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Abstract—Bearingless machines are relatively new devices that
consent to suspend and spin the rotor at the same time. They
commonly rely on two independent sets of three-phase windings
to achieve a decoupled torque and suspension force control.
Instead, the winding structure of the proposed multi-sector
permanent magnet (MSPM) bearingless machine permits to
combine the force and torque generation in the same three-phase
winding.
In this paper the theoretical principles for the torque and
suspension force generation are described and a reference
current calculation strategy is provided. Then, a robust optimal
position controller is synthesized. A Multiple Resonant Controller
(MRC) is then integrated in the control scheme in order to
suppress the position oscillations due to different periodic force
disturbances and enhance the levitation performance. The
Linear-Quadratic Regulator (LQR) combined with the Linear
Matrix Inequalities (LMI) theory have been used to obtain
the optimal controller gains that guarantee a good system
robustness.
Simulation and experimental results will be presented to validate
the proposed position controller with a prototype bearingless
MSPM machine.

Index Terms—Bearingless machines, Multi-phase machines,
LQR, LMI, H2 control, H∞ control.

I. INTRODUCTION

Bearingless Machines (BMs) embed in a single machine
the features of Active Magnetic Bearings (AMBs) and con-
ventional motors. Despite the fact that the first BM has been
presented in the early ’70 [1], they have not received much
attention till the last couple of decades [2]. This technology
has become of particular interest for ultra-high speeds drives
[3]. It is the case of compressors, spindles, flywheels [4],
[5] and generators where high rotational speed operation
means minimize the weight, size and cost, and maximize the
efficiency of the whole system [6]. Furthermore, bearingless
drives would provide a possible solution for installations in
extremely harsh environments, such as vacuum and very low
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and high temperatures, and in sterile conditions with no-
lubrication requirements such as chemical and turbo-molecular
pumps and artificial hearts [7].
Research in BM has intensively focused in the force control
technique employed to suspend the rotor element. Conven-
tionally, an additional winding with different pole pairs is
installed in order to independently control the x − y force
components and the torque [8]. On the other hand, the multi-
phase solution leads to a simpler construction and to the
capability of fault tolerant operation. In [9] the force produc-
tion principles of a five-phase bearingless motor is presented.
A multi-phase sectored bearingless drive was presented in
[10] where the torque and suspension force production was
achieved controlling the q− and d− axis currents, respectively.
The cross coupling effect in the torque and force generation
was considered in [11] for a MSPM machine. Furthermore, the
reference currents have been computed taking into account the
Joule losses minimization. The active force control was then
exploited to damp selected vibrations at different operating
speeds for a test machine equipped with both mechanical
bearings. The same motor structure was considered in [12]
where two Degree of Freedom (DOF) levitation could be
achieved adopting the Space Vector Decomposition technique
to independently control the airgap magnetic fields responsible
for the torque and force production, respectively.
The position control of all the above mentioned bearingless
machines rely on standard Proportional-Integral-Derivative
(PID) regulators. The latter can effectively compensate con-
stant force disturbances, however they suffer when the distur-
bance is periodic. The periodic disturbance rejection has been
widely investigated especially for AMB and several controller
configurations have been proposed for its suppression. In [13]
a notch filter is implemented to eliminate the synchronous
disturbance. In [14] a disturbance observer is implemented in
state space and applied to reject the time-varying disturbances.
A multi-frequency force disturbance elimination is proposed
in [15] consisting of several resonant controllers connected
in parallel. [16], [17] present a position controller involving
a stabilizing controller and a harmonic compensator for a
bearingless induction motor presenting a two-pole winding for
torque generation and a four-pole winding for force produc-
tion. The stabilizing controller has the only task to keep the
rotor stably suspended within the mechanical bounds and it
does not present good periodic disturbance rejection. There-
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fore, a harmonic compensator is necessary in order to suppress
the three vibration frequencies. Being fr and fs the rotation
and the two-pole winding supply frequencies respectively, the
above mentioned vibration frequencies are: fr, caused by
the rotor mass unbalance; 2fs − fr, caused by the slotting
and eccentricity in a two-pole motor [18]; fs, caused by
the interaction between two-pole supply flux and homopolar
flux. The latter can be found in machines where the rotor
shaft presents a small permanent magnetization. A vibration
suppression technique for a flexible shaft has been proposed
in [19] using as case study a bearingless induction motor. The
radial force control is employed to damp the vibrations while
going through the first bending critical speed. A simplified
position controller is proposed including proportional, integral
and a so called practical derivative blocks. A forth order high-
cut filter is implemented in the practical derivative block.
In the proposed work, the mathematical model of the MSPM
machine is presented according to [11], [20], [21] in order to
calculate the reference current optimized values for both radial
force and torque production. In particular, the minimization
of the stator Joule losses has been chosen as optimization
objective.
To the best knowledge of the authors the synthesis of the
radial position controller is often neglected in papers dealing
with bearingless drives. Most of them ( [8]–[10], [12]) just
mention that a PID controller is employed without providing
the design procedure. In this manuscript, a robust optimal 2-
DOF radial position controller is synthesized to stabilize the
system. Then, the position control performance is improved
adopting a multi-resonant controller. The latter has the aim of
compensating multi-frequency position oscillations caused by
periodic force disturbances. The controllers are derived in state
space form and the Linear Quadratic Regulator (LQR) together
with the Linear Matrix Inequality (LMI) theory are used
to calculate the controllers parameters in order to guarantee
robustness and stability properties in the rotor suspension in
the operative speed range. Finally, simulation and experimental
results are presented to validate the proposed control strategy
for a prototype bearingless MSPM machine.

