PM2.5 

88 sources. Joint observations of air pollution were carried out in YRD and a heavy haze episode was 

89 observed from 28 May to 6 June 2011, during which it was found that up to 37% of PM2.5 in 

90 Ningbo was contributed by the local biomass burning by Weather Research and Forecasting and 

91 Community Multiscale Air Quality (WRF/CMAQ) model simulation (Cheng et al., 2014). 

92 Recently, Du et al. (2015) studied seasonal and spatial variations of OC and EC in PM2. 5 in typical 

93 periods of 4 seasons from December 2012 to October 2013 in Ningbo and found OC and EC 

94 accounted for 17 and 6% of PM2.5, and the average concentrations of SOC in summer and autumn 

95 accounted for 42 and 28% of total OC, respectively. Xu et al. (2016) captured a high aerosol 

96 pollution episode in Ningbo from December 2012 to January 2013 and the analytical results 

97 showed that the stagnant meteorological conditions, long-range transport of air masses from heavy 

98 industries and biomass burning from northern China to Ningbo could be taken into account as the 

99 main factors for such a severe and long-lasting pollution event. Based on the above literature 

100 review, most of the air pollution studies in Ningbo were conducted before 2013 when the Air 

101 Pollution Prevention and Control Action Plan (APPCAP) was not issued and executed by Chinese 

102 government yet; besides, it is known that the autumn and winter are the seasons in which high 

103 pollution events can occur most frequently and severely, however, comprehensive studies on the 

104 chemical composition and source analysis of PM2.5 in Ningbo during both seasons after 2013 have 

105 been rarely reported. Thus, a recent study appears to be essential to evaluate if and how the 

106 implementation of the APPCAP since 2013 can affect the aerosol pollution status and its source 

107 profiles in Ningbo.

108 Therefore, to fill up the abovementioned research gap, a field sampling of PM2.5 was 

109 conducted in Ningbo during autumn and winter seasons from Nov. 2014 to Feb. 2015. In this 

110 study, the chemical compositions of PM2.5 were analyzed and their characteristics were 

111 summarized; besides, PMF receptor model, cluster analysis of back trajectories, potential source 
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112 contribution function (PSCF) and concentration-weighted trajectory (CWT) models, were applied 

113 to estimate the relative contributions of sources and identify potential aerosol pollution source 

114 areas. The new findings can not only serve as an up-to-date reference database for future field 

115 measurement and modeling work, but also are expected to be beneficial for policy-makers to 

116 retrofit air pollution control strategy in this region if necessarily in time.

117 2. Materials and Methods

118 2.1 Sampling site

119 The aerosol sampling was conducted from Nov. 4, 2014 to Feb. 6, 2015 at the rooftop of 

120 Environment Monitoring Center of Ningbo (SZ, 121°31'41.11"E, 29°53'0.43"N) (Fig. 1). The 

121 sampling site is away from the immediate influence of local pollution sources, such as roadside 

122 vehicular exhausts and industrial emissions, which is considered to be representative of air 

123 pollution level in urban areas of Ningbo. Besides the study site, PM2.5 concentrations were also 

124 observed at six other sites including Dongqianhu (site 1, rural site), Longsai (site 2, industrial site), 

125 Fenghua (site 3, suburban site), Wenfeng (site 4, background site), Cixi (site 5, urban), Wanli (site 

126 6, urban site) and Beilun (site 7, industrial site) during the sampling period. 

127 2.2. Sample collection

128 PM2.5 samplers (Partisol Model 2025 Sequential Air Sampler, Thermo-fisher Scientific Inc. 

129 USA) with BGI Inc. Very Sharp Cut Cyclone impactors were used to simultaneously collect PM2.5 

130 for 24 h from 0:00 to 23:00 LT every day at a flow rate of 16.7 L min-1, with Quartz fiber and 

131 Teflon filters that are 47 mm in diameter. The quartz fiber filters were pre-fired (4 h at 800 °C) to 

132 remove all organic impurities. Filters were conditioned in a dryer (25 °C, 40% RH) for 24 h and 

133 then they were weighed before and after sampling using a microbalance with sensitivity ±0.01 mg. 

134 After sampling, the exposed filters were stored in a freezer at -20 oC to minimize losses of volatile 

135 components. In addition, hourly measurements were conducted for sulfur dioxide (SO2), nitrogen 

136 dioxide (NO2), carbon monoxide (CO), ozone (O3) and PM2.5 at multiple sites from 2011 to 2015 

137 in Ningbo, and the detailed information on instruments, calibration and maintenance have been 

138 reported by Ji et al. (2012).
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139 2.3 Sample analysis

140 A quarter of each Teflon filter was extracted using 25 ml of deionized water (Millipore, 18.2 

141 MΩ) in an ultrasonic bath for 30 min. The extract liquid was filtered and subsequently analyzed 

142 by Ion Chromatograph (IC) (DIONEX, ICS-90, USA) to determine the concentrations of water-

143 soluble ions (Na+, NH4
+, K+, Mg2+, Ca2+, Cl-, NO3

- and SO4
2-). The quartz filter was cut and the 

144 concentrations of OC and EC were determined using a thermal/optical carbon aerosol analyzer 

145 (DRI Model 2001A, Desert Research Institute, USA). 

146 A quarter of the Teflon filter was digested using a mixture of concentrated HF (0.2 ml), HCl (2 

147 ml) and HNO3 (6 ml) in the automated sample digestion system DEENA (Thomas Cain Inc., 

148 USA). The subsequent analysis of trace elements (Na, Mg, Al, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, 

149 Cu, Zn, As, Mo, Ag, Cd, Sn, Ba, Tl and Pb) was carried out using an Agilent 7500ce inductively 

150 coupled plasma mass spectrometry (ICP-MS) (Agilent Technologies, Santa Clara, CA, USA). The 

151 analytical methods or protocols of chemical species in PM2.5 have been introduced in the previous 

152 study (Tian et al., 2016), in which the detailed information on the instruments (e.g., precision, 

153 detection limit, operation, calibration and maintenance) and quality assurance/control could be 

154 found.

155 2.4 Positive Matrix Factorization model

156 Positive Matrix Factorization (PMF) model, an effective receptor modeling tool, has been 

157 worldwide applied for source apportionment in the field of environmental research and 

158 administration (Brown et al., 2007; Shi et al., 2016). The description of PMF method has been 

159 introduced in details in the supplementary materials. The sampling data and the uncertainty of all 

160 species based on method detection limit are input into US EPA’s PMF 5.0, and source profiles and 

161 source contributions can be acquired. Robust uncertainty estimates and diagnostics are shown to 

162 assess the rationality of the results. In this study, 33 types of chemical species (Na, Mg, Al, K, Ca, 

163 Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Mo, Ag, Cd, Sn, Ba, Tl, Pb, Na+, NH4
+, K+, Mg2+, Ca2+, 

164 Cl−, F-, SO4
2−, NO3

−, OC and EC) can be loaded into PMF 5.0, and the sources of PM2.5 will be 

165 identified and the mass contributions of each source will be also quantified.
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166 2.5 Air mass back trajectory cluster

167 Forty eight hours backward trajectories arriving at the sampling site (121°31'41.11"E, 

168 29°53'0.43"N) were calculated using the HYSPLIT 4 model issued by National Oceanic and 

169 Atmospheric Administration (NOAA) during the sampling period. The arrival level was set at 100 

170 m above ground level (a.g.l.) and the 48 h back trajectories were calculated at 0:00, 6:00, 12:00 

171 and 20:00 UTC. 

