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Abstract 

Dynamic Soil-Structure Interaction (DSSI) is an area of much ongoing research and has wide and 

varied applications from seismic response analysis to offshore wind foundation response. DSSI covers 

a wide range of load regimes from small-strain vibrations to large-strain cyclic loading. One of the 

most common ways to model DSSI uses the Winkler model, which considers the soil as a series of 

mutually independent springs. The difficulty with modelling DSSI arises with the inelastic and 

nonlinear load-displacement response of soil with increasing strain, therefore modelling of large-

strain DSSI relies on the specification of many interrelated parameters. The relative magnitude of 

these parameters can have a significant effect on the modelled response. In this paper, the 

specification of an initial stiffness coefficient to model the elastic (small-strain) response of a soil-pile 

system is investigated. The coefficient of subgrade reaction method can be used to generate spring 

stiffness moduli for Winkler type models. A number of subgrade reaction theories have been proposed 

and their application to the problem of static loading has been widely studied. However, relatively 

little research concerning the application of these models for small-strain dynamic loading has been 

undertaken. This paper describes a sensitivity study in which a number of subgrade reaction models 

were used to estimate the frequency response at small-strain levels for a range of pile geometries and 

ground conditions. A field investigation was undertaken on two piles with different slenderness ratios 

to estimate the frequency response and damping ratios. The experimental results were compared to 

predictions of damped natural frequency obtained from numerical models using the force input and 

measured damping ratio from each experiment. The ability of each subgrade reaction formulation to 

model the response at small-strain levels is evaluated. 
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1.0 Introduction 

1.1 Dynamic soil-structure interaction (DSSI) 

Dynamic Soil-Structure Interaction (DSSI) is a vital aspect of the design of many structures subjected 

to variable external excitation as part of their in service operation. The response of soil-pile systems to 

lateral loading is an area of growing research interest. The term ‘dynamic’ covers a broad spectrum of 

structural schemes ranging from large-strain cyclic loading to small-strain system vibrations. The 

response of a soil-pile system is heavily dependent on the nature and magnitude of the loading and a 

variety of modelling approaches exist that aim to predict the response of these systems under various 

load schemes. In particular, DSSI is an integral part in the design of offshore wind turbines, which 

experience periodic excitation from a combination of environmental loading (wind and wave action) 

and structural effects. The rotor spinning at a given rotational velocity creates an excitation force with 

a frequency termed the 1P frequency. For a standard, three-bladed, wind turbine, the blades passing 

the tower induce a second excitation force, the frequency of which is termed the 3P frequency. Waves 

typically affect wind turbines with excitation frequencies lower than the 1P band, (see Fig. 1). 

Flexible monopiles are often designed in such a manner as to ensure that the global system has a 

natural frequency between the 1P and 3P range and it is critical that a designer can accurately predict 

the system’s natural frequency and avoid resonance [1,2]. However, recent field measurements 

suggest that the soil stiffness values recommended in offshore design codes [3,4] may result in 

significant errors in estimating the structure’s natural frequency.  

 

Fig. 1. Frequency bands for typical offshore wind turbines. 

Understanding a soil’s dynamic stiffness is also very important with regard to Structural Health 

Monitoring (SHM). Recent advances in SHM use changes in the modal properties of structures in 

order to infer some form of damage [1]. In the case of bridges, most of the work to date has focused 

on monitoring the superstructure. More recent research has begun to focus on using these damage 
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detection methodologies on sub-structural elements (see [5–7]). In these cases, the analyses can be 

quite sensitive to the soil stiffness assumed in the design where the dynamic oscillations typically 

remain in the small-strain region. 

DSSI is also very important in the field of earthquake engineering where propagating ground motion 

waves can generate high stresses in a pile foundation. The stiffness contrast between a pile and the 

surrounding soil tends to modify the transmitted excitation from seismic shear waves leading to an 

effect known as kinematic interaction. Coupled with this phenomenon, the dynamic response of a 

superstructure to a seismic excitation leads to additional deformations in the pile foundation, an effect 

known as inertial interaction [8]. It is very important to be able to accurately model the various 

components of a soil-pile dynamic system so that the detrimental effects of external actions may be 

mitigated by design. There are a variety of methods available to model the dynamic behaviour of soil-

pile systems. 

1.2 Winkler modelling approach 

In this paper an approach, termed the Winkler model, commonly employed by structural engineers for 

both static and dynamic soil-structure interaction problems is considered. The model considers the 

soil as a system of discrete, mutually independent, closely-spaced, springs [9,10]. The pressure-

deflection relationship at any point of the foundation element can be generally represented by the 

equation shown in Eq. (1), (in the absence of energy loss or inertial contributions). 

        x,twtxp k ,                                                                  (1) 

where p(x, t) is the applied pressure (N m
-2

) at a given unit of time, w(x, t) is the deflection (m) at a 

given time, and k is the coefficient of subgrade reaction (N m
-3

). The key uncertainty with using a 

Winkler model for dynamic applications lies with the specification of the parameters required to 

model the behaviour of the soil under dynamic motion. The issues arise due to the nonlinear and 

inelastic nature of soil when deformations are large. These parameters include, among others; the 

initial (elastic) stiffness, load-displacement response curves, cyclic degradation and hardening 

parameters, unload-reload stiffness parameters and radiation and hysteretic damping coefficients [11]. 

A number of authors have developed dynamic beam on nonlinear Winkler foundation (BNWF) 

models for the purposes of modelling the soil-structure response under large-strain dynamic loading. 

This topic has received much interest in recent times from researchers working in the area of 

earthquake engineering [8,12,13]. Both Nogami et al. [14] and Allotey et al. [11] give a good 

overview of the development of general nonlinear soil-pile interaction models for dynamic 

applications. In [11], a comprehensive discussion is given on the various soil-structure interaction 

response features and how they can be modelled in a BNWF model. In particular, the paper highlights 

the inefficiencies of static nonlinear models in accounting for cycle-by-cycle soil-structure interaction 
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effects and kinematic interaction effects for seismic applications, hence the need for the improved 

dynamic model. A generic cyclic normal force-displacement scheme (cyclic p-y) incorporating 

backbone curves, unload-reload curves, cyclic degradation and radiation damping as well as other 

modelling aspects is discussed. Backbone curves are analogous to monotonic loading curves (static p-

y, see [4]) and represent the nonlinear load-displacement response of the system due to the first 

application of the load (virgin loading). These can be represented by either a nonlinear or a multi-

linear curve. Unload-reload curves represent the soil-structure behaviour when the load is removed 

and reapplied (as per a cyclic load regime). The purpose of modelling this aspect is such that the 

previous maximum force (stress) applied to the soil is memorized by the model. Some coupled 

BNWF models are capable of directly modelling cyclic degradation, however most other models 

require the specification of parameters that are a function of dissipated hysteretic energy or 

cumulative displacement ductility. Generally, cyclic degradation can be modelled by specifying 

stiffness or strength degradation factors to be applied to unload-reload curves. The rate of degradation 

for variable amplitude loading will depend on the number of load cycles. Radiation damping, caused 

by the propagation of waves away from the foundation, can be modelled using a linear or nonlinear 

dashpot attached in parallel with a Winkler spring. There are a range of methods available to specify 

damping constants for use with this model. 

