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Abstract—Similarity measures are useful for reasoning about
fuzzy sets. Hence, many classical set-theoretic similarity measures
have been extended for comparing fuzzy sets. In previous work,
a set-theoretic similarity measure considering the bidirectional
subsethood for intervals was introduced. The measure addressed
specific concerns of many common similarity measures, and it
was shown to be bounded above and below by Jaccard and Dice
measures respectively. Herein, we extend our prior measure from
similarity on intervals to fuzzy sets. Specifically, we propose a
vertical-slice extension where two fuzzy sets are compared based
on their membership values. We show that the proposed extension
maintains all common properties (i.e., reflexivity, symmetry,
transitivity, and overlapping) of the original fuzzy similarity
measure. We demonstrate and contrast its behaviour along with
common fuzzy set-theoretic measures using different types of
fuzzy sets (i.e., normal, non-normal, convex, and non-convex) in
respect to different discretization levels.

I. INTRODUCTION

Similarity measures are important tools in fuzzy logic.

Measures of similarity between two fuzzy sets capture how

similar they are in terms of the degrees of membership of their

elements. Generally, a similarity measure S(A,B) → [0, 1]
with fuzzy sets A and B in the universe of discourse X ,

satisfies the following properties [1]:

1) Reflexivity: S(A,B) = 1 ⇐⇒ A = B;

2) Symmetry: S(A,B) = S(B,A);
3) Transitivity: If A ⊆ B ⊆ C then S(A,B) ≥ S(A,C);
4) Overlapping: If A∩B �= ∅ then S(A,B) > 0. Otherwise,

S(A,B) = 0.

Many similarity measures have been proposed in the litera-

ture and among them, set-theoretic measures are well-known

[2]. Commonly, classical set-theoretic similarity measures are

extended to assess similarity between fuzzy sets [3], and a

good overview of these measures can be seen in [2] and [4].

Among the existing fuzzy set-theoretic measures, the extended

Jaccard similarity measure [5] is well-known and is often used

for fuzzy sets. Two common approaches to extension are based

on the vertical-slices and the α-cuts [6] of fuzzy sets.

Recently, we have introduced a new set-theoretic similarity

measure for (closed) intervals using their overlapping ratios

[7] which is effectively equivalent to their respective degree

of subsethood. In this paper, we thus use the more common

term of ‘subsethood’ rather than ‘overlapping ratio’. The new
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Fig. 1. Two different example pairs of intervals
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Fig. 2. Fuzzy set representations for the pairs of intervals in Fig. 1

measure shows interesting results for certain features of the

intervals – in particular, it is found to be more responsive

to the size of the intervals and their intersection when one

interval is a subset of the other. Further, it is bounded above

and below by Jaccard and Dice measures respectively when

the minimum t-norm is used. This finding inspires us to

extend it for assessing similarity between fuzzy sets as both

the vertical-slices and α-cuts of the fuzzy set are generally

(closed) intervals. For example, consider the interval pairs

and their fuzzy set representations in Fig. 1 and Fig. 2.

Here, both intervals and corresponding fuzzy set pairs are

dissimilar—therefore intuitively should have a different degree

of similarity. In [7], the new measure is shown to generate this

expected difference in similarity, while both Jaccard and Dice

measures show equal similarity. We expect that the extension

of this new measure will also more appropriately capture the

similarity between fuzzy sets with different degree of overlap,

such as shown in Fig. 2, which is the core motivation of the

extension proposed in this paper.

Herein, we propose an extension of the bidirectional sub-

sethood based interval similarity measure [7] for type-1 (T1)

fuzzy sets based on vertical slice decomposition as this

approach is commonly applied for extending classical set-

theoretic measures. The α-cut extension of this measure which

compares fuzzy sets based on their universe of discourse will
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be discussed in context in an upcoming journal article. Here,

following the extension, we explore major properties of the

extended fuzzy measure. Later, we demonstrate the behaviour

of the measure using different synthetic fuzzy sets (i.e. normal,

non-normal, convex, and non-convex) and provide compar-

isons with existing fuzzy set-theoretic similarity measures.

