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a  b  s  t  r  a  c  t

The  solid-liquid  extraction  of Artemisia  annua  remains  an  important  source  of  artemisinin,  the precursor
molecule  to  the  most  potent  anti-malarial  drugs  available.  Industrial  manufacturers  of  artemisinin  face
many  challenges  in  regards  to volatile  markets  and sub-optimal  extraction  approaches.  There  is a  need to
improve  current  processing  conditions,  and one  method  is  to model  the  processing  options  and  identify
the most  appropriate  process  conditions  to suit  the  market  forces.  This  study  examined  the  impact  of
extraction  temperature,  duration  and solvent  (petroleum  ether)  to  leaf  proportions  on  the recovery  of
artemisinin  from  leaf  steeped  in solvent,  in  a central  composite  design  (CCD),  and  the  results  were used
to  generate  both  a  response  surface  methodology  (RSM)  model  and  an  artificial  neural  network  (ANN)
model.

Appraisal of the  models  through  the  coefficient  of  determination  (R2) and  the absolute  average  devi-
ation  (AAD)  showed  that the ANN  was  superior  (R2 =  0.991,  AAD  =  1.37%)  to the  RSM  model  (R2 =  0.903,
AAD  =  4.57%)  in  predicting  artemisinin  recovery.  The  ANN  model  was  subsequently  used to  determine
the  optimal  extraction  conditions  for the  recovery  of  artemisinin,  which  were  found  to  be  an extraction
duration  of  8 h at a  temperature  of  45 ◦C  and  a leaf  loading  of  0.12  g/ml  petroleum  ether,  from  the con-
ditions  tested.  An illustration  is provided  in how  the  results  obtained  from  an  ANN  model  may  be  used
to  determine  optimal  extraction  conditions  in response  to market  conditions.  In addition,  a  co-solvency
effect  has  been  observed  between  extracted  impurities  and  petroleum  ether  that  substantially  increases
the solubility  of  artemisinin  over  that  in  petroleum  ether  alone,  and  which  will  require  further  inves-
tigation  in  the  future.  The  impact  of  this  co-solvency  effect  on  the  efficiency  of  artemisinin  recovery in
secondary  extraction  cycles  was  found  to be  significant.

©  2014  The  Authors.  Published  by  Elsevier  B.V.  This  is  an open  access  article  under  the  CC  BY  license
(http://creativecommons.org/licenses/by/3.0/).

1. Introduction

Artemisinin-based combination therapies (ACTs) are regarded
by the World Health Organisation (WHO) as the most important
class of drugs available in the fight against malaria, which claimed
an estimated 660,000 lives in 2010 (WHO, 2013a). The critical
starting material for all ACTs is artemisinin, which is primarily
obtained through the solid-liquid extraction of the leaves of the
Artemisia annua plant. An alternative source of artemisinin has
recently been approved for use in ACTs (WHO, 2013b). This new
source is from a genetically modified yeast that over produces
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artemisinic acid, which is then isolated and photocatalytically con-
verted to artemisinin (Paddon et al., 2013). However, it is expected
that the short to medium-term demand will still have to be met
by A. annua extraction (A2S2, 2012). This leaves the artemisinin
industry in a precarious position, with farmers disinclined to plant
further crops, and industrial manufacturers facing numerous dif-
ficulties comprising volatile markets, variable biomass feedstock
quality, unrecovered value in waste streams and technological lim-
itations. There is a need for industrial manufacturers to optimise
current approaches, thereby improving the profitability of produc-
tion and ensuring a sufficient supply of artemisinin.

A manufacturing process cannot be optimised without first
knowing the process details and such information is held by indus-
try to retain market advantage. However, some heuristic rules can
be provided for industry to review and apply for achieving their

http://dx.doi.org/10.1016/j.indcrop.2014.03.016
0926-6690/© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0/).
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own particular commercial objectives. Current industrial extrac-
tions use hexane, petroleum ether, toluene and HFC-134a, with
petroleum ether being the most common solvent but demonstrat-
ing insignificant difference in performance to hexane (Christen and
Veuthey, 2001; Lapkin et al., 2006; Vandenberghe et al., 1995).
The solubility of artemisinin in a range of other solvents has been
examined, which might lead to improved extraction of artemisinin
(Lapkin et al., 2010; Liu et al., 2009; Nti-Gyabaah et al., 2010) due to
their higher affinity to artemisinin, but they have not reached com-
mercial application. This could be due to difficulties in the supply
of sufficient quantities for extraction, increased cost implications
and the increased risks associated with some solvents (acetonitrile,
toluene, chloroform, etc.). The use of ethanol as an extraction sol-
vent has been investigated by Fleming and Von Freyhold (2007)
and, whilst positive results were obtained, the extracts are likely to
contain higher quantities of sugars and polar impurities that hin-
der the subsequent crystallisation of artemisinin from the extract
mixture (Lapkin et al., 2010). Other potential drawbacks to the
industrial use of ethanol include a higher latent heat of vapouri-
sation over petroleum ether that makes solvent recovery more
expensive, in addition to the miscibility of ethanol and water that
would result in the need for distillation to re-concentrate the
ethanol after steam stripping of residual solvent in the extracted
leaf bed.

