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Abstract— The emerging Smart Grid (SG) paradigm 

promises to address decreasing grid stability from thinning safe 

operating margins, meet continually rising demand from 

pervasive high capacity devices such as electric vehicles (EVs), 

and fully embrace the shift towards green energy solutions. At 

the SG edge, widespread decentralisation of heterogeneous 

devices coupled with fluctuating energy availability and need as 

well as a greatly increased fluidity between their roles as energy 

producers, consumers, and stores raises significant challenges to 

ensuring robustness and security of both information and 

energy exchange. Detecting and mitigating both malicious and 

non-malicious threats in these environments is essential to the 

realisation of the full potential of the SG. To address this need 

for robust, localised, real-time security at the grid edge we 

propose CONCEDE, a collaborative cross-layer ego-network 

integrity awareness and attack impact reduction extension to 

our previous work on delay-tolerant cognitive adaptive energy 

exchange. We detail a substantial, targeted, energy disruption 

attack perpetrated by colluding mobile energy prosumers. Our 

CONCEDE proposal is then evaluated in multiple, diverse 

smart micro-grid (SMG) scenarios using hybrid traces of EVs 

and infrastructure from Europe, North America, and South 

America in the presence of a coordinated attack from malicious 

distributors seeking to disrupt energy supply to a target 

community. We show that CONCEDE successfully detects and 

identifies the nodes exhibiting malicious, dishonest behaviour 

and that CONCEDE also reduces the impact of a coordinated 

energy disruption attack on innocent parties in all explored 

scenarios across multiple criteria. 

Keywords— Smart energy, Mobile DTNs, Autonomous 

Vehicles, Security  

I. INTRODUCTION 

Evolving energy conditions worldwide are necessitating a 
global redressing of the conventional electrical grid model. In 
developed nations, perpetually rising energy demand 
combined with the ongoing shift away from fossil-fuel power 
is exhausting capacity margins and it is anticipated that the 
near-future hike in demand driven by widespread charging of 
electric vehicles (EVs) will push the grid beyond its limits[2]. 
At the same time, in many developing countries there is 
limited grid penetration and the already unreliable electrical 
infrastructure is unable to meet rising consumer demand and 
remain secure in the face of substantial losses due to 
significant energy theft and infrastructure inefficiencies [3]. 
The future smart grid (SG) and smart micro-grid (SMG) 
paradigms are high priority interdisciplinary research areas 
which aim to reconcile these issues, promising distributed, 
collaborative, and adaptive energy management through deep 
integration of highly heterogeneous devices, ranging from 

smart home appliances to autonomous EVs [4]. Despite 
widely acknowledged benefit to industry and consumer 
stakeholders alike, realisation of the SG necessitates robust, 
responsive communications systems providing for 
availability, pricing, and usage information exchange as well 
as for coordination and collaboration between edge devices 
and the wider grid. Providing secure and robust 
communications and energy transfer systems in the presence 
of both emerging malicious and non-malicious threats is 
fundamental to the success of the future SG [5]. Many state-
of-the art approaches are investigating this area, e.g. [6]. 

Consumer EVs and industry EV fleets will represent a core 
component of the future SG [7]–[9], having the potential to 
physically move energy in-network via localised opportunistic 
and on-demand energy transfer. We consider localised, delay 
tolerant bi-directional V2V and V2G energy and information 
exchange approaches integral to addressing the concerns of 
real-time adaptability, responsiveness, robustness, and 
fairness in the face of transient availability and dynamic 
energy supply and demand patterns in mobile SMGs. 
Centralised systems typically assume a priori knowledge and 
have been seen to be sub-optimal, unfair, insufficiently real-
time, and inadequately tolerant to localised faults and network 
disruption [10]–[13]. To overcome the limitations of 
centralised approaches, we proposed CognitiveCharge [14], a 
fully-distributed, disconnection-tolerant, multi-layered 
predictive analytics suite and combined utility heuristic-
driven approach for opportunistic vehicle-to-vehicle (V2V) 
and vehicle-to-grid (V2G) energy and information transfer in 
heterogeneous dynamic SMGs. CognitiveCharge analytics 
allow for nodes to avoid both under and overutilisation of 
energy resources, preventing exploitation of nodes, regions, 
and communities. As such, CognitiveCharge nodes adapt in 
real-time to the dynamic temporal network conditions of EV 
mobility and fluctuating, transient energy availability and 
power needs of both EVs and static infrastructure. 

