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Abstract—Synchronverters have gained interest due to their
capability of emulating synchronous machines (SMs), offering
self-synchronization to the grid. Despite the simplicity of the
control structure, the adoption of an LCL-filter makes the overall
model complex again, posing questions regarding the tuning of
the synchronverter and its robustness. The multi-inputs multi-
outputs (MIMO) formulation of the problem requires multivari-
able analysis. In this paper, the effects of control parameter and
grid conditions on the stability of the system are investigated by
means of structured singular values (SSV or µ-analysis). A step-
by-step design procedure for the control is introduced based on
a linearized small-signal model of the system. Then the design
repercussions on the stability performance are evaluated through
the performed robustness analysis. The developed linearized
model is validated against time-domain simulations and labo-
ratory experiments. These have been carried out using a power
hardware-in-the-loop (PHIL) test bench, which allows to test the
synchronverter under different grid conditions. As a conclusion
the paper offers a simple guide to tune synchronverters but also
a theoretical solid framework to assess the robustness of the
adopted design.

Index Terms—Synchronverter robust stability analysis, µ-
analysis, synchronverter design, power hardware-in-the-loop
tests.

I. INTRODUCTION

THE amount of power electronics-based converters con-
nected to the grid is growing noticeably causing con-

cerns about the stability of the future power system. One
of the main issues is related to the decrease of the total
inertia of the system, but the risk of possible interactions
between controllers of converters operating nearby cannot be
underrated. Recent studies have shown that synchronization
units of grid connected converters, usually phase-locked loops
(PLLs), affect significantly the stability of the converters
within their bandwidths [1]. Furthermore, interactions between
synchronization units of power converters operating nearby
have been observed and especially the fact that such effects
are accentuated by weaker grid conditions [2]. During the last
decade the concept of virtual synchronous machine (VSM)
has been introduced [3]-[7]. Among the proposed control
strategies, the synchronverter presented by Zhong et al. [5],
[6] has been noted for its easy and intuitive structure and for
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being the first proposed control algorithm in the literature for
grid connected converters overcoming completely the need of a
dedicated synchronization unit, both for initial synchronization
to the main grid as well as during normal operation.

Synchronverter design has been recently addressed in sev-
eral works [8]-[12]. Some of them rely on strong assumptions,
such as grid short circuit ratio (SCR) higher then 10 in order
to decouple active and reactive power loops [8]. Recent works
presented tuning procedures based on reduced-order models of
the system [10], [11]. Pole placement at prescribed locations in
order to achieve desired dynamic has been proposed as optimal
tuning procedure [11], [12] and eigenvalue analysis is the
commonly adopted approach for investigation of stability of
grid-connected converters and design purposes [13]. However,
none of the works presented in the literature addresses robust
stability analysis of the synchronverter. To this extent and
according to the multi-inputs multi-outputs (MIMO) nature
of the system, multivariable analysis is required [14], [15]. In
fact, it is well known that eigenvalues are a poor measure of
gain for MIMO systems, since they provide information about
a specific system configuration and are not suitable for robust
stability analysis and design of multivariable systems, where
interactions between inputs and outputs of different channels
take place [14].

It is common practice in the power electronics community
to represent the grid as a Thévenin equivalent with a restive-
inductive impedance, whose parameters are calculated accord-
ing to the short circuit power at the point of common coupling
(PCC) and the estimated X /R ratio [16]. Unfortunately, this
representation might be often inaccurate since grid conditions
change substantially during the day, due to the presence of
other converters operating nearby or due to the variation of
the number and characteristics of connected loads. An efficient
way for modelling such effects would be to include uncer-
tainties on the nominal plant. In this scenario, the structured
singular values (SSVs) analysis (commonly µ-analysis) has
been proven to be an efficient and reliable way for assessing
robust stability of MIMO systems [14], [15], [17].

In this paper, the µ-analysis is performed to assess the
robust stability of an LCL grid connected synchronverter. The
model developed in [10], based on linearized equations of the
system, is adopted for the investigation. A design procedure of
the synchronverter, using reduced-order models of active and
reactive power loops is presented, which relys on nominal filter
parameters and grid conditions. Subsequently, the µ-analysis
is performed according to a defined uncertainty function, in
order to assess the effects of variations of control parameters
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Fig. 1. Simplified scheme of the system under study.

and grid conditions on the stability of the system. Through
the performed investigation effects that are not clearly visible
by means of an eigenvalue analysis are highlighted, especially
the fact that synchronverters turn to be very robust against grid
uncertainties under weaker grid conditions, which is exactly
the opposite trend shown by grid connected converters using
dedicated synchronization units [2].

