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Abstract 53 

Offshore pile driving is a high-risk activity as delays can be financially punitive. Experience of pile 54 

driving for offshore jacket structures where pile diameters are typically < 2m has led to the development 55 

of empirical pile driveability models with proven predictive capability. The application of these 56 

methods to larger diameter piles is uncertain. A major component of driveability models involves 57 

estimating the static resistance to driving, SRD, a parameter analogous to pile axial capacity. Recent 58 

research on axial capacity design has led to improved models that use Cone Penetration Test, CPT data 59 

to estimate pile capacity and include for the effects of friction fatigue and soil plugging. The 60 

applicability of these methods to estimating pile driveability for larger diameter piles is of interest. In 61 

this paper, recent CPT based axial capacity approaches, modified for mobilised base resistance and 62 

ageing, are applied to estimating driveability of 4.2m diameter piles. A database of pile installation 63 

records from North sea installations are used to benchmark the methods. Accounting for factors such 64 

as pile ageing and the relatively low displacement mobilised during individual hammer blows improves 65 

the quality of prediction of pile driveability for the conditions evaluated in this study.  66 

 67 

Keywords: Pile Driveability; Static Capacity; UWA-05; IC-05; Sand; Monopiles; Offshore Wind; Base 68 

Resistance-Settlement 69 

 70 

1. Introduction 71 

The majority of offshore structures, whether conventional oil and gas platforms or wind turbines, are 72 

supported by driven open-ended steel piles, used as single, large diameter laterally loaded monopiles or 73 

multiple axially loaded piles for a jacket structure. The piles resist both the topside loads and the 74 

environmental wind and wave forces (Arany et al., 2017; Prendergast et al., 2018) and efficient 75 

installation is critically important to minimise time delays and prevent material damage. Piles are 76 

installed using large hammers, which are usually hydraulically powered to provide a controlled driving 77 

force.  Prior to selecting an appropriate hammer, a driveability analysis is usually performed to ensure 78 

the selected equipment is capable of installing the pile to the target depth in a reasonable time-frame 79 

and without overstressing the steel pile shaft. This process is essential to the smooth installation of any 80 

offshore structure, as driving delays can result in significant financial overspends due to vessel down-81 

time. Premature refusal or structural damage to the piles can also threaten the feasibility of an offshore 82 

project. Therefore, a comprehensive driveability analysis should be undertaken that considers the entire 83 

driving system including the hammer performance, pile geometry, site specific soil conditions and the 84 

soil-structure interaction problem. 85 

The Static Resistance to Driving (SRD) is a profile of shaft and toe resistance developed during pile 86 

installation, and an estimate of this is required to perform a driveability study. An SRD profile differs 87 

from a static capacity profile in that it models the cumulative increase in shaft capacity with further pile 88 

penetration and has a toe resistance associated with each driving increment, as opposed to a static profile 89 

with a single base resistance. Moreover they differ in terms of time, degree of mobilisation and 90 

consolidation. Accurately predicting the soil-structure interaction is critical to the driveability process 91 

and is arguably the most challenging aspect (Prendergast and Gavin, 2016; Wu et al., 2018). Traditional 92 

approaches for predicting SRD such as Stevens et al. (1982), Toolan and Fox (1977), and Semple and 93 

Gemeinhardt (1981) are largely empirical and therefore, extrapolation to pile geometries and soil 94 

conditions outside of the dataset on which they are based is highly questionable. The application of such 95 
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methods in the extreme hard tills or very dense sands (where the CPT end resistance qc value is typically 96 

in the range 30 – 100 MPa) in the North Sea and for the large diameter monopiles supporting wind 97 

turbines should be assessed. Aldridge et al. (2010) highlights the difficulties in predicting the 98 

installation resistance of 2.6m diameter piles at the Clair platform in the North Sea, west of the 99 

Shetlands, where the undrained shear strength of the underlying glacial till exceeded 2500 kPa. In this 100 

instance, a series of pile driving trials were conducted in advance of the platform installation to ensure 101 

the piles could reach the target depth. Predictions based on the IC-05 (Jardine et al., 2005) methodology 102 

which accounts for high strength of the clay, the pile geometry, group effects and cyclic loading 103 

provided much more consistent estimates of the pile resistance than standard offshore methods. 104 

Schneider and Harmon (2010) proposed a pile driveability model based on the UWA-05 (Lehane et al., 105 

2005) method that incorporates friction fatigue and accounts for the effects of pile plugging. They note 106 

that inertial effects during driving mean that the soil plug remains at or near the sea bed level during 107 

installation. As a result they propose a methodology in which the base resistance develops only on the 108 

pile annulus, and the shaft resistance develops both on the external pile surface and internally on the 109 

pile plug. They suggest that the stress on the pile annulus be taken as 35% of the CPT qc value at the 110 

pile tip and the shear resistance mobilised by the soil plug is 50% of the external shear resistance. They 111 

found this approach gave consistent predictions of driving resistance for four, open-ended pipe piles 112 

driven with diameters ranging from 0.356m to 2m at three sites, in Japan, USA and the Netherlands.  113 

Byrne et al. (2012) examined the ability of commonly employed pile driveability models (Semple and 114 

Gemeinhardt, 1981; Stevens et al., 1982; Toolan and Fox, 1977) to predict the installation response of 115 

a 0.762m diameter skirt pile and a 4.2m diameter monopile installed in dense North Sea sand. Somewhat 116 

surprisingly the models provided poorest predictions of the installation response of the 0.762m pile with 117 

the range of measured to predicted blow-counts varying from 30% to 180% at the final penetration 118 

depth of 34m. The methods provided much closer estimates for the 4.2m diameter pile at the final 119 

penetration depth of 31.5m (estimates in the range 55% to 135%). However, for shallow penetrations 120 

of the monopile the variance was much larger and methods which under-predicted the blow-counts for 121 

shallow penetrations, tended to over-estimate the resistance at depth and vice-versa. This suggests some 122 

fundamental inherent bias in the models which would lead to inconsistent estimates of the full pile 123 

driving process.     124 

In this paper, records from a number of pile installations in the North Sea are used to compare the 125 

performance of conventional driveability analyses and new CPT approaches modified to account for 126 

important processes including pile ageing, friction fatigue, low base displacement and plugging (Gavin 127 

and Lehane, 2007). The pile driving data from six sites, namely Caravel, Cutter, Shamrock, L09FA1, 128 