In this paper we propose CONCEDE which builds on and 
extends our multi-dimensional CognitiveCharge approach to 
enable it to operate reliably in the face of malicious or 
dishonest nodes. CONCEDE seeks to meet the challenges of 
providing robust SG energy and information communications 
through addition of a novel, collaborative cross-layer 
malicious misbehaviour detection and attack mitigation 
scheme. CognitiveCharge [14] nodes are robust to highly 
dynamic network conditions; for example, in the case of an 
unexpected regional energy blackout, risk of depletion to 
affected nodes is reduced as energy is adaptively moved in a 
multi-hop manner from nodes and regions with surplus to 
those in deficit regions. Robustness of CognitiveCharge is 



dependent upon collaborative dissemination and propagation 
of honest, accurate information. CONCEDE extends 
CognitiveCharge by allowing nodes to detect and respond in 
real-time to threats to themselves and their community from 
both malicious and faulty malfunctioning nodes, permitting 
more informed, responsive energy related decisions even in 
the presence of misbehaviour and dishonesty. More 
specifically, CONCEDE combines CognitiveCharge 
predictive local and ego-network multi-layer predictive 
analytics [14] with the ability to scrutinise the behaviour of 
nodes in their ego-network and additionally discern when 
exchanged information is incorrect or falsified. 

The remainder of this paper is structured as follows. In 
Section II we give an overview of related work and existing 
proposals for robust V2V and V2G information and energy 
exchange. Our heterogeneous mobile SMG environment and 
threat model are described in Section III. In Section IV we 
describe our proposal for CONCEDE, our contextual integrity 
awareness for security aware CognitiveCharge, giving a high 
level architectural overview, highlighting the wider 
integration within CognitiveCharge framework, and detailing 
the collaborative predictive multi-layer heuristic-based 
decision making process. Section V discussed our evaluation 
of CONCEDE in multiple heterogeneous dynamic SMG 
scenarios using multi-layered hybrid real-world and pseudo-
realistic traces for Nottingham, Paris, Rio de Janeiro, and San 
Francisco, as well a synthetic Manhattan model. Our results 
show that CONCEDE nodes successfully detect and 
collaboratively reduce the impact of an energy disruption 
attack conducted by coordinated energy prosumers. 
Conclusions are drawn in the final section together alongside 
a discussion of future work. 

II. RELATED WORK 

Research and experimental activity conducted by the 
Danish EDISON project on the island of Bornholm has 
evaluated the benefits of large EV fleets to both vehicle 
owners and the operation of the wider grid [15]. The 
distributed software and ICT aspects of V2G integration were 
a particular focus in [15], which proposed the EDISON EV 
virtual power plant (EVPP) where EV fleets integrated with 
the grid to stabilise wind renewable energy resources . 

A number of other works have explored various aspects of 
energy as a tradable commodity directly between EVs and 
with the wider grid for a range of benefits. In [16] a peer-to-
peer trading system for direct energy exchange amongst edge 
devices is proposed for consumers to source geographically 
local available supply from others offering their surplus 
charge. A localised authentication mechanism for V2V 
charging is explored in [17] which proposes a challenge-
response protocol between EVs. 

AdaptAnon [18] is a multidimensional k-anonymity 
approach for dynamic, heterogeneous opportunistic networks 
which adaptively balances the degree of obfuscation with 
performance to achieve a high diversity of nodes in multi-hop 
paths at minimal cost to success ratios and delays. OCOT-AA 
[19] builds upon AdaptAnon with a robust, fully-distributed, 
self-organised reputation mechanism and collaborative 
opportunistic testing technique to provide full source 
anonymisation when even a large proportion of nodes are 
malicious. Approaches to location privacy using k-anonymity 
techniques in mobile opportunistic networks are proposed in 
[20]. We build upon these techniques but diverge in our 

consideration of user requirements. In this paper we deem 
collaboration advantageous rather than strictly necessary due 
to the real-time nature of energy supply and demand. 

Vehicular networks are inherently disconnection-prone 
and highly dynamic due to their fast changing topologies 
resulting from vehicle mobility patterns. V2V and V2G 
dynamic charging necessitates stringent responsiveness and 
availability demands in order to facilitate robust adaptive, 
real-time, collaborative decision making. Existing works are 
largely dependent on coordination of vehicles through a 
remote centralised authority with which they are typically 
assumed to communicate with via cellular networks (e.g. [21], 
[22]). Under such conditions, attaining global optimum using 
centralised optimisation have been shown to be unsuitable as 
they disadvantage some parties and nodes can be unfairly 
exploited [10], [11]. In SMG scenarios this exploitation could 
be both monetary and energy related - in the worst case 
depleting a node unfairly for another’s benefit. In temporally 
changing complex graph topologies, collaborative approaches 
have been shown to outperform centrally and locally 
optimised algorithms [11]. 

The social integration requirements and impact of 
misrepresentation attacks in opportunistic network 
environments was explored in [23], where a number of novel 
mitigation strategies were proposed. [23] additionally showed 
the high complexity requirements for malicious, lying and 
potentially colluding nodes to join an established social group. 