Kampitsis et al. [8] describe the development of an advanced dynamic BNWF model, developed 

based on Timoshenko beam theory, to investigate its accuracy in terms of modelling kinematic and 

inertial interaction of a soil-pile-structure system for seismic applications. The model encompasses the 

effects of geometrical nonlinearity, rotary inertia and shear deformation. A case study of a pile-

column-bridge deck founded in two cohesive soil layers and subjected to earthquake excitation is 

investigated. The efficacy of the proposed model is investigated against a simplified beam finite-

element (FE) model and a fully 3-D continuum FE scheme. The spring configuration in the model 

consists of a nonlinear p-y spring connected in series with an elastic spring-damper element. The near 

field plastification of the soil is accounted for by the nonlinear spring and the far-field confining 

stiffness (viscoelastic characteristics) is incorporated by the elastic spring-damper, known as a Kelvin-

Voigt element (see [15]). The model is shown to be capable of producing accurate results with a 

fraction of the computational time required by the full 3-D FE model. Boulanger et al. [13] evaluates 

the performance of a dynamic BNWF model against the results of a series of dynamic centrifuge 

model tests, where two pile supported structures are founded in a soil profile comprising soft clay 

overlying sand and subjected to nine earthquake shaking events. A parametric study is undertaken to 

assess the sensitivity of the analysis results to the chosen dynamic p-y parameters and site response 

calculations. The backbone curves for the p-y analysis in the clay were based on Matlock’s 

recommendation [16] for soft clay and the backbone curves for the sand layer were based on 

recommendations from the American Petroleum Institute (API) [4]. However, the initial stiffness 
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component for the sand p-y curve was estimated using the elastic theory of Vesic [17], with the small-

strain shear modulus (G0) adopted in the site response analyses. The dynamic response of the free-

field soil and the dynamic p-y analyses were undertaken separately. The results of the sensitivity 

studies suggest that there is a greater uncertainty associated with the site response calculations than 

with the dynamic p-y analysis when predicting the superstructure response for the conditions tested in 

this study. However, by varying the dynamic p-y parameters by different amounts, the peak 

superstructure displacement varied in the range of -26% to +24% but the change was only greater than 

±10% for 6 of the 32 parametric cases. The method, therefore, would still seem to be quite sensitive to 

the magnitude of the parameters chosen to model the nonlinear dynamic response.  

1.3 Synopsis of paper 

As mentioned above, one of the primary issues facing researchers and designers is that beam on 

nonlinear Winkler foundation models for dynamic applications typically require the specification of 

many parameters and the results obtained in many cases can be quite sensitive to the parameters 

chosen. Undertaking additional site investigations or laboratory testing is often required to accurately 

calibrate the models developed so as to ensure that the results obtained are realistic. In this paper, the 

specification of an initial stiffness parameter and its effect on the resulting dynamic response at very 

low strain levels is investigated. For small-strain applications, a unique value of stiffness, either the 

small-strain shear (G0) or Young’s (E0) moduli can be used to model the elastic soil response. This 

parameter is also one of the key inputs required to model the initial stiffness response when large-

strain nonlinear dynamic response is modelled (see [13]). The primary issue considered in this paper 

is the specification of an initial stiffness parameter that accurately reflects the in-situ small-strain 

stiffness of the combined soil-pile system. This initial stiffness parameter, known as the coefficient of 

subgrade reaction in a static analogue, can be a difficult parameter to specify in that it typically varies 

with loading scheme, geometry of the foundation and the type of subgrade material.  

This paper presents a comparison of the performance of five different subgrade reaction models used 

in the small-strain dynamic modelling of a soil-pile system. These models are discussed in section 2.0. 

A numerical model programmed in MATLAB considers the pile and surrounding soil as a beam 

supported by linear-elastic springs, as per the Winkler approximation for small-strain applications. In 

the first instance, a range of synthetic soil stiffness profiles and pile geometries are generated and a 

sensitivity analysis is performed to predict the natural frequencies and mode shapes of the system and 

assess their sensitivity to changes in the pile geometry and soil properties. Secondly, a field study is 

performed in which two 340 mm diameter steel pipe piles were driven to various slenderness ratios 

(depth, L divided by diameter, D) and their natural frequency and damping ratios are measured. The 

natural frequency is measured by inputting a lateral excitation to the pile head using a calibrated 

modal hammer and measuring the resulting acceleration from accelerometers placed along the pile 
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shaft. These input force and output acceleration signals are used to develop Frequency Response 

Functions (FRFs) in order to estimate their frequency content. Damping is measured using a curve-

fitting technique to estimate the damping ratio of the pile-soil system from the acceleration time-

domain decay resulting from the application of the impulse force. An estimate of the small-strain 

shear modulus (G0) for the site was obtained using shear wave velocity data from a site investigation. 

This small-strain G0 value was used to estimate coefficients of subgrade reaction for the pile-soil 

systems using a range of theories discussed in section 2.0. A direct modelling of the experimental 

impact test for each pile was undertaken and the ability of each subgrade reaction model to predict the 

pile response at low strain levels is assessed and discussed in the final section of the paper. 

2.0 Background to subgrade reaction theories 

There have been a number of methods proposed to model soil-structure interaction using Winkler 

springs. These models were typically developed for the application to static problems; however, their 

efficacy at modelling the small-strain (elastic) dynamic behaviour is of interest in this paper. Some 

models account for the flexural rigidity of the foundation to which the spring is attached whereas 

other methods specify spring constants without consideration of foundation geometry or flexibility. A 

brief review of key assumptions in these models is discussed.  