II. THE MATHEMATICAL MODEL OF THE MSPM
MACHINE

The mathematical model that describes the current to x− y
force and torque relation for the considered machine is pro-
vided in this section. It will be then employed to obtain the
reference current values that minimize the Joule losses in the
machine.

A. The machine structure

The multi-three phase winding structure can be appreciated
in Fig. 1 while the machine main characteristics are listed in
Table I. In particular, the bearingless MSPM machine topology
considered in this work consists of ns = p sets of three-phase
full-pitched distributed winding with a floating star point.
Each winding set occupies 1/3 of the machine circumference
and it does not overlap with the contiguous ones. The left
superscript s in this manuscript will be adopted in order to

Fig. 1. Cross section of the 18 slot - 6 poles - 3 sectors MSPM machine
considered.

TABLE I
MACHINE PARAMETERS

Parameter Value
Pole number (2p) 6
PM material NdFeB
Power rating 1.5 [kW]
Nominal current peak (In) 13 [A]
Rated Speed (ωmax

m ) 2π50 [rad/s]
PM flux of one sector (ΛPM ) 0.0284 [Wb]
Torque constant (kT ) 0.128 [Nm/A]
Line to line voltage constant (kV ) 15.5 [V/krpm]
Rotor mass (m) 2 [Kg]
Magnetic stiffness (km) 0.7 [N/µm]
Backup bearing clearance (δmax) 150 [µm]
Outer Stator diameter 95 [mm]
Inner Stator diameter 49.5 [mm]
Axial length 90 [mm]
Airgap length 1 [mm]

define quantities related to the single sth sector. The angular
position of the generic sector s with respect the x−axis is
given by sγ = s (2π)/ns + γ0 where γ0 defines the angular
position of the magnetic axis of the sector 1.

B. The machine mathematical model

The mathematical model that will be presented in this
section is based on the following assumptions: linear magnetic
behaviour of the materials and magnetic decoupling between
sectors. Furthermore, the rotor is considered a rigid body. Un-
der the above mentioned assumptions the matrix formulation
(1) expresses the generalized mechanical wrench of the motor
[22] as a function of the electrical angular position ϑe = pϑm
of the rotor and stationary reference frame current components
siα and siβ of each sector s.

WE = KE(ϑe,
s γ)Iαβ (1)

Where WE =
[
Fx(ϑe) Fy(ϑe) T (ϑe)

]T
is the mechan-

ical x− y forces and torque vector and



3

Iαβ =
[
1iα

1iβ · · · siα
siβ · · · nsiα

nsiβ
]T

is the
total vector of the α−β axis currents. The α−β axis current
vector of the generic sector s is defined as

siαβ = TC

[
siu

siv
siw
]T

(2)

where siu, siv and siw are the phase current of sector s while
TC is the direct three-phase Clarke transformation written in
(3) neglecting the zero-sequence component.

