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We investigate large deviations of the work performed in a quantum quench across two different
phases separated by a quantum critical point, using as an example the Dicke model quenched from
its superradiant to its normal phase. We extract the distribution of the work from the Loschmidt
amplitude and compute for both the corresponding large-deviation forms. Comparing these findings
with the predictions of the classification scheme put forward in [Phys. Rev. Lett. 109, 250602
(2012)], we are able to identify a regime which is in fact distinct to the ones identified so far: here
the rate function exhibits a non-analytical point which is a strong indication of the existence of an
out-of-equilibrium phase transition in the rare fluctuations of the work.

I. INTRODUCTION

Understanding out-of-equilibrium phenomena in clas-
sical and quantum many-body systems is one of the
modern challenges in condensed matter and statistical
physics. The breakdown of equilibrium conditions, as-
sociated to the absence of detailed balance in the mi-
croscopic processes governing the dynamics, results in
asymptotic states which do not take the equilibrium
Boltzmann-Gibbs form. Some concepts and techniques
from thermodynamics and statistical mechanics can be
however transferred to an out-of-equilibrium regime,
leading for instance to fluctuation-dissipation relations
(which connect the response of a system under a weak
external perturbation to the correlation between equilib-
rium thermal fluctuations, see, e.g.,1,2) and fluctuation3

relations.

In closed quantum systems, the simplest conceptual
protocol to obtain an out-of-equilibrium evolution is a
quantum quench. Physically, this can be thought of as an
abrupt change Ω0 → Ω of one of the external fields ap-
pearing in the HamiltonianH, fast enough for the state of
the system not to appreciably change across its variation.
Typically, one starts from the ground state ∣GS(Ω0)⟩ of
H(Ω0) before the quench (time t→ 0−) and subsequently
evolves it for t > 0 with H(Ω). Such quantum quenches
have been extensively studied to understand relaxation
and thermalization in closed quantum systems4,5 and
their relation to integrability, both theoretically6,7 and
experimentally8–10.

Interestingly, the notion of work can be generalized to
the quantum regime and fluctuation relations have been
found to hold much like they do in a classical context11,12.
Furthermore, it has been established that the Loschmidt
amplitude L(t) for a quenched system satisfies, in the
thermodynamic limit N → ∞, a large deviation princi-
ple L(t) ∼ eNl(t). The analytical continuation of l(t) to
imaginary time t → −is is related (via a Legendre trans-
form) to the statistics of the work done on the system by
the quench13. The function l(−is) is typically referred to
as scaled cumulant generating function (SCGF for short).

Gambassi and Silva14 provided a first classification of the
possible forms of these large deviation functions, iden-
tifying two distinct kinds of qualitative behaviors: for
systems in class A (spectrum bounded from above), the
SCGF is defined for all values of s ∈ R, whereas for sys-
tems in class B (spectrum unbounded from above) the
SCGF is defined only for values of s larger than a certain
threshold value s > s∗.

In this work we shed light on the behavior of large fluc-
tuations in the work performed during a quench across
a quantum critical point. We show that the statistics
of the work may exhibit a non-analytical point, corre-
sponding to a non-equilibrium phase transition, a situ-
ation encountered in the studies of the rare events of
out-of-equilibrium classical stochastic systems15,16. Im-
portantly, this constitutes a novel feature of the statis-
tics of the work fluctuations not included in the clas-
sification scheme put forward in Ref.14. For the sake
of concreteness we illustrate our ideas using the Dicke
model17, a paradigmatic Hamiltonian of light-matter in-
teraction. In the past decade, extensive investigations ad-
dressed its implementation18 and connection to the low-
energy physics of Bose-Einstein condensates in optical
cavities19, its hallmark superradiant phase transition20,21

(experimentally probed in22–24), the associated critical
phenomena25–27 and non-equilibrium properties28,29, its
connection to the physics of spin glasses30–32 and neural
networks33,34 and its application in the context of the
self-organization of the atomic motion35–38.