172 2.6 PSCF and CWT model

173 The potential source areas can be identified using potential source contribution function 

174 (PSCF) model, which combines the backward trajectory and a defined value of air pollutant 

175 (Nicolas et al., 2011). The study field is divided into small equal grid cells (ij). The value of PSCF 

176 is expressed as:

177                                                        (1)ij
ij

ij

m
PSCF

n
=

178 where i and j denote the latitude and longitude, respectively, nij represents the number of endpoints 

179 passing through the ij cell, and mij is defined as the number of endpoints in the same cell 

180 associated with samples that are higher than the criterion value. The 75th percentile for each 

181 chemical species is selected as the criterion value. To reduce the uncertainty in cells, a weighting 

182 function w(nij) should be multiplied with a mij/nij value when nij is lower than three times of 

183 average number of trajectory endpoints (nmean) in each cell (Dimitriou and Kassomenos et al., 

184 2015; Polissar et al., 2001). The weight potential source contribution function (WPSCF) is 

185 described as follows:

186                                                  (2)

187                                    (3)

188 The concentration-weighted trajectory (CWT) model is used to weight trajectories with 

189 related concentrations of air pollutants. The geographical field is divided into cells representing an 

190 area of 1.0°×1.0°. The CWT can be calculated as follows:
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191                                        (4)

192 where  is the mean weight concentration of the back trajectory h in the ij cell; Ch represents ijC

193 PM2.5 concentration in the trajectory h through ij cell;  represents the time that trajectory h ijht

194 resides in the ij cell. W( ) used in CWT is the same as that in PSFC to reduce the uncertainty in ijn

195 cells.

196 The studied domain is from 20 to 50° N and 110 to 130° E, which includes almost all areas 

197 covered by all the air mass transport pathways. Both WPSCF and CWT analyses were calculated 

198 using the MeteoInfo software-TrajStat Plugin (Wang et al., 2009), which has been proven useful 

199 to identify potential source areas of PM2.5 and its chemical species (Wang et al., 2015).

200 3. Result and Discussion

201 3.1 Levels of PM2.5 

202 The levels of PM2.5 in Ningbo from 2011 to 2015 and the measurement data for this study are 

203 presented in Fig. 2. As shown in Fig. 2(a), clear monthly variations of PM2.5 concentrations were 

204 observed and higher values were recorded in November, December and January. The monthly 

205 average concentrations were 63 ± 29, 79 ± 22 and 86 ± 43 μg/m3 in November, December 2014 

206 and January 2015, respectively. Given that the electricity and natural gas are the main power 

207 sources for residential heating in urban area of Ningbo in autumn and winter (Ningbo Statistical 

208 Yearbook, 2015), the increased consumption of coal burning for power generation during these 

209 seasons could contribute more to PM2.5 concentration in this region. In addition, regional transport 

210 or stagnant meteorological condition also played important roles in the accumulation of PM2.5 in 

211 autumn and winter. As shown in Fig. S1, in the autumn and winter the precipitation (on average 

212 93.9 mm) and WS (on average 1.5 m/s) were lower than annual average values of the precipitation 

213 (139.5 mm) and WS (1.7 m/s), respectively. Lower precipitation and WS were conducive to the 

214 accumulation of air pollutants. Besides, prevailing northerly wind, which carried air pollutants in 

215 NCP and YRD to the sampling site, resulted in the degradation of air quality in Ningbo in the 

216 autumn and winter. The results in Fig. 3 show that PM2.5 concentrations at all sampling sites in 

217 this study were significantly correlated with each other though they are with different urbanization 
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218 gradients. Consequently, it can be inferred that the inland air masses transported from outside had 

219 a dominant effect on the PM2.5 concentrations so as to reduce the spatial variation due to the 

220 geographical closeness of all studied sites within Ningbo. It is also consistent with the findings 

221 reported by Li et al. (2017) that the continental air masses could import higher concentration of 

222 PM2.5 to Ningbo. Further discussion will be shown in section 3.4.

223 As shown in Fig. 2(b), the consistent variations were found between PM2.5 concentrations 

224 measured using filter sampling and automatic analyzers. The PM2.5 concentrations varied from 23 

225 to 204 μg/m3 with a mean value of 77 μg/m3 based on filter sampling method. The number of days 

226 exceeding the Chinese Ambient Air Quality Standards (CAAQS) daily limit of 75 μg/m3 was 42, 

227 accounting for 48 % of total number of air pollution days in the whole year (from Nov 2014 to Oct 

228 2015). According to American Ambient Air Quality Standard (AAAQS) and World Health 

229 Organization (WHO) guideline, there were 83 and 90 days exceeding the daily PM2.5 thresholds of 

230 35 μg/m3 (AAAQS) and 25 μg/m3 (WHO) during the sampling peiord, respectively. The annual 

231 PM2.5 concentrations in Ningbo had reduced very slightly from 46 μg/m3 in 2014 to 45 μg/m3 in 

232 2015, which were lower than those observed in Ningbo before executing the Air Pollution 

233 Prevention and Control Action Plan (Li et al., 2017a). It suggested that APPCAP come into effect 

234 and air quality gradually improved. However, the levels of PM2.5 increased comparatively from 

235 Nov 2013-Feb 2014 to Nov 2014-Feb 2015, which were close to those observed (81.1 μg/m3) in 

236 winter before executing the Air Pollution Prevention and Control Action Plan (Li et al., 2017a). In 

237 addition, note that the annual average concentration from Nov 2014 to Oct 2015 is 3 times the 

238 AAAQS PM2.5 threshold value of 15 μg/m3, and 4.5 times the WHO guideline value of 10 μg/m3 

239 in urban Ningbo.

240 Compared to PM2.5 levels in other key cities of YRD, it can be found that the annual average 

241 concentration of PM2.5 in Ningbo (from Nov 2014 to Oct 2015) was lower than those in Hangzhou 

242 (56 μg/m3), Nanjing (58 μg/m3), Wuxi (63 μg/m3), Suzhou (60 μg/m3) and Shanghai (53 μg/m3) 

243 (China Statistical Yearbook On Environment, 2015). Besides, the annual average concentration of 

244 PM2.5 in Ningbo was lower than or similar with those in most coastal cities of China, including 

245 Tianjin (76 μg/m3), Qinhuangdao (48 μg/m3), Qingdao (53 μg/m3), Danlian (50 μg/m3) and 
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246 Guangzhou (45 μg/m3), but higher than those of Zhuhai (33 μg/m3), Shenzhen (33 μg/m3), Xiamen 

247 (34 μg/m3) and Fuzhou (33 μg/m3) (China Statistical Yearbook On Environment, 2015). As shown 

248 in Fig. S2, moderate correlations were found between PM2.5 and SO2, NO2, CO and Ox using 

249 regression analysis (P < 0.001). It is understandable that these gases may be emitted by the same 

250 sources that emit PM2.5 and its precursors, or themselves may serve as precursors to secondary 

251 PM2.5 formation. Variations in this complex ambient mixture are accompanied and affected by 

252 variations in an array of meteorological conditions. In general, for the past few years the PM2.5 

253 concentration has been reducing; nonetheless, the level of PM2.5 is still much higher than the 

254 WHO guideline and further control measures should be taken to improve air quality in Ningbo.

255 3.2 Characteristic of chemical composition in PM2.5

256 3.2.1 The major water soluble ions analysis

257 Tab. 1 and Fig. 4 present concentrations and variations of chemical composition in PM2.5 and 

258 aerosol chemical profile at various air quality levels (the categorization of air quality levels based 

259 on PM2.5 concentration bands and the numbers of days with different air quality levels during the 

260 sampling period are shown in Tab. S1.) (Ji et al., 2016). Water soluble ions (WSIs) accounted for 

261 45.2% of PM2.5 and the NO3
-, SO4

2-, NH4
+ and Cl- were the major WSIs of PM2.5 during the 

262 sampling period. The concentrations of major WSIs varied in the following order: NO3
- > SO4

2-> 

263 NH4
+ > Cl-. NO3

- concentrations ranged from 2.5 to 42.5 μg/m3 with an average of 14.5 μg/m3. 