TC =
2

3

[
1 −1/2 −1/2
0
√
3/2 −

√
3/2

]
(3)

Matrix KE(ϑe,
sγ) ∈ R3×2ns contains the force and torque

coefficients that link the α − β current quantities to the
mechanical x − y force and torque outputs. Its structure is
reported in (4).

KE =
[
1KE(ϑe,

1 γ) · · · nsKE(ϑe,
ns γ)

]
(4)

Each sub-matrix sKE(ϑe,
s γ) ∈ R3×2 can be found in [20].

The problem of calculating the current commands can be
solved inverting matrix KE . However, KE is in general a
rectangular matrix and in [20] the minimization of the copper
losses has been chosen as strategy leading to the calculation
of the pseudo inverse of KE as follow

K+
E = KT

E(KEK
T
E)
−1 (5)

Therefore, the vector current command I∗αβ can be calcu-
lated in (6).

I∗αβ = K+
EW

∗
E (6)

Conventional PI controllers require d − q axis current in
the rotor synchronous reference frame. Hence, the d− q axis
reference currents of each sector can be calculated multiplying
I∗αβ by an appropriate rotating matrix as in (7).

I∗dq = TR(ϑe)I
∗
αβ (7)

Where TR(ϑe) is defined in (8).

TR(ϑe) =

Rdq(ϑe) 02,2 02,2

02,2 Rdq(ϑe) 02,2

02,2 02,2 Rdq(ϑe)

 (8)

0m,n ∈ Rm×n is a null matrix and Rdq(ϑe) ∈ R2×2 is the
clockwise rotation matrix.

III. STATE SPACE DESIGN OF THE 2-DOF RADIAL
POSITION CONTROL

This section deals with the design and tuning of the x− y
axis position controller. The state space model of the mechan-
ical plant is presented first. An LQR-based tuning procedure
is subsequently presented along with a robustness analysis.
Finally, a MR-based control solution is described to cancel
sinusoidal disturbances.

Fig. 2. Block scheme of the optimal position controller. r identifies the
reference rotor radial position set equal to zero in order to maintain the rotor
centred inside the stator

A. State space model of the mechanical plant

The plant model considered in this paper treats the rotor as
a mass m free to move along the x − y axis. Since the ratio
between polar and diametral moment of inertia is very small
('0.097) the gyroscopic effect is neglected and the equations
along the x− axis can be considered decoupled from the one
along the y− axis. Hereafter, only one axis is considered. The
state space system can be written as{

ẋp = Apxp +Bpup

yp = Cpxp
(9)

with

Ap =

[
0 1
km
m 0

]
;Bp =

[
0
1
m

]
;Cp =

[
1 0

]
(10)

xp =
[
q q̇

]T
is the state vector defined as the rotor displace-

ment q and the rotor radial speed q̇, up is the input force while
m and km are the rotor mass and magnetic stiffness constant,
respectively.
It is worth to notice that the mechanical plant described by
(9) is inherent unstable, hence the controller has to guarantee
the stability of the overall closed loop system.

B. Optimal position controller

A convenient control structure to adopt for regulating the
described mechanical plant is the full state feedback. The rotor
radial speed measurement is however not available in practise.
Its calculation through discrete derivative of rotor position
introduces noise in the feedback path. To handle this, the
plant input can be extended with an integrator to filter out
high frequency noise. As will be better explained later, this
extension will results in a low-pass filter in the plant input.
The plant must also be extended with and additional integral
state on its output to obtain a zero steady state error [23]. The
resulting extended system is{

ẋ = Ax+B2u

y = Cx
(11)

where the state matrices are defined as follow

A =

 0 01,2 0
Bp Ap 02,1

0 −Cp 0

 ;B2 =

 1
02,1

0

 ;C =

 0
1

02,1

T
(12)

A full state feedback control low in the form
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u = −Kex = −
[
kf K −kI

] xfxp
xI

 (13)

can then be computed where K =
[
kp kd

]
and kp, kd, kI and

kf are the proportional, derivative, integral and filter gains. The
resulting control scheme is reported in Fig. 2. From Fig. 2 it
can be noted how the feedback loop around the filter integrator
moves the pole depending on the value of kf changing the
low-pass cut off frequency.