III. COORDINATED ENERGY DISRUPTION ATTACK IN 

DYNAMIC SMART MICRO-GRIDS 

This section provides a detailed description of our SMG 
scenario and gives an overview of a targeted coordinated 
energy disruption and DoS attack in a SMG environment. We 
also contextualise the scope and severity of the threat scenario 
in the real-world by providing several compelling examples of 
attacker motivations.  

A. Heterogeneous Mobile Smart Micro-Grid Environment 

We explore a distributed, dynamic SMG environment 
comprising highly heterogeneous mobile and static nodes at 
the SG edge participating in localised energy exchange. Nodes 
consume energy via conventional means (e.g. mobility, 
communications, computation) in addition to offloading and 
acquire energy directly from other nodes including EVs and 
the grid (e.g. at infrastructure charge-points). Though the roles 
of all nodes in the SMG (e.g. consumer, producer, supplier, 
distributor) are dynamic and fluctuate in real-time depending 
upon local energy state and node operation at a given moment 
in time, for better illustrating our scenario we broadly 
categorise nodes based upon their dominant behaviour. As 
shown in Fig. 1, similar nodes can be grouped based on 
multiple factors, including mobility, capacity, and general 
energy availability behaviour. Using this categorisation, nodes 
in our SMG scenario are considered to be either suppliers, 
prosumers, or distributors. 

• Distributors: Mobile nodes which routinely carry 
surplus energy for exchange at dynamic, locally 
calculated market prices are considered distributors. 
These nodes acquire energy from infrastructure and 
then offload it amongst needy consumers (i.e. as 
customers) for profit. We consider distributors to be 
mobile nodes with high storage capacity dedicated to 



providing electricity to consumers who are largely 
made up of limited capacity mobile SMG devices. 

• Prosumers: Mobile SMG edge devices (e.g. 
autonomous EVs) with high fluctuation between 
supply and demand behaviour are considered 
prosumers in our scenario. Like distributors, 
prosumers have on-board battery storage and both 
consume and supply electricity through direct, 
bidirectional energy exchange. When in energy 
surplus, a prosumer can choose to offload energy by 
selling it to nodes in deficit. Conversely, a prosumer in 
need (or anticipating future need) of energy can seek 
to acquire charge from nodes with surplus. 

• Suppliers: Energy sources such as homes and public 
infrastructure EV charge-points are considered 
suppliers in our scenario. Nodes in this group are 
largely static and have high energy availability for 
dissemination. Suppliers receive large amounts of 
energy directly from the upstream grid and can support 
local generation. Suppliers may opportunistically take 
advantage of available prosumers and distributors for 
grid stabilisation, opportunistic cost reduction, and to 
maintain uptime during periods of grid outage. 

 

Fig. 1. Heterogeneous SMG nodes broadly grouped by majority energy 

availability, mobility dynamics, quantity, and capacity. 

Our distributed and decentralised SMG scenario is 
modelled as a partially connected complex temporal network 
of distributors � = {��, ��, … } , suppliers 
 = {��, ��, … } , 
and prosumers � = {�, �, … } represented by a graph with 
time varying edges � = (�, �) where � = � ∪ � ∪ 
. In the 
baseline CognitiveCharge [14] scenario, every node monitors 
its own resource availability across multiple criteria and 
periodically exchanges this information, combined with its 
self-identified energy state (i.e. seek, supply, store), with 

directly adjacent vertices �(�,�)(�). These status messages in 

conjunction with local, real-time coordination of supply and 
demand allow for distributed energy exchange with the most 
needy nodes being supplied by the nodes with highest 
capacity. Using these perceived analytics and utility measure 
information, nodes are able to make real-time, localised 
energy exchange decisions, i.e. supply, acquire, or store. For 
example, a prosumer in need of energy and in contact with an 
available supplier may seek to acquire charge from it. 

B. Threat Model 

The particular threat that forms the focus of this work is a 
targeted, coordinated energy disruption and DoS attack 

conducted by colluding mobile energy prosumers. We 
consider a malicious or hacked energy prosumer who wishes 
to disrupt the supply of energy to a region, cause grid 
instability and deny energy access to nodes in a target area. 
The disruption of energy supply to a community may 
potentially cause complete temporal isolation from 
established supply chains (e.g. terrorism causing targeted 
blackouts) as well as additional profiteering. Nodes in the 
energy isolated area with one distributor may face imminent 
depletion if newly malicious prosumer buys all the  energy. 
Rival distributing or supplying companies could also conduct 
such an attack in order to effectively ‘evict’ competing energy 
providers and drive up profits for themselves. 