Extraction is undertaken either by submerging the leaves in the
extracting solvent (with or without agitation, which includes hor-
izontal tumbling) or percolating the solvent through the leaf bed.
The temperature range for extraction is 30–45 ◦C and the process
may  be undertaken over durations ranging from 8 to 48 h, with the
possibility of additional extraction cycles to improve artemisinin
recovery (Brisibe et al., 2008; Lapkin et al., 2006). Ethyl acetate
may  be added to the hexane/petroleum ether up to 5% by vol-
ume to increase the extent of artemisinin extraction (Brisibe et al.,
2008) and to reduce the possibility of explosion through static
build up and discharge (Lapkin et al., 2010). The proportion of leaf
to solvent used by industry is difficult to ascertain from the lit-
erature, though it has been suggested that one kilogram of leaf
could be extracted with one litre of solvent (Brisibe et al., 2008);
such an approach would be impractical without the use of sol-
vent percolation because the low density of dry biomass would
ensure that the leaf bed greatly exceeds the level of extracting
solvent.

With such a wide range of conditions reported in the literature,
the task of process optimisation can only be undertaken using a
methodology that can assess the individual impact of each process
condition on overall efficiency. One such approach is the response
surface methodology (RSM) developed by Box and Wilson (1951),
which has seen wide application in the chemical industry due to
its ability to optimise a process with a minimal amount of exper-
imental data. As a statistical tool, RSM can model the impact of
various process factors, both individually and through their cumu-
lative interactions, on a system response, thereby providing an
indication of the optimal operating region (Box et al., 2005). More
recently, artificial neural networks (ANN) are finding increasing
use as predictive tools in an extensive range of disciplines, includ-
ing engineering, due to their ability to employ learning algorithms
and discern input–output relationships for complex, nonlinear sys-
tems (Alavala, 2007; Zobel and Cook, 2011). Both RSM and ANN
have been applied to optimise a range of natural product extrac-
tion processes and the resultant models show a strong correlation
with experimental results. Recent examples include the extraction
of phenols from mangosteen hull (Cheok et al., 2012), essential
oils from Diplotaenia cachrydifolia (Khajeh et al., 2012), coumarin
from Cuscuta reflexa (Mitra et al., 2011), secoisolariciresinol diglu-
coside from flaxseed (Nemes et al., 2012), oils from Orthosiphon
stamineus (Pouralinazar et al., 2012) and passiflora seeds (Zahedi

and Azarpour, 2011) and the extraction of natural dyes (Sinha et al.,
2012, 2013).

The aim of this investigation was to develop and compare
RSM and ANN models to indicate how the percentage recovery of
artemisinin, through the extraction of A. annua using petroleum
ether, might be optimised. The parameters investigated comprise
solvent temperature, extraction duration and the proportion of leaf
to solvent, in an extraction process that is considered to approxi-
mate the industrial approaches. The generated models were then
compared in their suitability for predicting artemisinin recovery
by analysing their coefficient of determination (R2) and absolute
average deviation (AAD) from experimental data. In the case of
RSM, ANOVA was  applied to assess any significant lack of fit with
the experimental data. The models were then used to determine
the impact of the extraction conditions on artemisinin recovery,
thereby providing an indication of the optimal approach. The ANN
model was  then used to illustrate how processing conditions might
be altered in order to optimise the first extraction cycle in response
to market pressures. For the two case study conditions examined,
an additional second extraction cycle was then performed to inform
on the potential of improving the recovery of artemisinin further.

2. Materials and methods

2.1. Characterisation of A. annua

Samples of A. annua harvested from Wanzhou, Chongqing, China
were supplied pre-milled (<2.80 mm)  and dried by PIDI Standard
(Holdings) Ltd (Guangzhou, Guangdong, China). The moisture con-
tent was determined to be 7.9 ± 0.2 wt% (n = 3) by drying to constant
weight at 105 ◦C. The tapped bed density of the biomass was
determined to be 0.21 ± 0.006 g/ml (n = 3) by filling and manually
tapping a 50 ml measuring cylinder to provide an indication for the
maximum solvent to leaf proportions that would be practical for
extraction without solvent percolation.

The artemisinin content of the biomass was determined using
a modified version of the method presented by Van Nieuwerburgh
et al. (2006), using increased sample size and an extended extrac-
tion duration. Approximately 1.667 g of biomass was accurately
weighted in triplicate and contacted with 10 ± 0.1 ml  of chloroform
(laboratory reagent grade, Fisher Scientific, UK) in 60 ml  Boston
type bottles, which were sealed and placed on a reciprocating
shaker table operating at 170 rpm for a period of 5 min. After this
duration, the supernatants were decanted and filtered to 0.2 �m
using PTFE filter syringes (Fisher Scientific, Loughborough, UK),
with 3 ml  aliquots taken to dry down under atmospheric condi-
tions (17 ± 1 ◦C). Filtration of artemisinin standard solutions using
this methodology confirmed that there was no detectable decrease
in artemisinin concentration due to adsorption onto the filter mem-
brane. Prior to HPLC–UV analysis by a methodology used previously
(Pilkington et al., 2012), the samples were reconstituted for a
period of 24 h on a reciprocating shaker table operating at 170 rpm.
The artemisinin content was found to be 1.37 ± 0.06 wt% of dry
leaf.

