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Abstract 24 

Accurate characterisation of soil behaviour in Dynamic-Soil-Structure Interaction (DSSI) applications 25 

remains a significant challenge. Knowledge of the operational soil-structure interaction stiffness is 26 

important for applications ranging from earthquake engineering to offshore structures subjected to 27 

wind and wave loading. A number of methods have been derived to couple soil and structural 28 

properties using beam-Winkler models. One of the key drawbacks of these approaches is the disparity 29 

in predicted stiffness depending on the formulation chosen. Moreover, the contribution of soil mass in 30 

the dynamic motion of foundations is often neglected. In this paper, a method is presented that uses a 31 

Frequency Response Function (FRF) measured from a laterally-impacted pile to estimate operational 32 

stiffness and mass profiles acting along the pile. The method involves creating a beam-Winkler 33 

numerical model of the soil-pile system, applying a starting estimate of the soil stiffness and mass 34 

profiles and calculating weighting factors to be applied to these starting estimates to obtain a match 35 

between the measured FRF from the test pile and the calculated FRF from the numerical model. This 36 

paper presents the formulation of the iterative updating approach, and demonstrates its functionality 37 

using simulated experimental data of typical piles. Simulated data is used as it enables testing a wide 38 

range of circumstances including possible issues relating to the influence of the shape of the 39 

operational soil stiffness profile, soil density, effects of sensor noise and errors in damping estimation. 40 

The method may be useful in finite-element (FE) model updating applications where reference 41 

numerical models for soil-structure interaction are required.       42 
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1. Introduction 44 

The dynamic response of soil-structure interaction (DSSI) systems is an area of growing research 45 

interest. It is a topic with applications in Earthquake Engineering [1,2], Offshore Engineering [3,4] 46 

and Structural Health Monitoring (SHM) [5–8], among others. The offshore wind energy sector is 47 

undergoing a phase of rapid expansion [9,10], with monopile foundations tending towards larger 48 

diameters, a phenomenon that is adding growing uncertainty regarding dynamic stability and lifespan 49 

of these systems and calling into question existing design approaches. The issue is complex as the 50 

dynamic response of soil is strongly dependent on the particle size, geological history, age of the 51 

deposit, degree of cementation and the nonlinear stress-strain behaviour among many other factors. 52 

Moreover, soil-structure interaction responses are heavily influenced by the nature of loading applied 53 

and are affected by load magnitude, rate of application, frequency of loading, stress-history, pore 54 

pressure accumulation and dissipation among other factors. In concert with this, there is increasing 55 

agreement that design procedures which were originally derived for flexible piles [11,12] may not 56 

offer a reasonable estimate of the operating soil-structure interaction stiffness in these stiffer systems 57 

[13].  58 

In the field of vibration-based SHM, the dynamic response of a structure is used to infer the presence 59 

of damage, such as cracking or corrosion [14,15]. More recently, several authors have begun to look 60 

at detecting foundation damage, such as scour erosion, using the vibration-response of a structure [5–61 

7,16,17]. Many of these methods rely on the creation of a reference numerical model of the system 62 

[5,8,18–20], for which accurate DSSI stiffness is paramount to obtain matches to experimental data 63 

[21]. Recent studies [22,23] have shown that the adoption of a variety of existing models to couple 64 

soil and structural properties in a beam-Winkler framework leads to a significant disparity in 65 

predicted responses. If reference DSSI models cannot obtain good matches under normal operation, 66 

damage effects cannot easily be separated from otherwise normal operating behaviour.  67 

In addition to differences in the various models used to characterise SSI coupling stiffness, the 68 

inherently variable nature of soil means accurate characterisation of its properties is challenging. 69 

Predicted dynamic responses from numerical models incorporating soil stiffness will be heavily 70 

dependent on the accuracy of the soil response characteristics. Reducing the uncertainty will require 71 

either (i) a concerted effort to develop new testing practices that reduce or mitigate the errors and 72 

unknowns and/or, (ii) the development of suitable model updating approaches to evaluate operating 73 

soil characteristics (mass, damping and stiffness) based on simple experimental techniques. The focus 74 

of this paper is on the latter, so more attention is given over to existing methods developed herein.    75 

Updating of numerical models using experimental data has received significant attention in the 76 

literature [24–32]. Imregun et al. [24] present a FRF-based FE updating method. Using a simple beam 77 

model and both simulated and real experimental data, they investigate several performance parameters 78 
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such as the uniqueness of the updated model, performance against noisy and incomplete data and the 79 

effect of excitation direction, among others. They conclude that uniqueness of the solution remains an 80 

issue and that noise has a deleterious effect on the error location. Nalitolela et al. [25] present a 81 

method for updating model parameters by hypothesising the addition of an imagined stiffness to the 82 

structure. FRF data for the structure with imagined stiffness is obtained from the measured FRF of the 83 

actual structure. Using eigenvalues derived from the FRFs and from an analytical model of the 84 

system, the structural parameters are updated by a sensitivity procedure. The method is demonstrated 85 

using simulated and experimental data. Mottershead et al. [26] present a tutorial on the use of the 86 

sensitivity method in FE updating. The sensitivity method is based on linearization of the generally 87 

nonlinear relationship of measurement outputs (frequencies, mode shapes, displacements etc.) and the 88 

model parameters in need of adjustment. A large scale helicopter airframe model updating example is 89 

used to demonstrate the procedure. Esfandiari et al. [28] present a FRF-based method to update 90 

structural mass and stiffness using vibration data, for the purpose of damage identification. The 91 

procedure is demonstrated using a numerical truss model, with simulated noise presence. The method 92 

successfully identified location and severity of damage in stiffness and mass when high excitation 93 

frequencies are applied. Similarly, Hwang and Kim [27] present a FRF-based method to estimate the 94 

location and severity of damage in a structure, and present numerical examples of a simple cantilever 95 

and helicopter rotor blade.  96 

Many of the updating procedures described previously are based on FRF data [24,27,28,30,31] and 97 

most are demonstrated with application to simple structural examples such as beams or trusses. A 98 

method capable of application to pile foundations, which can obtain a reasonable estimate of the 99 

operating soil stiffness and mass acting in the dynamic motion, is therefore of interest. In this paper, a 100 

method that establishes operational soil stiffness and mass profiles contributing to the dynamic 101 

behaviour of a pile in a soil-structure interaction problem is presented, using a FRF-based updating 102 

approach. The approach requires a single measured FRF from a target pile and the creation of a 103 

reference beam-Winkler model, with an initial guess of the operational soil stiffness and mass. The 104 

initial stiffness guess should be informed from geotechnical data, which broadly captures the 105 

distribution of stiffness with depth. The method minimises the difference in peak information between 106 

target and calculated FRF data of acceleration by updating the guess for the initial stiffness and mass 107 

by multiplying these by weightings. An iterative solution is postulated, as due to the distributed mass 108 

and stiffness properties of beam-Winkler models (piles), separately updating mass and stiffness is not 109 

possible. The developed approach is demonstrated using numerically generated pile FRF data and a 110 

range of conditions are trialled, including various pile geometries and distributions of soil stiffness. 111 