The rest of the paper is structured as follows: in section
II, the small-signal model of a synchronverter connected
to the grid through an LCL filter along with the adopted
control design procedure are introduced. Section III presents
the concept of robust stability analysis by means of SSVs
and its application to the system under study. In section
IV, experimental results using a power hardware-in-the-loop
(PHIL) test bench are shown, while section V is dedicated to
the conclusions.

II. SMALL-SIGNAL MODEL AND DESIGN

In the following, the small-signal model of a synchronverter
connected to the grid through an output LCL filter presented
in [10] is briefly introduced.

The model has been developed by splitting the overall
system into two separated subsystems, namely the control and
the plant composed of the filter and the grid. The simplified
scheme of the system under study is depicted in Fig. 1, while
in Fig. 2, inputs and outputs of the two linearized subsystems
are shown. The design procedure presented in [10] is described
in this section and is adopted in this work for tuning the
parameters of the control.

A. Small-signal model
The synchronverter control structure shown in Fig. 1 con-

tains separated loops for active power P and a reactive power
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Fig. 2. Inputs and outputs of the two linearized subsystems.

Q. The former emulates the frequency droop mechanism
typical of a SM described by the well-known swing equation:

Jω̇ = Tm−Te−Dpω , (1)

with J representing the mechanical (virtual) inertia, ω the
virtual rotor speed, Dp the feedback gain accounting for the
(virtual) mechanical friction of the machine, Te is the electrical
torque and Tm is the mechanical one. Dp does not only
represent the virtual friction of the machine, but also the
active power-frequency droop coefficient of the controller. Tm
can be directly calculated from the active power setpoint Pset
simply by dividing by the nominal frequency ωn. The virtual
rotor angle θ is obtained integrating ω and is needed for the
calculation of the virtual back-emf e∗. The reactive power-
voltage droop control reacts to a voltage deviation ∆V from
its nominal/reference value with a change of the reactive power
setpoint ∆Q, according to the droop coefficient Dq:

∆Q =−Dq∆V . (2)

The instantaneous reactive power measured at the output of
the converter is then compared to its setpoint and added to the
signal coming from the voltage droop. The resulting quantity
is processed through an integrator with gain 1/K producing
the virtual mutual flux M f i f , which multiplied by the virtual
rotor speed ω produces the amplitude of the virtual back-emf
Ep. Linearization of this product yields:

∆Ep = M f i f 0 ∆ω+∆M f i f ω0, (3)

where quantities with subscript ”0” denote values at the
operating point. The chosen state variables of the control
system are the virtual rotor rotational speed ω, the rotor angle
θ and the mutual flux M f i f .

The state-space representation of the plant composed of the
filter and the grid is obtained by choosing iL1, iL2 and vc of
Fig. 1 as state variables, namely filter current at converter side,
filter current at grid side and capacitor voltage, respectively,
and writing the equations in dq coordinates. Linearization is
required for the calculation of active and reactive power as
well as for the voltage amplitude at the PCC:
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∆P = 3
2 (IL2d0∆vPCCd +VPCCd0∆iL2d+

+VPCCq0∆iL2q + IL2q0∆vPCCq)

∆Q = 3
2 (VPCCq0∆iL2d + IL2d0∆vPCCq+

−VPCCd0∆iL2q + IL2q0∆vPCCd)

∆VPCC =
VPCCd0∆vPCCd+VPCCq0∆vPCCq√

V 2
PCCd0+V 2

PCCq0

, (4)

where ∆vPCCd and ∆vPCCq can be calculated as:
∆vPCCd = ∆vcd +Rc(∆iL1d−∆iL2d)+

−R f 2∆iL2d−L f 2
diL2d

dt +ω0L f 2∆iL2q

∆vPCCq = ∆vcq +Rc(∆iL1q−∆iL2q)+

−R f 2∆iL2q−L f 2
diL2q

dt −ω0L f 2∆iL2d

, (5)

where R f 2 and L f 2 represent the resistance and inductance
of the grid-side elements of the filter, respectively, whereas Rc
is the capacitor damping resistance.