2.2. Experimental design

The extraction parameters of solvent temperature (X1), dura-
tion (X2) and solvent to leaf proportions (X3) were investigated for
their impact on the recovery of artemisinin from A. annua using
petroleum ether. Recovery is presented as the weight percentage
of artemisinin detected in the extract mixture when compared to
the total artemisinin present in the dry biomass. The temperature
range of investigation was  chosen to be 30–45 ◦C in accordance with
the values published in the literature when hexane or petroleum
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Table  1
The order and extraction conditions for the central composite design (CCD) including
the coded levels of each parameter.

Run # Extraction temp. (◦C) Duration (h) Leaf concentration (g/ml)

1 37.5 (0) 6 (0) 0.118 (−˛)
2 49.75 (+˛) 6 (0) 0.2 (0)
3  25.3 (−˛) 6 (0) 0.2 (0)
4  37.5 (0) 6 (0) 0.2 (0)
5  37.5 (0) 6 (0) 0.2 (0)
6  37.5 (0) 6 (0) 0.283 (+˛)
7  37.5 (0) 9.266 (+˛) 0.2 (0)
8  37.5 (0) 2.734 (−˛) 0.2 (0)
9  30 (−1) 8 (+1) 0.15 (−1)

10 30 (−1) 8 (+1) 0.25 (+1)
11  37.5 (0) 6 (0) 0.2 (0)
12  45 (+1) 4 (−1) 0.15 (−1)
13 37.5 (0) 6 (0) 0.2 (0)
14  45 (+1) 8 (+1) 0.15 (−1)
15 37.5 (0) 6 (0) 0.2 (0)
16  30 (−1) 4 (−1) 0.15 (−1)
17 45 (+1) 8 (+1) 0.25 (+1)
18  30 (−1) 4 (−1) 0.25 (+1)
19  37.5 (0) 6 (0) 0.2 (0)
20  45 (+1) 4 (−1) 0.25 (+1)

ether are used as the extraction solvent (Brisibe et al., 2008; Lapkin
et al., 2006). Published extraction durations of 8–48 h were con-
sidered too long to obtain an accurate representation of extraction
dynamics due to the asymptotic gains from such extended extrac-
tions. It was therefore decided that extraction durations of 4–8 h
would provide a more suitable basis for experiments, ensuring that
the impact of duration could be more readily examined. For solvent
to leaf proportions, it is clear that the dry biomass bed density of
0.21 g/ml (Section 2.1) would not allow for a ratio of 1 g leaf to 1 ml
solvent without the use of solvent percolation. It is known to the
authors that one industrial manufacturer used a ratio of 0.2 g/ml
for their extractions and this value was therefore used as a starting
basis. A range of 0.15–0.25 g/ml was selected for investigation, with
0.25 g/ml being possible due to the displacement of solvent by the
leaf bed, which allows for all leaf to be submerged by the solvent
level.

A central composite design (CCD) was selected to determine
the experimental conditions as the inclusion of axial experimen-
tal points allow for a larger spread of conditions to be examined,
which is beneficial when the required complexity of model is not
known for accurate predictions to be made (Box et al., 2005). The
three-factor experimental matrix was developed in Minitab® V.16,
with 20 runs to include 8 factorial points, 6 centre points and 6 axial
points. The resultant range of experimental conditions, including
their coded levels (−˛,−1, 0, 1, ˛;  ̨ = 1.633), can be observed in
Table 1. The resultant recovery of artemisinin was then approxi-
mated by a quadratic equation (Eq. (1)):

Rart,pred(%) = ˇ0 +
k∑

i=1

ˇiXi +
k∑

i=1

ˇiiX
2
i +
∑
i<j

∑
ˇijXiXj + ε (1)

where Rart,pred is the predicted overall recovery of artemisinin, ˇ0
is the constant coefficient, ˇi, ˇii and ˇij are respectively the linear,
quadratic and interaction coefficients, Xi and Xj are the indepen-
dent variables and ε is the error. The statistical significance of each
regression coefficient on the recovery of artemisinin was deter-
mined by analysis of variance (ANOVA).

2.3. Artificial neural network

Artificial neural networks (ANNs) are mathematical models that
loosely approximate the function of biological neural networks. A
multilayer perceptron (MLP) is a feed-forward ANN consisting of

Fig. 1. Architecture of the developed artificial neural network (ANN).

three or more layers of neurons, with the first layer of neurons rep-
resenting the independent variable inputs. Each of the neurons in
the first layer is connected to one or more layers of hidden neurons
that represent nonlinear activation functions. These neurons are in
turn connected to a final level of output neurons and, through the
use of learning algorithms, the relative influence of each input neu-
ron and their complex interactions on the observed result can be
discerned.

An MLP  was  developed in MATLAB (The Mathworks, Inc., 2012a)
with three input neurons representing the extraction tempera-
ture, duration and solvent to leaf proportions, a single hidden
layer of neurons, and an output neuron representing the recov-
ery of artemisinin. A representation of the MLP  architecture can be
observed in Fig. 1. The number of neurons required in the hidden
layer was  determined by trial and error to minimise the deviation
of predictions from experimental results; a minimum of 10 neurons
was required to build the final model utilising the data obtained to
develop the RSM, and the addition of more neurons presented the
possibility of over-fitting the model (Cheok et al., 2012; Madadlou
et al., 2009). A total of 14 (70%) of experimental results were used to
train the network, with the remaining results split evenly between
network validation and testing. The ANN predictions were then
used to generate surface and contour plots in SigmaPlot (Systat,
V. 10.0).