Biot [18] presented a solution for the problem of an infinite beam with a concentrated load, resting on 

a 3-D elastic soil continuum. He found a correlation between the continuum elastic theory and the 

Winkler model by equating the maximum moments in the infinite beam and developed an empirical 

equation for the coefficient of subgrade reaction, ks [19] as shown in Eq. (2). 
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where E0 is the small-strain Young’s modulus of the soil elements (N m
-2

), D is the width of the 

foundation element (m), EI is the flexural rigidity of the foundation element (N m
2
), and vs is the 

Poisson’s ratio of the foundation soil. Using a similar approach, Vesic [17] derived an equation for ks 

by matching the maximum displacements of the infinite beam [19] as shown in Eq. (3). 
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which is of similar form to Eq. (2). A modified version of the equation shown in Eq. (3) was used by 

Ashford and Juirnarongrit  [20] for modelling the dynamic response of piles at low strains to 

investigate the effect of pile diameter on the initial modulus of subgrade reaction. They substituted the 

constant value 0.65 in Eq. (3) for 1.0 since this was deemed to provide the closest agreement between 
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Vesic’s lower-bound estimation and an upper-bound version provided by Bowles [21] which 

indicated that the modulus of subgrade reaction should be doubled to account for soil presence on 

both sides of the pile. The value of 1.0 was found to provide the closest agreement between both 

estimations, since in reality for a pile under lateral loading gapping may occur, and hence loss of soil 

contact may occur. Since piles are commonly modelled as beams supported by springs for both static 

and dynamic applications, both the aforementioned formulations for coefficient of subgrade reaction 

are suitable for comparison in this paper.  

Comparable expressions have been developed to compute the coefficient of horizontal subgrade 

reaction for buried circular conduits (e.g. pipeline) [22,23]. Since these are similar to piles, the 

approaches are considered in this study. Meyerhof & Baike [22,23] proposed an equation in which the 

coefficient of subgrade reaction for a circular cross-section is expressed as a function of the soil 

elastic modulus (E0), the Poisson’s ratio and the element width (D). The soil is assumed to be 

isotropic, homogeneous and to have a linear stress-strain relationship, (a viable assumption for small-

strain dynamic loading). This is shown in Eq. (4).   

)1( 2

0

s

s
vD

E
k


                                                                    (4) 

Alternative formulations were developed by Klopple & Glock [22–24], See Eq. (5) and Selvadurai 

[23,24], Eq. (6).  
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The variations evident in Equations 2 to 6 arise from the adoption of different assumptions in their 

formulation. As a result, for identical soil conditions and pile geometries, different estimates of soil 

stiffness are obtained. In order to highlight the variation of ks values obtained using the five methods 

considered, a sensitivity study was performed in the first instance in which the coefficient of subgrade 

reaction was calculated for a range of pile diameters and constant soil densities. For the purpose of 

this preliminary study, Young’s moduli (E0) values of 50 MPa, 100 MPa and 150 MPa are used to 

approximate the stiffness of loose, medium dense and dense sand deposits at small strains. 

The difficulty faced by a designer in choosing stiffness parameters is evident in Table 1, which 

presents values of ks predicted using the five models for a 0.75 m diameter pile installed in soil with a 

constant elastic modulus (E0) of 50 MPa. The predicted ks values ranged from 30.2 MN m
-3

 to 121.2 
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MN m
-3

. The two methods most widely used for foundation analysis, Biot’s and Vesic’s produced ks 

values which varied by ≈ 27%. The effect of increasing the pile diameter from 0.25 m to 2 m for the 

three soil densities considered is illustrated in Fig. 2, which reveals: 

1. As expected the ks value increased as the soil density increased. For a given sand density, ks 

reduced as the pile diameter increased. 

2. The Klopple and Glock model (Eq. 5) predicted the highest values of ks, whilst the Vesic 

model (Eq. 3) gave the lowest. 

3. Whilst significant differences were evident between the ks values predicted using the different 

models, the relative difference depended on the sand density and pile geometry. For a pile 

with D = 0.5 m in loose sand the Vesic model predicted ks values approximately 24% of those 

predicted using the Klopple and Glock model. For the same pile geometry in dense sand, 

predicted ks values using the Vesic model were approximately 26.6% of those using the 

Klopple and Glock model. 

Table 1 Comparison of coefficients of subgrade reaction models 

Pile Properties Soil Properties Coef. Subgrade Reaction ks (MN m-3) 

D (m) E (GPa) I (m
4
) vs Es (MPa) Biot Vesic M & 

B 

K & G Selvadurai 

0.75 200 0.00677 0.1 50 39.6 30.2 67.3 121.2 43.8 
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Fig. 2. Variation of coefficient of subgrade reaction with diameter and soil elastic modulus. (a) Loose 

sand with E0 = 50 MPa; (b) Medium dense sand with E0 = 100 MPa; (c) Dense sand with E0 = 150 

MPa. 

3.0 Structural modelling 

In order to perform the sensitivity analyses of the different frequency responses predicted by each 

formulation a numerical finite-element model of the pile and soil was created in the MATLAB 

programming environment. Pile-soil systems can be modelled using beam and spring elements, 

whereby the beam elements model the pile structural behaviour and the spring elements model the soil 

behaviour. P-y springs can be used to model lateral soil behaviour whereas t-z springs can be used to 

model the vertical soil reaction along the pile. As the current analysis solely pertains to lateral pile 

response, only the elements relevant to lateral motion are modelled. The pile is therefore modelled 

using standard four degree of freedom (4-DOF) Euler-Bernoulli beam elements, each containing two 

nodes. Each node has a translational and rotational degree of freedom and cannot deform axially. The 
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mass and stiffness matrices of this type of element are available in [25]. The influence of the soil on 

the dynamic system was modelled using a linear p-y spring, attached to one node of each beam 

element (see Fig. 3). This combined element has five degrees of freedom (5-DOF), with the lateral 

translation governed by a combination of the beam element flexural rigidity and the soil-spring lateral 

stiffness (see the insert in Fig. 3) [10]. It is noteworthy that the exclusion of vertical degrees of 

freedom (and t-z springs) from the model will have no effect on the modelled lateral response, due to 

the 1D nature of the system. A system of elemental stiffness and mass matrices were assembled 

together in line with the procedure outlined in [25] in order to create global stiffness and mass 

matrices capable of representing the entire pile-soil system. The dynamic response of this discretized 

finite-element model can be obtained by solving the second-order matrix differential equation shown 

in Eq. (7). 

                          FxKxCxM ppp                                                (7) 

where [M], [C] and [K] are the global mass, damping and stiffness matrices for the combined system. 

The vectors px , px  and px  describe the displacement, velocity and acceleration of each degree of 

freedom in the model at a given time step in the analysis. F is a vector describing the external forces 

acting on each degree of freedom for a given time step in the analysis.  