B. Control Design

The design procedure adopted in this work aims to the
optimization of the step response characteristics of the system
in terms of rise time, overshoot and settling time. Its intent
is to provide a simple and intuitive approach for the design
of the synchronverter when the characteristics of the filter and
the grid are known, avoiding the designer to rely on a trial
and error procedure. It considers active and reactive power
loops separately and approximates the corresponding closed-
loop transfer functions to simplified second-order equations.
Control parameters are calculated setting a desired damping
factor. In fact, it is known from control theory that the optimal
dynamic response of a second-order system is obtained setting
the damping ratio to 1/

√
2 [19]. Therefore, control parame-

ters are simply calculated expressing the equivalent damping
ratios of the reduced-order closed loop transfer functions in
terms of plant and control parameters and chosen so as to
obtain the desired damping ratio. Recently, another work on
synchronverter design based on a reduced-order model has
been presented in [11]. It is important to point out that the
introduced simplifications may result in design errors, with
repercussions on the performance of the system. In fact, as it
will be shown in the following subsection, it is always rec-
comended to check the dynamic performances of the system
using a full-order model to be sure that they comply with the
required specifications. Regarding stability assessment, since
the two loops are considered separately and due to the MIMO
nature of the system under study, even using the full-order
transfer functions of the plant in the active and reactive power
loops design might lead to erroneous results [14], [15], due to
the fact that the cross-coupling effects between the two loops
are neglected. For this reason, multivariable systems theory
should be applied in order to properly design the control.
In the next section, the µ-analysis is performed in order to
assess the stability margin of the MIMO system under study
against a defined set of plant uncertainties, once the control
has been tuned according to the adopted design procedure.
Subsequently, the effects of control parameters variations on
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Fig. 3. (a) Simplified frequency droop loop, (b) simplified active power loop.

the stability of the system are estimated, such that the designer
can find the most suitable compromise between dynamic
performances and stability margin. In [10], three different
cases with different grid and filter characteristics have been
examined, in order to test the effectiveness of the proposed
design procedure under different system conditions. In this
paper, one of the cases examined in [10], whose parameters
are reported in Table I, is taken as reference and used in
the following to describe the adopted design procedure. In
this work, the filter design is not explicitly addressed and
filter parameters are obtained according to the filter design
procedure presented in [18].

The parameters to be tuned are the P− f droop coefficients
Dp and the virtual inertia J for the active power loop along
with the Q−V droop coefficient Dq and the factor K of
the reactive power loop. Often droop coefficients are already
fixed due to specifications on the steady-state response and
therefore only J and K can be adjusted to improve the dynamic
behaviour. However, the adopted design procedure is valid
even in case that the four parameters are freely adjustable.

In Fig. 3(a), the simplified scheme of the synchronverter
frequency droop loop is shown, described by the following
first-order transfer function:

∆ω

∆T
(s) =

1
Dp

1+ s J
Dp

=
K f

1+ s τ f
. (6)

In Fig. 3(b), the simplified scheme of the active power
closed-loop is reported. The plant composed of the filter and
the grid (indicated as G in Fig. 2) is described dynamically
by the transfer function ∆P

∆θ
. Each of the input-output transfer

functions of G can be approximated by an equivalent first-
order transfer function by looking at the characteristics of the
poles of the system, shown in Table II for simplicity. Two
time constants identify the dynamic of the system, indicated
as τp1 and τp2 in Table II. The transfer function ∆P

∆θ
of G can

be approximated to the following first-order transfer function:

PT 1P(s) =
Gp

1+ s τre f p
, (7)

where GP is the steady-state value of ∆P
∆θ

and τre f p the time
constant of its dominant pole, namely τp1 for this case, as
can be determined by observing its step response. Choosing J
sufficiently small (e.g. τ f ≈ τre f p/10), the frequency droop
loop can be neglected and the active power loop can be
approximated by the second-order transfer function reported
below:
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Table I
PARAMETERS OF THE EXAMINED CASE

Description Symbol Value
Inverter rated power Sn (kVA) 300

Short circuit ratio SCR 20
Reactive-resistive ratio X/R 10

Line-to-line voltage VLL (Vrms) 400
Rated grid frequency fg (Hz) 50

Grid inductance Lg (pu) 0.05
Inverter-side filter inductor L f 1 (pu) 0.08

Grid-side filter inductor L f 2 (pu) 0.02
Grid resistance Rg (pu) 0.005

Inverter-side filter resistor R f 1 (pu) 0.02
Grid-side filter resistor R f 2 (pu) 0.02

Capacitor damping resistor Rc (pu) 0.18
Filter capacitor C (pu) 0.05

Table II
CHARACTERISTICS OF THE POLES OF G

Pole Damping
Frequency
(rad/sec)

Time constant
(sec)

(p1-p2) -94.8 ± j 314 0.289 328 1.05e-2 (τp1)
(p3-p4) -842 ± j 6930 0.120 6980 1.19e-3 (τp2)
(p5-p6) -842 ± j 7560 0.111 7610 1.19e-3 (τp2)

Papp(s) =
1

T 2
p s2 +2ζpTps+1

, (8)

where Tp and ζp represent the inverse natural frequency and
the damping ratio, respectively:

Tp =

√
τre f p ωn Dp

Gp
; ζp =

1
2

√
Dp ωn

τre f pGp
. (9)

Assuming DP bounded in order to comply with steady-
state performance requirements, the damping of the simplified
second-order active power loop transfer function cannot be
influenced otherwise [7]. In case that DP is freely adjustable,
it can be tuned so as to achieve ζP = 1/

√
2.