L09FB1 and Skiff are used to compare the predictive performance of the models. The Skiff platform is 129 

supported on a jacket with 0.762m diameter piles, whilst the remaining platforms are founded on single, 130 

4.2m monopiles. The limitations and biases of each driveability method are assessed and 131 

recommendations are made for a more accurate scientific approach.  132 

 133 

2. Modelling Process 134 

Determining the optimum pile geometry is an iterative process, where the trade-off between the higher 135 

capacities achieved using larger piles is offset by the increased difficulty and risk associated with 136 

driving these piles to the desired penetration. A flow-chart describing the principal inputs required and 137 

the analysis procedure used to conduct a driveability study is shown in Fig. 1. The three main inputs 138 

are the soil parameters, pile properties and hammer details. The pile properties and hammer 139 



Published in Ocean Engineering 166 2018 pp.76-91 

 

characteristics are relatively well understood and can be determined with a reasonable degree of 140 

accuracy. Given the difficulties in sampling and testing offshore soils in-situ Cone Penetration Testing 141 

(CPT) is widely undertaken for offshore projects with most installations having at least one complete 142 

CPT profile. Given the similarities between CPT and pile installation, many correlations have been 143 

developed linking pile end, qb and shaft resistance, qs to the CPT end resistance, qc which usually give 144 

better predictions of pile response than approaches which use soil parameters within an effective stress 145 

framework (Jardine et al., 2005). The main output of interest for this paper is a prediction of the blow-146 

counts required to drive a given pile, as this will be compared to the real blow-counts across the 147 

investigated sites. It should be noted that there is potential for several combinations of the input 148 

parameters to yield similar output values. The SRD profiles in this paper are derived using measured 149 

CPT profiles as input. To ensure that the modelling is as accurate as possible, information from the 150 

monitoring reports related to hammer type, input energy, driving delays, etc. for each pile is carefully 151 

considered in each driveability analysis to ensure the predictions for each proposed soil resistance are 152 

genuine.  153 

 154 

Fig. 1. Flow-chart of principal inputs and outputs available from a wave equation based driveability 155 

analysis. 156 

 157 

The total resistance of a pile to driving results from a combination of the static SRD, dynamic increases 158 

in pile capacity due to inertial effects and increases in capacity due to viscous rate effects. Driveability 159 

methods used to derive the static SRD are discussed in Section 3. The remaining effects (inertia, viscous 160 

rate effects) are accounted for within the wave equation analysis problem. In this paper, a commercially 161 

available finite-difference software GRLWEAP Off-Shore 2010 (Pile Dynamics, 2010) was used to 162 

perform the operations and analyse the energy transferred to the pile from each hammer blow. 163 

GRLWEAP is a 1-D wave equation analysis software capable of simulating the response of a pile to 164 

pile driving equipment, and is fundamentally based on solving the wave equation shown in Eq. (1) 165 
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where  is the mass density (kg/m3), E is the elastic modulus (N/m2). The wave speed, c is a function 167 

of the mass density and elasticity as follows, 


E
c  . 168 

 169 

GRLWEAP has a number of inbuilt static SRD models, however, it also allows the user manually input 170 

shaft and end resistance profiles, thus making it ideal for the problem in this paper. The dynamic forces 171 

and viscous rate effects are represented by damping values, which vary according to soil type. It is usual 172 

for an SRD model to be used with an accompanying set of standard damping values. Also specified are 173 

quake values, the displacement required to achieve yield, see Fig. 2. The parameters used in this study 174 

are presented in Table 1 and are derived from original references, where possible. 175 

 176 

Fig. 2. Definition of quake 177 

 178 
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Table 1. Quake and damping values. 179 

 180 

GRLWEAP has an extensive archive of hammer types with a database of their properties (such as 181 

hammer masses and drop heights, among other properties). Monitoring reports from each of the 182 

installations considered in this paper included details of events such as delays occurring during driving, 183 

thereby allowing the hammer performance/efficiency and driving system to be modelled accurately. 184 

With the exception of the monopile at Cutter, each pile was dynamically monitored which enabled the 185 

pile enthru energy (energy that the pile experiences) to be calculated and replicated in the analysis. 186 

Hammer stroke heights were adjusted during the modelling process so that the output energies matched 187 

the recorded values. Standard efficiencies were applied based on suggested values for each hammer. 188 

 189 

The friction fatigue effect, whereby shear resistance in a given layer reduces as the pile tip advances  is 190 

included in the later SRD models, usually by means of including a degradation term in the calculation 191 

of the shear stresses of the form (h/R)n where h is the vertical distance from the pile tip to the soil 192 

horizon in question and R is the pile radius, see Fig. 3.  193 

 194 

Fig. 3. Definition of (h/R) expression. 195 

 196 

Because the term causes the shape of the shear resistance distribution to change with pile penetration, 197 

some averaging technique is necessary. Schneider and Harmon (2010) found that the shape of the shaft 198 

friction distribution had a negligible effect on the resultant bearing graph. They suggest the change in 199 

shaft capacity between two successive depth increments be used to calculate the pseudo average shaft 200 

friction (Δτf,avg), as shown in Eq.(2). 201 

 202 
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 204 

where ∑QS,L is the cumulative shaft resistance at a given tip depth; ∑QS,L-1 is the cumulative shaft 205 

resistance at the previous depth increment; ΔL is the depth increment; and D is the pile diameter. This 206 