A time-domain dynamic analysis can be undertaken by solving the second-order differential equation 

shown in Eq. (7) using numerical integration. There are a number of integration methods available 

that can be broadly segregated into implicit and explicit methods. Implicit integration methods such as 

Wilson-theta and Newmark methods (see [26]) can provide an unconditionally stable solution, 

through careful choice of the integration parameters. The integration scheme employed for modelling 

in this paper is the Wilson-Theta method as described in [27]. A value of θ = 1.4 was chosen as this is 

known to provide unconditional stability in the model [26]. It is noteworthy that the Wilson-theta 

method may underestimate the contribution from higher order modes of vibration in the transient 

response, therefore if a more comprehensive analysis is desired (i.e. observing higher modes), the 

Newmark method may be more appropriate. However, for the purpose of obtaining the first natural 

frequency response in this paper, either method works well. Integrating Eq. (7) allows for obtaining 

numerical displacements, velocities and accelerations in the time-domain from any degree of freedom 

in the model. 

Damping is modelled as Rayleigh damping, where the damping matrix [C] is formulated as a linear 

combination of the mass and stiffness matrices for the combined soil-pile system. This is shown in 

Eq. (8). 

     KMC                                                             (8) 
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where  2121 /2    and  21/2   . 
1  and 

2  are the first and second circular 

frequencies of the system and   is the damping ratio of the system. Damping can be modelled by 

specifying a damping ratio and the first and second circular frequencies can be obtained by 

performing an eigenvalue analysis in the model. This is achieved by specifying a system matrix as 

shown in Eq. (9). 

     KMD
1

                                                             (9) 

where [D] is the system matrix, obtained from the matrix division of the global stiffness and mass 

matrices. The eigenvalues and eigenvectors of this matrix represent the system un-damped natural 

frequencies and mode shapes and are obtained using MATLAB’s in-built ‘eig’ function. The degrees 

of freedom corresponding to laterally displaced mode shapes are extracted from each model such that 

a comparison of mode shapes can be undertaken for each formulation of subgrade reaction. A 

schematic of the numerical model is shown in Fig. 3 with an insert showing the degrees of freedom 

for the combined pile-soil elements. 

 

Fig. 3. Embedded pile numerical schematic. 

 

 

kS,1

kS,2

kS,N

E
m

b
ed

d
ed

 P
il

e,
 L

S
ti

ck
-u

p

D

x

E, I, , A

1

4

3
5

2



Published in Soil Dynamics and Earthquake Engineering, 2016 (81C) pp. 27-41   

4.0 Sensitivity study 

4.1 Background to analysis & soil stiffness 

In order to conduct a sensitivity study investigating the different frequency responses predicted by the 

implementation of different subgrade reaction (initial) stiffnesses, it was first necessary to develop 

synthetic soil profiles for comparison purposes. The profiles considered in this analysis represent a 

loose sand deposit and a dense sand deposit and they vary with effective stress (depth). Open-ended, 

tubular steel piles embedded L = 10, 20, 30 and 40 m into the sand profiles are considered as the 

foundation pile element, each with a 1 m stick-up above ground level (see Fig. 3). The pile diameter 

(D) was varied between 0.25 m and 10 m using the increments shown in Table 2, such that L/D ratios 

ranging from 4 to 40 were represented. The pile thickness is maintained constant at 50 mm for each 

case. The sensitivity design cases considered are summarized in Table 2. The grey cells represent 

design cases considered. 

Table 2. Range of pile geometries considered in the sensitivity study. 

Loose / 

Dense 

Sand Cases 

D (m) 

0.25 0.5 1 2 5 10 

L (m) 

10             

20             

30             

40             

 

Soil profiles with depth-dependent stiffness were created. In order to achieve this, a Young’s modulus 

value that varied with depth was hypothesized based on a number of assumptions. In the first instance, 

the American Petroleum Institute design code [4], which describes sand behaviour based on relative 

density (Dr) values, was used to classify soil stiffness. Relative density values of 30% and 80% were 

considered to approximate the conditions required to classify sand profiles as “loose” and “dense” 

[28]. These Dr values were considered constant over the numerical depth of embedment of the pile. 

Synthetic Cone Penetration Test (CPT) profiles were generated based on these relative density values 

using a relation developed by [29] and shown in Eq. (10). 
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which can be re-arranged in order to obtain a synthetic cone tip resistance parameter (qc) profile as 

follows: 
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   rvc Dq 91.2exp'60
7.0

                                                         (10b) 

where qc is the cone tip resistance (kPa) and σ’v is the vertical effective stress (kPa)

For the loose and dense sand cases, values of bulk density (γ) were taken as 18 kN m
-3 

and 20 kN m
-3

 

respectively and the analysis assumes saturated conditions, with γw = 10 kN m
-3

. These qc profiles 

were converted to equivalent profiles of shear modulus (G0) using the expression shown in Eq. (11) 

[30,31].

               12

0G


  CBAqc
                                                    (11) 

where A = 0.0203; B = 0.00125; C = 1.216E-6 and   5.0

0'


 vac Pq  . Pa = 100 kPa, 0'v = vertical 

effective stress (kPa). The resulting G0/qc values for the soil profiles assumed ranged from 13-24 for 

the loose sand to 4-9 for the dense sand profiles. The Young’s modulus (E0) profiles were obtained 

from the G0 profiles using Eq. (12), with a small-strain Poisson ratio of ν = 0.1. The synthetic qc and 

E0 profiles that were derived are shown in Fig. 4.  

 vGE  12 00                                                               (12) 

These E0 profiles were used with each of the subgrade reaction formulations described in section 2.0 

to generate modulus of subgrade reaction profiles for use in the dynamic analysis of each pile design 

case shown in Table 2. The first step involved converting the coefficient of subgrade reaction (ks) 

values to a profile of the modulus of subgrade reaction (K), by multiplying by the pile diameter (D). 

The next step involved creating individual spring stiffness moduli by multiplying the modulus of 

subgrade reaction (K) at a given depth by the spacing between subsequent springs at that depth (see 

Fig. 3). Spring spacing was maintained constant at 0.25 m for each design case considered. 
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Fig. 4. Synthetic soil profiles. (a) Loose and dense CPT qc profiles; (b) Loose and dense Young’s 

modulus (E0) profiles. 

4.2 Dynamic response  

The un-damped natural frequencies predicted by the numerical models for each subgrade reaction 

formulation are summarized in Table 3. Both the loose sand case and the dense sand case are 

presented, and the coefficient of variation for each L and D is calculated. The coefficient of variation 

is defined as the sample standard deviation (σ) divided by the sample mean (μ). The un-damped 

natural frequencies were obtained by performing an eigenvalue analysis in each numerical model. The 

percentage difference between Vesic’s model and Biot’s model, which are most widely used for 

foundation design, was also calculated (see Table 3). Biot’s model is seen to provide a higher estimate 

of the natural frequency with the difference becoming larger as the L/D ratio of the pile decreased. 