264 When the aerosol pollution got worse during the sampling period, the NO3
-, SO4

2- and NH4
+ 

265 concentrations increased accordingly and NO3
- appeared to increase at fastest rate. As reported by 

266 previous study (Seinfeld et al., 2016), NO3
- originated from conversion of gaseous NOx which 

267 could be from power plant, traffic emission, shipping emission, industrial combustion and other 

268 processes, etc. Based on emission inventory of air pollutants in Ningbo (Tab. S2), it can be seen 

269 power plant, mainly the coal-fired boilers, is the predominant source for NOx, which deems to play 

270 an important role in the formation of NO3
- in Ningbo according to the velocity and conversion rate 

271 of NO3
- from NOx (Seinfeld and Pandis, 2016). Besides, the observed results also indicated a 

272 strong correlation between NO3
- and SO2 during the moderately and heavily polluted periods as 

273 shown in Fig. 5. It might be because that secondary inorganic ions such as NO3
- are generated 
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274 through both homogeneous and heterogeneous reactions of gaseous precursors including SO2 and 

275 NOx (Xu et al., 2017).

276 SO4
2- concentrations ranged from 3.6 to 25.0 μg/m3 with an average of 11.2 μg/m3. SO4

2- 

277 contributed the second largest portion of the WSIs after NO3
-. As discussed above, SO4

2- is mainly 

278 formed via conversion of primary gaseous pollutant SO2 and a small fraction can come from 

279 marine source. Considering that there is no strong source of SO2 in the urban areas of Ningbo and 

280 sulfur containing fossil fuels are mainly used in industrial facilities (including coal fired power 

281 plants) located far away from downtown area in suburb industrial zones or industrial areas of 

282 YRD, SO4
2- might be transported from industrial areas leading to slight difference in spatial 

283 distribution of SO4
2- in Ningbo (Fig. S3), which was consistent with the results observed by Li et 

284 al. (2017). 

285 Cl− is considered to be an important ion contributing to the formation of PM2.5 in coastal 

286 cities (Xu et al., 2017). Cl− showed the high concentration in this study, which may be attributed 

287 to both sea source and anthropogenic emission. As reported by Nenes et al. (1998), sea-salt 

288 aerosols act as cloud condensation nuclei with SO2 oxidation proceeding in the resulting cloud 

289 droplet producing H2SO4 and HNO3. The formation of H2SO4 and HNO3 promotes the acidity in 

290 the NaCl particles, and can result in the evaporation of HCl and decline in the ratio of Cl to Na 

291 less than that in sea salt, leading to Cl-depletion. The positive Clexcess of 2.4±2.2 calculated by Eqs 

292 (5) and (6) during this study period suggested that Cl- was influenced by anthropogenic emission 

293 more than Cl-depletion process in particular in this study.

294 Clexcess = Clsample −Clreference                                               (5)

295 Clreference = Nasample/(Na/Cl)sea = Nasample/0.556                                 (6)

296 where Clsample and Clreference represent the Cl- concentration observed in the sample and sea-salt 

297 sample, respectively, and Nasample is the Na+ concentration observed in the sample.

298 NH4
+ concentrations ranged from 2.3 to 24.2 μg/m3 with an average of 9.1 μg/m3. The 

299 correlations between equivalent concentrations of NH4
+ and the total equivalent concentrations of 

300 SO4
2−, NO3

− and Cl- are reported in Fig. 6, which were very significant indicating NH4
+ presented 

301 similar variation with SO4
2−, NO3

− and Cl- in this study. In addition, the slopes of regression lines 
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302 were the same with a value of 0.89 throughout the sampling campaign, good and moderate air 

303 quality period and polluted days, showing that NH4
+ equivalent concentrations were not enough to 

304 neutralize the sum of SO4
2−, NO3

− and Cl- equivalent concentrations. It suggested that PM2.5 is 

305 acidic but the acidity of these aerosols did not vary significantly with degradation of air quality. 

306 Due to instability of NH4NO3 and NH4Cl and deficient NH4
+ conditions, the formation of 

307 (NH4)2SO4 and NH4HSO4 is more preferred than that of NH4NO3 or NH4Cl (Meng et al., 2011; 

308 Seinfeld et al., 2016). In addition, the acidity of the PM2.5 is an important parameter affecting the 

309 acidity-dependent heterogeneous chemical processes on the aerosol surfaces like the hydrolysis of 

310 N2O5, the oxidation of SO2 and the formation of organic aerosols (Wang et al., 2016). 

311 3.2.2 Carbonaceous species

312 The average concentrations of OC and EC were 19.0 and 4.9 μg/m3 during this sampling 

313 campaign in Ningbo, accounting for 24.7 and 6.4% of PM2.5, respectively. The concentrations of 

314 OC ranged from 4.7 to 66.1 μg/m3 while that of EC was in the range between 1.3 and 12.8 μg/m3. 

315 The average OC/EC ratios ranged from 2.0 to 7.7 with an average of 3.9. As shown in Fig. 7(a), 

316 with the degradation of air quality, the ratio of OC/EC increased correspondingly. However, the 

317 ratios of OC/EC obviously declined with the enhancement of EC concentrations (Fig. 7(b)). EC is 

318 essentially a primary pollutant of incomplete fuel combustion including fossil fuel and biomass, 

319 etc. (Andersson et al., 2015) and OC originates from primary anthropogenic sources such as fuel 

320 combustion and is also formed via secondary transformation of gaseous precursors (Cao et al., 

321 2007; Wang et al., 2012). The increase in OC/EC ratios with enhancement of air pollution levels 

322 suggested a significant effect of secondary organic carbon while the decline in OC/EC ratios with 

323 enhancement of atmospheric EC levels indicated high EC concentrations and low OC/EC ratios 

324 possibly concurred. Local freshly emitted EC under stagnant atmospheric conditions or that 

325 transported from upwind high emission areas could result in high concentrations of EC at study 

326 site, which usually corresponded with less secondary formation of OC (Aggarwal et al., 2009). 

327 However, due to the dispersion during long-range transport and aging effect under sunlight 

328 irradiation (Zhao et al., 2016), EC concentrations decreased and more secondary formation of OC 

329 could be expected.
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330 As shown in Figs. 7(c) and 7(d), the significant correlation between OC and SO4
2- but the 

331 insignificant correlation between EC and SO4
2- were observed, which confirmed that secondary 

332 formation played an important role in the generation of OC and sulfate through homogeneous 

333 and/or heterogeneous reactions. In addition, the average ratio of OC/EC was 3.9 in Ningbo in this 

334 study, which again supported the strong contribution of SOC to PM2.5 in this study, as the ratio of 

335 OC/EC greater than 2.0 could be generally applied to identify and evaluate secondary organic 

336 aerosols (Chow et al., 1996; Turpin and Huntzicker, 1991). 

337 To further evaluate the contributions of both primary and secondary organic carbon to 

338 carbonaceous aerosol, the equations (7) and (8) below are used (Turpin and Huntzicker, 1995): 

339 OCsec = OCtot – EC × (OC/EC)min                                          (7) 

340 OCpri = EC × (OC/EC)min                                       (8) 

341 where OCsec is secondary OC, OCtot is total OC, OCpri is primary OC, and (OC/EC)min is the 

342 minimum ratio of OC/EC, which could replace the ratio of OC/EC in the primary aerosol. The 

343 (OC/EC)min in the lowest 10% OC/EC ratios would be a reasonable estimate of the primary 

344 emissions in this study (Lim et al., 2002; Wu et al., 2016). The results showed that the fraction of 

345 SOC in total carbon (TC) was 43.0%, and SOC accounted for 41.3, 39.4, 38.7, 52.4 and 52.3% of 

346 TC when air quality were excellent, good, lightly polluted, moderately polluted and heavily 

347 polluted, respectively. The higher percentage (52.4 and 52.3%) of SOC during the moderately and 

348 heavily polluted periods might be related to rapid transformation of the SOC precursors, i.e., 

349 VOCs (Cao et al., 2005).

350 3.2.3 Elemental profile

351 As shown in Tab. 1, twenty-two elements were analyzed in the aerosol samples, including 

352 Na, Mg, Al, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Mo, Ag, Cd, Sn, Ba, Tl and Pb, the total 

353 concentration of elements accounted for only 5.5% of PM2.5 during the sampling period with 