Exploiting the inherent integrability of this model in
the thermodynamic limit20,21 to construct an explicit,
though approximate, representation for the distribution
of the work, we highlight a parameter regime going be-
yond the classification proposed in14 and the correspond-
ing structure of the rate function. Conceptually, we pro-
ceed by: (i) establishing a convenient formalism to de-
scribe the quench protocol we address; (ii) extracting the
large-deviation form of the Loschmidt amplitude in the
thermodynamic limit; (iii) highlighting the emergence of
a point of non-analyticity in the corresponding rate func-
tion describing the fluctuations of the work.
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II. THE MODEL

We start by setting the notation and recalling the Dicke
Hamiltonian in natural units (h̵ = 1)

HD(Ω) = ωa†a +∆Jz + Ω√
N

(a + a†)Jx , (1)

where a, a† are bosonic annihilation and creation opera-
tors for a single photonic mode of frequency ω. The Jα’s
(α = x, y, z) are collective variables describing an ensem-
ble of N spin- 1

2
atoms which effectively behaves like a

single larger spin. These operators satisfy the standard
SU(2) commutation relations [Jα, Jβ] = iεαβγJγ and we

work in the largest representation, where J2 = JαJα =
N(N +2)/4. The parameter ∆ is the energy cost to “flip
an atomic spin”. The light-matter coupling constant Ω
is divided by

√
N to ensure that the energy is extensive

in the number of atoms.

The Dicke model undergoes a continuous quantum
phase transition at Ω = Ωc =

√
ω∆. Below Ωc the sys-

tem is in the normal phase (NP) and the average density
of photons ⟨a†a⟩ /N in the ground state (GS) vanishes
in the thermodynamic limit N → ∞. For Ω > Ωc, the
system is in the superradiant phase (SP) and develops
a macroscopic cavity field, i.e. the average density of
photons converges to a finite value. Correspondingly, the
average expectations ⟨a + a†⟩ /

√
N and ⟨Jx⟩ /N also ac-

quire a finite value, resulting in spontaneous breaking

of the Z2 symmetry U = eiπ(a
†a+Jz

). This phase transi-
tion has first been studied by Hepp and Lieb20,39,40, who
computed the full partition function of the model in the
thermodynamic limit N →∞.

III. NP AND SP: THE COORDINATE PICTURE

We work here in the formalism developed in Ref.21,
which effectively maps the Dicke Hamiltonian onto a two-
boson model. This is achieved via the Holstein-Primakoff
transformation Jz = b†b − N/2, J+ = b†

√
N − b†b,

J− = (
√
N − b†b) b, where b, b† satisfy ordinary bosonic

commutation relations. By dropping terms proportional
to 1/N , in the NP one obtains a quadratic bosonic
Hamiltonian21 (see also Appendix B)

HNP(Ω) = ωa†a +∆b†b +Ω(a + a†)(b + b†) − N∆

2
. (2)

In the SP both the a and b operators acquire an expec-
tation value ∝

√
N ; hence, the expansion of the square

roots in the Holstein Primakoff representation must ac-
count for this: one defines new operators c = a +

√
α,

d = b −
√
β where ⟨c⟩ and ⟨d⟩ are of order O(1). This

(x,p)

(q(SP),p(SP))(q(NP),p(NP))

R(✓N
P
)

R(✓
SP ) �D(d) � U(t)

R(✓SP) � D(d) � U(t) � R�1(✓NP)

FIG. 1. Diagram of the coordinate transformations that di-
agonalize the thermodynamic limit of the Dicke Hamiltonian
both in the NP and SP. The original pair of canonical coor-
dinates (x,p) in Eqs. (4, 5) are transformed via a rotation
R(θNP) to diagonalize the Hamiltonian in the NP. For the
SP the transformation is more involved, requiring to com-
pose a translation represented by U(t), a dilation D(d) and
another rotation R(θSP). The overall transformation that
links NP and SP coordinates is easily obtained by compos-
ing successive transformations (see also Appendices B and
C). The explicit parameters that enter in the transformations

are t = (
√

2Ω
ω

√
N(1−µ2)

ω
,−
√

N(1−µ)

∆
), tan(2θSP) =

2ω∆µ2

µ2ω2−∆2 ,

tan(2θNP) =
4Ω
√

ω∆
ω2−∆2 and d = (1,

√
2µ
1+µ
).

yields

HSP = ωc†c + ∆(1 + µ)
2µ

d†d + ∆(1 − µ)(3 + µ)
8µ(1 + µ)

(d† + d)2

(3)

+Ωµ

√
2

1 + µ
(c† + c)(d† + d) − N

2
(2Ω2

ω
+ ∆2ω

8Ω2
) ,

where µ = (ω∆)/(4Ω2) = (Ωc/Ω)2, α = (Ω/ω)
√
N(1 − µ2)

and β =
√
N(1 − µ)/2.