pseudo averaging technique was applied to the relevant models incorporating friction fatigue in the 207 

present analysis. 208 

 209 

3. Traditional Static Resistance to Driving (SRD) approaches 210 

Numerous driveability approaches have been proposed throughout the years to calculate the soil static 211 

resistance to driving and are still frequently used in North Sea pile design. The initial methods were 212 

developed in the late 1970’s and early 1980’s. Three traditional driveability models were employed in 213 

the analysis in this paper.   214 

 215 

3.1 Toolan & Fox (1977) 216 

The Toolan and Fox model proposes the calculation of the unit toe resistance, for both cohesive and 217 

cohesionless soil, as a weighted average of the cone tip resistance (qc) over a number of pile diameters 218 

above and below the pile tip. The unit skin friction in sands can be determined as a fraction of the 219 
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recorded cone resistance, (1/300 for a dense sand) or alternatively may be computed in accordance with 220 

the American Petroleum Institute (API) (API, 2007) guidelines, and is limited to 120 kPa. For a fully 221 

coring pile, unit skin friction is applied to the internal and external shaft area equally while the unit toe 222 

resistance is applied to the pile annulus. 223 

 224 

3.2 Stevens et al. (1982) 225 

For cohesionless materials, both unit toe and skin resistances are calculated using the standard static 226 

capacity procedures outlined in the API method (API, 2007). Limiting input values of unit skin and toe 227 

resistance are assigned while the model defines lower (LB) and upper bound (UB) static predictions for 228 

plugged and coring conditions. Large open-ended pipe piles, similar to those installed at the six 229 

locations considered in this paper, usually remain fully coring during pile installation (internal soil core 230 

level approximately at external sea bed level). The lower bound case adopts an internal shaft friction 231 

half that of the exterior, with the upper bound assuming that both are equal. The unit skin friction is 232 

first calculated from the API method (API, 2007) and adjusted incrementally by a capacity factor 233 

determined empirically from wave equation analysis.  234 

 235 

3.3 Alm & Hamre (2001) 236 

The original Alm and Hamre (1998) model was developed from back-calculated driveability studies 237 

from North Sea installations. An updated version presented in 2001 moved to a CPT based approach to 238 

address issues with variability and uncertainty in selection of soil parameters. The model benefited from 239 

an enlarged database containing longer and larger (1.8-2.7m) diameter piles and incorporated the 240 

friction fatigue effect.  241 

The ultimate shaft friction, f is given by Eq.(3). 242 
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Where: fmax is the peak shaft friction, res is the residual friction (= 0.2 fmax), h is the depth of the layer 246 

from the pile tip, k is a shape factor and  is the interface friction angle. The unit end bearing resistance, 247 

qb is given by Eq. (4). 248 
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 250 

4. Application of axial static capacity approaches to driveability 251 

The CPT based design methods for calculating the axial static resistance of piles in sand known as the 252 

IC-05 and UWA-05 methods drew heavily on the findings from highly-instrumented model pile tests 253 

undertaken by a number of researchers at Imperial College London (Jardine et al., 2005; Lehane et al., 254 

2005). In particular these tests provided new insights into the mechanisms controlling the development 255 
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of shaft friction for displacement piles in sand. The IC-05 method for estimating the ultimate shaft 256 

resistance is shown in Eq.(5). 257 

 258 
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Where a = 0.9 for open-ended piles, b = 1.0 for piles in compression, R* is the equivalent radius of a 260 

closed-ended pile (assuming no plugging occurs during installation) and σrd is the change in radial 261 

stress due to interface dilation. This term can be ignored for offshore piles. 262 

 263 

The unit base resistance is given by Eq.(6). 264 

 265 
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 267 

Where: DCPT is the diameter of the CPT penetrometer. 268 

 269 

The UWA-05 method has a similar formulation for shaft resistance as shown in Eq. (7). 270 
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and Di are the external and the internal diameter of the pile respectively. IFR is the incremental filling 274 

ratio (or change in soil plug length for an increment of pile penetration).  275 

 276 

The unit base resistance is calculated using the expression in Eq.(8). 277 

 278 

qb0.1 / qc,avg = 0.15 + 0.45 Ar,eff                                                                                    (8) 279 

 280 

While not explicitly designed for determining a soil SRD, similarities between the mechanisms 281 

controlling installation resistance and static capacity suggest that with modification and adaptation these 282 

methods could prove appropriate for use in driveability analyses. A case study presented by Overy and 283 

Sayer (2007) indicated that the IC-05 method gave reasonable predictions for drill-drive operations of 284 

the main conductor piles at the same Skiff site considered in this study.  285 

 286 

In this paper the possible contribution of four factors that could differentiate the installation and static 287 

loading processes are considered: 288 

 289 

(i) The phenomenon of pile ageing (capacity increase with time after installation) is becoming more 290 

widely accepted. The recent CPT based design methods are calibrated using load tests performed 291 

generally 10 to 30 days after installation. Therefore, the pile resistance during installation will be 292 

lower than the models suggest. 293 

(ii) Given the relatively low displacements experienced during individual hammer blows the rate of 294 

pile base mobilisation is considered explicitly. 295 
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 296 

The behaviour of the soil plug during installation and under static loading can differ substantially. Due 297 

to inertial effects during driving the internal soil plug resistance is low and large diameter piles usually 298 

remain near fully coring (the soil plug moves inside the pile at a similar rate to the pile penetration). In 299 

SRD and static capacity models two failure conditions are considered, for static loading: (i) a plugged 300 

failure occurs when the soil beneath the pile tip displaces and the inner column of soil remains in contact 301 

with the inner pile surface, advancing with the downward moving pile under failure, in effect almost 302 

akin to a closed ended pile, (ii) an unplugged failure, where the internal soil cylinder remains stationary 303 

as the pile progresses. In reality, both mechanisms may take place during failure.  304 