An elegant approach to compute the feedback gain in (13) is
to use the LQR technique. With this approach it is possible to
compute a state feedback gain that minimize the cost function

JLQR =

∫ ∞
0

[xTQx+ uTRu]dt (14)

where Q and R are state and input weight matrices respec-
tively explicated in the following section. The term xTQx
takes into account the rapidity of the system to reach the
stability point (i.e. the origin) while uTRu accounts for the
control effort needed to bring the system states to zero [24].

C. Robustness analysis

The LQR tuning method offers good robustness perfor-
mance, guaranteeing at least 60 [deg] phase margin, infinite
positive gain margin and 0.5 negative gain margin. However,
if an extended system is used, the margins are ensured at the
extended plant input, and not at the original plant one [25]. To
overcome this limitation, it is useful to reformulate the LQR
problem as the minimization of an H2 system norm. System
(11) can be rewritten as

ẋ = Ax+B1d+B2u

z2 = C2x+D22u

z∞ = C1x+D11d

(15)

where z2 and z∞ are the H2 and H∞ performance output
respectively while d is the system disturbance. Imposing C2 =[√

Q
01,4

]
and D22 =

[
04,1√
R

]
, the cost function (14) is equivalent

to [24]

J2 =

∫ ∞
0

[g(t)T g(t)]dt (16)

where g is the closed loop impulse response from d to
z2 assuming the state feedback control law (13). The LQR
problem can then be stated as: find a state feedback control
law (13) that minimizes the H2 norm defined in (16). This
reformulation can be cast to an LMI problem offering a more
flexible resolution of the problem. In particular, it is possible
to set a constraint on the H∞ norm of the transfer function
from d to z∞ allowing to increase closed loop robustness. In
fact, the robustness of the closed loop system can be studied
analysing the H∞ norm of the sensitivity function S(s)

Ms = ‖S(s)‖∞ S(s) =
1

1 + L(s)
(17)

Fig. 3. Block scheme of the MR position controller integrated in the optimal
position controller.

With reference to Fig. 2, L(s) is the open loop transfer
function from d to up. Ms is directly related to gain and phase
margin. Indeed, the quantity Ms is the inverse of the shortest
distance from the Nyquist curve of the open loop transfer
function to the critical point -1. For instance, a sensitivity
Ms < ξ0 guarantees that the distance from the critical point
to the Nyquist curve is always greater than 1/ξ0 and that the
Nyquist curve of the loop transfer function is always outside
a circle of radius 1

Ms
around the critical point -1, known as

the sensitivity circle. Limiting Ms to values typically smaller
than ξ0 = 2 ensures good robustness of the closed loop system
[26].
Defining matrices C1, D11 and B1 in (15) as

C1 =
[
1 0 0 0

]
;D11 = 1;B1 =

[
0 BTp 0

]T
(18)

the closed loop transfer function from d to z∞ is equal
to S(s) defined in (17). It is now possible to set an upper
bound to Ms during the optimal controller syntheses in order
to increase the overall system robustness.

D. Integration of MRC in the optimal position control

In order to compensate the position oscillation, the relevant
system state portion can be filtered by means of a dynamic
system presenting high gain at the frequencies to be damped.
A multi-frequency force disturbance causes a multi-frequency
position oscillation, hence a set of dynamic systems, each of
them designed to have high gain at a specific frequency, is
required in this work. For this reason a set of filters is used,
forming a MRC [15]. The inclusion of resonant controllers
complicates, in general, the tuning of the resulting overall
regulator. The presence of complex conjugate poles risk to
destabilize the system as soon as the gains increase. In this
work, the resonant controller are modelled in state space
domain and have been included in the extended plant. In this
way it is possible to adopt the LQR tuning procedure described
in previous subsection solving the tuning problem.
The state space equation of the nth filter is{