For L/D ratios typical of offshore piles (L/D ≈ 5), the difference between the natural frequency 

predicted using these two subgrade models were in the range 13.95 to 16.7% for loose sand and 

14.9% to 16.9% for dense sand. A comparison of frequencies predicted using all the models is 
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presented graphically in Fig. 5 for the loose sand case, with Fig. 5a illustrating the effect of varying 

the pile diameter for a pile of fixed length, L = 10 m. Fig. 5b considers the effect of varying the pile 

length for a pile with a fixed diameter, D = 1 m. The data reveal that: 

(i) When the pile length was fixed at 10 m (Fig. 5a) all models predicted that the frequency 

decreased when the pile diameter increased above 0.5 m. 

(ii) When the pile diameter was fixed at 1 m (Fig. 5b) the natural frequency of the piles was 

not very sensitive to the pile length in the range considered, and was relatively constant 

for L > 20 m or L/D > 20. 

(iii) It is noteworthy that the formulations put forward by Biot and Vesic for the spring 

stiffness are dependent on the pile structural properties as well as the soil input stiffness, 

whereas the remaining methods are independent of the pile properties. This can lead to 

changes in the order of predicted responses depending on the magnitude of the pile 

structural properties under investigation. 

 

Fig. 5. Comparison of predicted frequency responses for each subgrade reaction theory for loose sand. 

(a) Frequency response by each theory for L=10m and varied pile diameter; (b) Frequency response 

by each theory for D=1m and varied penetration depth. 
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Table 3a Comparison of design cases for loose sand profile 

LOOSE SAND: 

L 

[m] 

D 

[m] 

BIOT 

[Hz] 

VESIC 

[Hz] 

M&B 

[Hz] 

K&G 

[Hz] 

SELV 

[Hz] Mean: 

Standard 

Dev: Coef. Var: 

% Diff 

Biot 

& 

Vesic: 

10 0.25 19.80 18.41 24.39 28.86 21.43 22.576 4.158 0.184 7.288 

10 0.5 20.02 18.31 24.86 30.38 21.38 22.990 4.783 0.208 8.952 

10 1 18.08 16.01 22.64 28.71 18.81 20.850 5.007 0.240 12.184 

10 2 13.80 12.00 17.20 22.80 13.90 15.940 4.269 0.268 13.953 

          

  

20 0.5 20.03 18.32 24.87 30.39 21.38 22.997 4.781 0.208 8.944 

20 1 18.92 17.04 23.15 28.89 19.62 21.524 4.673 0.217 10.450 

20 2 17.02 15.01 20.33 25.77 16.98 19.021 4.230 0.222 12.530 

20 5 12.40 10.60 14.40 19.10 11.70 13.640 3.352 0.246 15.652 

          

  

30 1 18.92 17.05 23.15 28.89 19.63 21.527 4.672 0.217 10.442 

30 2 17.14 15.23 20.38 25.78 17.13 19.134 4.153 0.217 11.814 

30 5 13.98 12.02 16.00 20.78 13.11 15.179 3.453 0.227 15.082 

          

  

40 1 18.92 17.05 23.15 28.89 19.63 21.527 4.672 0.217 10.442 

40 2 17.15 15.23 20.39 25.78 17.13 19.137 4.152 0.217 11.813 

40 5 14.45 12.58 16.38 20.95 13.63 15.597 3.304 0.212 13.862 

40 10 11.66 9.86 12.81 16.90 10.40 12.324 2.802 0.227 16.731 

        

Max 0.2678436 16.731 

        

Min 0.1841719 7.288 

 

 

Table 3b Comparison of design cases for dense sand profile 

DENSE SAND: 

L 

[m] 

D 

[m] 

BIOT 

[Hz] 

VESIC 

[Hz] 

M&B 

[Hz] 

K&G 

[Hz] 

SELV 

[Hz] Mean: 

Standard 

Dev: 

Coef. 

Var: 

% Diff 

Biot & 

Vesic: 

10 0.25 24.24 22.51 29.09 34.14 25.72 27.138 4.600 0.169 7.369 

10 0.5 25.12 22.91 30.47 37.03 26.28 28.363 5.569 0.196 9.185 

10 1 23.62 20.95 28.57 35.76 24.00 26.578 5.816 0.219 11.955 

10 2 18.70 16.10 22.50 29.80 18.30 21.080 5.391 0.256 14.943 

          

  

20 0.5 25.13 22.92 30.47 37.03 26.29 28.368 5.566 0.196 9.179 

20 1 24.04 21.58 28.77 35.80 24.43 26.922 5.597 0.208 10.794 

20 2 21.87 19.30 25.48 32.20 21.39 24.050 5.070 0.211 12.479 

20 5 16.60 14.10 18.70 24.80 15.20 17.880 4.233 0.237 16.287 
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30 1 24.04 21.58 28.77 35.80 24.43 26.923 5.596 0.208 10.788 

30 2 21.90 19.37 25.50 32.21 21.44 24.083 5.049 0.210 12.237 

30 5 18.27 15.71 20.35 26.21 16.79 19.466 4.153 0.213 15.050 

          

  

40 1 24.04 21.58 28.77 35.80 24.43 26.923 5.596 0.208 10.788 

40 2 21.90 19.38 25.50 32.21 21.44 24.085 5.048 0.210 12.229 

40 5 18.53 16.10 20.55 26.26 17.14 19.716 4.021 0.204 14.024 

40 10 15.37 12.97 16.45 21.56 13.42 15.954 3.438 0.216 16.932 

        

Max 0.255736 16.932 

        

Min 0.169491 7.369 

 

A summary of all the data from the sensitivity analyses is set out in Table 3. Overall, the coefficient of 

variation between the frequencies predicted by each model varied from 18.4% to 26.8% for the loose 

sand case, and 16.9% to 25.6% for the dense sand case. This highlights the sensitivity of the 

calculated frequency response to the choice of subgrade model when the soil and pile properties are 

constants. The percentage difference between Biot’s model and Vesic’s model varied from 7.3% to 

16.7% for the loose sand case and 7.4% to 16.9% for the dense sand case. This large variation would 

have a significant effect on the frequency response predicted at the various limit states considered in 

design, since this initial stiffness parameter governs the small-strain behaviour for nonlinear 

modelling.  