In order to carry out the energy disruption attack, the 
attacker gains control (e.g. through remote hacking or via 
legitimate ownership) of several existing distribution nodes 
and uses them to launch a coordinated energy disruption 
attack. The malicious energy prosumer disseminates falsified 
information pertaining to local energy usage, demand, 
availability and pricing. The aim of this misrepresentation is 
for the attacker to embed itself in the local network by either 
1) seeking more energy than it actually needs in order to  
deplete the distributors or 2) promoting itself as the desirable, 
available energy supplier and simultaneously demoting the 
local perception of other providers. 

An overview of several attack types in this context is 
shown in Fig. 2 using a subset of a SMG scenario comprising 
distributors (��, ��) , prosumers (�, �) , and a single 
malicious node � . For a connected SMG graph �  the 
community {��, ��, �, �}  is a sub-graph �  where �(�) ⊆
�(�) and �(�) ⊆ �(�). 

In Fig. 2.1, the SMG is operating in a steady-state with 
both of the prosumers low on energy acquiring charge 
opportunistically at an accepted price from adjacent 
distributors with surplus. Through both eavesdropping and 
behavioural analysis of nodes in its neighbourhood �(�), the 
malicious node passively identifies the vulnerable community 
H as the target of attack due to limited connectivity with wider 
grid infrastructure in � and a reliance on just few distributors. 

Fig 2.2 shows a node �  that proactively disseminates 
falsified resource availability messages to nodes in its vicinity 
with the intent of actively disrupting energy supply to the 
target region. The falsified messages sent differ depending 
upon the identified energy state of the recipient in order to 
maximise the impact of the attack. To peer distributors and 
suppliers ��(�), � aims to demote the utility of nodes in 

��(�) ∪ ��(�) as potential consumers, preventing further 

energy from being delivered to the target region. This can be 
accomplished in a range of ways, for example, by directly 
advertising that that these nodes are not in need of energy or 
by falsely claiming that they have high availability at lower 
cost than the distributors are offering. In doing this, 
distributors with insufficient evidence to the contrary will 
offload energy to other regions with higher perceived need at 
an offering price believed to be better. Falsified messages sent 

to nodes in ��(�) seek to raise the utility of � as an energy 

source for later exploitation, increase reliance on m, and 
mitigate attempts at acquisition from alternate sources in �. 

 Fig. 2.3 highlights that � has successfully promoted the 
utility of itself as an energy seeker over �  and � , thus 
directly exhausting community distributor supplies and 
preventing energy from reaching the truly needy prosumers. 



Though the attacker pays honestly for energy, in manipulating 
the perception of energy availability the price paid will likely 
be at most the same as that previously paid by � and �. In a 
temporal attack the price can even be significantly lower due 
to the distributors seeking to offload surplus originally 
intended for the prosumers. 

Fig 2.4 shows how the exhausted region can be further 
exploited through the attacker offloading overpriced energy to 
the increasingly desperate nodes (i.e. � , � .). The attacker 
promotes itself as the desired supplier to nodes who face 
critical depletion levels (or even complete loss of energy) if 
they do not acquire energy but have no alternative available 
providers. Node m can charge increased prices for its energy 
supply. 

This form of energy disruption attack is particularly 
effective as once energy has been exchanged by a malicious 
mobile consumer, it is not recoverable until a future 
acquisition opportunity arises. Similarly, once energy has 
been obtained to satisfy the immediate needs of a malicious 
consumer, it will not seek to charge again until it needs to, 
regardless of later detected better alternatives. The attacker 
can further maximise the impact by targeting vulnerable 
communities which are already particularly isolated and 
peripheral to the SG. 

 

Fig. 2. Attack overview: (1) Steady-state scenario. (2) Malicious distributor 

disseminates falsified availability messages. (3) Distributors supply 

malicious distributor instead of seekers. (4) Depleted prosumers must charge 

from malicious distributor. 

The cost for a malicious node to integrate itself into an 
established social community can be particularly high because 
in order to exert negative influence over the community, the 
new malicious node must build and maintain genuine 
connections with highly influential uncompromised nodes 
[23]. Rather than deploy new malicious nodes or risk direct 
association with the attack, an alternative option for an 
attacker is to gain temporary control over honest nodes and 
exploit the trust already placed in them nodes by others in the 
community. The attacker can then move its fully honest nodes 
with high energy surplus into the target region for the final 
price-gouging step, successfully conducting the attack and 
retaining its trust in the event of future detection of �. 