In the thermodynamic limit, HNP and HSP capture,
separately in each phase, the thermodynamic properties
of the Dicke model. More specifically, one can interpret
them as an effective description of the dominating Gaus-
sian fluctuations of the order parameter far from the crit-
ical region. As such, this description is rather generic
for many-body statistical systems undergoing a discrete
symmetry breaking. As shown below, the specific choice
of the Dicke model as an example allows us to more eas-
ily establish the connection between the relevant fluctu-
ations in the two phases.

Hereafter, we neglect the 1/N corrections in HNP/SP,
which is equivalent to taking the thermodynamic limit
N →∞ before calculating the time evolution of the sys-
tem. With this approximation, the quench is mapped
onto the non-equilibrium dynamics of a two-dimensional
harmonic oscillator (2DHO). We remark that this map-
ping is not exact, as the discarded corrections could af-
fect the large-deviation properties in the Dicke model,
but the 2DHO is sufficient to highlight non-analyticities
in the work rate function.
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Since HNP and HSP are quadratic, they can be
diagonalized via appropriate generalized Bogolyubov
transformations42. However, for our purposes it is more
convenient to work in the aforementioned 2DHO repre-
sentation and consider the associated coordinate repre-
sentation x = (x, y), p = (px, py):

x = 1√
2ω

(a + a†) , px = i
√
ω

2
(a† − a), (4)

y = 1√
2∆

(b + b†) , py = i
√

∆

2
(b† − b) , (5)

where [x, px] = [y, py] = i and all other commutators
vanish. In each phase, the Bogolyubov transformation
which diagonalizes HNP/SP becomes a geometric trans-
formation of the coordinates, namely a combination of
rotations R, dilations D and translations U as shown in
Fig. 1. In their diagonal bases, the Hamiltonians are

written in terms of new coordinates q(ν) = (q(ν)x , q
(ν)
y ),

p(ν) = (p(ν)x , p
(ν)
y ) (ν = NP/SP) and have fundamental

frequencies

ω
(ν)
± =

¿
ÁÁÁÁÀ

1

2

⎛
⎜
⎝
ω2 + ∆2

j2
ν

±

¿
ÁÁÀ(ω2 − ∆2

j2
ν

)
2

+ 16jνΩ2ω∆
⎞
⎟
⎠
(6)

with jNP = 1 and jSP = µ.

IV. LOSCHMIDT AMPLITUDE

A fundamental quantity which characterizes the work
statistics is the Loschmidt amplitude13

L(t) = ⟨GS(Ω0)∣ e−itHNP(Ω) ∣GS(Ω0)⟩ , (7)

with ∣GS(Ω0)⟩ denoting one of the two superradiant
ground states at maximal transverse magnetization,
i.e. chosen as the ground state of HSP(Ω0)+εJx for ε→ 0+

(the other one would be obtained by minimizing the en-
ergy for ε → 0−, corresponding to Jx → −Jx). Without
loss of generality, we rescale the energies so that the NP
ground state has zero energy.

Inserting four completeness relations in (7), the
Loschmidt amplitude becomes

L(t) = ∫ d2q
(SP)

1 d2q
(SP)

2 d2q
(NP)

1 d2q
(NP)

2 ⟨GS(Ω0)∣q(SP)

1 ⟩×

× ⟨q(SP)

1 ∣q(NP)

1 ⟩ ⟨q(NP)

1 ∣ e−itHNP ∣q(NP)

2 ⟩×

× ⟨q(NP)

2 ∣q(SP)

2 ⟩ ⟨q(SP)

2 ∣GS(Ω0)⟩ , (8)

In the expression above, we note that: (i) ⟨GS(Ω0)∣q(SP)

1 ⟩
and ⟨q(SP)

2 ∣GS(Ω0)⟩ are the ground state wavefunc-
tions of the SP two-dimensional harmonic oscillator and
are therefore (as functions of q

(SP)

1/2
) Gaussians with

zero mean and variances (1/
√
ω
(SP)
+ ,1/

√
ω
(SP)
− ); (ii)

⟨q(NP)

1 ∣ e−itHNP ∣q(NP)