The remainder of the paper is structured as follows. In

Section II, we present some background on T1 fuzzy sets

followed by a discussion on the subsethood and the bidi-

rectional subsethood based interval similarity measure, and

lastly, fuzzy set-theoretic similarity measures. Section III intro-

duces the proposed vertical-slice extension of the bidirectional

subsethood based measure for fuzzy sets and discusses its

properties. A demonstration of the proposed extended measure

and comparison with current fuzzy set-theoretic measures

using synthetic fuzzy sets is provided in Section IV. Finally,

Section V concludes the paper and hints at future work.

II. BACKGROUND

In this section, we first define T1 fuzzy sets and subsethood.

Next, we discuss the bidirectional subsethood based similarity

measure for intervals [7], followed by a brief overview of

current fuzzy set-theoretic similarity measures.

A. Type-1 fuzzy sets

A T1 fuzzy set [8] is a set in which the membership of each

element lies within the range of 0 and 1. Typically, a fuzzy

set in the universe of discourse X is defined as:

A = {(x, μA(x))|x ∈ X,μA(x) ∈ [0, 1]},
where μA(x) is the membership grade of the element x in the

fuzzy set A [9]. For a discrete universe of discourse, the fuzzy

set A is often written as

A =
∑
x

μA(x)/x,

where
∑

is the collection of all points x ∈ X with member-

ship value μA(x) [9].

A fuzzy set is normal if and only if supx∈XμA(x) = 1.

Along with, a fuzzy set is convex if and only if all of its α-

cuts are convex subsets of X .1 Note that an α-cut of the fuzzy

set A is a non-fuzzy (crisp) set comprising all elements x ∈ X
whose membership grade within A is greater than or equal to

α [11], written as:

Āα = {x|μA(x) ≥ α, α ∈ [0, 1]}.
B. Subsethood

Subsethood Sh is a relation that indicates the degree to

which one object is a subset of the other object. For two crisp

sets, a and b, Sh is defined as follows [12]:

Sh (a, b) =
|a ∩ b|
|a| , (1)

1A set C is convex if for any two points c1, c2 ∈ C, the line segment
(1− λ)c1 + λc2, λ ∈ [0, 1] lies in C [10].

where |a ∩ b| is the cardinality of the intersection of a and b,
and |a| is the cardinality of a. Sh is bounded by [0,1] where

Sh (a, b) = 1 means a is a proper subset of b (a ⊆ b), and

Sh (a, b) = 0 means a is not a subset of b (a �⊂ b).

As for intervals, the subsethood between two (closed)

intervals a and b can be specified as:

Sh(a, b) =

∣∣a ∩ b
∣∣∣∣a∣∣ , (2)

where |a ∩ b| is the size of the intersection between a and b
and |a| is the size of a.

In a similar manner, for two fuzzy sets, A and B, the degree

of subsethood [13] is:

Sh(A,B) =

n∑
i=1

min (μA(xi), μB(xi))

n∑
i=1

μA(xi)
, (3)

where
∑n

i=1 μA(xi) is the cardinality of A and∑n
i=1 min (μA(xi), μB(xi)) is the cardinality of the

intersection of membership functions of A and B using the

minimum t-norm.

C. Bidirectional subsethood based similarity measure for in-
tervals

A new set-theoretic similarity measure for (closed) intervals

was introduced in [7] which uses the overlapping ratios (OR)

of a pair of intervals for capturing their reciprocal similarity

and later to determine the overall similarity with these ratios.

Here we use the term ‘subsethood’ instead of ‘overlapping

ratio’ as they are mathematically equivalent. Equation (4)

presents this measure for two intervals a and b [7]:

SSh

(
a, b

)
= �

(
OR(a, b), OR(b, a)

)
≡ �

(
Sh(a, b), Sh(b, a)

)
,

(4)

where � is a t-norm and Sh is the subsethood for the intervals.