2.4. Experimental procedure

Extractions were performed in 60 ml  Boston type bottles
(Fisherbrand, Fisher Scientific, UK), with temperature control
(±0.3 ◦C) and agitation (170 rpm) provided by a linear shak-
ing water bath (Fisherbrand, Fisher Scientific, UK). The required
weight of leaf was  measured into the 60 ml  bottle, to which was
added 25 ± 0.06 ml  of petroleum ether (b.p. 60–80 ◦C; Analyti-
cal reagent grade, Fisher Scientific, UK) before being sealed and
placed in the water bath for extraction to occur. After the spec-
ified duration, the extract was decanted directly without cooling
and filtered to 0.2 �m by way  of PTFE filter syringe (Fisher Sci-
entific, Loughborough, UK). A 3 ml  aliquot of each extract was
then taken and reduced to dryness under atmospheric conditions
(17 ± 1 ◦C) overnight in 7 ml  vials. Once dry, 3 ml of acetonitrile
was added to each vial, which were then sealed and suspended
in an ultrasonic bath (VWR International, UK) rated at 160 W
and frequency of 45 kHz for full disintegration of extract residues
to occur, ensuring full reconstitution of artemisinin. The result-
ing solution was  filtered to 0.2 �m through a PTFE filter syringe
again to remove any insoluble particulates prior to HPLC–UV
analysis by the methodology used previously (Pilkington et al.,
2012).
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Table 2
The experimentally obtained recovery of artemisinin compared to that predicted by
the associated response surface methodology (RSM) model.

Run # Experimental recovery (%) RSM predicted recovery (%)

1 59.61 60.94
2  69.35 73.77
3  42.10 41.84
4  55.53 53.96
5  56.28 53.96
6  50.27 53.01
7  60.56 56.80
8  36.30 44.23
9  50.47 53.41

10  48.53 49.49
11  54.10 53.96
12  69.96 66.22
13  53.19 53.96
14  69.95 69.59
15  53.55 53.96
16  44.59 41.37
17  63.35 63.79
18  39.89 37.47
19  52.40 53.96
20  66.14 60.42

2.5. Process optimisation and secondary extraction cycles

From the model predictions, two sets of distinct extraction con-
ditions (temperature, duration and leaf concentration) were used
to illustrate how the first extraction cycle might be optimised
to address external factors such as leaf availability, leaf cost and
artemisinin market value. Fresh extractions of a different biomass
batch from the same harvest location and season were then under-
taken at both case study conditions following the procedure in
Section 2.4.

Under laboratory conditions, the entrainment of extract in the
leaf bed was found to be approximately 2.5 ml/g, which is greater
than that expected in an industrial context due to their use of leaf
bed presses for extract recovery. For this reason, immediately after
recovering all available free extract from the first extraction, each
leaf bed was contacted with 25 ± 0.06 ml  of fresh petroleum ether
(b.p. 60–80 ◦C; Analytical reagent grade, Fisher Scientific, UK) for
10 seconds at room temperature (17 ± 1 ◦C), with the wash solvent
then being recovered in the same manner as the first extract and
analysed by HPLC–UV for its artemisinin content. This served to
dilute the remaining entrained mixture in the leaf bed prior to com-
plete drying of the leaf bed at 45 ± 1 ◦C. The volume of recovered
extract and subsequent petroleum ether wash was recorded in each
instance.

The biomass was then subjected to a second extraction cycle
under the same conditions as its respective first extraction cycle.
For both the first and second extraction cycles, and the petroleum
ether wash, the dried solvent residues were weighed prior to recon-
stitution in acetonitrile, to determine the weight proportion of
artemisinin in each mixture.

3. Results and discussion

3.1. RSM model

The recovery of artemisinin predicted by the RSM model was
compared to the experimental data and the results can be observed
in Table 2, with the results plotted in Fig. 2 to provide the coefficient
of determination (R2 = 0.903). The coefficients for each term in the
quadratic model are presented in Table 3 for un-coded units, and
ANOVA was used to indicate which terms are statistically signifi-
cant in the determination of recovery at a 95% confidence interval.

R² =  0.903 
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Fig. 2. Comparison between the artemisinin recovery predicted by the response
surface methodology (RSM) model and the experimentally determined recovery
(n  = 20, with the 6 centre points combined as a mean value).

Table 3
Regression analysis of the response surface methodology (RSM) model for the recov-
ery  of artemisinin, with the associated statistical significance of each coefficient.