354 average concentration of all elements of 4.2 μg/m3. As shown in Tab. S3, significant positive 

355 correlations between PM2.5 and Na, K, Mn, Fe, Co, Cu, As, Mo, Ag, Cd, Sn, Ba as well as Pb (2-

356 tailed, P<0.001) were found, indicating that the above-mentioned elements increased with 

357 enhancement of PM2.5 concentrations. The concentration of K, Na, Al, Ca, Fe, Zn and Mg 
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358 accounted for 93% of the total concentration of all measured elements in this study. From the 

359 literature (Song et al., 2001), K, Al, Ca and Fe were associated with crustal sources; besides, Fe 

360 and K originated from industrial emission and biomass burning, respectively. Significant 

361 correlations between Fe and Cd (Tab. S3) as well as K and EC (Fig. S4) supported the results, 

362 which showed Cd came from metallic smelting and biomass burning emitted EC and K 

363 simultaneously. The mass concentrations of Ni (0.010±0.005 µg/m3) and V (0.006±0.005 µg/m3) 

364 in this study were comparable to those observed in Ji’nan, China (Gu et al., 2014) and significant 

365 correlation between Ni and V might imply that Ni and V originated from the same source, which 

366 was consistent with the finding in previous studies that shipping emission was characteristic of 

367 high Ni and V concentrations (Tao et al., 2017). The average concentrations of Mn, Cu, Zn, Cr, 

368 Co, Cd, and Pb were 0.057±0.037, 0.027±0.014, 0.376±0.229, 0.029±0.013, 0.0004±0.0002, 

369 0.002±0.001 and 0.091±0.055 μg/m3, respectively, which deemed to be mainly from metal 

370 smelting (Amato et al., 2012; Liu et al., 2016). V, Cr, Ni, Co, Sr and Cd showed no obvious 

371 variations, probably related to various industrial activities (Yang et al., 2013; Yao et al., 2016). 

372 Enrichment factor (EF) has been widely applied to evaluate the enrichment degrees of 

373 elements using the equation (9):

374 EF = (X/XRef) environment/(X/XRef) background                            (9)

375 where X is element in the studied environment and XRef is the reference element (Huang et al., 

376 2012). Al is used as the reference element in this study (Liu et al., 2017; Wang et al., 2016; Zhang 

377 et al., 2015). (X/XRef)background was obtained based on concentrations in topsoil in China (Wei et al., 

378 1991). The EF values of Ti, Mg, Fe, Co, Ba, Ca, K, Na, V, Mn, Ni, Cr, As, Mo, Cu, Tl, Pb, Ag, 

379 Sn, Zn and Cd ranged from 1.0 to 2, 892.6 during the sampling period. The EF values of Ti, Mg, 

380 Fe, Co, Ba, Ca, K, Na were lower than 10, suggesting that they mainly originated from natural 

381 sources while those of V, Mn, Ni, Cr, As, Mo, Cu, Tl, Pb, Ag, Sn, Zn and Cd were higher than 10, 

382 indicating that these elements were closely related to anthropogenic activities (Wang et al., 2013). 

383 Mg and Na could be attributed to sea salt while Ti, Fe, Co, Ba, Ca and K were bound up with 

384 crustal sources. The EF value of Cd varied from 184.4 to 8,605.8, which were associated with 

385 anthropogenic emission i.e., intensive industrial processes (Wang et al., 2013). Note that with the 
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386 deterioration of air quality the EF values of Cu, Ag, Cd, Sn and Pb increased accordingly, which 

387 indicated enhancement in effect of their anthropogenic emission on the worse local air quality.

388 3.3. Source apportionment

389 To avoid repeated calculation, K, Na, Ca and Mg measured by ICP-MS were utilized instead 

390 of those ions analyzed by IC for the source analysis by PMF modeling. In final, 30 variables were 

391 input into the PMF model including PM2.5, F-, Cl-, NO3
-, SO4

2-, NH4
+, OC, EC, Na, Mg, Al, K, Ca, 

392 Ti, V, Cr, Mn, Fe, Co, Cu, Ni, Ag, Tl, Zn, As, Mo, Ba, Cd, Sn and Pb. Of all the variables, PM2.5 

393 was considered as the total variable. After initial examination of PMF model, Ni, Ag and Tl were 

394 eliminated from the model due to the poor match between the modeled and measured values. The 

395 measured concentrations of chemical species input into the PMF model accounted for 80.2% of 

396 the total PM2.5. 5-13 factors were attempted in the PMF model operation (Tab. S4). After 

397 optimization, 10 factors were determined as input parameters by Error Estimation (EE) diagnostics 

398 analysis and the most reasonable results were acquired. The regression line between the PM2.5 

399 concentration (y) produced by the PMF modeling and that measured in this study (x) could be 

400 expressed as y = 0.89x + 3.37 (r2 = 0.86). Q(Robust)/Q(True) of 0.93 also indicated that ten factors 

401 could be an optimal solution. The spectrum of different sources for PM2.5 in this study estimated 

402 by PMF model was shown in Fig. 8. Besides, the contribution of each source by weight percentage 

403 was presented in Fig. 9 and time series of the contribution from different sources was shown in 

404 Fig. S5.

405 The first source category of PM2.5 was metallurgical industry, accounting for 9.4% of PM2.5. 

406 This source was characterized by high loading of Mn and Zn and moderate loading of Fe, Co and 

407 Cu, which is consistent with findings in previous studies (Kim et al., 2003; Song et al., 2006). As 

408 documented by economic census conducted by Ningbo statistics bureau (http://english.nbtjj. 

409 gov.cn), there were approximately 5,082 enterprises related to metal smelting and processing. 

410 The source factor 2, contributing 4.8 % to PM2.5, was characteristic of high contribution of K 

411 and moderate loading of Pb, As, Cd, Cu, OC and EC. It was reported in previous studies that high 

412 contribution of K and Pb could be from biomass burning and waste incineration (Huang et al., 

413 2014; Yuan et al. 2006).
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414 The third source factor had high proportion of Mo and the moderate loadings of Co, Cu, Fe 

415 and Zn, which could be identified as industrial processes related with Mo (Tao et al., 2014), and 

416 this factor accounted for 9.4% of PM2.5. This might be supported by such a fact that there are 

417 plenty of enterprises related to Mo production and manufacturing according to the field 

418 investigation in Ningbo (http://english.nbtjj.gov.cn).

419 Factor 4 had a significant contribution of Cl−, accounting for 7.6% of PM2.5. In addition to 

420 marine source (seawater), coal combustion and chlor-alkli chemical industry could be identified as 

421 the main source for Cl- in this study (Xu et al., 2017; Liu et al., 2017). 

422 The fifth factor had a highest loading of V with an average contribution of 8.1% to PM2.5, 

423 which was the indicator of heavy oil combustion (Vallius et al., 2003). Heavy oil is normally used 

424 for cargo ships and diesel vehicles etc. (Vallius et al., 2003; Yao et al., 2016; Tao et al., 2017).

425 The sixth type of source was characterized by EC and OC and also contained high loadings 

426 of SO4
2-, NH4

+ and Ca. The OC and EC are major pollutants from gasoline and diesel combustion 

427 (Zhang et al., 2017; Yao et al., 2016). Hence, vehicle exhaust could be identified for this factor 

428 and contributed 18.7% to PM2.5. The sampling site was located in the downtown area of Ningbo, 

429 densely populated and heavily affected by nearby traffic activities.

430 Factor 7 was highly loaded with SO4
2-, NO3

- and NH4
+, representative of contribution by 

431 secondary inorganic aerosols (Gao et al., 2016; Zhang et al., 2017). A number of studies suggested 

432 that NO3
-, SO4

2- and NH4
+ were mainly stemmed from the conversion processes of gaseous 

433 precursors to particle (Liu et al., 2015; Tao et al., 2013; Wang et al., 2006). This factor accounted 

434 for 27.6% of PM2.5, possessing the highest contribution to these fine aerosols, indicating its 

435 important roles in worsening the air quality and visibility reduction in this region. 