The effect of noise intrusion (in ‘sensors’) and measurement error in damping are also investigated. 112 

The goal of this study is to postulate an approach that can successfully estimate the stiffness and mass 113 

acting on a pile with a view to informing a reference damage model or to enable more insight into 114 
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operating parameters for improved design procedures. For DSSI applications, inferring distributed 115 

mass and stiffness using a single FRF (force-acceleration pair) is reasonable due to the relatively 116 

crude approximations required for these applications in reality. Section 2 presents the theoretical 117 

background behind the modelling methods employed and information on the target pile models 118 

developed to test the procedure, section 3 presents details of the iterative procedure developed for 119 

updating soil stiffness and mass using FRFs, section 4 presents the results of the analysis, and section 120 

5 describes how to apply the procedure to real piles.  121 

2. Numerical Modelling 122 

In section 2.1, the methods employed to numerically model a Finite-Element (FE) dynamic beam-123 

Winkler system used in the present study, and from which to obtain FRF information are discussed. 124 

The subsequent section 2.2 presents information on the development of target numerical (pile) models 125 

used in this paper to test the iterative procedure.  126 

2.1 Numerical modelling of beam-Winkler system 127 

A FE model of a beam-Winkler system (numerical analogue of a pile embedded in soil) is 128 

programmed in MATLAB. This model is used as a reference numerical model to obtain FRF 129 

information for the iterative procedure described in section 3. Euler-Bernoulli beam elements are used 130 

to model a pile, the consistent mass and stiffness matrices for which are available in [33]. The soil is 131 

modelled using discrete, closely-spaced and mutually independent Winkler spring elements 132 

[19,22,34,35], see schematic shown in Fig. 1(b). Point masses lumped at the pile nodes attached to 133 

each Winkler spring allow the incorporation of soil mass. A global equation of motion for the MDOF 134 

dynamic system can be formulated as shown in Eq. (1).  135 
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where [MG], [CG] and [KG] are the (NN) global mass, damping and stiffness matrices for the model 138 

respectively, N is the total number of degrees of freedom in the system. The vector  )(tx describes 139 

the displacement of every degree of freedom for each time step in the analysis. Similarly the vectors  140 

 )(tx  and  )(tx  describe the velocity and acceleration of every degree of freedom for each time 141 

step. The vector  )(tF  describes the external forces acting on each of the degrees of freedom at a 142 

given time step in the numerical model.  143 
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The damping matrix [CG] is formulated using a two-term Rayleigh damping formulation [36], as a 144 

linear combination [MG] and [KG]. It is formulated as follows in Eq. (2) and (3). 145 
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where 
1  and 

2  are the modal damping ratios for the first and second vibration modes respectively, 148 

1  and 
2 are the first and second circular frequencies and 0  and 1  are the proportionality 149 

constants for mass and stiffness respectively. The damping matrix [CG] is formulated in Eq. (3). 150 

     GGG KMC 10                                                        (3)    151 

The time-domain dynamic response can be obtained by solving Eq. (1) using numerical integration. In 152 

this paper, the Wilson-  integration scheme is employed, which is a special case of the linear 153 

acceleration method [37,38].  154 

In addition to obtaining the time-domain response for the purpose of generating FRFs, the undamped 155 

natural frequencies of the system can be obtained by solving the Eigenproblem [37]. These undamped 156 

frequencies are used in the procedure of automating the FRF peak picking technique later, to allow the 157 

model perform many iterations automatically. In effect, the undamped frequency as calculated by 158 

solving the Eigenproblem is used to localise the peak corresponding to the first natural frequency in 159 

the generated FRF, to ensure the correct peak is identified (using a simplified max peak approach may 160 

choose a different mode).  161 

A general schematic of the model used in this paper is shown in Fig. 1. Fig. 1(a) shows a schematic of 162 

the pile geometry. A given pile is created by specifying the fundamental geometrical information 163 

(diameter, wall thickness, length and embedded depth). A numerical schematic is shown in Fig. 1(b), 164 

created by discretising the pile into finite-elements, each of length 0.1m. The embedded portion of the 165 

pile has Winkler springs attached, spaced at 0.1m centres. In each case, point masses are applied to 166 

the top quarter of springs in each model, with the lower masses set to zero. This is undertaken as a 167 

means to remain physically in keeping with the expected motion of a real pile, which will be 168 

dominated by the first mode of vibration, and as such will exhibit more movement near the ground 169 

surface than at depth [22], see Fig. 1(c). Applying masses at lower elevations will therefore have 170 

limited effect on the first mode shape, and so are omitted. An impulse force vector is applied to the 171 

lateral DOF at the pile head f(t), and the resulting acceleration a(t) is calculated at the same location, 172 

by solving the matrix differential Eq. (1). This information is then used to create FRFs.  173 
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 174 

Fig. 1. Model schematic, (a) pile geometry, (b) numerical schematic of beam-Winkler system, (c) first 175 

mode shape schematic  176 

2.2 Development of target benchmark models   177 

The method to identify operational soil stiffness and mass profiles from frequency response functions 178 

is demonstrated numerically using simulated target FRF data, obtained through the modelling of 179 

impact testing of reference numerical models of piles. The reference pile models are programmed 180 

using the procedure from the previous section 2.1, and have varied geometrical parameters (diameters, 181 

lengths), soil stiffnesses and masses. In order to make the FRFs as realistic as possible, the effect of 182 

sensor noise is investigated, as the signals from real piles subjected to impact testing contain certain 183 

noise intrusion [3,21,22,39,40]. The reference numerical models represent piles that have been impact 184 

tested, using a modal hammer, and this information is used as the target in the iteration procedure 185 

described in section 3.2. The assumptions and methods are outlined herein, for a given reference pile. 186 

A total of 34 target pile models are simulated and FRFs are obtained by simulating an impact test 187 

applied laterally to the pile head in each model. Each model has a certain diameter, D, annular 188 

thickness, t0 = 0.025 m, embedded length, L, and length, L0 = L+1 m. All models have a diameter, 189 

D=1 m except models Target 17-20 which have D=4 m. All models have the same embedment L=20 190 

m (L0=21 m) except models Target 21-24 which have L=10m and L0=11m respectively. The impulse 191 