In order to highlight the effect of the variation in the predicted natural frequency, a time-domain 

dynamic response of a pile is undertaken by solving the second-order differential equation shown in 

Eq. (7) using the Wilson-theta method. The pile with a diameter of 0.25 m and embedded depth of 10 

m in loose sand is considered. An un-damped time-domain acceleration signal is generated as a result 

of an excitation input, in this case a short duration impulse force of magnitude equal to 500 N applied 

to the transverse degree of freedom at the pile head. The analyses were repeated using the soil 

stiffness derived for the five subgrade models considered. The results are shown in the time domain in 

Fig. 6a. From this plot, it is evident that each signal is oscillating at a different frequency and 

amplitude. The responses in Fig. 6a were analysed with a fast Fourier transform to obtain the 

frequency response spectra, shown in Fig. 6b. The peak of each plot represents the dominant 

frequency and should closely approximate the value obtained in the eigenvalue analyses in Table 3 

allowing for some signal resolution errors. The significant effect of input stiffness on the natural 

frequency obtained is illustrated clearly in Fig. 6b by the disparity between the frequency peaks for 

constant soil and pile properties. 
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Fig. 6. Dynamic response example - design case 1; (a) Acceleration responses predicted by each 

model (g); (b) Frequency spectrum of acceleration signals in (a). 

 

The disparity in predicted frequency can be further highlighted by observing the differences in the 

first mode shapes extracted from the eigenvalue analysis in the models. These mode shapes are 

plotted for the same design case in Fig. 7, where 0 m represents the pile base, and a 1 m stick-up 

above ground level is considered. The mode shapes correspond to the first mode of vibration and are 

plotted relative to distance from the pile tip. As can be seen, a difference is observed which matches 

the response seen in Fig. 6. The difference between the mode shapes shown in Fig. 7 arises directly as 

a result of the difference in the spring stiffness formulation from each subgrade reaction method. 
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Fig. 7. First mode shapes predicted by implementation of different subgrade reaction theories. 

 

5.0 Field experiment 

5.1 Test procedure and site investigation 

In order to examine the effect of pile slenderness (L/D ratio) on the measured and predicted pile 

response, a field test was undertaken. Two 340 mm diameter steel open-ended piles were driven to an 

embedment depth of 7 m (L/D = 21) in dense, over-consolidated sand. The sand around Pile 1 was 

then excavated (See Fig. 9 for photo of experiment) until the pile embedment depth was 4.5 m (L/D = 

13). A similar excavation process was undertaken for Pile 2 until the pile embedment depth was 3.1 m 

(L/D = 9). An experiment was performed in which three accelerometers were fitted near the pile head 

of each pile (see Fig. 8) and a modal hammer was used to perform a small-strain vibration test. The 

natural frequencies obtained in the experiment are compared in this section to numerical predictions 

obtained using the modelling procedure outlined in section 3.0.   
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Fig. 8. Experimental layout; (a) Experimental schematic for Pile 1 & 2; (b) Numerical schematic for 

Pile 1; (c) Numerical schematic for Pile 2. 
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Fig. 9. Layout of experiment – Pile 2. 

The field investigation was undertaken at the University College Dublin (UCD) dense sand test bed 

located near Blessington, southwest of Dublin, Ireland. This test site has been developed over the past 

eleven years and has been used for a number of model, prototype and full scale foundation 

experiments [32–35]. A full description of the geotechnical properties of the site can be obtained in 

[5,32,36]. The site is comprised of very dense, fine sand with a relative density between 90% and 

100%. The sand has a bulk density of 2.10 Mg m
-3

, a unit weight of 19.8 kN m
-3 

and a constant 

volume friction angle of 37°. The peak friction angle ranges from 54° to 40° over the depth range of 

interest in this paper. The equilibrium water depth is approximately 13 m below ground level (bgl). 

The sand is partially saturated, with the degree of saturation above the water table being between 63% 

and 75%.  The shear wave velocity profile for the site is shown in Fig. 10a and the derived Young’s 

modulus (E0) profile for the site is shown in Fig. 10b. The shear wave velocity profile was obtained 

using the Multi-channel Analysis of Surface Waves (MASW) method (see [37]). The E0 profile is 

obtained by first converting the shear wave velocity measurements to the small-strain shear modulus 

(G0) using the relation shown in Eq. (13). 

2

0G sV                                                                             (13) 
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where ρ is the soil density (kg m
-3

). Once the shear modulus profile is obtained, the Young’s modulus 

(E0) profile can be derived using the relation shown in Eq. (12). This derived E0 profile is used with 

each of the subgrade reaction formulations discussed in section 2.0 to ascertain which formulation 

gives the closest approximation of the system natural frequency at low strain for the given 

experimental geometries considered.  

 

Fig. 10. MASW test results from Blessington test site; (a) Shear wave velocity measurements; (b) 

Young’s modulus (E0) profile 

 

5.2 Experimental frequency response and damping ratios  
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five minutes. The input excitation for this testing regime comes from environmental influences such 

as wind and other sources. The ambient acceleration signals were analysed using two methods. The 

first method involved passing each individual time-domain acceleration signal from each 

accelerometer through a fast Fourier transform algorithm implemented in MATLAB. The second 

method involved analysing all three time-domain accelerometer signals simultaneously using 

Frequency Domain Decomposition (FDD) [38]. The FDD procedure is an improvement on the 

classical Fourier transform approach as it is less sensitive to frequency resolution problems and allows 

for easier estimation of closely spaced modes. The FDD process involves taking the Singular Value 

Decomposition (SVD) of the spectral matrix and decomposing it into a set of auto-spectral density 

functions that each correspond to a single degree of freedom (SDOF) system [39]. The method is most 

effective when the input excitation is broad-banded (white noise) and the structure is lightly damped. 

Due to the relatively large free length of each pile above the new ground line, this method is ideal for 

the analysis of the signals. The input ambient excitation is assumed broad-banded.  

The impact testing regime involved applying an impulse to each pile using a calibrated modal hammer 

and measuring the output acceleration response. The hammer used was a 086D50 model 

manufactured by PCB Piezontronics.  This is a large sledgehammer, which was calibrated to excite 

low frequency resonances (fundamental mode) by fitting a soft impact tip to the heavy impact head. A 

number of impulses were applied during each testing phase to ensure repeatability of the results. The 

impact test signals were analysed by developing Frequency Response Functions (FRFs), which show 

the ratio of the Fourier transform of the measured output v(t) to the Fourier transform of the input 

stimulus u(t) [12,40]. This is shown in Eq. (14). In this instance, the input stimulus is the time history 

of forces over the impact duration and the output response is the measured acceleration from each 

accelerometer. A separate FRF is developed for each force-acceleration pair and the results are 

averaged.  