Coefficient Value F-value P-value

ˇ0 3.3488 – –
ˇX1 0.5084 67.24 0.000
ˇX2 11.2194 10.38 0.009
ˇX3 −179.6150 4.10 0.070

ˇX1X1 0.0255 1.43 0.260
ˇX2X2 −0.3231 1.16 0.306
ˇX3X3 446.1780 0.89 0.367
ˇX1X2 −0.1443 1.98 0.190
ˇX1X3 −1.2600 0.09 0.765
ˇX2X3 −0.0250 0.00 0.999

In general, it can be considered that higher Fisher’s F-test values
and lower P values indicate the relative significance of each term.
It can be observed in Table 3 that the majority of the terms in the
developed quadratic model are statistically insignificant (P > 0.05)
when determining artemisinin recovery, and that the regression
analysis is predominantly linear with respect to temperature and
duration. Therefore the model was  assessed for its suitability by
examining the lack of fit through ANOVA, with the results presented
in Table 4. It is clear from these results that the lack of fit for the
quadratic model is significant due to the low probability (P = 0.004)
of the Fisher’s F-value for lack of fit, which is reinforced by the rel-
atively low coefficient of determination (R2 = 0.903) for the overall
model.

An attempt was  made to improve the accuracy of the model by
removing insignificant terms from the quadratic equation. How-
ever, it was  found that no combination of terms was able to improve
the accuracy of the model, neither when excluding terms from the
full quadratic equation nor when fresh RSM fitting was performed
by neglecting the insignificant parameters. This result suggests that
the variability in artemisinin recovery cannot be adequately pre-
dicted by the RSM model, taking into consideration the extraction
temperature, duration and solvent to leaf proportions.

Table 4
Analysis of variance (ANOVA) to determine the suitability of the developed quadratic
model in fitting the experimental data.

Source Sum of squares Deg. of freedom F-value P-value

Residual error 189.71 10 – –
Lack-of-fit 178.93 5 16.59 0.004
Pure error 10.78 5 – –
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A possible explanation for this result is the complex rela-
tionship between artemisinin and co-extracts (such as oils and
waxes), which can contribute to differences in artemisinin solu-
bility (Lapkin et al., 2010). A large range of compounds have been
identified in A. annua extracts (Bhakuni et al., 2001; Brown, 2010)
and their extraction rates, both individually and in combination, are
likely to influence the efficiency and rate of artemisinin extraction.
This would be further compounded by the suggestion that extrac-
tion of metabolites could be somewhat sequential, with petroleum
ether not acting as the extraction agent, but other groups of com-
pounds that are initially extracted into petroleum ether that then
serve to extract artemisinin (Lapkin et al., 2010). This suggestion is
reinforced when examining the published data for the solubility of
artemisinin in high purity hexane, which is stated to have compara-
ble extraction properties to petroleum ether (Christen and Veuthey,
2001; Lapkin et al., 2006). The data provided by Nti-Gyabaah et al.
(2010) has been used to plot the solubility across a range of tem-
peratures with the results presented in Fig. 3.

It can be observed in Fig. 3 that artemisinin is only sparingly sol-
uble in hexane across the range of temperatures examined in this
study. However, by contrast, the range of artemisinin concentra-
tions in the petroleum ether extracts generated in this study was
830–2050 �g/ml, with the artemisinin solubilised in solution even
when extract samples were cooled to room temperature (17 ± 1 ◦C).
This observation suggests that co-extracts could increase the solu-
bility of artemisinin in petroleum ether based extracts by an order
of magnitude.

Such interactions between artemisinin and co-extracts would
be difficult to ascertain from RSM and would likely be batch-
dependent anyway due to biomass variability, but the co-efficient
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Fig. 3. The solubility of artemisinin in hexane at a range of temperatures using the
data  presented by Nti-Gyabaah et al. (2010).

of determination for the RSM model developed is sufficient to give
overall indications on how the extraction process may be opti-
mised. Fig. 4 illustrates the impact of the extraction variables on
artemisinin recovery, with the third variable for each plot held
at its high value (45 ◦C, 8 h or 0.25 g/ml). From Fig. 4(A) it can be
observed that the influence of extraction duration on artemisinin
recovery is likely to decrease as temperature is increased, indi-
cating that not only can artemisinin be recovered more rapidly at
higher temperatures, but also that significantly higher recoveries
can be achieved than would otherwise be possible at lower tem-
peratures by increasing the extraction duration. Fig. 4(B) indicates
that the importance of extraction duration could diminish after
approximately 7 h, suggesting that extended extraction durations
could be decreased without significant loss of artemisinin recov-
ery. The predicted decrease in artemisinin recovery with extraction

Fig. 4. Contour plots showing the influence of extraction parameters on the percentage recovery of artemisinin from A. annua as predicted by the RSM model with leaf
concentration held constant at 0.25 g/ml (A), temperature held constant at 45 ◦C (B), and duration held constant at 8 h (C).
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Table 5
The experimentally obtained recovery of artemisinin compared to that predicted by
the associated artificial neural network (ANN) model.

Run # Experimental recovery (%) ANN predicted recovery (%)

1 59.61 60.46
2  69.35 69.35
3  42.10 42.10
4  55.53 54.18
5  56.28 54.18
6  50.27 50.27
7  60.56 60.65
8  36.30 36.30
9  50.47 50.47

10  48.53 48.53
11  54.10 54.18
12  69.96 69.96
13  53.19 54.18
14  69.95 69.95
15  53.55 54.18
16  44.59 44.59
17  63.35 62.18
18  39.89 37.36
19  52.40 54.18
20  66.14 62.92

durations beyond 7 h is counter-intuitive and is likely a result of
the model parameters’ lack of fit to experimental data. Finally, it is
suggested in Fig. 4(C) that increasing the concentration of leaf in
petroleum ether has a relatively minor influence on the recovery of
artemisinin, indicating that higher biomass loading values may  not
have a detrimental impact on extraction efficiency, whilst allowing
for improved productivity by increased biomass throughput.