Using Eq. (2), we can rewrite Eq. (4) as:

SSh

(
a, b

)
= �

( |a ∩ b|
|a| ,

|a ∩ b|
|b|

)
. (5)

The bidirectional subsethood based similarity measure di-

rectly captures changes in the width of intervals and also to

the size of their intersection when one interval is a subset

of another in a pair. Further, it is bounded above and below

by the well-known Jaccard and Dice measures in case of the

minimum t-norm. Furthermore, it is invariant to multiplication

of the interval endpoints and shows expected linear behaviour

in respect of linearly increasing interval overlap.

In Section III, we introduce the vertical-slice extension of

this measure for fuzzy sets where they are compared regarding

the membership values and also discuss its properties.
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TABLE I
SET-THEORETIC SIMILARITY MEASURES AND THEIR PROPERTIES FOR FUZZY SETS A AND B

Similarity Measure Properties

Equation Proposed by Reflexivity Symmetry Transitivity Overlapping

SJ (A,B) =

n∑
i=1

min(μA(xi),μB(xi))

n∑
i=1

max(μA(xi),μB(xi))
Pappis and
Karacapilidis [16]

Yes Yes Yes >0

SC (A,B) = maxi(min (μA(xi), μB(xi)) Chen et al. [17] No Yes No > 0

SP (A,B) =

n∑
i=1

μA(xi)×μB(xi)

max

(
n∑

i=1
(μA(xi))2,

n∑
i=1

(μB(xi))2

) Chen et al. [17] Yes Yes No > 0

SW (A,B) = 1
n

n∑

i=1

min(μA(xi),μB(xi))
max(μA(xi),μB(xi))

Wang [18] Yes Yes Yes > 0

SR (A,B) =
maxx(min(μA(x),μB(x)))

max(maxx(μA(x)),maxx(μB(x)))
Raha et al. [19] Yes Yes Yes >0

D. Fuzzy set-theoretic similarity measures

Similarity assessment between two fuzzy sets using set-

theoretic measures typically involves fuzzy set operations,

such as union, intersection, and cardinality. In most cases,

classical set-theoretic similarity measures are extended to

determine similarity for fuzzy sets [3]. It is worth noting that

Tversky’s parameterized ratio model [14] generalizes many

classical set-theoretic similarity measures which expresses the

similarity between two crisp sets a and b as a ratio of their

common and distinct features:

ST (a, b) =
f(a ∩ b)

f(a ∩ b) + αf(a− b) + βf(b− a)
,

where f(a ∩ b) presents the common features, f(a − b) is

the features that a has but b does not, and vice versa. The

factors α and β are nonnegative (≥ 0). ST (a, b) turns into

the Jaccard measure [5] when α = β = 1, whereas ST (a, b)
becomes the Dice measure [15] with α = β = 0.5. For α = 1
and β = 0, ST (a, b) behaves like the subsethood for a (the

degree to which a is a subset of b).
Among the existing fuzzy set-theoretic similarity measures,

the extended Jaccard measure [5] proposed by Pappis and

Karacapilidis [16] is widely used for fuzzy sets. Besides, the

fuzzy measures introduced by Chen et al. [17], Wang [18]

and Raha et al. [19] are also well-known. In Table I, we sum-

marize these similarity measures together with their essential

properties. A fuzzy measure based on matching functions [17]

is also included in Table I as it uses the maximum t-conorm.

A detailed discussion of set-theoretic similarity measures for

fuzzy sets can be found in [20] and [21].

III. A NEW BIDIRECTIONAL SUBSETHOOD BASED

SIMILARITY MEASURE FOR FUZZY SETS

This section introduces a vertical-slice extension of the in-

terval similarity measure (SSh
) [7] to assess similarity between

two T1 fuzzy sets using the bidirectional subsethood.