 305 

The IC-05 method has a procedure and guidance to predict whether plugged or unplugged failure 306 

develops. In the instance of unplugged failure (which was the mode of failure predicted for all piles in 307 

this study) the full CPT resistance is applied over the annular base area only and the plug resistance 308 

(internal shaft friction) is not taken into account explicitly. For the UWA-05 model, the plug is 309 

presumed not to fail during static loading and a modified unit base resistance (which considers the 310 

effective area ratio and accounts directly for the degree of plugging during installation) acts over the 311 

gross pile area. This takes into consideration the reduced base stiffness developed during coring 312 

installation of the pile. While these may provide accurate static capacity estimates, it may not model or 313 

represent the interaction between the pile and soil plug during driving, as noted by Overy and Sayer 314 

(2007) for North Sea pile installations.  315 

 316 

The base capacity evaluated from the IC-05 and UWA-05 models assume pile tip displacements (wb) 317 

of 10% of the pile diameter (D), as the failure criteria. During driving, the pile penetration per blow is 318 

much lower than this value and a reduction factor should be applied to account for this effect. A three-319 

stage base resistance-settlement model, proposed by Gavin and Lehane (2007), is implemented as a 320 

means of estimating the base resistance mobilised during each hammer impact. The model, 321 

schematically presented in Fig. 4, considers the pile tip displacement (wb), normalised by the pile 322 

diameter (D), and plotted against the mobilised base resistance (qb).  323 

 324 

Fig. 4. Base resistance-settlement model (Gavin and Lehane, 2007)  325 

 326 

The base resistance-settlement model considers the initial settlement response to be linear until a yield 327 

strain (wby/D) is reached (assumed to occur at 1.5% of pile diameter), followed by a non-linear parabolic 328 

stage to a strain at 10% of pile diameter (i.e. wb/D of 0.1). The linear stage (wb/D < wby/D) is governed 329 

by the small strain soil elastic stiffness (E0). While E0 should be computed from shear wave velocity 330 

measurements based on seismic cone or bender element tests, in practice, these may not be available 331 

and it can be approximated using correlations with CPT qc data (Prendergast et al., 2013), such as those 332 

reported by Robertson (1990) and Schnaid et al. (2004). The linear portion of the curve can be 333 

represented by Eq.(9). 334 
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 338 

where ν is the Poisson’s ratio. The parabolic portion (wby/D < wb/D < 0.1) is given in Eq.(10): 339 
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 342 

The residual base stresses (qb,res) associated with previous hammer blows may be of the order of 1% to 343 

10% of the CPT qc value at a given depth and the sensitivity of the analysis to a range of potential 344 

residual stress conditions is assessed in this paper. The base-settlement model was implemented as a 345 

modified form of the UWA-05 approach with the wb/D ratio being estimated based on a typical 346 

displacements recorded for piles installed at the sites considered.  347 

 348 

5. Pile Database 349 

The installation database assembled by Shell UK was interrogated and the results from the installation 350 

of five monopiles were selected for analysis. These monopiles are 4.2m diameter steel open ended piles 351 

installed at Caravel, Shamrock, L09FA1, L09FB1 and Cutter, respectively. In addition, a 0.762m 352 

diameter skirt pile supporting a jacket structure at the Skiff site was also analysed for comparative 353 

purposes. The  locations of each of the installations are shown in Fig. 5 and Table 2. The piles were 354 

predominantly driven in medium dense (≈40% overall) to dense sand (≈20%) with frequent very dense 355 

zones (≈30%). There were instances of loose to very loose sand (<10%) and layers and bands of clay 356 

were occasionally present. 357 

 358 

Fig. 5. Location map showing pile locations off Dutch and UK coasts. 359 

 360 

Table 2 compares the primary geotechnical properties at each site and provides other relevant 361 

information such as results from laboratory tests conducted during the site investigation. The sites are 362 

broadly similar with some expected variation in sand relative densities and CPT qc profiles at given 363 

depths. 364 

 365 

Soil plug measurements were recorded at sea bed level for Cutter after driving ceased and although no 366 

soil plug measurements were made at the remaining sites, the monopiles would most likely have been 367 

fully coring. It is also reasonable to assume that the Skiff skirt pile would be coring (or partially 368 

plugged), according to IC-05 plugging guidelines.  369 

 370 

Table 2. Site Description. 371 

 372 

Geotechnical logs, in addition to in-situ and laboratory test reports, were available for each location and 373 

provided a comprehensive catalogue of the site conditions from which soil profiles could be derived. 374 

Relative densities were evaluated by interpreting the CPT cone resistance based on the relationship 375 

proposed by Jamiolkowski et al. (1988) shown in Eq. (11).  376 
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where Dr is the estimated relative density (%), qc  is the measured cone resistance (kPa), σ'm is the 378 

estimated mean effective stress at the test depth (kPa) and 379 
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 382 

where p0’ is the effective overburden pressure (kPa) and K0 is the coefficient of lateral earth pressure. 383 

Tentative upper and lower bound values of K0 were used to estimate the relative density profiles which 384 

are illustrated in Fig. 6 and are accompanied by the corresponding CPT qc profiles from each site. The 385 

consistency of the sand can be categorised according to the ranges of relative densities proposed by 386 