IV. COGNITIVE ADAPTIVE CHARGING WITH 

CONTEXTUAL DETECTION OF DISHONEST 

BEHAVIOUR 

We propose CONCEDE, a novel threat detection and 
mitigation scheme for the SMG which uses multi-layer, multi-
dimensional, local and ego-network predictive contextual 
integrity awareness analytics to extend CognitiveCharge [14] 
– our multi-layer disconnection-tolerant cognitive adaptive 
charging approach for V2V and V2G energy exchange. 

We model the network as a temporal graph � = (�, �) 
where the connectivity of the network edges � and the state of 
nodes � change over time. Each of these is modelled as a time 
series set with vertices depicted as � = {��|� ∈ !} and edges 
as � = {��|� ∈ !}, where � is a member of the time series !. 
We assume that connectivity is bidirectional and therefore the 
edges of the graph are undirected, thus the temporal edge 
connecting nodes " and # at time � (", # ∈ ��) we denote as 
{$, �} ∈ �� . A path we model as a sequence of time variant 
energy supply and demand locations where each index 
represents a particular time interval, e.g. path % =
(&�, &�, … , &') where &( = {�()�, *(} for �, * ∈ �.  

While energy is stored in a node without the node using it 
(either for its mobility or transferring to the other nodes), 
efficiency of the network energy resources is reduced, and it 
is more efficient for energy to be transferred via a number of 
hops with smaller in-network delays in order to arrive at the 
destination where it is in demand. Note that there is a 
considerable time variation between the energy system speeds 
and node mobility with charging and communications being 
much faster than the speed of mobile nodes. However, there is 
a strong spatiotemporal correlation between time-variant 
supply-demand layer and the mobility layer which our 
approach is able to capture, model and adapt to. For example, 
the faster the nodes move, the higher the demand they place 
on energy; the higher the number of moving collocated nodes, 
the higher the demand of that region. We define resource 
consumption as dynamic subgraph �+ = (�+, �+) where the 
set of vertices are defined as the set of vertices with demand 
greater than 0 (�+ = {∀�� ∈ �: �.

� > 0}) and the set of edges 
is defined as the set of edges that have a demand greater than 
0 (�+ = {∀&� ∈ �: �1

� > 0} ). The combined geo-temporal 
connectivity graph �  and the spatiotemporal graph of 
consumed and needed resources �′  is depicted as 3 =
4�5467�57

|�|6‖�‖
. 

Fig 3 gives an overview of CognitiveCharge [14] and 
CONCEDE. The cognitive adaptive energy exchange decision 
making approach in CognitiveCharge uses a novel suite of 
fully-localised, predictive energy awareness analytics which 
are locally aggregated in real-time for both an independent 
node and its ego-network, namely: depletion rate, congestion 
rate, receptiveness, retentiveness, and dynamic energy 
pricing. These CognitiveCharge analytics build upon previous 
utility-driven decision making approaches [1][24][26] and use 
both first-hand and ego-network multi-layer analytics in order 
to describe the contextual, multi-criteria utility of itself and 
encounters for individual nodes, the neighbouring community, 
and surrounding geographic region. Through localised peer 
exchange of this individual and ego-network summary 
information, every CognitiveCharge node is able to use 
disseminated second-hand metrics to form aggregate analytics 
over its own ego-network. All CognitiveCharge nodes are 
therefore aware of their own current and forthcoming energy 



needs and moreover are able to anticipate the energy-related 
behaviour, both individually and collectively, of nodes in its 
ego-network. 

 

Fig. 3. CONCEDE architectural overview highlighting integration with 

CognitiveCharge and the cross-layer contextual information driving real-
time energy and integrity aware decision making. 

Fig. 3, shows CONCEDE architectural overview which, 
similarly to CognitiveCharge [14], receives inputs from each 
layer in order to extend the semantic knowledge of each node 
and uses this to further enhance the robustness of 
CognitiveCharge decision making. As previously described, 
CognitiveCharge is robust to dynamic energy conditions, 
however this adaptability is dependent upon honest 
information exchange. Contrary to this, CONCEDE proposal 
has ability to detect and adapt to inorganic conditions caused 
by faulty or malicious node behaviour. 

The ego-network [1] graph for a node � can be represented 
by the sub-graph 9�(�)  which contains the nodes 
immediately adjacent to � and their respective mutual edges, 
as shown in (1) (note that ��:�;  denotes the closed 
neighbourhood of �). CONCEDE uses detected divergences 
in expected and actual ego-network resource as well a social 
connectivity awareness analytics (as calculated by 
CognitiveCharge [14]) to determine the integrity of a node 
with respect to its behaviour. This is conducted in real-time 
for all nodes and on aggregate for the ego-network, allowing 
for adaptive and robust decision-making regarding energy 
exchange. 