A Similar approach can be adopted for the tuning of the
reactive power loop. Due to the Q−V droop, two different
loops are identified, namely a reactive power and a voltage
control loop, shown in Fig. 4(a) and (b) respectively.
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Fig. 4. (a) Simplified reactive power loop scheme, (b) simplified VPCC loop
scheme.

Also in this case, the behaviours of ∆Q
∆Ep

and ∆VPCC
∆Ep

of
G are approximated by reduced first-order transfer functions
indicated as PT 1Q and PT 1V , respectively:

PT 1Q(s) =
Gq

1+ s τre f q
; PT 1V (s) =

Gv

1+ s τre f v
, (10)

where Gq and Gv are the steady-state values of ∆Q
∆Ep

and

∆VPCC
∆Ep

, respectively and τre f Q and τre fV are the time constants
of the respective dominant poles of each transfer function. The
resulting damping factors of the two approximated transfer
functions are reported below:

ζq =
1
2

√
K

τre f q ωn Gq
; ζv =

1
2

√
K

τre f v ωn Dq Gv
. (11)

If Dq can be arbitrarily modified, K and Dq can be chosen
such that ζq = ζv = 1/

√
2, otherwise the highest value of K

resulting from the two calculations is chosen.
Assuming that Dp and Dq are fixed to 5 % [20], the

calculated control parameters Jopt and Kopt for the case under
study are reported in Table III.

Table III
CONTROL PARAMETERS

Parameter Value
Dp 60.8
Dq 18371
Jopt 6.38e-2
Kopt 37459

C. Simulation Results

Simulation results obtained using the full-order model of
the system and setting the values of the control parameters
accordingly to the adopted design procedure are shown in
Fig. 5. Active and reactive power loops have been tested
separately and sweeps of J and K are performed. Firstly, the
response of the system to a step of Pset of 0.3 pu was observed

varying the value of J within the range
[

Jopt
50 ; 50 Jopt

]
,

whereas K was set to the calculated optimal value Kopt .
Subsequently, the response of the system to a step Qset of
the same amplitude was simulated varying K within the range[

Kopt
5 ; 5 Kopt

]
, whereas J = Jopt .

The directions of the arrows indicate the increment of
the corresponding parameters, the red curve is the response
obtained by setting the parameters calculated using the adopted
design procedure, whereas green curves are for values below
the calculated optimal one and blue curves for values above
it. In Fig. 5 (b), the steady-state value of the reactive power
does not reach the given setpoint of 0.3 pu due to the voltage
droop controller, which adjusts the reactive power according
to the measured voltage at the PCC.

III. ROBUST STABILITY ANALYSIS

Most of the works in the literature regarding synchronverter
design are based either on analysis of linearized system
transfer functions [8], [10], or eigenvalue analysis [11], [12].
Although eigenvalue analysis is an efficient way for assessing
system stability, it is well known that for MIMO systems
eigenvalues are a poor measure of gain [14]. Indeed, eigenval-
ues provide only information about a specific configuration of
the system when inputs and outputs are in the same direction,
namely the direction of the eigenvectors. They do not take into
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account the possible interactions between different channels
that typically occur in a MIMO system. For accurate robust-
ness assessment of MIMO systems, multivariable analysis is
required and different methods have been developed, such
as the structured singular values (SSV) or µ-analysis [14],
[15], [17]. Singular values provide better information about
the gains of the plants and the robustness of the control is
verified against a defined set of system uncertainties. This
method allows to span a set of possible system configuration
instead of verifying stability only for a specific condition.