2 ⟩ is the propagator of the NP two-
dimensional oscillator, and thus has a complex Gaus-
sian structure which becomes purely Gaussian after a
Wick rotation to imaginary time t → −is; (iii) the over-

laps ⟨q(NP)

j ∣q(SP)

j ⟩ correspond to a change of variable

(see Appendices B and C) in the integration accord-

ing to the canonical transformation mapping q(NP) ↔
q(SP) (see Fig. 1), which can be expressed as q(SP) =
Sq(NP) +

√
NT, where we introduced the shorthand

S = R(θSP)D(d)R−1(θNP) and
√
NT = R(θSP)D(d)t in

relation to the sketch in Fig. 1. The problem of calculat-
ing L(t) is now reduced to a Gaussian integration, which
can be solved exactly to yield a large deviation form

L(t) = A(t)eNl(t) , (9)

where both the function l(t) and the prefactor A(t)
are intensive functions, i.e. do not depend on N . To
write them in a compact form, we introduce three

diagonal matrices QSP = diag (ω(SP)
+ , ω

(SP)
− ), P±(t) =

±idiag(ω(NP)
+ (tan(ω

(NP)
+

t

2
))

±1

, ω
(NP)
− (tan(ω

(NP)
−

t

2
))

±1

)

and

K±(t) = S⊺QSPS + P±(t). (10)

In terms of these matrices, the rate function reads

l(t) = −T⊺ (QSP −QSPSK−1
+ (t)S⊺QSP)T , (11)

while the prefactor is

A(t) =

¿
ÁÁÁÀ

−4 detD2 ω
(NP)
+ ω

(NP)
− ω

(SP)
+ ω

(SP)
−

sin (ω(NP)
+ t) sin (ω(NP)

− t)detK+(t)detK−(t)
.

(12)

V. STATISTICS OF WORK

The Loschmidt amplitude calculated above gives ac-
cess to the statistics of the work done by the quench
Ω0 → Ω, as shown in14. The average work per atom
w = WN /N is a stochastic variable with a distribution
P (w) whose generating function is the analytical con-
tinuation of L(t) to imaginary time t → −is. In the
large-N limit, L(−is) can be written as in Eq. (9) by
substitution. The probability P (w) must therefore ful-
fill a large deviation principle as well, namely P (w) ∝
exp(−Np(w)) and furthermore the rate function p(w)
and the SCGF l(−is) are related by a Legendre trans-
form p(w) = − infs∈R(ws + l(−is)) (Gartner-Ellis theo-
rem). These are standard results in large deviation the-
ory and we refer the reader to43 for a comprehensive re-
view. In the following we investigate the behavior of the
rate function p(w) starting from the SCGF l(−is) in Eq.
(11).
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FIG. 2. Phase transitions in the work distribution p(w) obtained as the Legendre transform of the SCGF l(−is) Eq. (11) (at
fixed ω = 1). (a) The SCGF l(−is) diverges as s → s∗+. Correspondingly, p(w), which is obtained by a Legendre transform
(LT) from l(−is), approaches asymptotically the linear regime with slope −s∗+ for w ≫ w (with w the typical value of the work,
i.e. the one for which p(w) = 0). This scenario is the one expected for the models that belong to the class B introduced in
Ref.14. (b) The singular behavior of l(−is) is controlled by s∗− which is approached at finite value with finite derivative l′(s∗−).
The LT thus displays a non-analytical point in wc = −l

′
(−is∗−) and p(w) = −s∗−w for w > wc. This non-analytical point of the

rate function corresponds to a phase transition in the rare fluctuations of the work. Plots in (a) and (b) are obtained with
the same ∆ = 0.8 and Ω = 0.3 by tuning the superradiant coupling from Ω0 = 0.47 to Ω0 = 0.9. (c) Analytical (diamond) and
non-analytical (star) domains of p(w) in the plane µNP-µSP with µNP = Ω2

c/Ω
2 and µSP = Ω2

c/Ω
2
0 at ∆ = 0.8. At fixed Ω, the

non-analytical point appears only if the quench starts deep enough in the SP. The solid line denotes the boundary between the
two areas and is where the non-analyticity in p(w) appears.

The 2DHO model has no upper bound to its energy
spectrum and thus should belong to class B, according
to Ref.14. However, in some parameter regimes its SCGF
l(−is) reaches the leftmost point of its domain with fi-
nite (instead of diverging) derivative, see Fig. 2(b). This
property of l(−is) translates in a non-analytical behavior
of p(w), which was not previoulsy reported.