 � = ��(�) 

�+ = {�+�′′|�′ ∈ �′⋀�′�′′ ∈ ��(�+)⋀�′′ ∈ ��:�;} (1) 

 9(�) = (�+, �+) 

CONCEDE integrates with the analytics suite == 
proposed in CognitiveCharge [14] where == =
{�>, =>, >&?, >&�, �@A?&} . Node and ego network 
considerations allow nodes to adapt to a number of predictive 
analytics in order to: 

• Avoid or charge less at the parts of the network with 
lower energy availability and higher depletion rates. 

 ��B1�(C) = �

D
∑ >&�(?((C))D

(F�  (2) 

 �>(C) =
��� ∙

IJKL(M)

IINOKP(M)
Q
R∙∑ S�T(U)R

TVQ ) S1T
 (3) 

• Avoid or charge less at parts of the network with higher 
delays. 

 ��B1W(C) = �

D
∑ >&?(?((C))D

(F�  (4) 

 >&?(X) =  Y>&?Z[�(X) \ (1 ^ Y)>&?W_``1a�(X) (5) 

• Avoid malicious nodes which are found to have a 
mismatch between what they are reporting and what 
the rest of the nodes observe and collaboratively 
predict about them. 

Using moving average extrapolation, CONCEDE nodes 
calculate the anticipated value of each analytic for a given 
instant in time for a specific neighbour X. This is given as 
&b(X)� (6) and determined using accurate calculations made 
previously from both direct observations and exchanged 
information. 

 &b(X)� = 2 ⋅ "(X)�)� ^ "(X)�)e (6)  

 �b,� = |"(X)� ^ &b(X)�| (7) 

The difference between the calculated, expected and 

determined actual analytic values �b,�  (7) is then compared 

with an adaptive threshold difference level A for each analytic. 
The value A is dynamically adjusted in real-time based on the 
interval between calculations and available ego-network 
knowledge. By combining ego-network information with 
local knowledge, the threshold difference level is responsive 
to natural changes observed by independent nodes and 
neighbours (e.g. fluctuations in behaviour). Nodes with values 
exceeding A are considered to be dishonest and flagged as such 
until their perceived behaviour is in line with the information 
they are reporting to their peers. Simply blacklisting detected 
malicious or faulty nodes entirely is not always of benefit to 
CONCEDE nodes. For example, an energy consumer may 
still seek to use a dishonest node with real surplus in the case 
of poor local energy availability. Similarly, if a malicious node 
is advertising a need for energy but honestly willing to pay an 
acceptable price then CONCEDE nodes with surplus may still 
consider them as potential customers. To handle such 
scenarios, in addition to flagging CONCEDE allows for 
continued usage by extension of the CognitiveCharge decision 
making process, per (8) where $(X)� is expected to return a 
value in :0,1;. 

 CCUtil(X)� = ∑ $_
kk (X)� ^ �

�lm,O(n)6�m,O(a)
 (8) 

CONCEDE operation is therefore two-fold. Firstly, 
through collaborative information exchange, predictive 
analytics and first hand behaviour corroboration with 
anticipated CONCEDE nodes it can identify those determined 
to be propagating falsified information and consider them for 
protracted monitoring. The identity of these nodes and the 
associated recorded behavioural discrepancies are 
disseminated with the aggregate ego-network analytics for 
community resilience. Secondly, CONCEDE allows for usage 
of certain detected malicious nodes for energy exchange by 
identifying which, if any, behaviours are deemed honest. For 
example, a roaming malicious node acting maliciously in one 
location may act honestly in another. By including the 
weighting of the degree of dishonesty in the decision-making 
process, dishonest nodes, which may not be malicious and 
instead only temporally or partially faulty, can be considered 
for use. 

V. EVALUATION 

In this section we discuss our  multi-criteria evaluation of 
CONCEDE in the presence of multiple attackers using five 



distinct hybrid real-world and pseudorealistic urban SMG 
scenarios using traces for Nottingham, UK [32]; Paris, France 
[32]; Rio de Janeiro, Brazil [30]; and San Francisco, USA [25] 
as well as a synthetic Manhattan grid model. We perform our 
experiments in ONE simulator [31] where 100 prosumer 
vehicles charging opportunistically are modelled over 5 days 
using real-world traffic patterns (San Francisco, Rio de 
Janeiro) and simulated workday patterns (Nottingham, Paris). 
Nodes communicate information via WiFi at a range of 100 
metres with local charging conducted up to a maximum range 
of 10 metres. We use CogntiveCharge with no attack present 
as the baseline and compare this against CognitiveCharge in 
the presence of a malicious prosumer attack without defence 
and finally against CognitiveCharge with CONCEDE. 
CONCEDE is evaluated against existing work in the presence 
of sustained, active attack conducted temporally by multiple 
groups of mobile prosumers. After extensive analysis of our 
SMG scenarios we identified social-based community attacks 
to be more damaging than geographical region based attack 
models in terms of raw energy depletion from victims. Our 
evaluation of CONCEDE therefore focuses on malicious 
attackers targeting socially connected communities of nodes. 
We assume that the attacks are happening during the entire 
duration of the experiments. 