3.2. ANN model

The recovery of artemisinin as predicted by the ANN is compared
to the experimentally obtained values in Table 5. In order to test
the suitability of the model, the predicted and actual results were
plotted in Fig. 5 and the coefficient of determination (R2 = 0.991)
illustrates good agreement with the two sets of results.

By supplying the ANN model with matrices of extraction con-
dition parameters, it was possible to visualise the relative impact
of each extraction parameter using surface and contour plots gen-
erated in SigmaPlot (Systat, V. 10.0). Using the same approach as
with the RSM model, the third variable for each plot was  held at
its high value (45 ◦C, 8 h or 0.25 g/ml) to generate the plots and the
results of this investigation can be observed in Fig. 6. It is immedi-
ately obvious from Fig. 6(A) that, at extraction temperatures above
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Fig. 5. Comparison between the artemisinin recovery predicted by the artificial neu-
ral  network (ANN) model and the experimentally determined recovery (n = 20, with
the 6 centre points combined as a mean value).

approximately 40 ◦C, extraction duration has a negligible influence
on the recovery efficiency of artemisinin as a state of equilibrium
has been reached at the given temperature. In this circumstance
(with leaf loading of 0.25 g/ml), the only way to increase the extrac-
tion of artemisinin is to increase the temperature of extraction,
which is in line with the increasing solubility of artemisinin in
extraction solvents with increasing temperature (Liu et al., 2009;
Nti-Gyabaah et al., 2010). The results in Fig. 6(B) indicate that the
effect of duration is generally neutral after 5 h, which suggests that
the extraction has run to completion and that higher artemisinin
recoveries could only be obtained by reducing the concentration
of A. annua in the extraction solvent. This is in contradiction to
the industrial approach suggested in the literature, with extended
extraction times ranging from 8 to 48 h (Brisibe et al., 2008; Lapkin
et al., 2006). Whilst reducing the leaf to solvent proportions can be
seen to increase the recovery of artemisinin, an economic evalua-
tion would need to be undertaken in order to assess the increased
cost of solvent evaporation that would be required in order to
induce crystallisation of artemisinin from the extract.

The results in Fig. 6(C) indicate an unusual trend at lower
extraction temperatures, particularly between 25 and 30 ◦C. This
is perhaps further evidence of a co-solvency effect between
co-extracts and petroleum ether that are suggested in the lit-
erature (Lapkin et al., 2010). Increasing the leaf concentration
from 0.12 g/ml to around 0.20 g/ml in this temperature range,
and at an extraction duration of 8 h, leads to a decrease in
the expected artemisinin recovery. However, a tipping point is
reached, whereby the addition of further leaf serves to increase
the artemisinin recovery. It is hypothesised that a critical con-
centration of one or more co-extracts is achieved and that
the solubility of artemisinin is sufficiently increased in the
extraction mixture as to promote increased recovery from the
leaf. This is an important observation as it suggests that room
temperature extractions with high leaf loading may  be able to
compete in terms of extraction efficiency with high temperature,
low leaf loading extractions. As well as cost savings by running
the extraction at lower temperatures, there is the potential that
the extraction of certain impurities may be reduced, leading to a
cleaner extract to be taken forward for purification. However, the
maximum recovery of artemisinin in a single extraction cycle is
only achieved with high temperatures and low leaf concentrations,
and multiple extraction cycles or the addition of co-solvents would
likely be required in order for low temperature, high loading
extractions to be economically viable.

3.3. Comparison of RSM and ANN

Despite the lack of fit for the RSM model as determined in Sec-
tion 3.1, it can still provide some indication of how the extraction
process may  be optimised when access to the necessary software
to develop ANN architecture for a leaf batch is not available. For
this reason, it is useful to determine the absolute average devia-
tion (AAD) observed for both models to give an indication of how
accurate the model predictions can be. The AAD is defined as in Eq.
(2):

AAD(%) =
(

1
n

n∑
i=1

(
Rart,pred − Rart,exp

Rart,exp

))
× 100 (2)

where n is the number of sample points, Rart,pred is the pre-
dicted recovery of artemisinin and Rart,exp is the experimentally
determined artemisinin recovery. The AAD for the RSM model
was calculated to be 4.57%, whilst that of the ANN model was
1.37%. In addition to the coefficients of determination for both
models (R2 = 0.991 for ANN and R2 = 0.903 for RSM), the AAD con-
firms that the ANN model is superior in predicting the recovery
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Fig. 6. Surface plots (left) and corresponding contour plots (right) showing the influence of extraction parameters on the percentage recovery of artemisinin from A. annua
as  predicted by the ANN model with leaf concentration held constant at 0.25 g/ml (A), temperature held constant at 45 ◦C (B), and duration held constant at 8 h (C).