Published in Journal of Sound and Vibration 431 2018 pp.1-19 

force in each case is taken as 10,000 N applied for a period of 0.015 seconds, to represent the act of 192 

impacting a pile with a modal hammer (see Fig. 1). Table 1 outlines the remaining parameters used in 193 

each of the 34 target models that vary from these properties. A damping ratio of 1 =3% applied to the 194 

first vibration mode and 
2 =50% applied to the second mode is incorporated in each model, using the 195 

two-term Rayleigh method [36], as described in subsection 2.1. The 3% damping ratio for mode 1 was 196 

adopted to reasonably estimate energy dissipation from fully embedded piles. This value is higher 197 

than that measured in Prendergast and Gavin [22], who measured damping ratios of 1.8% and 1.26% 198 

for two piles with embedded lengths of 4.5m and 3.1m and free (above ground) lengths of 2.5m and 199 

3.9m respectively. As the simulated piles in this paper are close to fully embedded, the higher 200 

damping ratio is adopted. The 50% damping for mode 2 is to suppress the influence of higher 201 

vibration modes because in the real case, the dynamic response of a pile to an impact load at the head 202 

will be dominated by the first natural frequency with little contribution from higher modes [22]. A 203 

more complicated model would be required to accurately encapsulate the numerous damping effects 204 

at play in real soil-pile interaction such as radiation and hysteretic damping, therefore the 205 

simplification adopted to suppress higher modes is based on experimental observations from previous 206 

pile vibration tests [22]. 207 

In order to ensure the target models adequately represent piles in the real case, soil stiffness is derived 208 

using the geotechnical procedure outlined herein. On a real pile, soil stiffness can be estimated from 209 

shear wave velocity measurements, or from correlations to Cone Penetration Tests (CPT), among 210 

other methods [13,21,22,41,42]. So, for the present purpose, idealised soil profiles corresponding to 211 

two soil densities are created. It is assumed that the profiles hypothesised herein could be estimated 212 

from actual site investigative data. Two types of soil profile shape are tested in this paper, (i) a 213 

constant stiffness profile with uniform stiffness over the pile depth, and (ii) a parabolic stiffness 214 

profile, where the soil stiffness increases nonlinearly with mean stress level. Fig. 2 shows an example 215 

of both profile types, for idealised loose sand. For the constant soil profile, shear moduli (G) of 25 216 

MPa and 75 MPa are specified to represent loose and dense sand profiles respectively [22], to cover 217 

the range of expected densities. Shear moduli can be converted to profiles of the modulus of subgrade 218 

reaction, K (soil-structure coupling stiffness), using the procedure outlined in [21,22,43], and to 219 

individual Winkler spring constants by multiplying by the spacing between each Winkler spring in the 220 

model (0.1m). For the parabolic soil profile, a second method is used to specify a soil profile via the 221 

generation of idealised CPT qc profiles, which can be correlated directly to soil springs [3]. Sand is 222 

classified into relative density, Dr categories of 30% (loose sand) and 80% (dense sand) [44]. An 223 

expression postulated by Lunne and Christopherson [45] is re-arranged to relate this Dr to a CPT qc tip 224 

resistance, as shown in Eq. (4) [3]. 225 

 
  rD

vcq
91.27.0

e'60 
                                                          (4) 226 
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where v' is the vertical effective stress (kN m
-2

). The qc profile can then be converted to a shear 227 

modulus profile using the rigidity index, G=nqc a correlation developed for a range of conditions by 228 

Lunne et. al [46] and Schnaid et al. [47]. When age, degree of cementation and stress history are 229 

considered, these parameters can be reasonably well estimated. The derived shear modulus profile 230 

using this method is converted to the modulus of subgrade reaction, K using the same method as 231 

previously described, then to individual spring moduli, ks,i.   232 

 233 

Fig. 2. Soil profile types used in analysis, (a) constant stiffness profile, (b) parabolic stiffness profile  234 

 235 

The procedure for generating target FRF information is as follows. An impulse force f(t) is modelled, 236 

and is inputted into the numerical model for a given reference pile. The acceleration of the system is 237 

calculated by solving the dynamic equation of motion, Eq. (1) using numerical integration (Wilson-238 

theta technique [38]). The input force time-history and the output acceleration response are used to 239 

derive the remaining required information. A FRF for the acceleration can be directly calculated by 240 

taking the ratio for the Fourier transform of the generated output acceleration to that of the generated 241 

input force. On a real pile, the acceleration would be measured using an accelerometer and the 242 

velocity and displacement are typically not measured. To represent this assumption in the reference 243 
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(target) models, the corresponding FRFs for velocity and displacement are derived directly from the 244 

acceleration FRF by the relationships expressed in Eqs. (7) and (8) respectively, as opposed to 245 

calculating them by solving Eq. (1). Note, this assumption introduces minor errors to the analysis, but 246 

is in keeping with the reality of the physical system.  247 

Target models 29 to 34 contain added measurement noise. The procedure for adding noise is based on 248 

the Signal-to-Noise Ratio (SNR), as described in Lyons [48]. The addition of noise is to replicate the 249 

conditions of a real pile, whereby the sensors would experience some interference [39]. Moderate 250 

(SNR=20) to severe (SNR=5) noise levels are added in these models and the method is tested in 251 

Section 4.4.  252 

Table 1 shows the details of each target model and a brief description of how each is developed is 253 

provided herein. A model is developed containing certain geometrical information and a profile of 254 

stiffness and mass is specified. The stiffness and mass profiles are then altered by multiplying by 255 

specified weightings, and these weightings are used to appraise the performance of the FRF-based 256 

updating method described later. These weightings are defined as (i) wm, the mass weighting which 257 

multiplies the pile mass and distributes it as additional mass to the sprung pile nodes and, (ii) wk, the 258 

stiffness weighting which multiplies the postulated soil stiffness profile. For example, Target 1 has a 259 

constant soil profile of ‘loose’ sand (G=25 MPa). The soil stiffness is multiplied by the target 260 

weighting, wk=0.75, to reduce the ‘acting’ stiffness. A soil mass of 5 times the pile mass (wm=5) is 261 

distributed to the pile nodes where the top quarter of springs are located in the model, as point masses 262 

(see Fig. 1(b)). Target 1 is then stored as a FRF of acceleration, due to the applied impulse force, and 263 

used as the target to test the model updating approach. If the model updating method converges on the 264 

same mass and stiffness weightings, it is successful. 265 

Table 1 Benchmark model parameters 266 

Name Soil Profile Soil Density Target  wm Target wk SNR 

Target 1 Constant Loose 5 0.75 - 

Target 2 Constant Loose 5 0.85 - 

Target 3 Constant Loose 5 1.15 - 

Target 4 Constant Loose 5 1.25 - 

Target 5 Constant Loose 10 0.75 - 

Target 6 Constant Loose 10 0.85 - 

Target 7 Constant Loose 10 1.15 - 

Target 8 Constant Loose 10 1.25 - 

Target 9 Parabolic Loose 5 0.75 - 

Target 10 Parabolic Loose 5 0.85 - 

Target 11 Parabolic Loose 5 1.15 - 

Target 12 Parabolic Loose 5 1.25 - 

Target 13 Parabolic Loose 10 0.75 - 

Target 14 Parabolic Loose 10 0.85 - 
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Target 15 Parabolic Loose 10 1.15 - 