The appearance of such a regime is directly related to
the domain of L(−is) = ⟨GS(Ω0)∣ e−sHNP(Ω) ∣GS(Ω0)⟩. In
performing the analytic continuation of (9), we thereby
have to stop at the first singularity encountered. First,
we note that for s ≥ 0 L(−is) is always well-defined.
Second, a singularity of L(−is) can be either associ-
ated to a singularity of SCGF l(−is) or of the ampli-
tude A(−is) (or both). Third, for l(−is) this can only
occur when detK+(−is) = 0, whereas for A(−is) singular-
ities can additionally emerge when detK−(−is) = 0. We
denote by s∗± the rightmost singular point of K±(−is).
We remark that sin (ω(NP)

+ t) sin (ω(NP)
− t)detK−(t)

t→0→

ω
(NP)
− ω

(NP)
+ /4, curing the singularity in s = 0 and im-

plying s∗− < 0. The left domain edge of L(−is) is there-
fore max(s∗+, s∗−). Two regimes can thus be identified:
if s∗+ > s∗−, the SCGF l(−is) diverges at its leftmost
point (corresponding to class B of Ref.14). Correspond-
ingly, p(w) approaches asymptotically a linear regime
with slope −s∗+ for w → +∞, as sketched in Fig. 2(a).

If instead s∗+ < s∗−, then l(−is) remains finite and differ-
entiable in s∗−, signalling a different qualitative behavior.
This in fact yields a point of non-analyticity in p(w) lo-
cated at wc = −l′(−is∗−) < +∞, sketched in Fig. 2(b). For
all w > wc, p(w) = −s∗−w − l(−is∗−) exactly, correspond-
ing to a jump in the second derivative of p(w), which
vanishes for w > wc, see Fig. 2(b). The emergence of
either scenario depends on the pre- and post-quench pa-
rameters Ω0, Ω, ω and ∆. In Fig. 2(c) we provide an
example showing the emergence of these two regions for
∆ = 0.8, ω = 1 and various values of Ω0 and Ω. These are
produced by numerically solving detK+(−is) = 0.

Finally, we remark that quenches within the NP have
already been studied in29. In that case, logL(t) is not
proportional to N (extensive) and therefore a large de-
viation behavior does not emerge. The NP to SP and
the SP to SP protocols will be investigated the object of
future investigations.

VI. DISCUSSION AND CONCLUSIONS

We identified singularities in the distribution function
of work for a system undergoing a quantum quench, ex-
tending the original classification presented in Ref.14.
In particular, the rate function describing the statis-
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tics of the work exhibits in this regime a non-analytical
point, signaling an out-of-equilibrium phase transition
in the rare fluctuations of the work. It is important to
stress that the physical intepretation of a non-analytical
point in this context is not straightforward and deserves
by itself a more detailed and quantitative investigation.
Our current intuition is based on similar works in the
context of classical stochastic44–46 (or more generally,
dissipative47–56) systems. There, non-equilibrium phase
transitions in the rare fluctuations of some observable
(typically a current) are associated to a sharp change
in the nature of the “typical” configurations the sys-
tem displays when the observable (current) is biased to-
wards values far from its average. Similarly, we think
that the qualitative nature of quantum states populated
when large fluctuations of the work are encountered may
change sharply on the two sides of the transition, but
further studies are required to establish whether this is
the case.

It would be also interesting to understand what rela-
tion there is between the non-analiticities found here and
the dynamical phase transitions investigated in57.
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A. Dicke model and Holstein-Primakoff
transformation

The exact form in the thermodynamic limit of the
ground state of the Dicke model can be worked out
both in the normal (NP) and in the superradiant phase
(SP) through a suitable Holstein-Primakoff transforma-
tion. Let us consider the Dicke Hamiltonian:

HD = ωa†a +∆Jz + Ω√
N

(a + a†)Jx , (13)

where the Jα’s (α = x, y, z) form an irreducible represen-
tation of the angular momentum of dimension N/2. In
the large-N limit we can employ the following Holstein-
Primakoff transformation:

Jz = b†b −N/2 , J+ = b†
√
N − b†b , J− =

√
N − b†b b ,

(14)

where b, b† satisfy ordinary bosonic commutation rela-
tions. This leads to:

HD = ωa†a +∆b†b − N∆

2
+ (15)

+Ω(a + a†)
⎛
⎝
b†
√

1 − b
†b

N
+
√

1 − b
†b

N
b
⎞
⎠
.