436 The eighth category of pollution sources was characterized by elements including the Mg, Al, 

437 Ca and Ti, which are of crustal source or soil dust, contributing an average of 2% of PM2.5. This 

438 was consistent with findings in a previous study conducted in urban Ningbo (Yu et al., 2015). 

439 The ninth factor had high abundance of Al and V, indicating a strong contribution from road 

440 dust accounting for 7.1% of PM2.5 (Li et al., 2016). As mentioned above, the population of 
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441 automobiles was large and traffic in downtown area was heavy, hence it might be understandable 

442 that road dust could be a more important source than soil dust for PM2.5 in this study. 

443 The tenth factor was associated with industrial emission, characteristic of a significant 

444 loading of Cr. In addition, a certain amount of Mn, Zn and Al was also observed in this factor. 

445 This factor contributed 5.2% to PM2.5.

446 Based on the above analysis, it is found that the contribution of the secondary inorganic 

447 aerosol was the largest source and the control of gaseous precursor like SO2, NOx and NH3, etc. 

448 should be further strengthened. Vehicular exhaust was the second largest source, which suggested 

449 that advanced technology needs to be implemented to more effectively control traffic emission. 

450 Manufacturing and other industrial processes in relation to Mo, Cr and Cl- contributed 22.2% to 

451 PM2.5. In addition, it is also clear that the road and soil dust emission should be further suppressed 

452 in near future. 

453 3.4. Source analysis based on backward trajectories, WPSCF and CWT 

454 Figs. 10, 11 and 12 showed the association of the backward trajectories with PM2.5, and 

455 potential sources-areas of NO3
-, SO4

2-, NH4
+, Cl-, OC, EC and PM2.5, during the sampling period. 

456 In terms of directions and traveled regions, major trajectories were divided into five groups by 

457 cluster analysis: (1), (2), (3), (4) and (5), accounting for 31.4, 14.5, 27.1, 12.2 and 14.0% of the 

458 total trajectories, respectively. The PM2.5 concentrations in every group were shown in Tab. S5. 

459 Trajectory (1) stemmed from Shandong province, which clearly represented inland air masses. 

460 The highest PM2.5 concentrations were associated with this group of trajectories. Trajectory (2) 

461 began in Liaoning province, passed through ocean before arriving at Ningbo. Trajectory (3) was 

462 originated from the East China Sea with relatively shorter pathways, which were bound up with 

463 the lowest PM2.5 concentrations. Trajectory (4) originated from Mongolia, across over Inner 

464 Mongolia, Hebei province, the Bohai Sea, Shandong province and the East China Sea before 

465 arriving at the sampling site, which showed the extremely long transport pathway. Trajectory (5) 

466 was originated from Anhui province, across over the border of Jiangsu and Zhejiang provinces 

467 before arriving at Ningbo, which showed the extremely shorter transport pathway, associated with 

468 higher PM2.5 concentrations. 

http://www.sciencedirect.com/science/article/pii/S0269749117300398#fig6
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469 As shown in Figs. 11 and 12, the most areas of Jiangsu province, eastern areas of Anhui 

470 province, south of Shandong province and northeastern areas of Zhejiang province were identified 

471 as major potential sources-areas of PM2.5 as well as NO3
-, SO4

2-, NH4
+, Cl-, OC and EC based on 

472 WPSCF and CWT models. However, slight difference in potential source areas of NO3
-, SO4

2-, 

473 NH4
+, Cl-, OC and EC was found. For example, high potential source areas and transport pathways 

474 of NO3
-, SO4

2-, Cl-, OC and EC were mainly located in the north and northwest of Ningbo 

475 including areas of Jiangsu province, the north of Zhejiang province, the south of Shandong 

476 province and Jiujiang city in Jiangxi province, where the largest coal-fired thermal power plant in 

477 Jiangxi province was located. NH4
+ shared the similar source regions with NO3

-, SO4
2-, Cl-, OC 

478 and EC but had less high potential source areas across the abovementioned regions. The possible 

479 reason for this was that the source of NH4
+ is different from those of NO3

-, SO4
2-, Cl-, OC and EC. 

480 NH4
+ originated from the transformation of NH3 (Seinfeld et al., 2016), which mainly come from 

481 agricultural activities (Wu et al., 2016). In addition, the partial areas of Yellow Sea and East China 

482 Sea were identified as high potential sources-areas of Cl-. Note that NO3
-, SO4

2-, Cl-, OC and EC 

483 had obvious high potential source areas across inland regions including Yangzhou-Zhenjiang-

484 Changzhou-Wuxi-Suzhou-Jiaxing cities. Considering that many cities located along this pathway 

485 are industrial cities, such as Yangzhou, Zhenjiang, Changzhou, Wuxi, Suzhou and Jiaxing, 

486 regional transport from these areas would have potentially high impact on the formation of severe 

487 pollution. In addition, regional transport from Taizhou industrial regions in Zhejiang province, 

488 which is located in the south of Ningbo, might play an important role in the high concentrations of 

489 NO3
-, SO4

2-, Cl-, OC and EC. Such a pollution band agrees well with a previous study (Li et al., 

490 2017b).

491 4. Conclusion

492 An intensive experiment was conducted to study the characteristics of PM2.5 and its sources 

493 in Ningbo, an important industrial city in the coastal area of the Yangtze River Delta, China in 

494 both autumn and winter seasons. The major gaseous pollutants, PM2.5 and its chemical 

495 compositions were concurrently measured. Based on PMF, PSCF and CWT models, sources of 
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496 PM2.5 were identified, and sources areas of PM2.5 and its chemical species were investigated. The 

497 conclusions were summarized as below: 

498 The annual average PM2.5 concentrations declined in past few years, but were still far higher 

499 than the WHO guideline. In particular, the PM2.5 pollution episodes frequently occurred in autumn 

500 and winter, when further control measures should be taken to improve air quality in Ningbo. It 

501 appears that regional transport played important roles in high aerosol pollution in both seasons.

502 The water-soluble ions, carbonaceous species and elements contributed 48.7±14.8%, 

503 29.9±8.0% and 5.5±9.0% to PM2.5, respectively. Based on the emission inventory and the 

504 relationship between NO3
- and SO2, industrial emission played an important role in formation of 

505 NO3
-. Controlling NOx from industrial emission will be helpful for reducing PM2.5 level in 

506 Ningbo. With the degradation of air quality, the ratio of OC/EC increased correspondingly and 

507 suggested that secondary organic aerosol contributed significantly to OC. In addition, industrial 

508 emissions played a more important role when air quality became more polluted based on EF 

509 values.

510 Ten types of sources were determined via PMF model analysis based on the EE diagnostics. 

511 Secondary source was the highest contributor to PM2.5 in Ningbo for the whole study period, and 

512 followed by vehicular emission, metallurgical industry, manufacturing related with Mo, oil 

513 combustion, chlor-alkli chemical industry, road dust, manufacturing related with Cr, biomass 

514 burning and waste incineration and soil dust, respectively.

515 The most areas of Jiangsu province, eastern areas of Anhui province, south of Shandong 

516 province and northeastern areas of Zhejiang province were identified as major potential sources-

517 areas of PM2.5 as well as NO3
-, SO4

2-, NH4
+, Cl-, OC and EC by WPSCF and CWT models. In 

518 addition, the partial areas of Yellow Sea and East China Sea were identified as high potential 

519 sources-areas of Cl-. Due to the transboundary transport effect, joint pollution prevention and 

520 control measures need to be strengthened to improve the air quality in this region.
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Figure legends 

Fig. 1. Location of sampling site (SZ), Dongqianhu (site 1, rural site), Longsai (site 2, industrial 

site), Fenghua (site 3, suburban site), Wenfeng (site 4, background site), Cixi (site 5, urban), 

Wanli (site 6, urban site) and Beilun (site 7, industrial site) in Ningbo.

Fig. 2. Concentrations of PM2.5 in Ningbo (a) Monthly PM2.5 variations in urban Ningbo from 

2011 to 2015 (b) Variations in PM2.5 observed using filter sampling and automatic analyzers in 

this study.