Lambe and Whitman (1969) as presented in Table 3. 387 

 388 

Table 3. Relative Density (Dr) definitions (Lambe and Whitman, 1969) 389 

 390 

When the Dr traces abruptly return to zero percent, this indicates the transition from a sand layer to a 391 

clay layer and likewise, where the relative density spikes sharply from zero, this indicates the return to 392 

a sand layer. The resistance of stiff-hard clays to an advancing CPT cone is usually less than that of 393 

medium dense to dense sand and it would be expected that the measured total cone resistance in clay 394 

would be noticeably less than that of the sand. In this way, the two traces should mimic each other at 395 

the interface zones between clay and sand. This is mostly true for the sites in Fig. 6. Each 0.5m depth 396 

increment used in the calculation of the respective methods’ SRDs had an associated CPT qc value. A 397 

simplified profile (ignoring the extremes in CPT qc) was not assumed as this would be un-conservative 398 

because of the potential to underestimate the soil strength. Instead, values close to the actual CPT qc 399 

traces were assigned in each case. 400 

 401 

Fig. 6. Site CPT qc and Relative Density (Dr) Profiles. 402 

 403 

6. Results 404 

In this section, the results are presented as the application of the various methods to the driveability 405 

problem, namely traditional approaches (section 6.1), static capacity approaches (section 6.2) and 406 

modified static capacity approaches (section 6.3). The performance of the various approaches to 407 

analysing monopile driveability is critically evaluated and discussed.  408 

 409 

6.1 Traditional driveability approaches 410 

The pile installation performance was predicted by performing wave equation analyses using the 411 

driveability software. Having entered the pile properties and SRD profiles the driving process was 412 

simulated by adjusting hammer stroke heights and a profile of blow-counts with depth was predicted. 413 

Blow count profiles with depth from two of the six sites considered namely; Skiff (pile diameter 414 

0.762m) and Caravel (pile diameter 4.2m) are shown in Fig. 7. These types of plot are frequently 415 

produced during the pile design phase to determine if excessive blows would be required to drive a pile. 416 

It is common in practice to have best and upper estimates. Usually, a nominal number of 250 blows per 417 

0.25m penetration is defined as pile refusal, however, this limit can be substantially lower for large 418 
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diameter monopiles, due to the increased risk of damage associated with the use of larger hammers 419 

required to drive the piles. It is evident in Fig. 7(a) that a number of the approaches predicted more than 420 

250 blows/0.25m were required to drive the piles at Skiff. 421 

For example the upper bound estimates for the established approaches of Stevens et al. which assumes 422 

the pile is plugged predicts refusal at 27.5m. In reality the pile was installed in a partially plugged mode 423 

and Stevens et al. (1982) recommend using the Plugged Lower Bound (Steve Plug LB) prediction as a 424 

best estimate for piles in dense sands, even for piles which have a high probability of coring during 425 

installation. The lower bound line here is in reasonably good agreement with the measured blow counts, 426 

albeit underestimating the pile resistance for pile penetrations in excess of 25m. In contrast, when this 427 

method was applied to the large diameter monopile, refusal was predicted within the first few metres of 428 

penetration. A similar trend was noted for all the monopiles considered. The Stevens approach was 429 

developed using a dataset of installations consisting mainly of piles of less than 2m in diameter, 430 

typically used during the 1970’s and 1980’s. While the approach provides an acceptable estimate here 431 

for the 0.762m diameter skirt pile at Skiff it is totally inadequate for the monopiles, where refusal was 432 

almost immediate. This highlights the potential pitfalls in extrapolating existing methods to piles of 433 

larger diameters. 434 

Although the Toolan & Fox (T&F) and Alm & Hamre Upper Bound (A&H UB) both predicted early 435 

refusal for the pile at Skiff, they return to within acceptable limits at deeper penetrations. It is at the 436 

engineer’s discretion and best judgement must be used in deciding whether these periods of perceived 437 

hard driving would be acceptable during the course of a driveability study, considering that it is the 438 

upper bound estimate of Alm & Hamre that predicts this. The best estimate (A&H Best) falls 439 

comfortably below 250 blows/0.25m penetration.  440 

For the methods that assume the pile is coring through installation, e.g. Stevens et al. (Stevens Cored 441 

LB & UB), the predicted blow counts increased steadily with penetration for both the Skiff and Caravel 442 

piles and were not overly sensitive to abrupt changes in soil profile. The estimates tend to under predict 443 

the recorded blow counts at each site. It is somewhat unexpected to see the high degree of variation in 444 

the predictions for Skiff in comparison to the relatively narrow band produced at Caravel, excluding 445 

the Stevens plugged estimates. It is worth noting that the soil profile at Skiff has a much higher 446 

proportion of dense to very dense sand over the embedded pile length that may influence the disparity 447 

in the predictions. Table 4 shows the total blow-counts required to drive the piles as estimated from 448 

each method, for both Skiff and Caravel.  449 

 450 

Table 4.Total blow-counts measured and predicted for Skiff and Caravel 451 

 452 

 Fig. 7. Blow count predictions vs measured, (a) Skiff, (b) Caravel 453 

 454 

In addition to comparing blow counts it is important to consider both the driving stresses and installation  455 

time to ensure that the pile is not damaged and the installation costs are not excessive. This is 456 

particularly important for wind farm sites where  a large number of piles need to be driven. While 457 

neither of these aspects were explicitly considered in the present study, it is noteworthy that moderately 458 
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high but acceptable driving stresses can become an issue with fatigue damage, if prolonged periods of 459 

high blow counts are expected, so an indirect measure of this is provided. 460 

 461 

6.2 Unmodified static capacity approaches 462 

In this section, the application of more recently developed CPT-based static (axial) capacity approaches 463 

to estimating driveability is investigated. The IC-05 and UWA-05 static capacity methods are first 464 

applied in their raw (unmodified) form to estimate driveability, by deriving SRD profiles for the shaft 465 

and toe resistance based on each method (Jardine et al., 2005; Lehane et al., 2005). The friction fatigue 466 

effect, which results in the distribution of shaft friction varying with advancing pile tip, is incorporated 467 

by calculating the pseudo-average shaft friction between adjacent depths, see Eq. (2). The results of the 468 

driveability analysis for the six sites derived using the IC-05 and UWA-05 and compared to the recorded 469 

blow counts are shown in Fig. 8. 470 

 471 

Fig. 8. Blow counts/ 0.25m for all sites with unmodified CPT-based static capacity approaches 472 

 473 

From the results in Fig. 8, it can be observed that for Skiff, Caravel, Cutter and Shamrock, both methods 474 

broadly over-predict the blow counts required to install each pile. For Caravel and Shamrock, the IC-475 