The heterogeneous autonomous EVs in our scenarios are 
modelled from current consumer and commercial EVs and are 
all capable of participating in opportunistic V2V and V2G 
energy exchange. In addition to independent autonomous EVs 
exchanging surplus energy to those with deficit, in this paper 
we consider commercial vehicles with additional load 
capacity that are capable of acting as mobile energy 
distributors. These mobile distributors collaborate with 
consumer EVs in order to increase local availability. 
Consumer EVs are based on the current 2017 Smart ForTwo 
with a total 17.6 kWh capacity and approximate urban range 
of 100 km. 

Traces devised for our Nottingham and Paris scenarios are 
pseudo-realistic and use a typical urban workday mobility 
pattern for commuter EVs. The Nottingham trace covers the 
unitary area of the city spanning 10.45 km x 14.18 km. A 
small, dense road-network lies at the core of the map 
surrounded by sprawling sub-urban residential regions 
connected via arterial roadways. Charge-points dominantly lie 
in the city centre with commuter traffic travelling to parking 
locations in this region on a daily basis. The Paris trace covers 
a 17.97 km x 10.32 km highly urban region with strongly 
interconnected roadways across the entire area and a more 
uniform geographic distribution of charge-points and 
distributed commuter traffic pattern. EVs in these scenarios 
primarily acquire energy opportunistically as they go about 
their normal routing however if they anticipate low 
availability and imminent depletion EVs will actively seek out 
an infrastructure charge-point to resupply from. These public 
infrastructure charge-points are included per current real-
world deployments [27]. The number of included 
infrastructure charge-points is in-line with current trends in 
the vehicle-to-refuelling-index (VRI) for EVs [28]. In addition 
to consumer EVs and static charge-points, higher energy 
capacity electric buses from multiple service operators are 
also included as energy distributors in each scenario and 
follow their real-world routes in each city [32]. The 
commuting EVs are considered prosumers, with buses and 
charge-points representing mobile energy distributors and 
suppliers respectively [29]. 

 

Fig. 4. Distribution of contact duration for each trace. 

 

Fig. 5. Distribution of inter-contact duration for each trace. 

Although Figs. 4, 5 show both the Nottingham and Paris 
traces are highly similar from a mobility and universal 
network connectivity perspective, we include both due to the 
substantial difference in availability of energy in each 
scenario. Nottingham has very few public access static charge-
points compared to Paris which has seen extensive EV 
infrastructure development [27]. As observed previously [14], 
a fewer number of charge-points increases the wait times for 
access to grid energy supply. Likewise, Paris has a higher ratio 
of buses to vehicles than Nottingham meaning consumers in 
our SMG scenario have increased opportunity for energy 
acquisition from in-network distributors. 

The Rio de Janeiro mobility trace follows the real-world 
movement of buses [30]. Similarly, for San Francisco we use 
an existing mobility trace of taxicabs [25] over an area of 10 
km x 16 km. For each trace a sample of 100 vehicles is 
selected over a period of 5 days. We select suitable positions 
for infrastructure charge-points based on frequent points of 
vehicle congregation. We additionally consider a synthetic 
SMG scenario using an artificial Manhattan grid model with 
consumer EVs and limited charge points. 

The described traces for Nottingham, Paris, Rio de Janeiro 
and San Francisco are highly social with ego-networks in each 
displaying distributions characteristics of scale-free networks 
associated with human and vehicular mobility. Whilst these 
traces are divergent across density and energy availability 
criteria, we believe it is important to also consider a scenario 
in which nodes are only marginally socially linked in order to 
explore the effectiveness of CONCEDE when social ties are 
significantly weaker. Though the Manhattan grid scenario 
displays social connectivity properties (Figs. 4, 5), all EVs 
have ego-networks which are large and show uniform 
encounter frequency distribution, i.e. each node has an ego-
network which contains many contacts but there is no  
significant strength between a social tie to one node versus to 
any other. 

Figs. 6, 7, 8, 9, 10 show the number of critically depleted 
nodes over time in each scenario. CONCEDE successfully 
detects and minimises the impact of attack in all cases. 
CONCEDE identified and excluded the malicious nodes in 
each trace with only a 10% increase in the number of low 
charge EVs. 



 

Fig. 6. Average percentage of vehicles with critically low battery levels in 
the Nottingham scenario. 

 

Fig. 7. Average percentage of vehicles with critically low battery levels in 

the Paris scenario. 