Parameter inaccuracies or non-linearities are among the
most common sources of uncertainties. Other common sources
of uncertainties are represented by neglected dynamics due to
delays of sensors and/or actuators. These kind of uncertainty
sources have a frequency dependent behaviour and can be
included in the set of uncertain plants by using appropriate
representations. The control loops of each grid connected con-
verter modify the frequency behaviour of the equivalent grid
seen by other converters operating nearby [13]. These effects
can be also included in the stability analysis as uncertainties
on the plant. The common way of modelling uncertainties is
to add perturbations to the nominal plant G in an additive or
multiplicative way [14], [15]. The multiplicative representation
consists on defining the set of perturbed plants as:

Gp = G(1+w∆); with ‖∆‖∞ ≤ 1; (12)

where ∆ is a block diagonal normalized matrix including all
the possible perturbations, ‖∆‖∞ represents its H∞ norm and
w is a multiplicative weight. The multiplicative representation
is often preferred over the additive one, as the numerical
values of its weights are more informative [14]. For example,
at frequencies where |w( jω)| > 1, the uncertainty exceeds
100 %. Multiplicative uncertainties are characterized by a
small amplitude for low frequency, increasing to unity and
above at higher frequencies. This is a consequence of dynamic
properties that inevitably occur in physical systems. Uncer-
tainties might be located at the input or at the output of the
plant. Input multiplicative uncertainty is suitable for modeling
uncertain high frequency dynamics and uncertain right half
plane zeros, while output inverse multiplicative uncertainty for
low frequency parameter errors and uncertain right half plane
poles [15]. In this work, the input multiplicative uncertainty
representation is used in order to investigate the robustness

of the control against high-order frequency effects, such as
resonant grid impedance behaviour or the effects of controllers
of other power electronics converters operating nearby. A mul-
tiplicative uncertainty weight is defined and, according to it,
the robustness of the control is investigated varying controller
parameters and grid conditions. The results are then compared
to eigenvalue analysis, showing that the analysis performed
with structured singular values enables highlighting effects that
cannot be explicitly observed looking at the eigenvalues of the
system.

A. Problem formulation for µ-analysis

In order to perform the µ-analysis, the system should be
represented in the lower fractional transformation (LFT) form
[17]. This process is often referred to as ”pulling out the ∆’s”
[15]. In Fig. 6 the steps required for bringing the system in a
form suitable for µ-analysis are shown. First, the uncertainties
have to be ”pulled out” from the plant and the system has to
be put in the form shown in Fig. 6 (a). Subsequently, the N∆-
structure shown in Fig. 6 (b) is obtained by means of a LFT
between the generalized plant P and the controller C, defined
as [14]:

P 

C 

𝜟 

N 

𝜟 

 

𝜟 

M 

𝑢 𝑣 

𝑤 𝑧 

𝑢𝛥 𝑦𝛥 

𝑤 𝑧 

𝑢𝛥 𝑦𝛥 𝑢𝛥 𝑦𝛥 

(a) (b) (c)

Fig. 6. Problem formulation for µ-analysis: (a) general control formulation,
(b) N∆-structure, (c) M∆-structure.

N = Fl(P,C)
∆
= P11 +P12C(I−P22C)−1P21. (13)

Finally, the M∆-structure is simply derived considering that
M = N11. The structured singular value µ is defined as the
smallest structured ∆ (measured in terms of the largest singular
value σ (∆)), which makes the matrix I−M∆ singular; then
[14]:

µ(M)
∆
=

1
min

∆

{ σ | det(I−M∆) = 0 f or structured ∆}
. (14)

The inverse of µ(M) can be interpreted as a stability margin
with respect to the structured uncertainty set affecting M.
This means that indicating the peak of µ(M) = β across the
frequency range ω, stability is guaranteed for all perturbations
with appropriate structure and with respect to the chosen
uncertainty, such that:

max
ω

σ(∆)≤ 1
β
. (15)

It is therefore clear that the resulting stability margin is very
related to the uncertainties considered for the analysis.
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B. Application to the system under study

A practical application of µ-analysis to the studied system is
presented in the following. All the required calculations can
be carried out by means of the ”Control System Toolbox”
of MATLAB [21]. The generalized plant P shown in Fig. 6
(a) can be obtained using the command sysic. The general
control formulation for the particular case under study is
shown in Fig. 7, where y∆ =

[
z1 z2

]T , u∆ =
[
w1 w2

]T and
the two multiplicative input uncertainties Wδ1 and Wδ2 have
been located at the input channels u1 and u2. Outputs of P
are then the control inputs shown in Fig. 2 and represented
by the vector v =

[
v1 v2 v3 v4 v5]. Using the starp command

from the same toolbox of MATLAB, the star product between
P and C can be calculated, obtaining (13).
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Fig. 7. Construction of the generalized plant of the system under study.
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Fig. 8. Multiplicative input uncertainty used for the µ-analysis.