05 method provides a reasonable estimate of the driveability with some significant over-prediction in 476 

places (e.g. Caravel upper layers). However, for L09FA1 and L09FB1, the IC-05 approach tends to 477 

under-predict somewhat. The relatively poor predictive resistance of these methods in their unmodified 478 

form is unsurprising as they were developed to predict the  medium-term (10 to 30 day following 479 

installation) static capacity of piles. Moreover, the base resistance calculated from the IC-05 and UWA-480 

05 approaches assumes a base displacement of 0.1D is mobilised. Nonetheless, the methods appear to 481 

provide reasonable profiles on the driveability resistance (mirroring the blow counts in the different 482 

layers) and therefore the next section considers some modifications that could be applied to the methods 483 

to simulate the actual driving process more closely.   484 

 485 

6.3 Modified static capacity approaches 486 

The IC-05 and UWA-05 static capacity methods are modified in this section and applied to estimating 487 

driveability. In the first instance, to account for the fact that pile ageing effects are inherently considered 488 

in the static capacity approaches, the shaft capacity as derived by each method is reduced to 70% of the 489 

unmodified value. The reduction factor of 0.7 for short-term shaft capacity was chosen based on the 490 

interpretation by Jardine et al. (2006) of Intact Ageing Curves from pile tests that investigated the ageing 491 

characteristics of piles installed in dense sand at Dunkirk. Based on static and dynamic load tests, the 492 

authors proposed that the end of driving shaft capacity of piles was 70% of the resistance predicted 493 

using the ICP design method. This proposal was consistent with field tests reported by Gavin et al. 494 

(2013) and Karlsrud et al. (2014) summarised in Gavin et al. (2015). For the UWA-05 approach, the 495 

base resistance is further modified herein using the base-settlement model in Fig. 4. In this modification, 496 

a revised base resistance is calculated using the actual settlement under each hammer blow (averaged 497 

into layers) and normalized to the pile diameter in each case. The new base resistance is calculated 498 

using Eq. (9), initially assuming no residual base resistance (qb,res) acts on the system. The results of the 499 

modified approaches with the actual measured blow counts are shown in Fig. 9. 500 

 501 

Fig. 9. Blow counts/ 0.25m for all sites with modified CPT-based static capacity approaches 502 

 503 
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In Fig. 9, a more reasonable prediction of blow counts is achieved in each case. The UWA approach 504 

predicts a significantly lower blow count vs penetration than the unmodified approach in Fig. 8. Broadly 505 

speaking, it now under predicts the blow counts for each pile. The IC-05 approach both over and under 506 

predicts the blow-counts across the sites, though generally speaking provides a reasonable estimate in 507 

most cases. This approach under-predicts the response at the L09FA1 and L09FB1 sites. The blow-508 

counts in the upper layers of the Cutter site are heavily over predicted. This is a result of the estimated 509 

w/D under each hammer blow in the upper layers being over-predicted due to the lack of actual blow 510 

count information for these depths (an average was assumed based on the initial blow-count 511 

information). Therefore, the results for Cutter in the upper layers are not a realistic estimate of the actual 512 

behaviour and can be ignored.  Results from the Cutter site are less reliable overall due to a failure of 513 

the logging system reading the blows for depths larger than 17m bgl, as can be seen by the stepped 514 

nature of the data signal.  515 

 516 

The modified UWA approach provides a reasonably consistent under prediction of blow counts across 517 

all sites. As the base resistance was developed using the resistance-settlement model in Fig. 4, and the 518 

presence of potential residual base stress after each hammer blow is initially ignored, it is reasonable to 519 

account for the presence of potential residual base stress adding to the overall resistance properties. The 520 

impact of residual loads on piles in sand is well known however, measurements of residual loads on 521 

open-ended piles are rare. Paik et al. (2003) report residual loads measured on 356 mm  diameter closed 522 

and open-ended piles installed in dense sand. They found that the residual stress (qb,res) normalised by 523 

qc was similar for both piles (in the range 11% to 14% of qc) despite the open-ended pile being nearly 524 

fully coring, with a final incremental filling ratio (IFR) of ≈ 78%. Kirwan (2015) reports residual load 525 

measurements on a 340 mm diameter open-ended pile installed in dense sand. The residual load 526 

appeared to be affected by the IFR with a ratio qb,res/qc of 27% at the end of installation when the IFR 527 

was 40%. Residual base stresses varying from 1% of the CPT qc  tip resistance to 10% qc are assumed 528 

in a parameter study, conducted herein.  529 

 530 

The modified toe resistance from the UWA approach was calculated using the linear portion of the 531 

base-resistance settlement model from the actual settlement per blow information from each site 532 

averaged into layers. In order to investigate the effect of residual base stresses potentially existing after 533 

each hammer blow, residual stresses of qc where  T
1.008.005.002.001.0  were added 534 

to the modified toe resistance profile for each site. The resistance was added in a step-wise approach 535 

and only added once there was sufficient negative skin friction present at a given depth to resist the 536 

residual stress (i.e. the pile was in equilibrium after each hammer blow). The negative skin friction in 537 

tension was assumed to be 80% of the compression resistance. The derived modified toe resistance SRD 538 

profiles with step-wise residual stresses and the predicted blow counts for the Caravel site are shown in 539 

Fig. 10.   540 

 541 

Fig. 10. Effect of residual base stress at Caravel site, (a) UWA modified to resistance with varying 542 

residual stresses added, (b) Predicted blow counts for a range of residual added stresses 543 