Target 16 Parabolic Loose 10 1.25 - 

Target 17 Constant Loose 5 0.75 - 

Target 18 Constant Loose 10 1.25 - 

Target 19 Parabolic Loose 5 0.75 - 

Target 20 Parabolic Loose 10 1.25 - 

Target 21 Constant Loose 5 0.75 - 

Target 22 Constant Loose 10 1.25 - 

Target 23 Parabolic Loose 5 0.75 - 

Target 24 Parabolic Loose 10 1.25 - 

Target 25 Constant Dense 5 0.75 - 

Target 26 Constant Dense 10 1.25 - 

Target 27 Parabolic Dense 5 0.75 - 

Target 28 Parabolic Dense 10 1.25 - 

Target 29 Constant Loose  5 0.75 20 

Target 30 Constant Loose 10 1.25 20 

Target 31 Constant Loose  5 0.75 10 

Target 32 Constant Loose 10 1.25 10 

Target 33 Constant Loose  5 0.75 5 

Target 34 Constant Loose 10 1.25 5 

 267 

3. Iterative solution procedure to infer mass and stiffness from FRFs 268 

In this section, the iterative procedure to infer soil mass and stiffness is presented. It is first necessary 269 

to provide a brief overview of the derivation of FRFs for single-degree-of-freedom systems with 270 

discussion as to their applicability to multi-degree-of-freedom (MDOF) systems in the present 271 

context, as this is key to the iterative method subsequently presented. Section 3.2 provides details of 272 

the iterative method used to converge on operational stiffness and mass in dynamic beam-Winkler 273 

models. 274 

3.1 Frequency Response Functions  275 

The equation of motion for a single-degree-of-freedom (SDOF) system (or a particular mode of a 276 

MDOF system) in the time-domain is represented by Eq. (5).  277 

       tftkxtxctxm                                                              (5a) 278 

or                           mtftxtxtx /2 2                                                         (5b) 279 

where m is the mass, k is the stiffness, c is the damping, f(t) is the excitation force applied,  tx is the 280 

dynamic displacement,  tx  is the velocity,  tx  is the acceleration, mk /  and the damping 281 

ratio,   mc 2/ . Eq. (5) can be transformed into the frequency domain by developing a FRF as 282 

shown in Eq. (6).  283 
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where  is the variable of excitation,  X and  F  are the Fourier transforms of  tx and  tf  285 

respectively and  / . Eq. (6) is the FRF of the displacement response of the SDOF system to 286 

the excitation force. Similarly, one can deduce the velocity response to the excitation force in Eq. (7) 287 

and the acceleration response to the excitation force in Eq. (8).  288 
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The amplitudes of the FRFs in Eqs. (6)-(8) are described by Eqs. (9)-(11) for displacement (  dF ), 291 

velocity (  vF ) and acceleration (  aF ) respectively.  292 
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With given k, m, and  , the maximum amplitude (peak) of each FRF can be analytically solved in 296 

Eqs. (12)-(14), for displacement, velocity and acceleration respectively. 297 
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Observing Eq. (12), it is possible to know if the stiffness, k of a SDOF system is over or 301 

underestimated when compared with benchmark (target) FRF data with the same damping ratio. If the 302 

system has a peak FRF lower than that of target data, it has a higher stiffness and vice versa. 303 

Moreover, this equation should also inform if the effective k of the fundamental mode of a MDOF 304 

system with matching damping is over or underestimated. Similarly, Eq. (14) can indicate under or 305 

overestimation of the effective mass contribution, m to the fundamental mode of a MDOF system, 306 

based on the peak values. In this paper, the system under discussion is a dynamic beam-Winkler 307 

system, representative of a pile foundation embedded in a soil matrix. This type of system has 308 

distributed mass and stiffness properties (see Fig. 1), therefore its behaviour will deviate from that of 309 

a SDOF system. This means it is not possible to directly infer the stiffness or mass contribution using 310 

the SDOF derivations previously for Fa and Fd. Instead, by developing an effective iterative 311 

algorithm, it is possible to use the information presented in this section to converge on operational 312 

stiffness (wk) and mass (wm) weightings applied to estimated profiles in the dynamic modelling of a 313 

particular pile-soil problem. To illustrate this concept for a MDOF system, an analysis is conducted 314 

herein where the variation in peak FRF Fa and Fd for a pile model with respect to variations in soil 315 

mass and stiffness acting in the dynamic model is extracted. Fig. 3 shows the results for the pile 316 

model Target 1 (see Table 1), which is 21m in length and has a diameter of 1m and Fig. 4 shows the 317 

same analysis but for the stiffer pile model Target 17 (L=21m, D=4m). Both analyses are conducted 318 

with Rayleigh damping, where a damping ratio (ξ1=ξ2=ξ) of 1% is specified. This system is 319 

dominated by several vibration modes, therefore the results should vary from a SDOF model (in that 320 

the FRF peaks for acceleration and displacement should be affected by both changes in mass and 321 

stiffness, and not simply by changes in these parameters individually). Fig. 3(a) shows how the 322 

acceleration FRF Fa varies with mass and stiffness weighting and Fig. 3(b) shows how the 323 

displacement FRF Fd varies with these weightings. Fig. 3(c) and (d) show contour plots for Fa and Fd 324 

respectively. Fa varies predominately with the changes in mass weighting with minor variations due to 325 

changes in stiffness weighting. Fd varies predominately with stiffness weighting with minor variations 326 

due to mass weighting. This analysis implies that a unique set of weightings can be used to 327 

characterise a given set of circumstances, i.e. a given pair of weightings {wm, wk} gives rise to a 328 

unique model for pile stiffness and mass. Section 3.2 presents the FRF-based updating method 329 

founded on this premise. 330 

 331 
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 332 

Fig. 3. Relationship between FRF peak height and mass and stiffness weightings for Target 1 model 333 

geometry (L=21m, D=1m), (a) variation of Fa with wm and wk, (b) variation of Fd with wm and wk, (c) 334 

contour plot of Fa with wm and wk, (d) contour plot of Fd with wm and wk 335 

 336 

Fig. 4. Relationship between FRF peak height and mass and stiffness weightings for Target 17 model 337 

geometry (L=21m, D=4m), (a) variation of Fa with wm and wk, (b) variation of Fd with wm and wk, (c) 338 

contour plot of Fa with wm and wk, (d) contour plot of Fd with wm and wk 339 
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3.2 Mass and stiffness iteration algorithm 340 