 
 
 



U

V
H                                                                      (14) 

where V(ω) is the Fourier transform of the system output and U(ω) is the Fourier transform of the 

system input. An example of an ambient and forced acceleration signal and the resulting frequency 

response plots for Pile 1 is shown in Fig. 11. 
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Fig. 11. Example of analysis for Pile 1; (a) Ambient acceleration signals (200 second segment 

shown); (b) Frequency Domain Decomposition (FDD) of ambient signals shown in (a); (c) Forced 

acceleration response from top accelerometer (g); (d) FRFs of forced accelerations responses. 

Fig. 11a shows a 200 second long sample of the ambient acceleration signal obtained from the 

vibration testing of Pile 1. Fig.11b shows the frequency response spectrum obtained using the FDD 

algorithm on all three the signals shown in Fig.11a.  Fig.11c shows the acceleration response 

measured as a result of applying the impact force from the modal hammer. The response shown is 

from accelerometer 1 (other two accelerations are omitted for clarity) which is at the top of the pile. 

The impulse force was applied at a distance of 1 m below the pile head. Fig.11d shows the FRFs 

developed for the impulse applied to the pile and each of the acceleration responses measured. The 

results were quite consistent from each accelerometer. The slightly lower natural frequencies 

measured using the impact response testing relative to the ambient response testing may be as a result 

of the strain-level dependence of soil stiffness or due to signal resolution issues with the shorter 

signals. This slight difference is evident between Figs. 11b and 11d and is shown in Table 4. 

Damping was measured from the decay in the acceleration signals resulting from the impact testing. 

The purpose of measuring the damping ratio for the experimental signals is to allow a direct 

modelling of the experimental tests in the numerical environment so that the predicted frequencies 

from the numerical model can be compared directly to the experimental results (i.e. a comparison of 

damped natural frequencies from the experiment and the model can be made). The measured damping 
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ratios can be modelled in the numerical model using the Rayleigh damping approach discussed in 

section 3.0. The damping ratio for each of the impact vibration tests was measured from the 

exponential time-domain decay as seen in the signal shown in Fig. 12. There are a number of ways to 

estimate damping such as logarithmic decrement method [12,20,41,42], half-power bandwidth 

method [43,44] and curve-fitting, as well as numerous others. In this paper, damping was estimated 

using a curve fitting technique, whereby an exponential decay function is fit to the oscillation peaks of 

the time-domain signal in a least-squares sense [41]. By way of a check, the damping ratios were also 

measured using the logarithmic decrement technique averaged over the number of peaks used for the 

curve-fitting method. For the exponential curve fitting method, the equation takes the form shown in 

Eq. (15). 

  tt
eueutu n  

 00                                                              (15) 

where u0 and y are the curve-fitting parameters for the exponential function, x is the system damping 

ratio and ωn is the un-damped circular frequency (rad s
-1

). x can be estimated  using the relation 

shown in Eq. (16). 

fn 








2
                                                                     (16) 

where f is the natural cyclic frequency (Hz) of the signal. As with all multi-degree of freedom 

systems, the time-domain acceleration response will contain contributions from numerous modes as 

well as from noise [12]. In the first instance, the signal is filtered using a low-pass Butterworth filter 

to isolate the portion of the signal pertaining to the first natural frequency in bending, which removes 

the influence of higher modes and noise associated with the impact testing from the signal. Once 

filtered, an exponential decay function is fitted to the peaks in the time domain using a least squares 

algorithm by specifying the number of peaks to fit. In this case, a total of 50 peaks were used to obtain 

an estimate of the damping ratio for the Pile 1 testing and 30 peaks for the Pile 2 testing (due to the 

lower frequency and hence lower number of peaks available for Pile 2). The first peak is ignored in 

each signal as this typically arises as a result of the application of the impulse force to the pile. 

The filtering and curve-fitting process is shown in Fig. 12. Fig. 12a shows the original and filtered 

accelerations signals from the top accelerometer of Pile 2 due to the application of an impulse from 

the modal hammer. From this figure, we can see that the unfiltered signal in grey contains a 

significant amount of high frequency vibrations, which arise as a result of the application of the 

impulse force to the pile inducing localized cross-sectional deformation in the vicinity of the impact. 

Similar examples of this phenomenon can be found in [5,12]. Filtering the signal has the effect of 

removing the high frequency oscillations at the beginning of the unfiltered signal and exposing the 
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signal pertaining to the first natural (bending) frequency of vibration. The filtered signal is shown in 

heavy black. Fig. 12b illustrates the exponential curve fitting to the filtered signal to estimate the 

damping ratio. As mentioned, the first peak is ignored as this is generally understood to be as a result 

of the application of the impulse force [12]. 

 

Fig.12. Measurement of damping ratio. (a) Unfiltered and filtered accelerations; (b) Fitting 

exponential decay function 

 

The results of the experimental analysis of both piles are presented in Table 4. The damping ratios 

shown are the average values taken over a number of impacts for the top accelerometer located near 

the pile head for each pile. 

Table 4 Experimental Results from Pile Testing. 

Pile 1 - L/D = 13 

Method: Frequency ±Standard 

Deviation (Hz): 

Damping ratio ±Standard 

Deviation (%) 

Ambient (FDD)  21 - 

Forced (FRF) 20.06±0.098 1.8 ±0.076 

Pile 2 - L/D = 9 

Method: Frequency ±Standard 

Deviation (Hz): 

Damping ratio ±Standard 

Deviation (%) 

Ambient (FDD)  12.49 - 
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Forced (FRF) 12.14±0.122 1.26 ±0.1 

 

6.0 Comparison of experimental results with numerical analysis 

In order to compare the experimental results with numerical predictions obtained using the five 

subgrade reaction stiffness formulations, a direct modelling of the forced vibration test was 

undertaken for both Pile 1 and Pile 2. The reason behind comparing the forced vibration tests to 

numerical models instead of comparing the ambient tests is simply because the input excitation for the 

ambient test is unknown hence modelling this would require modelling a random excitation input. 

Since a number of impact tests were undertaken on each pile, to facilitate a direct comparison, only 

the first impact test is modelled for each pile (however, it is noteworthy that the results are similar for 

each case, see Table 4). The input force measured from the modal hammer for each pile test was 

modelled as an input to the numerical model and is applied to the lateral degree of freedom closest to 

the point of application of the force on the real system. For Pile 1, the force is applied 1 m below the 

pile head and for Pile 2 the force is applied 2 m below the pile head. The damping ratio (x) measured 

using the curve-fitting technique described above was modelled in the numerical model using the 

Rayleigh damping formulation discussed in section 3.0.   

The stiffness values derived for Pile 1 using the five subgrade reaction models are shown in Fig. 13, 

with the individual spring constants highlighted using markers. The stiffness profile is plotted relative 

to the original ground level (pre-excavation) hence why the depth begins at -2.5 m below ground 

level. From this figure, the disparity in predicted stiffness using each of the five methods is evident 

once again by the spread of values. 
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Fig. 13. Stiffness profiles from each subgrade theory for the given pile dimensions for Pile 1(N m
-1

). 