 544 

Fig. 10(a) shows the derived modified UWA-05 toe resistance SRD profiles for Caravel with step-wise 545 

residual base stress added in increments corresponding to 0.01qc, 0.02 qc, 0.05qc, 0.08qc and 0.1qc at 546 

each depth. Fig. 10(b) shows the blow count predictions for the various input profiles. The recorded 547 

blow counts are also shown on the plot. A reasonable match to the recorded profile is obtained  with 548 

the step-wise residual stress added up to 10% of the qc profile. For the remaining sites, the results of a 549 
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similar analysis are summarised herein. Adding the residual stress component leads to a reasonable 550 

prediction for Cutter (though recorded values are albeit somewhat unreliable due to logger failure) as 551 

well as for the 0.762m pile at Skiff. The UWA modified approach with added residual stress still leads 552 

to an under prediction for L09FA1, L09FB1 and Shamrock sites.  553 

 554 

The modified IC-05 method previously only considered a reduction in the shaft friction during driving 555 

to remove the ageing effect with the toe resistance remaining unmodified. This approach provided a 556 

reasonable estimate of the blow counts for the Shamrock site, see Fig. 9(c). A brief analysis is conducted 557 

herein to investigate the effect of adopting the UWA-05 modified base resistance with the IC-05 558 

modified shaft resistance and applying the residual toe resistances to the case of the Shamrock site. The 559 

results are shown in Fig. 11, which show an under prediction in each case though the general shape of 560 

the blow count with depth is reasonably represented, especially by the step-wise addition of the base 561 

stress up to 10% of the qc tip resistance. This analysis suggests that the addition of a residual base 562 

resistance component to the modified toe resistance profile provides an improved prediction of the blow 563 

counts. Overall, however, the modified IC-05 method with reduced shaft friction and unmodified base 564 

resistance seems to provide the most reliable method for estimating blow counts in the context that it 565 

mainly provides a conservative estimate in a driveability context, except for L09FA1 and L09FB1 566 

where it under-predicts. The modified UWA-05 approach primarily under-predicts the blow counts for 567 

the given sites tested, though the addition of residual base stress reduces this under-prediction 568 

considerably in many cases.  569 

 570 

Fig. 11. Predicted and recorded blow counts for Shamrock with residual added stress and modified 571 

base IC-05 method. 572 

 573 

7. Conclusions 574 

This paper examined the feasibility of applying both existing pile driveability approaches and 575 

modifying static capacity approaches to monopile foundations installed in North Sea sand. No single 576 

method investigated proved reliable for predicting blow counts across all the sites considered. For the 577 

traditional approaches, there is a tendency to underestimate the blows for sites with medium dense to 578 

dense sand. An exception being the use of the Stevens et al. plugged approach, which should not be 579 

applied for large diameter piles. The recommendation of using the lower bound prediction of the 580 

plugged case in dense sands applied for smaller diameter piles is clearly not suitable for monopiles. 581 

Applying axial static capacity approaches (IC-05 & UWA-05) in their raw unmodified form is mostly 582 

unsuitable for monopile driveability, with substantial overestimates frequently produced. This is 583 

particularly true for the UWA-05 approach, which vastly over-predicted blow counts in all cases. This 584 

is a result of the method taking an average base resistance (accounting for plugged behaviour during 585 

static loading) acting across the entire pile base area. The IC-05 approach over-predicts the blows for 586 

Skiff, Cutter and the upper layers of Caravel while providing a somewhat reasonable estimate for 587 

Caravel lower layers and Shamrock. The IC-05 approach generally under-predicted the blow counts at 588 

L09FA1 and L09FB1. Adopting the base settlement model in the UWA-05 approach provides a 589 

significant improvement, albeit the predictions tend to fall short of the recorded blow counts. The 590 

inclusion of potential residual base stresses of up to 10% of the qc value at a given depth gave a further 591 

improvement to the model that is keeping with field measurements, though still resulted in an under-592 

prediction in each case. The modifications applied, while not a formal method for predicting 593 

driveability, should certainly be considered as a guide in estimating the blow counts for monopiles.  594 
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Comparisons between the monopiles and skirt pile are difficult to evaluate as only a single, isolated 595 

case was considered at Skiff. Overall, however, the IC-05 with modified shaft friction and the UWA-596 

05 with modifications including additional residual base stresses provided reasonable estimates of the 597 

blow counts for the cases considered, and would certainly provide an estimate of the expected behaviour 598 

of a monopile under driving to an acceptable industry tolerance. If adopted in tandem, they may provide 599 

an envelope of the expected response, with perhaps a tendency toward under-prediction as per L09FA1 600 

and L09FB1. As with all approaches, engineering judgement should be taken when choosing a method 601 

and the analysis in this paper aims to highlight the potential disparity in predictions from the various 602 

available approaches.  603 

The study undertaken in this paper has looked at the applicability of the various approaches to 604 

monopiles with diameters of 4.2m. A future study is recommended on larger diameter monopiles to 605 

further investigate the remaining uncertainties associated with these emerging geometries.   606 
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 682 

Fig. 1. Flow-chart of principal inputs and outputs available from a wave equation based driveability 683 

analysis. 684 
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 686 

Fig. 2. Definition of quake 687 
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 689 

Fig. 3. Definition of (h/R) expression. 690 
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Fig. 4. Base resistance-settlement model 
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Fig. 5. Location map showing pile locations off Dutch and UK coasts. 
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Fig. 6. Site CPT qc and Relative Density (Dr) Profiles. (a) Caravel 
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Fig. 6. Site CPT qc and Relative Density (Dr) Profiles. (b) Shamrock 
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Fig. 6. Site CPT qc and Relative Density (Dr) Profiles. (c) L09FB1 
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Fig. 6. Site CPT qc and Relative Density (Dr) Profiles. (d) L09FA1 
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Fig. 6. Site CPT qc and Relative Density (Dr) Profiles. (e) Cutter 
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Fig. 6. Site CPT qc and Relative Density (Dr) Profiles. (f) Skiff 
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Fig. 7. Blow count predictions vs measured, (a) Skiff 
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Fig. 7. Blow count predictions vs measured, (b) Caravel 
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Fig. 8. Blow counts/ 0.25m for all sites with unmodified CPT-based static capacity approaches (a) 