Fig. 3. The regression lines of hourly PM2.5 concentrations among multiple sites in Ningbo in this 

study.

Fig. 4. Chemical composition in PM2.5 in this study (a) daily variation (b) chemical profile in 

PM2.5 at various air quality levels (SP, Slightly polluted; MP, Moderately polluted; HP, Heavily 

polluted).

Fig. 5. The regression line between SO2 and NO3
- during the moderately and heavily polluted 

days.

Fig. 6. Correlations among inorganic ions during the sampling period, good and moderate air 

quality, and polluted days.

Fig. 7 (a) The relationship between the ratios of OC/EC and air pollution levels; (b) The 

correlation between OC/EC and EC concentration; (c) The correlation between SO4
2- 

concentration and EC concentration; (d) The correlation between SO4
2- concentration and OC 

concentration.

Fig. 8. Factor profile (w % of species) in each source for PM2.5 in Ningbo.

Fig. 9. The contribution from each source to the ambient PM2.5 in Ningbo.

Fig. 10. Backward trajectories arriving at the sampling site in Ningbo and their cluster analysis.

Fig. 11. The WPSCF maps for main chemical species and PM2.5 in Ningbo in this study.

Fig. 12. The WCWT maps for main chemical species and PM2.5 in Ningbo in this study.
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Fig. 1. Location of sampling site (SZ), Dongqianhu (site 1, rural site), Longsai (site 2, industrial 

site), Fenghua (site 3, suburban site), Wenfeng (site 4, background site), Cixi (site 5, urban), 

Wanli (site 6, urban site) and Beilun (site 7, industrial site) in Ningbo.
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Fig. 10. Backward trajectories arriving at the sampling site in Ningbo and their cluster analysis.
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Fig. 11. The WPSCF maps for main chemical species and PM2.5 in Ningbo in this study.
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Fig. 12. The WCWT maps for main chemical species and PM2.5 in Ningbo in this study.



Tab. 1. The average concentrations of water-soluble inorganic ions, carbonaceous species and 

trace elements in PM2.5 during the sampling period (unit: µg/m3).

Species Mean SD
Water-soluble inorganic ions
SO4

2- 11.2 5.4
NO3

- 14.5 9.4
NH4

+ 9.1 4.8
Na+ 0.5 0.2
Mg2+ 0.1 0.0
K+ 2.0 5.3
Ca2+ 0.6 0.3
Cl- 3.3 2.4
F- 0.05 0.02
Carbonaceous species
OC 19.0 9.8
EC 4.9 2.5
Trace elements
Na 0.699 0.226
Mg 0.117 0.068
Al 0.616 0.614
K 1.019 0.548
Ca 0.589 0.321
Ti 0.028 0.019
V 0.006 0.005
Cr 0.029 0.013
Mn 0.057 0.037
Fe 0.534 0.273
Co 0.0004 0.0002
Ni 0.010 0.005
Cu 0.027 0.014
Zn 0.376 0.229
As 0.007 0.004
Mo 0.002 0.001
Ag 0.000 0.000
Cd 0.002 0.001
Sn 0.012 0.005
Ba 0.017 0.008
Tl 0.001 0.001
Pb 0.091 0.055
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S2.1 PMF model

PMF model, an effective receptor modeling tool, has been worldwide applied for source 

apportionment in the field of environmental research and administration. Its goal is to resolve the 

matrix of measured sample data into factor contribution and source profiles, the mathematical 

equation can be shown in Equation (1):

                                     (1)𝑥𝑖𝑗 = ∑p
k = 1𝑔𝑖𝑘𝑓𝑘𝑗 + 𝑒𝑖𝑗

where  is the measured concentration of the th species in the th samples,  is the number of 𝑥𝑖𝑗 𝑗 𝑖 𝑝

factors,  is the contribution of the th source to the th sample,  is the species profile of the 𝑔𝑖𝑘 i i 𝑓𝑘𝑗 k

th source,  is the residuals for each species.𝑒𝑖𝑗

Factor contribution and source profiles are derived by PMF minimizing the objective 

function Q (Equation (2)):

                              (2)𝑄 = ∑𝑛
𝑖 = 1

∑𝑚
𝑗 = 1[𝑥𝑖𝑗 ‒ ∑𝑝

𝑖 = 1𝑔𝑖𝑘𝑓𝑘𝑗

𝑢𝑖𝑗 ]2

Where  is the uncertainty of th species in the th sample. The uncertainty is calculated based on 𝑢𝑖𝑗 𝑗 i

method detection limit (MDL) and determination error fraction. If the values are lower than MDL, 

they will be replaced by half of the MDL and the uncertainty will be set to 5/6 of MDL. If the 

values are higher than MDL, the uncertainty will be estimated according to the equation (3):

Un =       (3) (Error Fraction × concentration)2 + (0.5 × MDL)2

According to the instrument measurement, Error Fraction values were set to 15%. The sampling 

data are input into US EPA’s PMF 5.0 in this study. Three error uncertainty estimates and 

diagnostics (Displacement (DISP), Bootstrap (BS), BS-DISP) are used to assess the rationality of 

the results.

Factor contribution and source profiles are derived by PMF minimizing the objective 

function Q:

                            (4)𝑄 = ∑𝑛
𝑖 = 1

∑𝑚
𝑗 = 1[𝑥𝑖𝑗 ‒ ∑𝑝

𝑖 = 1𝑔𝑖𝑘𝑓𝑘𝑗

𝑢𝑖𝑗 ]2

Where  is the uncertainty of th species in the th sample. Q is a critical parameter for PMF and 𝑢𝑖𝑗 𝑗 𝑖

two versions of Q are displayed for the model runs: Q(True) is the goodness-of-fit parameter 
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calculated including all points and Q(Robust) is the goodness-of-fit parameter calculated excluding 

points that do not fit the modeled values, defined as samples of which the uncertainty-scaled 

residual is greater than 4. The difference between Q(True) and Q(Robust) is a measure of the impact of 

data points with high scaled residuals. If the ratio of Q(True)/Q(Robust) is closer to 1, it indicates that 

there are not too many outliers affecting the results of PMF runs.

S2.2 HYSPLIT 4 model

The HYSPLIT_4 (HYbrid Single-Particle Lagrangian Integrated Trajectory) model (Version 

4) is a complete system for computing simple trajectories to complex dispersion and deposition 

simulations using either puff or particle approaches. The model uses previously gridded 

meteorological data on one of three conformal map projections (Polar, Lambert, Mercator). Air 

concentration calculations associate the mass of pollutant species with the release of either puffs, 

particles, or a combination of both. The dispersion rate is calculated from the vertical diffusivity 

profile, wind shear, and horizontal deformation of the wind field. Air concentrations are calculated 

at a specific grid point for puffs and as cell average concentrations for particles (Draxler et al., 

1998).

    Assuming that the trajectory of the particle is moving with the wind field, the trajectory is the 

integral of the point in time and space. Position computed from average velocity linearly is 

interpolated at the initial position (P) and first-guess position (P'):

P(t+dt) = P(t) + 0.5 [ V(P{t}) + V(P'{t+dt}) ] dt                       (4)

P'(t+dt) = P(t) + V(P{t}) dt                                       (5)

the integration time step is variable: Vmax dt < 0.75.

Cluster analysis is a simple statistical method referring to multivaritions, whose purpose is to 

divide a data set into groups or "clusters" of similar cases or variable. The assignment of members 

(trajectories) to a given group (cluster) is carried out by minimizing the internal variability within 

the group of trajectories and maximizing the external variability between different groups based 

on the trajectory co-ordinates.