We first present the proposed extension of the SSh
measure

at Eq. (4) and then demonstrate its major properties.

A. Proposed extension of the SSh
measure

In the vertical-slice extension, we first determine the re-

ciprocal subsethoods for a pair of fuzzy sets and then take a

t-norm of these subsethood measure outcomes to determine

the overall similarity between them. The proposed extension

of the SSh
measure for fuzzy sets, A and B, is defined as:

ST1
Sh

(A,B) = � (Sh(A,B), Sh(B,A)) . (6)

Throughout this paper, we use the minimum and the product

t-norms as they are used most often in fuzzy set theory. Using

Eq. (3) for the subsethood Sh, we rewrite Eq. (6) as follows:

ST1
Sh

(A,B) = �

⎛
⎝

n∑
i=1

min(μA(xi),μB(xi))

n∑
i=1

μA(xi)
,

n∑
i=1

min(μA(xi),μB(xi))

n∑
i=1

μB(xi)

⎞
⎠

(7)

where n is the number of discretizations of the whole support

of A and B.23

B. Properties of the extended similarity measure

This section introduces and proves the properties of the

extended ST1
Sh

measure in Eq. (7) for fuzzy sets A and B.

Theorem 1. (Boundedness). ST1
Sh

(A,B) ∈ [0, 1].

Proof: The subsethood Sh (A,B) is bounded by [0, 1]
[13], which follows that the extended similarity measure

ST1
Sh

(A,B) is also bounded by [0, 1].

Theorem 2. (Reflexivity). ST1
Sh

(A,B) = 1 ⇐⇒ A = B.

Proof: When A = B, Sh (A,B) = Sh (B,A) = 1. From

the boundary conditions of the t-norm (�) [22], �(1, 1) = 1,

thus making SSh
(A,B) = 1. Alternatively, SSh

(A,B) = 1

2We note that in case of discrete fuzzy sets A and B (where they have the
same number of elements), n denotes the number of elements in A and B.

3We note that Eq. (7) behaves like a fuzzy measure mentioned in [21] for
the minimum t-norm, though the origin of this measure is unknown.
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means that both Sh (A,B) and Sh (B,A) are equal to 1. This

only happens if A and B are identical.

Theorem 3. (Symmetry). ST1
Sh

(A,B) = ST1
Sh

(B,A).

Proof: The t-norm (�) is symmetric [22]. Therefore,

ST1
Sh

(A,B) is also symmetric.

Theorem 4. (Transitivity). ST1
Sh

(A,B) ≥ ST1
Sh

(A,C) when
A ⊆ B ⊆ C.

Proof: When A ⊆ B ⊆ C, it follows that∑
x

μA(x) ≤
∑
x

μB(x) ≤
∑
x

μC(x). (8)

Case 1: when � is the minimum t-norm.

ST1
Sh

(A,B) = �

⎛
⎝
∑
x
min (μA(x), μB(x))∑

x
μA(x)

,

∑
x
min (μA(x), μB(x))∑

x
μB(x)

⎞
⎠

=

∑
x
min (μA(x), μB(x))∑

x
μB(x)

[from Eq. (8)]

ST1
Sh

(A,C) = �

⎛
⎝
∑
x
min (μA(x), μC(x))∑

x
μA(x)

,

∑
x
min (μA(x), μC(x))∑

x
μC(x)

⎞
⎠

=

∑
x
min (μA(x), μC(x))∑

x
μC(x)

[from Eq. (8)]

From Eq. (8),
∑
x
μB(x) ≤

∑
x
μC(x), thus making

∑
x
min (μA(x), μB(x))∑

x
μB(x)

≥
∑
x
min (μA(x), μC(x))∑

x
μC(x)

.

Hence ST1
Sh

(A,B) ≥ ST1
Sh

(A,C).

Case 2: when � is the product t-norm.