In this section, the basis of an iterative solution method to establish the operating stiffness and mass 341 

from FRF data in a MDOF dynamic beam-Winkler model is presented. The simulated experimental 342 

data is referred to as ‘target’ data (see Table 1). The calculated FRF within the iteration scheme is 343 

referred to as ‘calculated’ data. Observing Eq.(14), for a SDOF system, the mass, m in a model can be 344 

modified according to the ratio of the peak values of FRF amplitude Fa in the target and calculated 345 

signals. The stiffness, k can then be adjusted according to the ratio of the peak target and calculated 346 

frequencies or the ratio of the peak values of FRF amplitude Fd (Eq. 12) depending on numerical 347 

accuracy. For a beam-Winker MDOF model, the nature of distributed masses and spring stiffnesses 348 

means an iteration-based algorithm is called for, as this type of system will deviate in behaviour 349 

somewhat from a SDOF simple system (see Fig. 3 for the variation of each peak, Fa and Fd, with both 350 

mass and stiffness weighting). However, broadly speaking the Fa ratios mainly provide insight into 351 

the mass contribution and the Fd ratios or frequency ratios provide insight into the operating stiffness, 352 

though some cross-coupling occurs between these mechanisms for distributed systems (see Fig. 3). By 353 

postulating a linear mechanical system (small-strain criterion for Winkler springs), an algorithm is 354 

developed using linear projection, which requires two initial starting points.  355 

 356 

Fig. 5. FRF schematic and parameter definition  357 

Define CALCULATED,TARGET, / aam FFr   (ratio of target to numerically calculated peak heights in 358 

acceleration FRF) and TARGETCALCULATED / ffr   (ratio of calculated frequency to target frequency), 359 

see Fig. 5. Let mp = mass of the full beam-Winkler system (pile) and n = number of beam nodes 360 

connected to a Winkler spring in the numerical model (no. of embedded nodes in a foundation pile 361 
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analogue). An initial starting estimate is required, so the initial stiffness weighting is assumed as 1 362 

times a proposed soil stiffness profile. Note, an estimate of the soil stiffness is required at the 363 

beginning of the problem, then the algorithms weight this profile to obtain convergence. Soil-structure 364 

interaction stiffness for real systems can be estimated from geotechnical site investigative data such as 365 

Cone Penetration Test data [3,13,21,49,50] or shear wave velocity measurements [41,47,51], which 366 

are readily taken prior to construction, see section 2.2. For the purposes of this paper, the shape of the 367 

soil stiffness profiles are assumed to be known beforehand, but the actual operating magnitudes at 368 

each depth are assumed to be incorrect (so that the algorithm can converge on correct profile 369 

weightings). The assumption of knowing the broad trend and approximate magnitude of the operating 370 

soil stiffness is in keeping with reality, as for an offshore pile design, an estimate of soil stiffness is 371 

obtainable using geotechnical testing methods, so it is assumed the same information would be 372 

available for the purpose of the numerical study undertaken in this paper. Define two convergence 373 

criteria,   is the frequency convergence tolerance and m  is mass convergence tolerance. Both of 374 

these are assumed as 1%. The algorithm is outlined in the flow chart in Fig. 6. 375 

Target acceleration FRF data is obtained from a ‘test’ pile – i.e. the target models in Table 1. The 376 

geometries of this test system are known to the user, so a reference numerical model is built using the 377 

same geometrical and material properties. An estimated soil stiffness profile is applied in the 378 

reference model (the shape of which is assumed as known a-priori, the magnitude being incorrect). 379 

Soil mass, equating to the weighted pile mass, is equally distributed between active spring nodes). 380 

The active nodes for all analyses in this paper are taken as the top quarter springs (n/4) to remain in 381 

keeping with a physical pile which would be dominated by the first bending mode. An initial mass 382 

weighting is calculated as a uniformly distributed number between 0 and 30 to be multiplied by the 383 

pile mass and distributed at the active nodes. The modal hammer information used in the ‘test’ pile to 384 

obtain the target data, is inputted directly into the reference model to calculate the FRF from the 385 

calculated acceleration response, obtained by solving Eq. (1). The damping ratio measured from the 386 

target response is also input into the reference model, to formulate the Rayleigh damping matrix. 387 

Damping can be measured from a response using techniques such as logarithmic decrement [52] or 388 

exponential curve fitting [53], among others. The calculated FRF data and the target FRF data are 389 

used to obtain rm, r and subsequently, rk. Depending on the magnitude of rm, the soil mass is either 390 

increased or decreased as the initial guess either overestimates of underestimates this contribution. 391 

The second guess for the stiffness weighting is taken as a uniformly distributed random number 392 

between 0.7 and 1.3 times the postulated soil stiffness profile. Note, it is not important what value of 393 

stiffness is taken as the second guess, it is merely required that the method has two starting points, so 394 

the second guess has no bearing on the final converged values. The system checks if the postulated 395 

weightings for the initial guess are correct (by checking if the ratio of the peak information between 396 

calculated and target FRF data is within the tolerance). If not, the second guess weightings are applied 397 
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to the soil model, i.e. the calculated mass weighting is multiplied the pile mass and applied to the 398 

relevant pile nodes, and the initial stiffness profile is weighted by the calculated stiffness weighting. 399 

Using these new weightings, a new FRF is calculated using the previously described method and 400 

again compared to the target FRF data. There now exists two estimates of the system properties, 401 

iteration
(0)

 and iteration
(1)

. New mass and stiffness weightings for subsequent iterations are calculated 402 

using linear projection, which aims to minimise the difference in the peak heights and peak frequency 403 

between the calculated and target acceleration FRF data. The system iterates as shown in the flow 404 

chart in Fig. 6 until it converges on operating stiffness and mass weightings that allow the reference 405 

numerical model to converge on the FRF of the target model. There are a number of inadmissibility 406 

checks built into the model also. Due to the nature of the MDOF system, sometimes the linear 407 

projection method may produce negative weightings. Should this occur, the linear projection is re-408 

calculated using the j
th
 and (j-2)

th
, j

th
 and (j-3)

th
… j

th
 and (j-i)

th
 iterations until admissible weightings 409 

are produced. Moreover, the method is designed to reset if convergence is not achieved within 15 410 

iterations. This number 15 is arbitrary, and this check is included due to the potential for significant 411 

divergence to occur in the model. Since a high value of mass and stiffness may yield the same 412 

frequency as low values (due to their inverse relationship with frequency), it is necessary to allow for 413 

this potential divergence with this extra criterion.  414 
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 415 