The clustering method is based on the spatial similarity of the airflow (speed and direction) to 

group a large number of trajectories. There are two clustering options with Euclidean distance and 
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angle distance (Draxler et al., 1999). The Euclidean distance between two backward trajectories is 

then given by

                  (6)𝑑12 = ∑𝑛
𝑖 = 1((𝑋1(𝑖) ‒ 𝑋2(𝑖))2 + ((𝑌1(𝑖) ‒ 𝑌2(𝑖))2

Where X1 (Y1) and X2 (Y2) refer to backward trajectories 1 and 2, respectively. The main 

disadvantage of using the Euclidean distance is that two backward trajectories following the same 

path but having different speed may be classified in two different clusters. Since the cluster 

analysis is to identify the trajectories in similar direction, the angle distance should be selected. 

The angle distance between two backward trajectories is defined as

                                (7)𝑑12 =
1
𝑛∑𝑛

𝑖 = 1cos ‒ 1 (0.5
𝐴𝑖 + 𝐵𝑖 ‒ 𝐶𝑖

𝐴𝑖𝐵𝑖
)

Where

                             (8)𝐴𝑖 = (𝑋1(𝑖) ‒ 𝑋0)2 + (𝑌1(𝑖) ‒ 𝑌0)2

                             (9)𝐵𝑖 = (𝑋2(𝑖) ‒ 𝑋0)2 + (𝑌2(𝑖) ‒ 𝑌0)2

                             (10)𝐶𝑖 = (𝑋2(𝑖) ‒ 𝑋1)2 + (𝑌2(𝑖) ‒ 𝑌1)2

The variables X0 and Y0 define the position of studied site. Note that d12 varies between 0 and π. 

The two extreme values occur when two trajectories are in the same and opposite direction, 

respectively. As defined by equations (7) to (10), d12 is the mean angle between the two backward 

trajectories, as seen from the studied site. 

Reference

Draxler, R. R., & Hess, G. D. (1998). An overview of the hysplit-4 modeling system for 

trajectories. Australian Meteorological Magazine, 47(4), 295-308.

Draxler, R.R., 1999. HYSPLIT 4 User's Guide. NOAA Tech. Memo. ERL ARL-230, 35 pp. [2016 

version available online at: http://www.arl.noaa.gov/documents/reports/hysplit_user_guide.pdf. 

last access: January 2016].
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Fig. S2. The regression lines between SO2, NO2, CO and Ox and PM2.5 during the sampling period.
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Ningbo (Data cited from the report of source apportionment in Ningbo).
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Tab. S1 The categorization of air quality levels based on PM2.5 concentration bands and the 

numbers of days with different air quality levels during the sampling period.

 

Air quality levels Excellent Good SP MP HP

Data intervals of daily PM2.5 
concentrations (μg/m3) 0-35 35-75 75-115 115-150 150-250

The numbers of days 2 48 31 8 3
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Tab. S2. Inventory of air pollutants from anthropogenic emission In Ningbo (Unit: ×104 ton each 

year).

Category SO2 NOx CO NH3 VOCs

Power plant 8.85 25.33 9.32 0.00 0.63

Industrial combustion 3.45 1.75 1.97 0.00 0.57

Industrial process 4.56 1.55 5.28 0.12 10.84

Residential source 0.07 0.17 6.72 0.02 2.32

Agricultural source 0.01 0.10 1.81 1.97 0.81

Storage and transportation of oil and gas 0.00 0.00 0.00 0.00 0.57

Mobile source 0.14 4.11 14.97 0.00 2.62

Ship emission 1.79 2.50 0.05 0.00 0.06

Other anthropogenic emission 0.08 1.60 0.78 0.11 0.21
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Tab. S3. Correlations between fine particulate matter (PM2.5) and elements during the sampling period.

 