In the thermodynamic limit we can naively ignore the
terms proportional to 1/

√
N . In this way we obtain a

solvable quadratic bosonic model. This works in the NP
at small Ω, but this approximation breaks down in the
SP for Ω large enough, signaling that a quantum phase
transition is taking place. In the following we analyze
separately the two different phases obtaining the corre-
sponding effective Hamiltonians. We will focus, in par-
ticular, on the coordinate representation, that will be
useful to evaluate the Loschmidt amplitudes. The re-
sults summarized here in the following two subsections
are extensively covered in21.

B. Normal phase

In the NP we omit the 1/
√
N terms so that Eq. (15)

reduces to

HNP = ωa†a +∆b†b +Ω(a + a†)(b + b†) − N∆

2
. (16)

This Hamiltonian can be diagonalized by a suitable Bo-
goliubov transformation that mixes the four different cre-
ation and annihilation operators. However the picture is
simpler if we switch to the coordinate space, by writing:

x = 1√
2ω

(a + a†) , px = i
√
ω

2
(a† − a), (17)

y = 1√
2∆

(b + b†) , py = i
√

∆

2
(b† − b) . (18)

In this way, it is easy to realize that a rotation in the
(x, y)-plane puts the Hamiltonian in a diagonal form. In
particular we need the following coordinate transforma-
tion:

q(NP) = (q(NP)
x , q(NP)

y )⊺ = R(θNP)x, (19)

R(θ) = ( cos(θ) sin(θ)
− sin(θ) cos(θ) ) (20)

with θNP given by:

tan(2θNP) =
4Ω

√
ω∆

ω2 −∆2
. (21)

The eigenfrequencies of the Hamiltonian in the NP read:

ω
(NP)
± =

√
1

2
(ω2 +∆2 ±

√
(ω2 −∆2)2 + 16Ω2ω∆) . (22)
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It follows from Eq. (22) that the potential is not bounded

from below for Ω >
√
ω∆/2 = Ωc, thus signaling that

this effective Hamiltonian description breaks down at
strong coupling. Before moving to the analysis of the
SP, we notice that the ground state of the NP in the
coordinate basis q(NP) is a 2-dimensional Gaussian cen-
tered around q(NP) = (0,0) with variance (σx, σy) =

(1/
√
ω
(NP)
+ ,1/

√
ω
(NP)
− ).

C. Superradiant phase

The derivation of the effective Hamiltonian in the SP
is more involved. We refer to21 for the details. Here we
only report the fundamental results that we will need in
the following to compute the Loschmidt amplitude cor-
responding to the quench for the NP to the SP. Starting
from Eq. (15) we define two new operators c = a −

√
α,

d = b +
√
β and we choose the displacement parameters

properly in order to eliminate the terms linear in the
bosonic operators. In this way we get an effective Hamil-
tonian for the SP, that reads:

HSP = ωc†c + ∆(1 + µ)
2µ

d†d + ∆(1 − µ)(3 + µ)
8µ(1 + µ)

(d† + d)2

(23)

+Ωµ

√
2

1 + µ
(c† + c)(d† + d) + const.

where µ = (ω∆)/(4Ω2) = (Ωc/Ω)2. Again we focus on
the coordinate space representation. In order to get the
diagonal form of the hamiltonian in the SP, we need to
apply three succesive canonical transformations, firstly a
translation represented by the vector t = (tx, ty) (which is
the transformation that allows to getHSP from Eq. (15)),
then a dilation D(d) on the y coordinate and finally a
rotation by an angle θSP. In formulas:

q(SP) = R(θSP)D(d)(x + t) , (24)

where the explicit parameters of the transformation are:

t =
⎛
⎝

√
2Ω

ω

√
N(1 − µ2)

ω
,

√
N(1 − µ)

∆

⎞
⎠
, (25)

tan(2θSP) =
2ω∆µ2

µ2ω2 −∆2
, (26)

d = (1,

√
2µ

1 + µ
) . (27)

In the new coordinates of Eq. (24) the effective Hamil-
tonian HSP is diagonal with eigenfrequencies given by:

ω
(SP)
± =

¿
ÁÁÁÁÀ

1

2

⎛
⎜
⎝
ω2 + ∆2

µ2
±

¿
ÁÁÀ(ω2 − ∆2

µ2
)

2

+ 4ω2∆2
⎞
⎟
⎠
.