ST1
Sh

(A,B) = �

⎛
⎝
∑
x
min (μA(x), μB(x))∑

x
μA(x)

,

∑
x
min (μA(x), μB(x))∑

x
μB(x)

⎞
⎠

=

∑
x
min (μA(x), μB(x))

2

∑
x
μA(x)×

∑
x
μB(x)

[from Eq. (8)]

ST1
Sh

(A,C) = �

⎛
⎝
∑
x
min (μA(x), μC(x))∑

x
μA(x)

,

∑
x
min (μA(x), μC(x))∑

x
μC(x)

⎞
⎠

=

∑
x
min (μA(x), μC(x))

2

∑
x
μA(x)×

∑
x
μC(x)

[from Eq. (8)]

From Eq. (8),
∑
x
μB(x) ≤

∑
x
μC(x). Hence,

∑
x
min (μA(x), μB(x))∑

x
μB(x)

≥
∑
x
min (μA(x), μC(x))∑

x
μC(x)

,

It follows that∑
x
min (μA(x), μB(x))

2

∑
x
μB(x)

≥
∑
x
min (μA(x), μC(x))

2

∑
x
μC(x)

,

=⇒
∑
x
min (μA(x), μB(x))

2

∑
x
μA(x)×

∑
x
μB(x)

≥
∑
x
min (μA(x), μC(x))

2

∑
x
μA(x)×

∑
x
μC(x)

.

Thus ST1
Sh

(A,B) ≥ ST1
Sh

(A,C).

Theorem 5. (Overlapping). ST1
Sh

(A,B) > 0 when A∩B �= ∅;
otherwise, ST1

Sh
(A,B) = 0.

Proof: If A∩B �= ∅, ∃x such that min (μA(x), μB(x)) >
0, which follows that the numerator of Eq. (7) is∑

x

min (μA(x), μB(x)) > 0.

For the denominators in Eq. (7),∑
x

μA(x) ≥
∑
x

min (μA(x), μB(x)) and

∑
x

μB(x) ≥
∑
x

min (μA(x), μB(x)) .

Therefore ST1
Sh

(A,B) > 0.

Conversely, if A ∩ B = ∅, then min (μA(x), μB(x)) = 0
∀x, thus making the numerator of Eq. (7) as∑

x

min (μA(x), μB(x)) = 0.

Therefore, ∑
x
min (μA(x), μB(x))∑

x
μA(x)

= 0 and

∑
x
min (μA(x), μB(x))∑

x
μB(x)

= 0

Hence ST1
Sh

(A,B) = 0.

IV. DEMONSTRATIONS

This section presents the behaviour of the proposed ex-

tended measure (Eq. (6)) in comparison with some of the

well-known fuzzy set-theoretic similarity measures using a

key, but not exhaustive set of synthetic sample cases, fo-

cusing on the comparison of both normal/non-normal and

convex/non-convex fuzzy sets. For the experiments, we apply

both minimum and product t-norms for the proposed exten-

sion. Moreover, we use trapezoidal and Gaussian fuzzy sets as

the trapezoidal membership function is simple yet captures a

great deal of flexibility and can model antisymmetric concepts,

and the Gaussian function is the engineers’ favourite statistical

representation. All experiments are implemented using Java in

an Intel(R) Core(TM) i3-4005U series based machine running

at 1.70 GHz with 8GB RAM.