In Fig. 8, the multiplicative input uncertainty used for the
analysis is reported. It shows an amplitude of 50% at low
frequency, increasing till 500% at very high frequencies. The
chosen weight accounts for low frequency uncertainties due to
parametric uncertainty in the model as well as high frequency
neglected dynamic effects or resonant effects of the grid due to
the presence of other converters operating nearby. Considering
the system with the parameters listed in Table I and Table III,
in the following the effects of control parameters J and K as
well as grid SCR variations on the eigenvalues of the systems
are shown and compared to the results obtained through the
µ-analysis.

C. Variation of J

In Fig. 9 (a) and (b), the migration of the nine eigenvalues
of the full-order system due to a sweep of J in the range[

Jopt
20 ; 20 Jopt

]
is shown. The direction of the arrows indicate

Fig. 9. Effects of variation of control parameter J on the eigenvalues of the
system, (a) migration of λ1, (b) migration of λ2-λ9.
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Fig. 10. Behaviour of µ factor due to variations of J.

the increase of the parameter J. Red points indicate the loca-
tions of the eigenvalues for reference conditions represented
by J = Jopt , K = Kopt and SCR = 20, whereas green points are
for values of J < Jopt and blue ones for values of J > Jopt . It
is clear that the parameter J is mainly affecting the eigenvalue
λ1, causing a migration of the eigenvalue toward the imaginary
axis, whereas the other eight eigenvalues move leftwards.

In Fig. 10, the results of the µ-analysis are shown, where
colours have the same meaning as in Fig. 9. Under reference
conditions, the control is quite robust against the defined
plant uncertainties. The maximum value of µ = 0.6169 and
is reached at a frequency of 277 rad/sec. According to the
results shown in Fig. 10, an increase of J tends to augment
the robustness of the system at higher frequency, as can be
also deduced from the eigenvalue analysis, since the dominant
eigenvalues move leftwards. However, an excessive increase
of this parameter increases the peak of the µ factor at lower
frequencies, reaching almost the unity for J = 20 Jopt . This
represents an important aspect that needs to be considered
during the design procedure. In fact, it is common thought
that VSMs should reproduce the inertia of a real synchronous
machine of the same size. This requires the introduction of
additional energy storage in the DC-Link of the converter,
increasing sizes and costs. The results shown through this
analysis indicate that generally high values of virtual inertia
J do not always correspond to an increment of the stability
margin of the converter.
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Fig. 11. Effects of variation of control parameter J on the eigenvalues of the
system, (a) migration of λ2-λ5, (b) migration of λ6-λ9.
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Fig. 12. Behaviour of µ factor due to variations of K.

D. Variation of K

Fig. 11 (a) and (b) show the migration of the eigenvalues
due to variation of the parameter K. The parameter is varied

within the range
[

Kopt
5 ; 5 Kopt

]
. λ1 is far away from the

origin and is not relevantly affected. For values of K lower
then Klim ≈ 9000, λ6 and λ7 are located on the right half plane
causing instability.

The results of the µ-analysis shown in Fig. 12 indicate an
increase of the robustness of the system for higher values
of K at all frequencies. However, for values of K > Kopt
the stability margin is not relevantly enhanced. It is worth
pointing out that, according to the chosen uncertainty weights,
the limit of µ = 1 is reached for K ≈ 19000, which is more
conservative if compared to the limit obtained through the
eigenvalue analysis. This is simply explained by the fact that
µ provides information about robustness, covering a wide set
of possible plants, while eigenvalues show results only for one
particular system.

E. Variation of grid SCR

Fig. 13 shows the migration of the eigenvalues due to
a decrease of the grid SCR from 20 to 2, when the X/R
ratio is set to 10. The direction of the arrows indicates the
increase of the corresponding value, showing clearly that all
the eigenvalues move rightwards when the impedance of the

Fig. 13. Effects of variation of grid SCR on the eigenvalues of the system,
(a) migration of λ2-λ5, (b) migration of λ6-λ9.
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Fig. 14. Behaviour of µ factor due to variations of the grid SCR.

grid is increased. This would lead to the consideration that
the synchronverter is less stable when connected to a weaker
grid. Similar conclusions have been drawn in [22], where the
stability of a synchronverter-dominated microgrid has been
investigated.

However, looking at the results of the µ-analysis reported in
Fig. 14, the decrease of the grid SCR has instead the effect of
reducing the µ factor for all frequencies below ≈ 1000rad/sec,
where the highest peak of µ is located. This indicates that the
control results to be more robust against the defined set of
uncertainties shown in Fig. 8 when connected to a grid with
higher impedance. This can be explained by the fact that the
synchronverter behaves as a SM and basically as a voltage
source behind an impedance. Indeed, stator inductances of
SMs are usually much higher than typical converter filter
inductances and their high impedance enhances the stability
of the machine against high frequency perturbations [23].