ẋr,n = Ar,nxr,n +Br,nur

yr,n = Cr,nxr,n
(19)

where xr,n is the state vector and Ar,n, Br,n, Cr,n are defined
as

Ar,n =

[
0 1
−ω2

n 0

]
;Br,n =

[
0
ω2
n

]
;Cr,n =

[
1 0

]
(20)
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with ωn = 2πfn the resonant pulsation.
In the proposed paper the first 4 harmonics of the rotating
pulsation are compensated. Hence, defining ωm the rotating
speed in [rad/s], the n = 4 resonant pulsations are: ω1 = ωm,
ω2 = 2ω1, ω3 = 3ω1 and ω4 = 4ω1. Equation (21) shows the
state space formulation of the MRC.{

ẋr = Arxr +Brur

yr = Crxr
(21)

where Ar and Cr are block diagonal matrices defined as
diag(Ar,1, · · · , Ar,n) and diag(Cr,1, · · · , Cr,n) respectively
while the macro-vector Br is defined piling the vectors Br,n.
The output yr can now be inserted in the cost function (14)
obtaining

JLQR =

∫ ∞
0

[xTQx+ yTr Qryr + uTRu]dt =∫ ∞
0

[xTQx+ xTr C
T
r QrCrxr + uTRu]dt (22)

where Qr is the state weight matrix of the MRC that will
be defined in the next section. Defining the augmented state
x̂ =

[
x xr

]T
, (22) becomes

JLQR =

∫ ∞
0

[x̂T Q̂x̂+ uTRu]dt (23)

where Q̂ =

[
Q 04,8

08,4 CTr QrCr

]
. (23) is the conventional

LQR cost function for the augmented system

˙̂x = Âx̂+ B̂2û (24)

Â and B̂2 are defined as follow

Â =

[
A 04,8

Wr Ar

]
;Wr = −BrC; B̂2 =

[
B2

08,1

]
(25)

System (24) is obtained merging systems (15) and (21)
and assuming the rotor position as input of the MRC (21).
Minimizing the cost function (23) results in a state feedback
control law in the form

û = −K̂x̂ = −
[
Ke −Kr

] [ x
xr

]
(26)

The resulting control structure is depicted in Fig. 3. The
presented controller has been designed to compensate 4 spe-
cific frequencies, however it is straightforward to customize
(21) for any order n.

The synthesis of the optimal controller can be carried out
following the formulation presented in the previous subsection
once matrices A and B2 are replaced with Â and B̂2 in (15).
Furthermore, C1, B1, C2 and D22 have to be re-written taking
into account the considered MRC as follow

Ĉ1 =
[
C1 01,8

]
; B̂1 =

[
B1

08,1

]
; Ĉ2 =

[√
Q̂

01,12

]
; D̂22 =

[
012,1√
R

]
(27)

while D11 remains unchanged.
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Fig. 4. Poles map of the MRC controller: a) tuning with a single speed value;
b) tuning with different speed values to cover the operative speed range.
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E. Gain calculation in the operative frequency range

Since the frequency of the disturbances to be compensated
changes with the motor rotational speed, the MR controller
parameters will change accordingly. Fig. 4 a) shows how the
closed loop poles move on the complex plane changing the
rotational speed but keeping the controller gains constant. The
latter have been calculated assuming ωm = ωmaxm . It can be
noticed that, for a certain speed range, some of the poles cross
the imaginary axis making the system unstable. To overcome
the problem, a gain-scheduling approach has been adopted.
The controller gains are calculated for ten different ωm ranging
from 0 to ωmax. A linear interpolation is then carried out on-
line in the controller to obtain the optimal gains in the whole
speed range. Fig. 4 b) shows that the closed loop poles stay in
the left hand side of the complex plane for all the operating
speed range considered.
The numerical values of the controllers gains as well as the
weighting matrices will be reported in the next section.
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TABLE II
STANDARD CONTROLLER GAINS

Parameter gain Value
kf (×103) 2.3303
kp (×109) 4.4816
kd (×106) 7.6553
kI (×1011) 5.4753