We compare the ST1
Sh

measure at Eq. (6) with common fuzzy

set-theoretic similarity measures (discussed in Table I) using

synthetic fuzzy sets shown in Fig. 3 to Fig. 7. We use synthetic

sets as they can generate interesting cases and do a bit more

rigorous study. We demonstrate the behaviour of the similarity

2018 IEEE International Conference on Fuzzy Systems (FUZZ)
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Fig. 3. Trapezoidal (solid line) and Gaussian (dashed line) fuzzy sets with increasing overlap from left to right
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Fig. 4. Trapezoidal (solid line) and Gaussian (dashed line) fuzzy sets with increasing degree of subsethood from left to right
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Fig. 5. Trapezoidal (solid line) and Gaussian (dashed line) fuzzy sets with a rising height of non-normal fuzzy set from left to right while other set is normal
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Fig. 6. Trapezoidal (solid line) and Gaussian (dashed line) fuzzy sets with a rising height of non-normal fuzzy set from left to right while other set is
non-normal
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Fig. 7. Trapezoidal (solid line) and Gaussian (dashed line) fuzzy sets with ‘increasing non-convexity’ from left to right
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TABLE II
SIMILARITY RESULTS FOR THE PAIRS OF TRAPEZOIDAL FUZZY SETS

Increasing Overlap Increasing Subsethood Rising Height of NNFS with Rising Height of NNFS with ‘Increasing Non-convexity’

(Fig. 3) (Fig. 4) a Normal Pair (Fig. 5) a Non-normal Pair (Fig. 6) (Fig. 7)

Similarity Measure Pair-1 Pair-2 Pair-3 Pair-1 Pair-2 Pair-3 Pair-1 Pair-2 Pair-3 Pair-1 Pair-2 Pair-3 Pair-1 Pair-2 Pair-3

SJ(A,B) 0.0 0.0326 0.3968 0.3429 0.5143 0.7143 0.0313 0.0515 0.0541 0.2112 0.2219 0.224 0.8429 0.8245 0.7929

SC(A,B) 0.0 0.2778 0.8333 1.0 1.0 1.0 0.1108 0.2658 0.3676 0.5178 0.5533 0.5764 1.0 1.0 1.0

SP (A,B) 0.0 0.0322 0.724 0.4422 0.6275 0.817 0.0177 0.0532 0.0573 0.1925 0.2567 0.3209 0.906 0.883 0.841

SW (A,B) 0.0 0.0552 0.2728 0.2042 0.3281 0.5001 0.0443 0.0662 0.0721 0.1991 0.1902 0.1767 0.6575 0.647 0.6282

SR(A,B) 0.0 0.2778 0.8333 1.0 1.0 1.0 0.1108 0.2658 0.3676 0.6473 0.6916 0.5764 1.0 1.0 1.0

ST1
Sh:min(A,B) 0.0 0.0631 0.5682 0.3429 0.5143 0.7143 0.0389 0.093 0.0961 0.2165 0.2406 0.2553 0.8429 0.8245 0.7929

ST1
Sh:prod(A,B) 0.0 0.004 0.3228 0.3429 0.5143 0.7143 0.0051 0.0096 0.0111 0.1932 0.1789 0.1612 0.60 0.4571 0.40

TABLE III
SIMILARITY RESULTS FOR THE PAIRS OF GAUSSIAN FUZZY SETS

Increasing Overlap Increasing Subsethood Rising Height of NNFS with Rising Height of NNFS with ‘Increasing Non-convexity’

(Fig. 3) (Fig. 4) a Normal Pair (Fig. 5) a Non-normal Pair (Fig. 6) (Fig. 7)

Similarity Measure Pair-1 Pair-2 Pair-3 Pair-1 Pair-2 Pair-3 Pair-1 Pair-2 Pair-3 Pair-1 Pair-2 Pair-3 Pair-1 Pair-2 Pair-3