PM2.5 Na Mg Al K Ca Ti V Cr Mn Fe Co Ni Cu Zn As Mo Ag Cd Sn Ba Tl Pb

Pearson Correlation 1.00 0.51 0.16 0.06 0.61 0.27 0.20 0.07 0.17 0.43 0.51 0.37 0.14 0.40 0.31 0.60 0.52 0.50 0.58 0.52 0.45 0.26 0.65
Sig. (2-tailed) 0.0000 0.1376 0.5457 0.0000 0.0085 0.0598 0.4943 0.0970 0.0000 0.0000 0.0003 0.1905 0.0001 0.0022 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0127 0.0000
Pearson Correlation 0.51 1.00 0.63 0.18 0.91 0.58 0.42 0.25 0.45 0.73 0.89 0.86 0.46 0.76 0.66 0.67 0.79 0.60 0.83 0.77 0.83 0.26 0.79
Sig. (2-tailed) 0.0000 0.0000 0.0773 0.0000 0.0000 0.0000 0.0111 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0084 0.0000
Pearson Correlation 0.16 0.63 1.00 0.32 0.56 0.89 0.48 0.07 0.27 0.45 0.69 0.63 0.23 0.41 0.38 0.38 0.37 0.30 0.44 0.36 0.55 0.15 0.42
Sig. (2-tailed) 0.1376 0.0000 0.0011 0.0000 0.0000 0.0000 0.4974 0.0065 0.0000 0.0000 0.0000 0.0225 0.0000 0.0001 0.0001 0.0001 0.0028 0.0000 0.0002 0.0000 0.1480 0.0000
Pearson Correlation 0.06 0.18 0.32 1.00 0.21 0.36 0.15 (0.02) 0.05 0.21 0.28 0.19 0.09 0.13 0.04 0.23 0.07 0.10 0.15 0.20 0.17 (0.00) 0.15
Sig. (2-tailed) 0.5457 0.0773 0.0011 0.0366 0.0002 0.1414 0.8315 0.6387 0.0368 0.0046 0.0556 0.3539 0.2089 0.7227 0.0214 0.4782 0.3194 0.1286 0.0472 0.0838 0.9782 0.1303
Pearson Correlation 0.61 0.91 0.56 0.21 1.00 0.56 0.41 0.13 0.38 0.73 0.88 0.83 0.38 0.76 0.62 0.82 0.77 0.71 0.91 0.81 0.82 0.31 0.89
Sig. (2-tailed) 0.0000 0.0000 0.0000 0.0366 0.0000 0.0000 0.2025 0.0001 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0019 0.0000
Pearson Correlation 0.27 0.58 0.89 0.36 0.56 1.00 0.50 0.03 0.17 0.38 0.68 0.57 0.16 0.32 0.28 0.36 0.30 0.27 0.44 0.40 0.52 0.14 0.38
Sig. (2-tailed) 0.0085 0.0000 0.0000 0.0002 0.0000 0.0000 0.7646 0.0876 0.0001 0.0000 0.0000 0.1019 0.0012 0.0049 0.0003 0.0028 0.0075 0.0000 0.0000 0.0000 0.1606 0.0001
Pearson Correlation 0.20 0.42 0.48 0.15 0.41 0.50 1.00 0.11 0.22 0.49 0.51 0.46 0.27 0.36 0.50 0.30 0.26 0.25 0.40 0.36 0.35 0.09 0.39
Sig. (2-tailed) 0.0598 0.0000 0.0000 0.1414 0.0000 0.0000 0.2762 0.0295 0.0000 0.0000 0.0000 0.0059 0.0003 0.0000 0.0021 0.0083 0.0121 0.0000 0.0003 0.0003 0.3554 0.0001
Pearson Correlation 0.07 0.25 0.07 (0.02) 0.13 0.03 0.11 1.00 0.09 0.16 0.17 0.27 0.33 0.19 0.26 (0.03) 0.32 0.02 0.18 0.20 0.21 (0.06) 0.13
Sig. (2-tailed) 0.4943 0.0111 0.4974 0.8315 0.2025 0.7646 0.2762 0.3671 0.1082 0.0933 0.0057 0.0007 0.0644 0.0083 0.7313 0.0010 0.8541 0.0722 0.0423 0.0385 0.5407 0.1951
Pearson Correlation 0.17 0.45 0.27 0.05 0.38 0.17 0.22 0.09 1.00 0.57 0.48 0.39 0.34 0.40 0.51 0.27 0.39 0.21 0.37 0.36 0.37 0.07 0.40
Sig. (2-tailed) 0.0970 0.0000 0.0065 0.6387 0.0001 0.0876 0.0295 0.3671 0.0000 0.0000 0.0001 0.0006 0.0000 0.0000 0.0074 0.0001 0.0384 0.0001 0.0003 0.0002 0.4944 0.0000
Pearson Correlation 0.43 0.73 0.45 0.21 0.73 0.38 0.49 0.16 0.57 1.00 0.77 0.74 0.45 0.65 0.86 0.60 0.67 0.50 0.72 0.60 0.62 0.20 0.74
Sig. (2-tailed) 0.0000 0.0000 0.0000 0.0368 0.0000 0.0001 0.0000 0.1082 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0442 0.0000
Pearson Correlation 0.51 0.89 0.69 0.28 0.88 0.68 0.51 0.17 0.48 0.77 1.00 0.84 0.39 0.67 0.62 0.65 0.76 0.54 0.82 0.77 0.82 0.25 0.80
Sig. (2-tailed) 0.0000 0.0000 0.0000 0.0046 0.0000 0.0000 0.0000 0.0933 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0132 0.0000
Pearson Correlation 0.37 0.86 0.63 0.19 0.83 0.57 0.46 0.27 0.39 0.74 0.84 1.00 0.58 0.72 0.68 0.63 0.73 0.52 0.75 0.70 0.75 0.27 0.70
Sig. (2-tailed) 0.0003 0.0000 0.0000 0.0556 0.0000 0.0000 0.0000 0.0057 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0063 0.0000
Pearson Correlation 0.14 0.46 0.23 0.09 0.38 0.16 0.27 0.33 0.34 0.45 0.39 0.58 1.00 0.32 0.50 0.21 0.33 0.15 0.37 0.42 0.36 0.15 0.26
Sig. (2-tailed) 0.1905 0.0000 0.0225 0.3539 0.0001 0.1019 0.0059 0.0007 0.0006 0.0000 0.0000 0.0000 0.0014 0.0000 0.0358 0.0008 0.1304 0.0002 0.0000 0.0003 0.1310 0.0104
Pearson Correlation 0.40 0.76 0.41 0.13 0.76 0.32 0.36 0.19 0.40 0.65 0.67 0.72 0.32 1.00 0.61 0.64 0.68 0.52 0.76 0.74 0.65 0.21 0.74
Sig. (2-tailed) 0.0001 0.0000 0.0000 0.2089 0.0000 0.0012 0.0003 0.0644 0.0000 0.0000 0.0000 0.0000 0.0014 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0350 0.0000
Pearson Correlation 0.31 0.66 0.38 0.04 0.62 0.28 0.50 0.26 0.51 0.86 0.62 0.68 0.50 0.61 1.00 0.48 0.55 0.37 0.65 0.51 0.51 0.19 0.62
Sig. (2-tailed) 0.0022 0.0000 0.0001 0.7227 0.0000 0.0049 0.0000 0.0083 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 0.0547 0.0000
Pearson Correlation 0.60 0.67 0.38 0.23 0.82 0.36 0.30 (0.03) 0.27 0.60 0.65 0.63 0.21 0.64 0.48 1.00 0.66 0.73 0.80 0.61 0.58 0.36 0.84
Sig. (2-tailed) 0.0000 0.0000 0.0001 0.0214 0.0000 0.0003 0.0021 0.7313 0.0074 0.0000 0.0000 0.0000 0.0358 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0003 0.0000
Pearson Correlation 0.52 0.79 0.37 0.07 0.77 0.30 0.26 0.32 0.39 0.67 0.76 0.73 0.33 0.68 0.55 0.66 1.00 0.52 0.76 0.66 0.75 0.25 0.80
Sig. (2-tailed) 0.0000 0.0000 0.0001 0.4782 0.0000 0.0028 0.0083 0.0010 0.0001 0.0000 0.0000 0.0000 0.0008 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0125 0.0000
Pearson Correlation 0.50 0.60 0.30 0.10 0.71 0.27 0.25 0.02 0.21 0.50 0.54 0.52 0.15 0.52 0.37 0.73 0.52 1.00 0.65 0.55 0.59 0.19 0.70
Sig. (2-tailed) 0.0000 0.0000 0.0028 0.3194 0.0000 0.0075 0.0121 0.8541 0.0384 0.0000 0.0000 0.0000 0.1304 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0639 0.0000
Pearson Correlation 0.58 0.83 0.44 0.15 0.91 0.44 0.40 0.18 0.37 0.72 0.82 0.75 0.37 0.76 0.65 0.80 0.76 0.65 1.00 0.80 0.76 0.33 0.90
Sig. (2-tailed) 0.0000 0.0000 0.0000 0.1286 0.0000 0.0000 0.0000 0.0722 0.0001 0.0000 0.0000 0.0000 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0008 0.0000
Pearson Correlation 0.52 0.77 0.36 0.20 0.81 0.40 0.36 0.20 0.36 0.60 0.77 0.70 0.42 0.74 0.51 0.61 0.66 0.55 0.80 1.00 0.69 0.32 0.74
Sig. (2-tailed) 0.0000 0.0000 0.0002 0.0472 0.0000 0.0000 0.0003 0.0423 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0011 0.0000
Pearson Correlation 0.45 0.83 0.55 0.17 0.82 0.52 0.35 0.21 0.37 0.62 0.82 0.75 0.36 0.65 0.51 0.58 0.75 0.59 0.76 0.69 1.00 0.14 0.74
Sig. (2-tailed) 0.0000 0.0000 0.0000 0.0838 0.0000 0.0000 0.0003 0.0385 0.0002 0.0000 0.0000 0.0000 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1506 0.0000
Pearson Correlation 0.26 0.26 0.15 (0.00) 0.31 0.14 0.09 (0.06) 0.07 0.20 0.25 0.27 0.15 0.21 0.19 0.36 0.25 0.19 0.33 0.32 0.14 1.00 0.26
Sig. (2-tailed) 0.0127 0.0084 0.1480 0.9782 0.0019 0.1606 0.3554 0.5407 0.4944 0.0442 0.0132 0.0063 0.1310 0.0350 0.0547 0.0003 0.0125 0.0639 0.0008 0.0011 0.1506 0.0080
Pearson Correlation 0.65 0.79 0.42 0.15 0.89 0.38 0.39 0.13 0.40 0.74 0.80 0.70 0.26 0.74 0.62 0.84 0.80 0.70 0.90 0.74 0.74 0.26 1.00
Sig. (2-tailed) 0.0000 0.0000 0.0000 0.1303 0.0000 0.0001 0.0001 0.1951 0.0000 0.0000 0.0000 0.0000 0.0104 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0080
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Tab. S4. Summary of PMF and EE diagnostics by run in the PMF model operation.
Diagnostic 5 factors 6 factors 7 factors 8 factors 9 factors 10 factors 11 factors 12 factors 13 factors

Qexp 1906 1788 1670 1552 1434 1316 1198 1080 962

Q(True) 9803.7 8026.3 6264.2 5299.6 4394.7 3731.3 3160.6 2645.0 2316.7

Q(Robust) 8990.3 7360.9 5772.6 4937.7 4130.7 3475.5 2939.5 2475.8 2109.3

Q(Robust)/Qexp 4.7 4.1 3.5 3.2 2.9 2.6 2.5 2.3 2.2

DISP %dQ <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1%

DISP swaps 0 0 0 0 0 0 0 0 0

Factors with BS 

mapping <100%

1st F:84%

4th F:62%

6th F:91%

2nd F:94%

7th F:66%

10th F:68%

11th F:98%

1st F:61%

2nd F:84%

11th F: 67%

5th F:84%

8th F: 65%

10th F:77%

BS-DISP % cases with swaps 0% 0% 0% 0% 0% 0% 23% 34% 19%

F represents Factor
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Tab. S5. The association of the backward trajectories with PM2.5 concentrations.

Cluster Average STDEV

(1) 89.0 53.0 

(2) 74.5 47.6 

(3) 70.0 48.3 

(4) 81.1 40.2 

(5) 84.1 37.6 