Fig. 6. Flow chart of iterative algorithm 416 

4. Analysis  417 

The method shown in the flow chart Fig. 6 is programmed in MATLAB and demonstrated in this 418 

section. Section 4.1 presents an example of the algorithm as applied on a step-by-step basis to the 419 

Target 1 pile FRF data. Section 4.2 presents a study of the method’s resilience to finding the unique 420 

solutions for multiple runs (since each run will contain random starting estimates). Section 4.3 421 

presents the results of the analysis on the noise-free target models 1-28. Section 4.4 present the results 422 

of the method when applied to noisy simulated data (target models 29-34). Finally, section 4.5 423 
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presents the effect of incorrectly specifying the damping ratio in the reference model and its effect on 424 

the sensitivity of the converged response.  425 

4.1 Implementation of algorithm  426 

An example of implementing the algorithm is shown herein. The benchmark ‘test’ data for this 427 

example is Target 1 in Table 1, i.e. a 1m diameter 21m long steel pile embedded 20m in a constant 428 

loose sand profile (see section 2.2 for information on derivation of soil stiffness). For this analysis, the 429 

target model was created with an artificial mass weighting of 5 times the pile mass distributed to the 430 

pile nodes attached to the top quarter of the springs, and a stiffness weighting of 0.75 times the 431 

postulated profile for loose sand. The purpose of this example is to show that the algorithm will 432 

converge on values close to these weightings by implementing the procedure in Fig. 6 (minimising 433 

differences in peak information from target and calculated FRFs and updating weightings using linear 434 

projection). As the analysis uses random numbers to start the procedure, various runs yield slightly 435 

different results (see section 4.2 for further elaboration on this). However, all converged runs 436 

complete with the FRF amplitude Fa peak and the frequency within 1% of the target data. An example 437 

run is shown in Figs. 7 and 8. The example analysis takes 5 iterations to converge. The results of the 438 

first four iterations are shown in Fig. 7. Fig. 8 shows the result of the fifth (and final) iteration, and 439 

also shows the converged FRF amplitude Fv and FRF amplitude Fd from the calculated model 440 

overlain on the target model data. Note, this is done by way of a check and the actual Fv and Fd data 441 

are not used in the updating method, as the assumption is that only a modal hammer and an 442 

accelerometer are available to obtain target data. The stiffness is updated using a combination of the 443 

ratio of frequencies and the ratio of Fa peak heights from the acceleration FRF, rather than directly 444 

from the ratio of Fd peak heights, however Fd and Fv are produced here to show that the method 445 

successfully converges on the correct weightings. Table 2 presents the data for each step of the 446 

iteration procedure in more detail. Fig. 7(a) shows the first iteration, obtained by randomly choosing a 447 

mass weighting of 27.174 (between 0 and 30) and setting the stiffness weighting to 1. Fig. 7(b) shows 448 

the second iteration, where the stiffness weighting is randomly altered to 1.093 (between 0.7 and 1.3, 449 

to provide a second guess) and the mass weighting is reduced by 10 to 17.174 (as it was over-450 

predicted in first run – lower peak height in calculated FRF relative to target FRF). Iteration 3 and 4 in 451 

Fig. 7(c) and 7(d) show the implementation of the linear projection algorithm to alter the weightings 452 

towards convergence. The mass weighting changes from 5.541 to 4.943, honing in on the target 453 

weighting 5, while the stiffness weighting changes from 0.727 to 0.748, tending towards the target 454 

value of 0.75. The key point of importance is that the target values are not known to the system, and 455 

the method converges using the FRF peak information only.  456 

 457 
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Table 2 Data from iterations for Target 1  458 

Iteration wm 

Target 

wm 

Calculated 

wk  

Target 

wk 

Calculated 

rm rω rk 

1 5 27.174 0.75 1 5.032 0.506 1.290 

2 5 17.174 0.75 1.093 3.168 0.662 1.390 

3 5 5.541 0.75 0.727 1.106 0.940 0.976 

4 5 4.943 0.75 0.748 0.990 1.004 0.998 

5 5 4.997 0.75 0.750 0.999 1.000 1.000 

 459 

 460 

Fig. 7. Iterations in method towards convergence – Target 1 data. (a) Iteration 1, (b) Iteration 2, (c) 461 

Iteration 3, (d) Iteration 4   462 

Fig. 8 shows the converged models (iteration 5), with a converged mass weighting of 4.997 and 463 

stiffness weighting of 0.75. Fig. 8(a) shows the converged FRF Fa overlain on the target FRF Fa, Fig. 464 

8(b) shows FRF Fv and Fig. 8(c) shows FRF Fd. Section 4.2 present the results of multiple runs of the 465 

same model to check repeatability and uniqueness of the solution (i.e. that the model does not 466 

converge on false matches). 467 
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 468 

 469 

Fig. 8. Converged Frequency Response Functions at iteration 5 (a) Fa, (b) Fv, (c) Fd for Target 1 data  470 

 471 

4.2 Model uniqueness with multiple starting estimates 472 

Section 4.1 shows an example of the implementation of the algorithm for one run, in order to 473 

highlight the components of the procedure during each iteration. In this section, the results of running 474 

the algorithm for ten runs is presented. The model studied herein is the same as previous, i.e. Target 1 475 

data from Table 1. Fig. 9 shows the convergence path for the stiffness and mass weightings (Fig. 9(a) 476 

and (b) respectively) and the number of iterations to convergence. Different runs take between 4 477 

iterations and 8 iterations to converge.  478 
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 479 

 480 

Fig. 9 Convergence of Target 1 data (a) Stiffness weighting, wk, (b) Mass weighting, wm  481 

Of the ten runs shown in Fig. 9, three converged in 4 iterations, four in 5 iterations and three in 8 482 

iterations. It is noteworthy that the only difference between each run is the random nature in the 483 

starting estimates and the resulting effect on the calculated weightings each iteration. Fig. 10 shows 484 

the percentage difference between the target mass and stiffness weightings and the converged values 485 

for each of the runs shown in Fig. 9. The largest percentage difference in converged mass weighting 486 

occurs for Run 7 where the converged mass weighting is 4.977 (Target is 5). By comparison, the 487 

largest percentage difference in converged stiffness weighting occurs for Run 4, where the converged 488 

value is 0.7486 (Target is 0.75). 489 
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 490 