SJ(A,B) 0.0 0.0321 0.373 0.2858 0.5002 0.7145 0.0216 0.0304 0.0316 0.1282 0.1311 0.1325 0.4058 0.3647 0.3220

SC(A,B) 0.0 0.1724 0.8226 1.0 1.0 1.0 0.0587 0.1249 0.1724 0.3835 0.4119 0.4322 0.9829 0.9773 0.9726

SP (A,B) 0.0 0.0301 0.6766 0.3885 0.6325 0.822 0.0089 0.0268 0.0279 0.1099 0.1466 0.1832 0.5199 0.4619 0.4016

SW (A,B) 0.0 0.0689 0.2929 0.1045 0.2024 0.3576 0.0389 0.0418 0.0434 0.1231 0.1167 0.1116 0.1639 0.1493 0.1342

SR(A,B) 0.0 0.1724 0.8226 1.0 1.0 1.0 0.0587 0.1249 0.1724 0.4794 0.5148 0.4322 0.9829 0.9773 0.9726

ST1
Sh:min(A,B) 0.0 0.0625 0.5426 0.2858 0.5002 0.7145 0.0281 0.0588 0.0625 0.1395 0.1521 0.1614 0.4062 0.3650 0.3222

ST1
Sh:prod(A,B) 0.0 0.0039 0.2949 0.2858 0.5002 0.7145 0.0024 0.0035 0.0042 0.0855 0.0762 0.0687 0.4022 0.3613 0.3186

measures by focusing on the changes in similarity results

while the properties of the fuzzy sets are gradually changing,

i.e., by varying the degree of overlap, the subsethood, the

height of (non-normal) fuzzy sets (NNFS), and their ‘degree of

non-convexity’. Table II and III present the similarity results

considering 1000 discretization levels along the whole support

of the pairs of trapezoidal and Gaussian fuzzy sets graphically

shown in Fig. 3 to Fig. 7.

Convex-normal fuzzy sets – In Fig. 3, three pairs of trape-

zoidal (A3 and B3) and Gaussian fuzzy sets (A′
3 and B′

3) are

used, where the degree of overlap between the pairs have been

increased gradually. Here, all pairs are normal and convex.

Specifically, pairs are shifted from completely disjoint to a

gradually increasing overlap along the x-axis. Intuitively, as

the overlapping between pairs increases, similarity is expected

to rise accordingly. Table II and III show expected behaviour

of all similarity measures.

Convex-normal fuzzy sets (case for proper subsets) – In

Fig. 4, three pairs of (normal and convex) trapezoidal (A4

and B4) and Gaussian fuzzy sets (A′
4 and B′

4) are considered,

where B4 (B′
4) is a proper subset of A4 (A′

4). Here the degree

of subsethood in the pairs is gradually increased. In this case, it

is intuitive to expect that as the degree of subsethood gradually

increases, similarity will also rise. Table II and III show that

both SC and SR measures yield a similarity of 1 for all pairs

despite being non-identical while the other measures return an

increasing degree of similarity in line with expectation.

Convex fuzzy sets (case with one normal fuzzy set) – Three

pairs of trapezoidal (A5 and B5) and Gaussian fuzzy sets

(A′
5 and B′

5) are considered in Fig. 5 where A5 and A′
5 are

normal while B5 and B′
5 are non-normal, and their heights are

gradually increased. As the height of the non-normal fuzzy

set increases, the similarity within the pairs should intuitively

rise as their heights become more similar until reaching its

maximum when both sets in a pair share the same height.

Here, all measures maintain the expected rising trend in the

similarity results.

Convex fuzzy sets (case with both fuzzy sets non-normal) –
For the pairs of fuzzy sets in Fig. 6 which are both convex and

non-normal, all measures except SR behave non-intuitively by

showing either the sets in Pair-1 or Pair-3 to be more similar

than those in Pair-2. In this experiment, all fuzzy sets are

initially non-normal, with B6 and B′
6 remaining non-normal,

while A6 and A′
6 gradually turn into normal fuzzy sets.

Non-convex, normal fuzzy sets – Finally, three pairs of

fuzzy sets – trapezoidal (A7 and B7) and Gaussian (A′
7 and

B′
7) are considered in Fig. 7 where B7 and B′

7 are both

non-convex fuzzy sets and proper subsets of A7 and A′
7

respectively. Here, the ‘degree of non-convexity’ is increased

in a gradual manner. As the non-convexity ‘increases’, the

degree of overlap, or, more formally, the cardinality of the

intersection between the pairs declines, intuitively resulting

in a decreasing degree of similarity. Here, both SC and SR

measures show a perhaps unexpected behaviour for trapezoidal

fuzzy sets – yielding a similarity of 1 for all pairs, while

following the expected decreasing trend for the Gaussian fuzzy

sets. All other measures show a decreasing trend for all pairs

in respect to the similarity results.