It is worth to notice that the behaviour of the synchronverter
highlighted through the performed analysis contrasts the trend
of PLL-based converters, which instead result to be much more
sensitive to perturbations in the plant (represented for example
by the presence of other converters operating nearby) when
connected to a weaker grid [2].

F. Considerations for synchronverter design
According to the results of the robust stability analysis

performed in this section, the following aspects should be
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taken into account during the design procedure:

• In this work, control parameters have been tuned without
considering any requirements on virtual inertia. In fact,
in the design procedure presented in the previous section,
J has been set to a proper low value so as to neglect
the dynamic of the frequency droop loop in the active
power control loop. For the specific case under study, a
stability margin improvement is achieved for values of J
up to ≈ 10 Jopt . However, a further increase of J causes
a reduction of the stability margin of the converter at low
frequencies.

• K affects significantly the stability of the converter. To
comply with the design procedure presented in the pre-
vious section, the highest value of K resulting from (11)
has been selected as Kopt . According to the results of the
performed stability analysis and observing the dynamic
behaviour shown in Fig. 5 (b), a further increase of K
over a certain limit simply worsen the dynamic perfor-
mances of the converter, without significantly improving
its stability.

• The performed analysis has pointed out that the stability
of the synchronverter against the defined set of high
frequency uncertainties is augmented by the presence of
high impedance between the converter and the grid. As
already mentioned, stator inductances of SMs are much
higher than usual converter filter inductances, typically
designed so as to optimize the trade-off between power
quality and size of the filter components [18]. A simple
and efficient way for reproducing the characteristics of a
SM by means of a VSC without necessarily increasing
the size of the hardware components, is the emulation
of virtual impedance through the control [23]. The use
of virtual impedances is well-known in the literature and
several techniques have been proposed for various pur-
poses, e. g. harmonic suppressions [24], inverter currents
limitation [25] or output admittance shaping [26], to name
but a few. An overview on the techniques proposed in
the literature is not the focus of this work, but rather
highlighting that this expedient might be adopted in order
to enhance the stability of the synchronverter [23].

Finally, one might think about including the stability anal-
ysis shown in this paper as part of a comprehensive design
procedure, which aims to find the best compromise between
dynamic performances and stability margin. An example of a
possible iterative process is reported in Fig. 15. The flowchart
shown in Fig. 15 (a) summarizes the steps of the design
method adopted in this paper and described in section II.B,
whereas in Fig. 15 (b), the extended flowchart including
stability margin considerations is depicted.

IV. EXPERIMENTAL RESULTS

Laboratory experiments have been performed in order to
validate the linearized model used for the analysis. In Fig. 16
(a), a simplified scheme of the experimental setup used for the
tests is depicted, while in Fig. 16 (b), a picture of the labora-
tory environment is shown. Each phase of a 4 kVA converter
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Fig. 15. (a) Steps of design procedure adopted in this paper and proposed in
[10], (b) extended design procedure including robust stability considerations.

Danfoss of the Series FC-302 is connected to a 4-quadrant
linear power amplifier PAS 15000 from Spitzenberger-Spies
(single phase rated power 15 kVA, total three phase rated
power 45 kVA). The converter is additionally equipped with
a transformer to provide galvanic isolation.

The principle of PHIL simulations is briefly explained in
the following. A virtual grid is simulated by means of a real-
time simulator (RTDS in the specific case). The simulator
measures the converter currents at the PCC, corresponding to
the currents flowing into the power amplifier. In the RTDS,
a grid model runs in real-time, simulating the effects of the
currents injected by the converter on the virtual grid. The
simulated voltages at the PCC are sent to the power amplifier
as reference values ṼPCC. The linear power amplifier is able
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to reproduce at its terminal the reference voltages provided by
the simulator almost instantaneously (slew rate > 52 V/µsec).
This setup allows testing the behaviour of the converter under
different grid conditions simply modifying the parameters of
the grid model implemented in the simulator. The described
setup has been used for validation of the model adopted for
the analysis presented in this paper.