 

Fig. 8. Average percentage of vehicles with critically low battery levels in 

the San Francisco scenario. 

 

Fig. 9. Average percentage of vehicles with critically low battery levels in 

the Rio de Janeiro scenario. 

 

Fig. 10. Average percentage of vehicles with critically low battery levels in 

the Manhattan scenario. 

The depletion levels in the Manhattan scenario Fig. 10 
show a slight reduction in attack impact and improvement in 
recovery which is the result of the robustness inherent to 
CognitiveCharge. Energy is moved to the region experiencing 
depletion. CONCEDE improves this further through its 
dishonest behaviour identification mechanism which reduces 
the overall attack impact. Despite this, due to the sustained 
nature of the attack, pure CognitiveCharge cannot fully 
recover to the baseline levels of depletion. 

We observe that CONCEDE adapts to the attack, 
improving the availability amongst the most vulnerable 
targeted nodes and network regions. In our experiments the 
attack is not only severe due to the malicious information 

propagation leading to targeted community depletion but also 
as a result of the loss of the providers as in-network mobile 
supply points. As such, even with CONCEDE present we do 
not see a complete return to baseline levels because the loss of 
these nodes as additional energy transporters and suppliers 
reduces overall energy availability. 

In Figs. 6, 7, 8, 9 clear delineations can be observed 
between days due to the influence of time of day on energy 
expenditure and ability to charge. In each of these scenarios 
some nodes were able to access static grid infrastructure 
overnight which directly reduced the number of severely 
depleted nodes through the morning as saturated nodes could 
supply those in need and without local resources. Despite 
increased availability from infrastructure in the Paris scenario 
the results observed are similar to those for Nottingham (Figs. 
7, 6). The additional static charge-points, whilst reducing 
overall depletion levels, do not help directly mitigate the 
attack because their observed information requires physical 
ferrying by mobile nodes to other network regions. The Rio 
de Janeiro SMG scenario Fig. 9 shows most significant attack 
impact on critical depletion levels due to the sparsity of the 
topology limiting charge availability. Long intervals between 
contact time with surplus energy carrying EVs and charge 
points increase the vulnerability of nodes and thus the severity 
of the attack. 

Beyond depletion levels we can see that CONCEDE 
reduces the impact of the attack on the time a critically 
depleted node must wait until it can access a suitable energy 
supply opportunity. Due to limited space we show 
representative examples for the pseudo-realistic Nottingham 
real-world San Francisco traces in Fig. 11 and Fig. 12. When 
under attack nodes must wait substantially longer to receive 
charge – over 1 hour in the Nottingham scenario whereas in 
the baseline scenario this can be as low as 10 minutes. The San 
Francisco scenario shows similar results with a threefold 
increase in wait time over the baseline scenario. In all 
instances CONCEDE reduces the wait time for energy access 
from available nodes with surplus charge. 

We also performed experiments to better understand what 
the rate of failure of the CONCEDE detection of malicious 
prosumers is. Our early results showed that there is a  learning 
curve of the nodes that accurately detect the malicious nodes 
and are able to avoid them (failure detection rate drops from 
15% to 5% of undiscovered malicious prosumers over 5 days).  
We have calculated failed detection rates as average per day 
across all nodes that are highly likely to meet all the malicious 
nodes. 

 

Fig. 11. Wait time duration in the San Francisco scenario until energy 

acquisition for nodes in need. 



 

Fig. 12. Wait time duration in the Nottingham scenario until energy 

acquisition for nodes in need. 

VI. CONCLUSION 

In this paper we proposed CONCEDE, a robust, cross-
layer integrity awareness, threat detection, and attack 
mitigation scheme which integrates seamlessly into 
CognitiveCharge [14], our existing approach for adaptive, 
delay-tolerant energy exchange in dynamic SMGs. 
CONCEDE enhances the robustness of CognitiveCharge 
nodes with the ability to more rapidly collaboratively respond 
to threat of energy depletion from malfunctioning or actively 
malicious nodes. With CONCEDE, identified dishonest nodes 
can be avoided for energy exchange until their perceived 
integrity is restored, thus protecting both individuals, 
communities and regions from energy depletion attack and 
malfunction resulting in incorrect information propagation. 

We evaluated CONCEDE using a diverse range of real-
world and pseudo-realistic heterogeneous SMG traces from 
Europe, North America, and South America. CONCEDE 
nodes successfully detected and mitigated the severity of 
depletion amongst nodes in a community under a sustained 
energy depletion attack across multiple criteria. In our future 
research we seek to address the wider impact of our work on 
the defined users, exploring effective measures for managing 
the dynamic trade-offs between secure, predictive localised 
energy exchange and stakeholder privacy requirements in 
complex mobile SMG environments. 
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