 491 

Fig. 10 Target 1 data –Percentage difference in converged wm and wk against the target values for 10 492 

runs  493 

 494 

4.3 Effect of varying geometrical and material properties 495 

The results of running the algorithm for each of the noise-free target models in Table 1 (Target 1-28) 496 

is presented in this section. Table 3 presents the results of a single run of each target model. Each 497 

model was run once, and there were no failed trials (each model converged within a reasonable 498 

number of iterations). The target mass and stiffness weightings and the converged weightings are 499 

shown in each row, as well as the number of iterations required to converge. Note, the number of 500 

iterations to converge may change each time the method is run, as this is only really dependent on the 501 

random starting estimates in the first two iterations for mass and stiffness weightings. Their inclusion 502 

is to highlight that each model converged within the 15 iterations required before resetting of the 503 

algorithm. The results in Table 3 highlight that the method is insensitive to changes in the geometrical 504 

properties of the system, i.e. it is not biased towards flexible piles or otherwise (as observed in Fig. 3 505 

and 4, the difference between a flexible and stiff pile behaviour is in the magnitudes of the FRF peaks 506 

only, the trend is similar for each case). Moreover, the effect of soil stiffness profile shape or soil 507 

density does not impede the approach. Section 4.4 presents the results of the models including noise 508 

intrusion.  509 

Table 3 Converged results for 28 target models  510 

Name Target  wm Target  wk Converged  wm Converged  wk Iterations 

Target 1 5 0.75 4.997 0.750 5 

Target 2 5 0.85 5.004 0.850 4 

Target 3 5 1.15 5.004 1.150 5 
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Target 4 5 1.25 4.999 1.251 8 

Target 5 10 0.75 9.994 0.750 5 

Target 6 10 0.85 9.960 0.849 4 

Target 7 10 1.15 9.946 1.1531 4 

Target 8 10 1.25 10.003 1.250 5 

Target 9 5 0.75 4.981 0.756 4 

Target 10 5 0.85 4.997 0.850 5 

Target 11 5 1.15 5.004 1.152 5 

Target 12 5 1.25 4.990 1.245 4 

Target 13 10 0.75 9.999 0.750 6 

Target 14 10 0.85 10.098 0.850 3 

Target 15 10 1.15 10.044 1.151 5 

Target 16 10 1.25 10.015 1.251 5 

Target 17 5 0.75 5.004 0.749 5 

Target 18 10 1.25 9.963 1.247 3 

Target 19 5 0.75 4.965 0.748 3 

Target 20 10 1.25 9.939 1.248 4 

Target 21 5 0.75 5.012 0.749 4 

Target 22 10 1.25 10.043 1.249 3 

Target 23 5 0.75 5.001 0.750 7 

Target 24 10 1.25 10.001 1.250 4 

Target 25 5 0.75 4.985 0.751 5 

Target 26 10 1.25 9.961 1.258 4 

Target 27 5 0.75 4.998 0.750 4 

Target 28 10 1.25 9.973 1.250 7 

 511 

4.4 Effect of noise intrusion 512 

The previous analyses were conducted assuming the target data is theoretical perfect, i.e. the results 513 

had no errors induced due to noise. In reality, for a pile being tested by impact hammer, there will be 514 

some noise intrusion in the results [21,22,39,40]. This noise comes from sources such as 515 

environmental influences and sensor resolutions errors. This noise will affect the quality of the signal 516 

and introduce errors in the target peak height. In this section, the degree to which added noise impedes 517 

the approach is investigated in terms of the errors in convergence obtained between the target and 518 

calculated weighting results. Any errors in the target peak should increase the error in converged 519 

weightings. 520 
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Six target models (Target 29-34) are created with noise added to the output acceleration signals.  521 

During the procedure to develop FRFs, this noise is included. As mentioned, the method from Lyons 522 

[48] is used to add noise based on the SNR. Signals with SNRs of 20, 10 and 5 are trialled, for two 523 

sets of target mass and stiffness weightings, see Table 1. Note, noise is not added to the hammer 524 

signal for this analysis for three main reasons, (i) the method described in Lyons [48] leads to 525 

unrealistic noise levels for impulse-type hammer signals due to the high signal variance, (ii) real 526 

impulse tests have shown that noise intrusion in modal hammers is typically quite low [22], and (iii) 527 

since it is assumed that once the hammer ceases contact with the pile post-impulse, no further contact 528 

is made and thus this input to the updating algorithm can be automatically set to zero, to allow free 529 

vibration.  530 

To visualise the effect of noise, Fig. 11 shows the simulated acceleration signal and FRF for a model 531 

pile with zero noise and with SNR=20, 10 and 5. Target models 1, 29, 31 and 33 are compared (same 532 

geometric properties and target weightings – see Table 1) in this plot. Fig. 11(a) shows the 533 

acceleration signals for no noise and three different noise levels. Fig. 11(b) shows the FRF amplitude 534 

of each signal. As is evident, the effect of noise is to add random oscillations to the peak FRF 535 

amplitude. The effect of these errors on the accuracy of the approach is investigated below.   536 

 537 

Fig. 11 Effect of added noise on FRF peak, (a) Acceleration signals due to impulse – no noise, 538 

SNR=20, SNR=10 and SNR=5 [Inset] zoomed in between t=1.5s and t=2s, (b) FRF amplitude of 539 

acceleration with various noise levels [Inset] effect of noise on peak FRF amplitude  540 

Target models 29-34 (with varying amounts of added noise) are analysed herein. Each model is run 541 

once and the converged values for mass and stiffness weighting are shown in Table 4. Fig. 12 shows 542 

the converged FRF amplitude plots for Target model 34, for Fa, Fv and Fd, when the target model had 543 
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a high SNR of 5. As can be seen, the model successfully converges even in the case of high noise 544 

intrusion.  545 

 546 

 547 

Fig.12 Converged Target 34 Analysis – SNR=5. (a) Fa, (b) Fv, (c) Fd 548 

Table 4 shows the converged results for one run of each of the Target models 29-34 (see Table 1 for 549 

properties). The converged mass and stiffness weightings deviate a little more from the target values 550 

than in the noise free cases in Table 3. The maximum percentage difference in all cases run in Table 3 551 

was 0.97% for converged mass weighting and 0.76% for converged stiffness weighting. This 552 

compares with a maximum percentage difference of 4.3% for converged mass weighting and 4.17% 553 

for converged stiffness weighting for the added noise cases. The maxima in both the latter cases 554 

occurred for the Target 34 data with SNR=5, so is not unexpected as this had the highest noise 555 

pollution. Broadly speaking, however, all models converge on close to the correct values (i.e. there 556 

are no false convergences on weightings away from the target). Section 4.5 investigates the effect of 557 

incorrect damping on the convergence.  558 

Table 4 Convergence results for models with added noise 559 

Name Target wm Target wk Converged wm Converged wk SNR Iterations 

Target 29 5 0.75 4.975 0.744 20 4 

Target 30 10 1.25 10.002 1.248 20 4 

Target 31 5 0.75 4.900 0.732 10 4 

Target 32 10 1.25 9.793 1.228 10 4 

Target 33 5 0.75 4.859 0.733 5 5 

Target 34 10 1.25 9.577 1.199 5 4 

 560 

 561 
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4.5 Effect of discrepancies in damping ratio 562 