(28)

Again, in the coordinate basis q(SP) the ground state of
the SP is a Gaussian centered around q(SP) = (0,0) and

with variances (σx, σy) = (1/
√
ω
(SP)
+ ,1/

√
ω
(SP)
− ).

Finally, combining Eqs. (20) and (24), we obtain the
explicit relation between NP and SP coordinates that we
extensively use in the main text:

q(SP) = Sq(NP) +
√
NT , (29)

S = R(θSP)D(d)R(θNP)⊺ , (30)
√
NT = R(θSP)D(d)t . (31)

D. Harmonic oscillator propagators and Gaussian
integrals

We consider first a standard quantum harmonic oscil-
lator Hamiltonian

HHO = p2

2m
+ m

2
ω2q2. (32)

Its propagator, defined on the position basis as

F (q1, q2, t) = ⟨q1∣ e−itHHO ∣q2⟩ , (33)

connects any state ∣ψ(t0)⟩ at time t0 with its time-evolved
counterpart at time t0 + t via the relation

ψ(q1, t0+t) ≡ ⟨q1∣ψ(t0 + t)⟩ = ∫
+∞

−∞
dq2 F (q1, q2, t)ψ(q2, t0),

(34)
with ψ(q, t) = ⟨q∣ψ(t)⟩ denoting the corresponding wave-
function. The functional form of the propagator is known
and reads

F (q1, q2, t) = ( mω

2πih̵ sin(ωt)
)

1
2

e
imω

2h̵ sin(ωt)
[(q21+q

2
2) cos(ωt)−2q1q2].

(35)
This formula can be straightforwardly generalized to any
set of n uncoupled harmonic oscillators by simply taking
the product:

F (n)(q1,q2, t) =∏
i

Fi(q1,i, q2,i, t). (36)

In our case, it is sufficient to stop at two, whose coordi-
nates we label q = (qx, qy)⊺, whose masses are set to 1
and whose frequencies are denoted by (ω+, ω−). Working
in natural units (h̵ = 1) yields

F (2)(q1,q2, t) =
1

2πi
( ω+ω−

sin(ω+t) sin(ω−t)
)

1
2

× e
iω+

2 sin(ω+t)
[(q21,x+q

2
2,x) cos(ω+t)−2q1,xq2,x] ×

× e
iω−

2 sin(ω−t)
[(q21,y+q

2
2,y) cos(ω−t)−2q1,yq2,y],

(37)

which holds for both the NP and SP cases once the pa-
rameters are appropriately substituted. Note that the
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form of F is always that of a (complex) Gaussian func-
tion, which can also be more compactly expressed as

F (2)(q1,q2, t) =
1

2πi
( ω+ω−

sin(ω+t) sin(ω−t)
)

1
2

e−
1
2 q⃗

⊺M q⃗

(38)
with the shorthand q⃗⊺ = (q⊺1,q⊺2) = (q1,x, q1,y, q2,x, q2,y)
and

M = 1⊗ Pd + σx ⊗ Pmix, (39)

where we defined

Pd = ( −iω+ cot(ω+t) 0
0 −iω− cot(ω−t)

) (40)

and

Pmix = ( iω+ csc(ω+t) 0
0 iω− csc(ω−t)

) . (41)

These expressions can be simplified by performing a rota-
tion on the “1-2” components mapping σx → σz in (39),

which transforms M into a block diagonal matrix

( P+ 0
0 P−

) (42)

with P± = Pd ± Pmix defined as in the main text.
The ground state ∣GS⟩ of a harmonic oscillator also

displays a Gaussian wavefunction and in our case it can
be expressed as

⟨q∣GS⟩ = (ω+ω−
π2

)
1
4

e−
ω+
2 q

2
x−

ω−
2 q

2
y = (ω+ω−

π2
)

1
4

e−
1
2q

⊺Qq

(43)
with

Q = ( ω+ 0
0 ω−

) . (44)

The expression of the Loschmidt amplitude is therefore
a Gaussian integral which can be reduced to the form

G(A,b) = ∫ ddq e−
1
2q

⊺Aq−b⊺⋅q (45)

with A a d×d an invertible, diagonalizable matrix whose
eigenvalues have positive real part and b a d-dimensional
vector. This integral yields

G(A,b) = 1

(2π) d
2

√
detA

e
1
2b

⊺A−1b. (46)
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