Skiff 
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Fig. 8. Blow counts/ 0.25m for all sites with unmodified CPT-based static capacity approaches (b) 

Caravel 
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Fig. 8. Blow counts/ 0.25m for all sites with unmodified CPT-based static capacity approaches (c) 

Shamrock 
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Fig. 8. Blow counts/ 0.25m for all sites with unmodified CPT-based static capacity approaches (d) 

Cutter 
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Fig. 8. Blow counts/ 0.25m for all sites with unmodified CPT-based static capacity approaches (e) 

L09FA1 
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Fig. 8. Blow counts/ 0.25m for all sites with unmodified CPT-based static capacity approaches (f) 

L09FB1 
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Fig. 9. Blow counts/ 0.25m for all sites with modified CPT-based static capacity approaches (a) Skiff 
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Fig. 9. Blow counts/ 0.25m for all sites with modified CPT-based static capacity approaches (b) 

Caravel 
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Fig. 9. Blow counts/ 0.25m for all sites with modified CPT-based static capacity approaches (c) 

Shamrock 
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Fig. 9. Blow counts/ 0.25m for all sites with modified CPT-based static capacity approaches (d) Cutter 
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Fig. 9. Blow counts/ 0.25m for all sites with modified CPT-based static capacity approaches (e) 

L09FA1 
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Fig. 9. Blow counts/ 0.25m for all sites with modified CPT-based static capacity approaches (f) 

L09FB1 
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Fig. 10. Effect of residual base stress at Caravel site, (a) UWA modified toe resistance with 

varying residual stresses added 
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Fig. 10. Effect of residual base stress at Caravel site, (b) Predicted blow counts for a range of residual 

added stresses 
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Fig. 11. Predicted and recorded blow counts for Shamrock with residual added stress and modified 

base IC-05 method. 
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Table 1. Quake and damping values. 

 

 

Method 

Sand Clay  

 

Reference 
Quake  

(mm) 

Damping 

(s/m) 

Quake  

(mm) 

Damping  

(s/m) 

Side Toe Side Toe Side Toe Side Toe 

Alm and Hamre 

(2001) 

2.5 2.5 0.25 0.5 2.5 2.5 0.25 0.5 (Alm and Hamre, 2001) 

Toolan and Fox 

(1977) 

2.5 2.5 0.17 0.5 2.5 2.5 0.66 0.03 (Hirsch et al., 1976) 

Stevens et al. (1982) 2.5 2.5 0.27 0.5 2.5 2.5 0.1 0.5 (Stevens et al., 1982) 

UWA (2005) 2.5 2.5 0.25 0.5 2.5 2.5 0.65 0.5 (Schneider and Harmon, 

2010) 

IC (2005) 2.5 2.5 0.16 0.5 2.5 2.5 0.65 0.5 GRLWEAP standard 

values 
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Table 2. Site Description. 

 Caravel Shamrock L09FB1 L09FA1 Cutter Skiff 

North Sea 

Location 
UK 49/20 UK 49/20 Dutch L09 Dutch L09  UK 49/09 UK 48/20 

Pile 

Diameter 

(m) 

4.2 4.2 4.2 4.2 4.2 0.762 

Wall 

Thickness 

(m) 

50/55/60 50/60/70 50/60 50/60/65/70         50/60         38.1             

Pile 

Length(m) 
40.5 43 40 43 41 41 

Penetration 

(m) 
31.5 34 31 34 29 34 

Water 

Depth (m) 
31 30 22 23.5 32 26 

Hammer MHU-600 MHU-600 MHU-600 MHU-600 IHC S-600 IHC S-90 

Dominant 

Soil 

Conditions 

LOOSE 

SAND 

initially, 

MED 

DENSE -

VERY 

DENSE 

fine to 

medium 

SAND 

below 8m 

with clay 

layers 

LOOSE 

SAND 

initially, 

MED 

DENSE - 

VERY 

DENSE 

slightly 

silty SAND 

below 8.5m 

with     clay 

layers 

DENSE 

VERY 

DENSE 

silica fine 

to medium 

SAND with 

Stiff - Hard 

clay layers 

present 

DENSE 

VERY 

DENSE 

silica fine to 

medium 

SAND with 

Stiff - Hard 

clay layers 

present 

MED 

DENSE - 

VERY 

DENSE 

fine to 

medium 

SAND with 

shell 

fragments,     

clay layers 

present 

DENSE -      

VERY 

DENSE 

fine to 

medium 

SAND with 

Stiff clay 

layers 

present 

Sand 

Friction 

Angles                             

(Direct 

Shear: 

Soil-Steel) 

28°-30° 27°-30° 29°-31° 26°-30° 28°-30° 28°-31° 

Clay Layer 

Su (kPa) 
150-400 30-100 175-300 100-300 75-175 50-400 
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Table 3. Relative Density (Dr) definitions (Lambe and Whitman, 1969) 

Consistency Relative Density Dr (%) 

Very Loose 0 – 15 

Loose 15 – 35 

Medium Dense 35 – 65 

Dense 65 – 85 

Very Dense 85 - 100 
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Table 4.Total blow-counts measured and predicted for Skiff and Caravel 

  Recorde

d 

Steven

s 

Plugge

d LB 

Steven

s 

Plugge

d UB 

Steven

s 

Cored 

LB 

Steven

s 

Cored 

UB 

A&

H 

Best 

A&H 

Upper 

T&F 

Skiff Total 

Blowcoun

ts 

6729 3609 5667 2188 3271 4405 5147 9157 

 Notes - - Refuse

s at 

29m 

- - - Refuse

s at 

33m 

Refuse

s at 

33.5m 

Carav

el 

Total 

Blowcoun

ts 

3635 - - 1383 1761 2180 2904 2533 

 Notes - Refuse

s 

Refuse

s 

- - - - - 

 

 

 