2018 IEEE International Conference on Fuzzy Systems (FUZZ)



TABLE IV
EXECUTION TIME (ms) FOR DIFFERENT DISCRETIZATION LEVELS (250,

500, 750, 1000) ALONG THE WHOLE SUPPORT OF PAIR-1 OF THE

GAUSSIAN FUZZY SETS (A′
41

,B′
41

) IN FIG. 4(a)

No. of Discretization

Similarity Measure 250 500 750 1000

SJ (A,B) 17.43 29.62 36.28 41.86

SC(A,B) 13.42 25.74 33.20 35.75

SP (A,B) 15.40 27.40 34.08 41.37

SW (A,B) 15.65 27.90 34.33 41.47

SR(A,B) 14.50 26.48 33.25 38.40

ST1
Sh:min(A,B) 15.74 27.97 35.18 41.64

ST1
Sh:prod(A,B) 14.83 26.55 33.72 40.89

In short, all measures show expected behaviour for varying

degrees of overlap. Both SC and SR measures deviate from

intuition while changing the degree of subsethood. For varia-

tions in the height of pairs of non-normal fuzzy sets (NNFS),

only SR measure follows intuition. Finally, with a rising

degree of non-convexity, both SC and SR measures show

unexpected results for trapezoidal fuzzy sets while meeting the

expectation for the Gaussian fuzzy sets. Overall, SJ , SP , SW

and the proposed extended ST1
Sh

(with minimum and product t-
norms) measures largely follow intuition for a variety of fuzzy

sets—except for pairs of fuzzy sets being non-normal. Initial

work on developing an α-cut based, rather than a vertical-

slice (as proposed here) extension of the original bidirectional

subsethood measure indicates that this will result in a measure

which also intuitively addresses such case of non-normal fuzzy

sets. This will be explored as part of a future publication.

In addition, we provide respective execution times in mil-

liseconds (ms) for various discretization levels (250, 500,

750, 1000) in Table IV for all measures. These have been

empirically established taken by computing the similarity

results for Pair-1 of the Gaussian fuzzy sets (A′
41 ,B′

41 ) in

Fig. 4(a). The results show that all measures share a similar

execution time and we do not include further results as they

follow the same trend.

V. CONCLUSIONS

In this paper, we have proposed a vertical-slice based exten-

sion of the recently introduced similarity measure [7] for T1

fuzzy sets (convex, non-convex and normal, non-normal). The

proposed extension is based on the bidirectional subsethood

of a pair of fuzzy sets. We have shown that it maintains all

important properties of a similarity measure for fuzzy sets.

Further, we have demonstrated and compared the behavior

of the extended measure with that of key existing fuzzy set-

theoretic similarity measures using a series of synthetic fuzzy

sets. Here, the proposed extended measure shows expected

behaviour in respect to variations of key properties such as an

increase in the degree of overlap, subsethood, and height, or

a change in the ‘degree of non-convexity’ of the fuzzy sets.

However, SC and SR measures behave unexpectedly in cases

of varying degrees of subsethood and non-convexity. Overall,

SJ , SP , SW , and the proposed extended ST1
Sh (with minimum

and product t-norms) measures largely meet the expectation

for various types of fuzzy sets–except for the pairs where

both are non-normal. Our initial work has shown that an α-

cut based extension of the bidirectional subsethood measure

for intervals [7] can address this unexpected behaviour with

fuzzy sets being non-normal. This, as well as the application

of the new measure in aggregation and its extension to type-2

fuzzy sets will be explored as part of future publications.
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