Mesh-supported metal-organic framework thin films: fabrication and applications

Yap, Min Hui (2019) Mesh-supported metal-organic framework thin films: fabrication and applications. PhD thesis, University of Nottingham.

[img] PDF (Thesis - as examined) - Repository staff only - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
Download (6MB)

Abstract

Among one of the fastest growing field of materials research, metal-organic frameworks (MOFs) have been demonstrating potentially high commercial value with proposed applications in the field of energy (such as solar energy conversion and electrical energy storage) [1], environmental sustainability (including gas storage and harmful gas removal)[2], and innovative healthcare

(drug delivery)[3]. This research study aim to contribute to the understanding of synthesis and applications of mesh-supported MOF thin films. To begin with, three types of MOF powder, namely: Cu3(BTC)2, Ni3(BTC)2, and Co3(BTC)2 were successfully synthesized using an optimized solvothermal growth method.Further research progress were made by depositing various thickness of Cu3(BTC)2 and Ni3(BTC)2 MOF thin films on copper and nickel substrates.After process optimizations, the most homogeneous coating with the highest

82 % product yield was achieved by depositing Cu3(BTC)2 thin film on copper mesh (sample denoted as Cu3(BTC)2@Cu). Subsequently, Cu3(BTC)2@Cu was used as precursor to prepare porous Cu/C@Cu through a direct pyrolytic decomposition process. The effects of different heating parameters on the

morphology, textural properties, and electrochemical properties of the as synthesized Cu/C@Cu were studied. Besides that, Cu3(BTC)2@Cu was also used as binder-free electrodes for the preparation of prototype supercapacitors

(pseudocapacitors) and hybrid lithium ion batteries. In order to evaluate the performance of Cu3(BTC)2@Cu as negatrode in supercapacitors, varies carbon material such as graphene nanoplatelet, carbon blanket, and highly electrically conductive carbon (HEC) electrodes were used as pairing material. The best performing supercapacitor device was achieved with the combination of Cu3(BTC)2@Cu negatrode and HEC positrode, with a reported energy density

of 1080 µWh/cm2 and a power density of 17.9 mW/cm2. Overall, Cu3(BTC)2@Cu is a flexible material which could be applied into many applications after proper tuning of its properties. This facile preparation method is transferable and could be applied into fabricating other supported-MOF thin films and MOF-derived porous nanostructures.

Item Type: Thesis (University of Nottingham only) (PhD)
Supervisors: Fow, Kam Loon
Wu, Tao
Lester, Edward
Keywords: Metal-organic framework,
Subjects: Q Science > QD Chemistry
Faculties/Schools: UNNC Ningbo, China Campus > Faculty of Science and Engineering > Department of Chemical and Environmental Engineering
Item ID: 55624
Depositing User: YAP, Min Hui
Date Deposited: 04 Apr 2019 02:34
Last Modified: 07 May 2020 14:02
URI: https://eprints.nottingham.ac.uk/id/eprint/55624

Actions (Archive Staff Only)

Edit View Edit View