of artemisinin from petroleum ether extraction, which is con-
sistent with the findings of other research that compared both
methodologies for natural product extraction (Cheok et al., 2012;
Marchitan et al., 2010; Pouralinazar et al., 2012; Sinha et al., 2013;
Zahedi and Azarpour, 2011). The ANN model has also identified
an area in which co-solvency effects between petroleum ether and

co-extracts may  exist and have a significant impact on artemisinin
recovery. This result is not unexpected but the interaction is not
evident from the RSM model and this is the likely source of the
resultant poor fit of the quadratic equation with experimental data.
In order to address the poor fit, the factor levels would need to
be revised to give better resolution around the local minima for
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Table 6
Utilising the developed artificial neural network (ANN) to assist in determining the
optimal artemisinin extraction conditions in a first-stage extraction when market
conditions and/or A. annua supply is favourable (Case A) or restrictive (Case B).

Parameter Case A Case B

Temperature (◦C) 45 45
Duration (h) 5 8
Leaf to solvent ratio (g/ml) 0.24 0.12
Leaf charged for extraction (kg) 960 480
Solvent use (L) 4000 4000
Leaf artemisinin content (wt%) 1 1
Artemisinin charged (kg) 9.6 4.8
Extraction efficiency (%) 65 80
Artemisinin recovered (kg) 6.24 3.84
Artemisinin loss to spent leaf (kg) 3.36 0.96
Output per day assuming 2 batches (kg) 12.48 7.68
Solvent cost Standard Increased
Leaf cost Standard Standard
Energy cost Standard Increased
Unit cost Standard Increased
Productivity Standard Reduced by 38%
Artemisinin wasted in leaf Standard Reduced from 35%

to 20%

artemisinin recovery, when the impact of temperature and leaf con-
centration at a fixed extraction duration is investigated. The ANN
model does not suffer from this limitation and therefore is able
to consider a wider range of processing conditions within a single
experimental design.

3.4. Process optimisation and secondary extraction cycles

The results show that increased artemisinin recovery for a single
extraction cycle is associated with elevated temperature, a low leaf
to solvent ratio, and increased duration. In turn, these attributes
all increase production costs by increased use of energy, reduced
production plant throughput and increased solvent use. The opti-
mum production process is that which is best aligned with these
cost variables.

The developed ANN model in this study is only applicable to
a first-stage extraction, and the extension of the model to multi-
ple extraction cycles significantly increases the complexity of the
system due to the increased number of variables. In particular, it
is possible that maximum overall extraction efficiency would be
achieved through a combination of different extraction conditions
for the first, second and potentially third extraction cycles, neces-
sitating prohibitively extensive experimental work to encompass
all possible combinations. In the absence of such a model, a pre-
liminary demonstration of how the existing model can be used as a
decision making aid is presented in Table 6. The process described in
Case A might be used when the availability of leaf is not limiting, and
sales demand high productivity with good artemisinin sale price;
Case B is a process that might be used when the supply of leaf is
erratic or insufficient, and prices can compensate increased variable
costs.

In light of the significant influence of A. annua co-extracts on
the recovery of artemisinin, highlighted by the ANN model, it was
prudent to then examine how the removal of impurities from leaf
during the first extraction cycle might impact the performance of
subsequent extraction cycles. For this purpose, the extraction con-
ditions described for Case A and Case B in Table 6 were examined
experimentally, with the addition of a second complete extrac-
tion cycle under the same conditions as their respective primary
extraction cycles. The results from this investigation are presented
in Table 7.

It can first be observed from Table 7 that for Case A, the recovery
of artemisinin from the first extraction cycle was  in agreement
with the ANN model prediction (65%), whilst the experimental

Table 7
The extraction of artemisinin from Artemisia annua with petroleum ether (b.p.
60–80 ◦C) under two experimental conditions in triplicate; Case A (45 ◦C, 5 h con-
tact  time and leaf concentration of 0.24 g/ml) and Case B (45 ◦C, 8 h contact time
and leaf concentration of 0.12 g/ml). In each Case, the biomass was subjected to two
sequential extraction cycles under the respective conditions with the artemisinin
recovery and weight percentage of artemisinin reported for each stage, in addition
to  the combined extract properties.

Parameter Case A Case B

First extraction cycle
Artemisinin recovery (%) 65.16 ± 0.89 75.94 ± 2.69
Proportion of artemisinin in
extracted mixture (wt%)

17.43 ± 0.26 18.40 ± 0.39

Second extraction cycle
Artemisinin recoverya (%) 34.73 ± 3.57 51.53 ± 4.10
Proportion of artemisinin in
extracted mixture (wt%)

9.41 ± 0.86 10.32 ± 1.31

Combined extraction efficiency of both
cycles

Artemisinin recovery (%) 77.28 ± 0.87 87.84 ± 1.71
Proportion of artemisinin in
extracted mixture (wt%)

13.59 ± 0.36 15.55 ± 0.09

a As a percentage of that remaining to be extracted from the biomass after the
first  extraction cycle.

artemisinin recovery in Case B (75.94%) was lower than the
predicted 80% under the extraction conditions examined. This
was possibly due to the tested biomass necessarily coming from a
similar but distinct batch (harvested at the same time but from a
different location of the field) from that used to develop the ANN
model, due to batch quantity limitations. In addition to the calcu-
lated recovery of artemisinin at these conditions, the results also
indicate that approximately only 17–18% of the dry residue weight
from the first extract mixture was artemisinin for both Cases.