Both the experimental results and numerical predictions for the impact test on Pile 1 are shown in Fig. 

14. Each of the five subgrade models is shown. Fig. 14a shows the experimental and predicted time-

domain acceleration decays for each of the subgrade stiffness formulations for the first impact test on 

Pile 1. These are arranged in a column, with each row showing the experimental results and the 

relevant numerical prediction. The signals from Fig. 14a were each analysed along with the force 

input to generate Frequency Response Functions (FRF) to obtain the frequency content as presented 

in Fig. 14b (see Eq. (14)). This figure shows that the frequencies predicted by each model employing 

the different subgrade reaction stiffnesses each overestimate the measured system response to varying 

degrees. The percentage difference between the experimental results and those predicted by each 

numerical model is presented in Table 5. 
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Fig. 14. Comparison of experimental and numerical results for Pile 1 impact test 1. (a) Time-domain 

acceleration signals from the experiment and each of the five numerical models, (b) Frequency 

response functions of experiment and each of the five numerical models. 

 

Table 5 Comparison of experimental results and numerical predictions. 

Pile 1 – L/D = 13 

Method Numerical 

Frequency (Hz) 

Impact Experimental (Hz) % Difference 

BIOT 24.9 20.26 20.5 

VESIC 23.93 20.26 16.6 

M&B 26.12 20.26 25.3 

K&G 27.83 20.26 31.5 

SELVADURAI 24.66 20.26 19.6 
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Pile 2 – L/D = 9 

Method Numerical 

Frequency (Hz) 

Impact Experimental (Hz) % Difference 

BIOT 13.18 12.21 7.6 

VESIC 12.70 12.21 3.9 

M&B 13.43 12.21 9.5 

K&G 14.16 12.21 14.8 

SELVADURAI 12.94 12.21 5.8 

 

As indicated in Fig. 14 and Table 5, all models overestimate the frequency (or stiffness) of both piles, 

with the largest over-prediction occurring for the pile with the highest L/D ratio. The numerical 

models also slightly over-estimate the magnitude of the acceleration in the time-domain, as can be 

seen in Fig. 14a. For Pile 2 (with an L/D ratio of 9), the models predicted a reasonable estimate of the 

frequency with over-estimates in the range 3.9% to 14.8%, whereas for Pile 1 (with a L/D ratio of 13) 

the over-estimation ranged from 16.6% to 31.5%.  

One possible explanation for the over-prediction in the case of Pile 1 may be the fact that this pile had 

a small cap located inside the head, the mass of which was not factored into the numerical model. 

Another viable reason for the over prediction of each model may lie with the effect of pile installation 

(driving) on the in-situ G0, an effect which was ignored in this study. While the experimental 

arrangement of inducing very small strains into the soil mass by impacting the pile with the modal 

hammer may justify the use of G0, the effect of pile installation inducing large strains in the shear 

zone around the pile may change significantly the operational shear modulus (G) of the sand. The 

difficulty with choosing an appropriate operational G value is that this parameter typically decreases 

with strain and increases with stress. The large strains that arise during the installation of the pile may 

reduce the operational G value in the vicinity of the pile. However, this effect may be counterbalanced 

by an increase in the far-field confining stiffness, an effect which arises due to the high stresses and 

over-consolidation that occurs as the pile tip passes during driving. In addition to these phenomena, 

aging has been shown to increase the stiffness characteristics of a soil mass, which may offset the 

effects of installation. As a result, the G0 was chosen for the analysis in this paper due to the difficulty 

in estimating an operational G value, which may have given improved results.  

It is noteworthy that there may also exist some errors in the estimation of the G0 profile for the test 

site from the multi-channel analysis of surface waves method. Any errors in the estimation of the G0 

profile will have knock-on effects for the comparison of the experimental and numerical predictions, 

particularly in the case of Pile 2 where the L/D ratio was obtained by reducing the depth of soil 

surrounding the pile to a greater degree than for Pile 1. Errors in the assumed G0 profile may 
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contribute for some of the disparities evident between the experimental results and numerical model 

predictions.  

Under the assumptions made in this paper, for both piles, Vesic’s model provided the closest 

approximation to the experimental measurements. 

 

7.0 Conclusions 

Dynamic soil-structure interaction covers a broad range of load states from small-strain vibrations to 

large-strain cyclic loading. The difficulty with modelling large-strain dynamic response of piles stems 

from the variation in the parameters required to model the nonlinear inelastic load-displacement 

response and associated cyclic degradation that occurs. In this paper, variation in the formulations for 

the initial (small-strain) stiffness of pile-soil systems is explored. A range of subgrade reaction 

theories are available with which to estimate the initial dynamic stiffness of piles founded in sand. In 

this paper, a sensitivity analysis was undertaken to establish the coefficient of variation between the 

frequency responses predicted using different stiffness formulations for a range of pile diameters and 

depths of embedment. The primary focus of the analysis was to establish the percentage difference 

between models proposed by Vesic and Biot, which were derived specifically for the case of infinite 

beams resting on elastic foundations. This analysis was undertaken by developing a numerical FE 

model using MATLAB, employing a Winkler spring-beam hypothesis. Secondly, a field investigation 

to obtain the frequency and damping response of two piles with different L/D ratios was undertaken at 

a dense sand test bed site. The pile response was compared to numerical models employing the site 

specific stiffness obtained from a geophysical investigation of the site and utilizing the different 

subgrade reaction models to develop spring stiffness coefficients. In the models, the force from the 

modal hammer and the damping ratios measured in the experiments were inputted into the numerical 

model so that a direct comparison of damped natural frequencies could be undertaken for each 

stiffness formulation. It was found that the Vesic model provided the closest approximation to the 

experimental responses for the given geometries and soil conditions considered in the experiments. 

Further work would include an analysis of piles with different diameters founded in different sand 

deposits to ascertain if there would be any noticeable change in the models predicting the closest fit. It 

is also recommended to vary the L/D ratios by way of changing the pile diameter in lieu of changing 

the depth of soil surrounding the pile, as any errors in the estimation of soil stiffness may be mitigated 

by ensuring a longer depth of embedment for experimental tests. The further development of the 

models would consider the range of other parameters required to model the nonlinear dynamic 

response and assess their performance against experimental measurements at larger strains. The 

current analysis only considers one pile diameter with two different L/D ratios. 
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The research may be useful in the ongoing development of offshore wind turbine foundation design 

where the dynamic response is paramount to the safe operation and lifetime of these structures.  
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