IV. SIMULATION RESULTS

A. Numerical values of the controllers gains

The feedback vector Ke of the standard controller can
be obtained setting the weighting matrices Q and R. Their
choice is the key problem in the design of optimal controllers
with the LQR method and it is often based on the designer
experience. Indeed, iterative and trial and error approaches are
conventionally used to determine those values of Q and R that
provide the desired system response. The same has been done
for the considered position controller. In particular, both sides
of (14) have been divided by R, defined as a scalar quantity
for this controller. The operation scales the cost function JLQR
but does not change its shape. Therefore, only the weights of
matrix Q have to be defined. Increasing the integral weight
produces a fast reference signal response while increasing the
states weights produces the opposite effect, hence Q has been
set equal to diag(0, 0, 0, qI). On the other hand, high values
of qI result in high low pass filter cut-off frequencies, hence
worst noise rejection capabilities. Therefore, the choice of qI
is a trade off between a good system dynamic and a good noise
rejection. The integral weight qI was chosen equal to 3e23 in
this work. Furthermore, the sensitivity function is constrained
setting the value of ξ0 equal to 2. The controller gains obtained
are reported in Table II. Fig. 5 reports a comparison between
the sensitivity function of the LQR controller described in
Section III-B and the robust one described in Section III-C.
As can be noted, in the second case, the sensitivity function
does not exceed the setting value ξ0 enhancing the system
robustness.
In the MRC considered in this work n = 4 hence the size of
the feedback vector K̂ is 12, where the first four elements
correspond to Ke while the remaining eight ones are the
resonant state vector gains. R and ξ0 remain unchanged while
Q̂ has to be used as weighting matrix including Q, previously
defined, and Qr = diag(10qr, 8qr, 6qr, 4qr) where qr is set
equal to 1e17. Table III shows the gain values for the ten
operating speeds considered, covering the operative frequency
range. Furthermore, Fig.5 b) shows that the sensitivity function
is maintained below ξ0 for the all speed range.

B. Simulation model

The simulation results that are going to be presented are
obtained in the Matlab-Simulink environment.
A simulation model has been built following the control
scheme shown in Fig. 6. It consists of a position controller,
responsible for the calculation of the force references, followed
by the mathematical model of the motor where equations (6)
and (7) are employed to calculate the d − q axis reference

Fig. 6. Overall control scheme of the bearingless MSPM machine.

current signals. The electromagnetic model of the machine
is stored in the form of lookup table. It provides the machine
mechanical outputs such as overall x−y axis force components
and torque having as input the 2ns d − q axis currents. The
lookup table has been carried out by mean non-linear finite
elements (FE) simulations using Magnet 7.7.1 to take into
account the iron saturation. Finally, the x − y axis force
components feed the rotor-dynamic model of the motor written
in form of state space system in (9).
A multi-frequency force disturbance of the form (28) is in-
jected in the simulation model in order to produce the position
oscillation.{

Fx,d(t) =
∑
|Fk(ωm)|cos(kωmt)

Fy,d(t) =
∑
|Fk(ωm)|sin(kωmt)

; k = 1, ..., 4 (28)

The force magnitudes |F1(ωm)|, |F2(ωm)|, |F3(ωm)| and
|F4(ωm)| increase linearly with the rotation speed ωm reaching
their maximum values (40, 30, 20, 10 [N] respectively) at
ωmax.

C. MR position control performance

Fig. 7 shows the comparative results between position
control performances considering the optimal and the MR
controller for a transient simulation. In particular, the rotation
speed ωm has been varied from zero to 2π30, 2π40 and
2π50 with slopes as presented in Fig. 7 a). The x − y axis
components Fx,d and Fy,d of the force disturbance injected
in the model are calculated with (28) and shown in Fig. 7 b).
Finally, Fig. 7 c)-d) show the x−y axis rotor position obtained
employing the optimal and the MR controllers, respectively.
It can be observed that both controllers present similar perfor-
mances at start-up, with the rotor being lifted from the touch
down position (~q = [0,−δmax]) and reaching the reference
position (~q∗ = [0, 0]) with a small overshoot in about 15
[ms]. However, the performance of the optimal controller
significantly deteriorates as soon as the rotor speed increases
and the force disturbance arises. This can be observed in Fig. 7
c) where the rotor position reaches a maximum displacement
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TABLE III
MR CONTROLLER GAINS