In the instance of the second extraction cycle, it can be observed
that both Case A and Case B demonstrated a significant decrease
in the efficiency of artemisinin recovery. This finding supports the
hypothesis that A. annua co-extracts are a significant driving force
in the recovery of artemisinin, and that the removal of these com-
ponents in the first extraction cycle impacts on the efficiency of
subsequent extraction cycles. It should be noted that the mass
balance for the second extraction cycle considers only the fresh
artemisinin and impurities actively extracted from the leaf in that
cycle, with any entrained quantities carried over from the previous
leaf treatment being neglected. Such quantities could be recovered
through washing of the leaf and not full extraction cycles.

An important observation is that the proportion of artemisinin
to impurities actively extracted in the second extraction cycle
under both experimental conditions is lower than the first cycle,
indicating an increased burden on the subsequent purification
stages. It was  demonstrated by these results that there are still
significant quantities of impurities remaining after the first extrac-
tion cycle, but that their presence has had a less profound impact
on artemisinin recovery. A possible explanation for this result is
that the type of impurities that are constructive in improving
artemisinin recovery are mostly removed from the system after
the first extraction cycle, leaving behind non-constructive impuri-
ties for the second extraction cycle. The interaction of the different
impurities and their impact on the saturation levels of artemisinin
in the extract mixture will therefore require far greater attention
in future studies in order to make further progress in process opti-
misation.

The results in Table 7 highlight that process optimisation is
not just a function of maximising the recovery of artemisinin, but
involves a complex relationship between operating parameters
and the application of a detailed cost-benefit analysis. It can be
observed that the just one extraction cycle for Case B produced a
higher-quality extract than two  extraction cycles of Case A
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combined; there is no significant difference in the eventual recov-
ery of artemisinin in both cases, but the impurity burden in the
primary extract of Case B is significantly reduced. An added advan-
tage of Case B is that, despite a 50% lower leaf loading and longer
extraction duration, the throughput of the processing plant would
be increased due to the requirement of a single extraction cycle
compared to the two extraction cycles of Case A. Careful consid-
eration would be required before undertaking a second extraction
for Case B as the recovery of approximately 12% more artemisinin
from the biomass is accompanied by an increase in impurity con-
centrations, which may  ultimately lead to a lower recovery post
purification.

4. Conclusions

Despite recent advances in the semi-synthetic production of
artemisinin, industrial solvent extraction from A. annua will remain
an important source of the potent anti-malarial compound in
the short to medium term. With industrial manufacturers facing
increasing difficulties with market instability, there is a need to
optimise the current extraction approaches. However, the range
of extraction conditions stated in the literature is extensive, and
the foundations for determining which approach to take in order
to maximise processing efficiency are unavailable. Petroleum ether
and hexane remain the most common solvents used for the extrac-
tion of artemisinin. Whilst other solvents have been identified in
the literature that might improve the efficiency of extraction due
to increased affinity for artemisinin over hexane/petroleum ether,
considerations such as solvent cost, supply, higher boiling points
(that increase solvent recovery costs) and increased safety concerns
may  have hampered their adoption.

In this study, the impact of extraction temperature, duration
and solvent to leaf proportions was investigated on the extraction
of artemisinin from A. annua using petroleum ether. In order to
better understand the individual effects of the processing condi-
tions, two modelling approaches were utilised, namely RSM and
ANN which have extensive applications in process optimisation.
This study found that an ANN model was superior to the RSM
model both in terms of the coefficient of determination (R2) and
the absolute average deviation (AAD) when predicting the recov-
ery of artemisinin. Utilising the ANN model to develop surface and
contour plots of artemisinin recovery, it was found that significant
co-solvency effects between co-extracts and petroleum ether exist
at lower extraction temperatures. The resulting complex relation-
ship between processing parameters and artemisinin recovery is
likely to be the cause of the significant lack of fit observed in the RSM
model. However, it is hypothesised that this co-solvency effect may
be exploited to allow for low temperature, high leaf loading extrac-
tions to be undertaken without significant detrimental effects to
processing efficiency. If such an approach is possible then cost sav-
ings could be made by industrial manufacturers, and the reduced
temperature may  serve to extract fewer impurities, leading to a
reduced burden on subsequent purification stages. Extraction effi-
ciencies exceeding 80% could not be achieved by the single steeping
process used in this study.

Due to the significant impact that co-extracts have on the recov-
ery of artemisinin, the effect of their removal in the first extraction
cycle on the recovery of artemisinin in a subsequent batch extrac-
tion was examined. In the two case study examples investigated,
it was found that the efficiency of the second extraction cycle was
significantly reduced, supporting the hypothesis that the presence
of impurities has a strongly positive influence on the recovery
of artemisinin. In addition, the secondary extraction cycle was
demonstrated to extract a higher proportion of impurities than
the first cycle, indicating an increased burden on subsequent

purification stages. Results from these studies indicate that
process optimisation is a complex task of balancing extract quality
with consideration of processing costs and plant throughput to
compensate for changing market conditions.
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