A resistive-inductive grid, as the one shown in Fig. 1,
has been simulated in the RTDS and the parameters of the
virtual grid have been modified so as to emulate a variation
of the grid SCR from 20 to 2 assuming a constant X /R ratio
of 10. The control has been tuned following the procedure
described in this paper. Setup parameters are shown in Table
IV. In Fig. 17, measurements results are compared to time-
domain simulations in MATLAB/Simulink/PLECS (where a
voltage source has been used to model the converter) and
to analytical results obtained from the small-signal model.
Steps of active and reactive power of 0.25 pu are shown for
three different values of SCR, namely 20, 10 and 2, whereas
the voltage control droop loop at the PCC has been either
activated or deactivated. A good match between simulations
and measurements can be appreciated. As already noticed in
Fig. 5, the steady-state value of the output reactive power
does not reach the given setpoint when the voltage droop
is activated. This behaviour is much more accentuated for
lower SCR. The Q-V droop does not influence significantly
the dynamic of the active power steps and therefore in Fig. 17
only ∆P

∆Pset
steps for the case when the voltage droop is activated

are shown.

Further experimental results are shown in Fig. 18, where
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Fig. 16. (a) Scheme of the laboratory setup, (b) picture of the laboratory
environment.

Table IV
PARAMETERS EXPERIMENTAL SETUP

Description Symbol Value
Inverter rated power Sn 4 kVA
Line-to-line voltage VLL 400 V (rms)

Rated grid frequency fg 50 Hz
Inverter switching frequency fsw 5 kHz
Inverter-side filter inductance L f 1 0.03 pu

Grid-side filter inductance L f 2 0.003 pu
Transformer inductance LT 0.003 pu

Inverter-side filter resistance R f 1 0.0375 pu
Grid-side filter resistance R f 2 0.018 pu

Capacitor damping resistance Rc 0.037 pu
Filter capacitor C 0.025 pu
Virtual inertia Jre f 4e-4
Integrator gain Kre f 800

P-Droop coefficient Dp 0.679
Q-Droop coefficient Dq 183.71

Description Symbol SCR 20 SCR 10 SCR 2
Grid inductance Lg 0.037 pu 0.075 pu 0.37 pu
Grid resistance Rg 0.0037 pu 0.0075 pu 0.037 pu

the parameters J and K have been varied from the reference
values shown in Table IV. In Fig. 18 (b) and (e), the dynamic
responses of the system to steps of Pset and Qset of 0.25 pu
for K = Kre f /8 are respectively shown, whereas Fig. 18 (c)
and (f) show the response of the system for J = 10 Jre f .

Looking at the results shown in Fig. 17 and Fig. 18, it can
be noticed how a decrease of the K value causes a reduction
of the high frequency damping of the system. An increase of
the virtual inertia factor J tends to slow down the system in
terms of settling time and rise time. Additionally, an increase
of the corresponding overshoot can be observed as well,
indicating a reduction of low frequency damping. Operation
of the converter has been tested even under extremely weak
grid conditions (SCR = 2), which are typically critical for a
standard grid connected converter. It can be noticed how in
this case the response of the system is simply slowed down,
but the light overshoot shown in the nominal case (SCR = 20)
is eliminated instead. According to the presented results, one
can conclude that the low frequency dynamic behaviour is not
worsened by the lower SCR, which is instead the case for an
increase of the virtual inertia J.

V. CONCLUSION

In this paper, the robust stability analysis of a synchronverter
connected to the grid through an output LCL filter is presented.
A simple design procedure is introduced, which is used for
tuning the control parameters according to nominal filter
and grid characteristics. A robust stability analysis has been
carried out based on the SSVs theory, which allows to assess
the stability margin of the system according to a defined
set of uncertainties. The effects of the variation of control
parameters as well as grid characteristics on the stability of the
system have been observed. Through the preformed µ-analysis,
some effects, which may not be clearly visible performing an
eigenvalue analysis, have been highlighted. Among them, the
fact that the synchronverter is more robust to uncertainties in
the plant when connected to a grid with higher impedance
is probably the most interesting. In fact, this behaviour goes
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Fig. 17. Dynamic behaviour of ∆P
∆Pset

, step of 0.25 pu: (a) SCR = 20, (b) SCR = 10, (c) SCR = 2. Dynamic behaviour of ∆Q
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off: (d) SCR = 20, (e) SCR = 10, (f) SCR = 2. Dynamic behaviour of ∆Q
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Fig. 18. Grid SCR = 20, Q-V droop off, X/R=10. Dynamic behaviour of ∆P
∆Pset

, step of 0.25 pu: (a) J=Jre f , K=Kre f ; (b) J=Jre f , K=Kre f /8; (c) J=10 Jre f ,

K=Kre f . Dynamic behaviour of ∆Q
∆Qset

, step of 0.25 pu: (d) J=Jre f , K=Kre f ; (e) J=Jre f , K=Kre f /8; (f) J=10 Jre f , K=Kre f .

against the trend shown by grid connected converters using
a dedicated synchronization unit. The model used for the
analysis has been validated against simulations and laboratory
experiments using a PHIL setup.
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