The analyses presented so far have assumed that the damping ratio is known from the target models, 563 

i.e. it would have been accurately measured from the ‘impact test data’ using an approach such as 564 

logarithmic decrement technique or otherwise, applied to the response signals. In reality, there may be 565 

some error in the accurate measurement of this parameter. While not unreasonable to assume the 566 

geometrical and material properties of a pile would be known to the user for the purpose of creating 567 

the reference model, properties such as damping may be more error-prone. In this section, a brief 568 

analysis is conducted to assess the impact of an incorrectly specified damping ratio on the success of 569 

the iterative approach. The data from Target 1 is used, and the 3% damping ratio (mode 1) used in 570 

Target 1 is varied by (i) ±10% to 1 =2.7% and 1 =3.3%, respectively, (ii) ±20% to 1 =2.4% and 571 

1 =3.6%, respectively and (iii) ±30% to 1 =2.1% and 1 =3.9%, respectively, for the generated 572 

reference models used in the model updating procedure. For each erroneous damping ratio, the 573 

method is run 10 times. The results are shown in Table 5.  574 

Table 5 Results of varying damping ratio in reference model 575 

Analysis ξTarget ξSpecified % Difference 

Average±Standard 

Deviation wm 

% Difference 

Average±Standard 

Deviation wk 

Underestimate 

Target ξ by 10% 

0.03 0.027 -12.41±0.14 -12.50±0.37 

Overestimate 

Target ξ by 10% 

0.03 0.033 +11.44±0.18 +11.2±0.05 

Underestimate 

Target ξ by 20% 

0.03 0.024 -26.03±0.35 -26.17±0.26 

Overestimate 

Target ξ by 20% 

0.03 0.036 +21.97±0.42 +21.5±0.08 

Underestimate 

Target ξ by 30% 

0.03 0.021 -41.1±0.33 -41.32±0.36 

Overestimate 

Target ξ by 30% 

0.03 0.039 +31.68±0.49 +30.85±0.22 

 576 

The results in Table 5 show that running the iterative procedure for the Target 1 data with incorrectly 577 

specified damping ratio for the first mode leads to a moderately nonlinear change in the average 578 

percentage difference for different amounts of damping error. Under- and overestimating the damping 579 

ratio by 10% leads to an average percentage difference of the order of -12% and +11% respectively 580 

between both the target and calculated mass and stiffness weightings. A difference of ±20% leads to 581 

an average percentage difference of approximately -26% and +22% between both target and 582 

calculated weightings. Finally, a difference in damping ratio of ±30% leads to an average percentage 583 

difference of approximately -41% and +31% between target and calculated weightings. This brief 584 

analysis highlights the importance of an accurate specification of damping ratio in the reference 585 
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model, to ensure accurate weightings are obtained. Underestimating damping leads to a higher error 586 

for this data set than overestimating damping. Of note is that the error in mass and stiffness weighting 587 

is approximately the same in each case because the corresponding modal frequency is assumed to be 588 

accurate.   589 

5. Procedure for application of method to real piles 590 

The previous sections introduced the FE updating approach as applied to numerically simulated target 591 

data. In this section, a summary of the procedure for application to real piles is presented. Fig. 13 592 

presents a flow-chart of the procedure to apply the method to a real pile to estimate the operating soil 593 

stiffness and mass profiles on the real system. For step (3), the damping ratio can be estimated from 594 

the acceleration time-history using approaches such as the logarithmic decrement technique [52] or by 595 

fitting exponential curves [53] among other approaches. For step (5), representative soil stiffness can 596 

be derived from geotechnical data using a variety of approaches, see examples [11,21,22,54]. Using 597 

available geotechnical data such as shear wave velocity measurements or CPT data close to the test 598 

pile can provide an indication of the shape of the soil stiffness profile with depth, which can 599 

subsequently be adjusted by the weighting factors in the algorithm. Note, Fig. 13 is not an exhaustive 600 

guide for application of the approach to real piles, its purpose is to summarise the main steps. Fig. 13 601 

is best read in conjunction with Fig. 6, which details the individual steps in the updating algorithm.  602 
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 603 

Fig. 13 Procedure for application to real pile structures 604 

6. Conclusion 605 

In this paper, an iterative approach to obtain operating soil mass and stiffness profiles in dynamic 606 

beam-Winkler models is presented. The method aims to address the significant uncertainty present in 607 

the operational characteristics of soil-pile systems, and the growing importance of the accurate 608 

characterisation of soil-structure interface stiffness for offshore wind and SHM applications, among 609 

others.  610 

The iterative method is based on FRF data, and uses differences in FRF peaks and frequencies 611 

between calculated and target models to converge on soil mass and stiffness weightings. The approach 612 

is demonstrated using numerically simulated data in this paper, through the generation of target 613 

models. Target data representing a range of pile geometries, soil densities, and stiffness distributions 614 

are created to test the procedure. The model is successfully applied to a range of target cases, with 615 

varying geometrical properties and operating soil mass and stiffness. In all cases, the method 616 

converges on correct weightings and is unaffected by soil density changes or the shape of the soil 617 



Published in Journal of Sound and Vibration 431 2018 pp.1-19 

profile (assuming the shape is known beforehand, i.e. from site investigation data or otherwise). The 618 

effect of noise on the approach is investigated, and although the errors in the converged weightings do 619 

increase, the method still converges in the correct region even for high noise pollution, i.e. the 620 

solution is unique and there are no false convergences. Finally, the effect of incorrectly specifying the 621 

damping ratio in the generated reference model is checked. The errors in converged weightings vary 622 

somewhat nonlinearly with the error in damping, however the magnitude of the error is approximately 623 

the same for both the converged mass and stiffness weighting in each case. This study highlights the 624 

importance of accurate specification of damping for the successful application of the method.   625 

The FRF-based model updating method was demonstrated using simulated numerical data in this 626 

paper. This was undertaken as it was possible to observe exactly if the method converged on the 627 

correct weightings. It should be noted that there is potential for some errors with the application of the 628 

approach to real piles, in that a numerical reference model of a pile will deviate in behaviour 629 

somewhat from a real pile embedded in soil. Moreover, the method relies on the user knowing the 630 

geometrical and material properties of a given test pile, which may also be a source of some 631 

uncertainty. Engineering judgement may be required in the event of a false convergence in the real 632 

case. A false convergence may be understood to occur if the method converges on a very stiff or weak 633 

stiffness profile where the geotechnical data indicated otherwise. Future work will expand the 634 

approach developed in this paper to experimental pile data with a view to understanding these 635 

potential issues. 636 
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