Parameter gain 2π5 2π10 2π15 2π20 2π25 2π30 2π35 2π40 2π45 2π50

kf (×103) 2.3898 2.5325 2.6862 2.8112 2.8983 2.9579 2.9935 3.0159 3.0245 3.0309
kp (×109) 4.8086 5.6651 6.7092 7.6302 8.3088 8.7607 9.0051 9.1077 9.0863 9.0089
kd (×107) 0.8034 0.9011 1.0163 1.1155 1.1901 1.2433 1.2778 1.2993 1.3100 1.3141
kI (×1011) 5.4742 5.4691 5.4771 5.4702 5.4726 5.4742 5.4709 5.4708 5.4653 5.4640
1kr,1 (×108) 8.6636 7.9634 6.3956 4.5581 2.8278 1.2083 -0.2847 -1.6428 -2.8747 -4.0015
2kr,1 (×106) 8.8506 8.8598 7.9997 6.9851 6.0445 5.2336 4.5215 3.9108 3.3706 2.8968
1kr,2 (×108) 7.5443 4.7120 1.4754 -1.3529 -3.5946 -5.3388 -6.6589 -7.6370 -8.3008 -8.7079
2kr,2 (×106) 7.1009 5.9927 4.6647 3.5085 2.5955 1.8954 1.3467 0.9128 0.5632 0.2823
1kr,3 (×108) 6.4065 3.3975 -0.0301 -2.9718 -5.1356 -6.5840 -7.3986 -7.7001 -7.5736 -7.1525
2kr,3 (×106) 4.4869 3.6767 2.7350 1.8940 1.2241 0.7149 0.3308 0.0470 -0.1581 -0.3006
1kr,4 (×108) 5.8283 4.0060 0.8680 -2.3267 -4.6635 -5.9415 -6.2956 -6.0075 -5.3120 -4.4338
2kr,4 (×106) 1.8761 1.9429 1.6609 1.1691 0.6764 0.2814 -0.0016 -0.1860 -0.2964 -0.3539
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Fig. 7. Simulative comparison between optimal and MR position controllers
during a speed transient: a) rotating speed; b) force disturbance; c) x − y
axis position with optimal position controller; d) x−y axis position with MR
position controller.

of around 90 [µm] when the rotation speed is 2π50 [rad/s]
and the force disturbance presents its maximum magnitude
and frequency. Therefore, a MRC is required to guarantee
a good performance in the bearingless operation. Fig. 7 d)
shows that the MRC introduced effectively suppresses the
multi-frequency oscillation after a short transient in the whole
operating speed range.
The following section will present the experimental results ob-
tained with both position controllers on a prototype bearingless
MSPM machine.

Fig. 8. Experimental rig: a) the three three-phase inverters; b) the control
board; c) the machine prototype and test rig; d) the rotor shaft with the
displacement sensors.

V. EXPERIMENTAL RESULTS

A. Description of the experimental set-up

The experimental set-up is detailed in all its parts in Fig. 8.
Fig. 8 a) shows the three three-phase inverters, each of them
connected to one of the MSPM motor winding (Fig. 8 c)).
The power module of the single inverter is a dual-in-line
package intelligent power module (PS21A79) manufactured
by Mitsubishi Semiconductor operated at 10 [kHz] switching
frequency. The industrial control boards mounted on each
inverter have been removed and substituted by one centralized
and custom made control platform [27] (Fig. 8 b)) that
communicates with the power modules gate drives by means
of fibre optics cables.
In the presented bearingless drive two degrees of freedom are
actively controlled, hence the tilting movement and the axial
displacement must be constrained by a self-alignment bearing
mounted on one side of the shaft. The other side is free to
move along the x−y axes within a certain displacement given
by the clearance δmax of the backup bearing. Fig. 8 d) shows
the two eddy currents displacement probes mounted on the
backup bearing housing along the x− y axes.
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Fig. 9. Rotor trajectory obtained with the optimal and with the MR position controllers: a) 30 [Hz] rotating speed; b) 40 [Hz] rotating speed; c) 50 [Hz]
rotating speed.
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Fig. 10. Harmonic spectrum carried out with the fast Fourier transform of
the x−axis position measurement. The compensation of the multi-frequency
position oscillation can be appreciated.

B. Periodic disturbance suppression

The suppression of the multi-frequency position oscilla-
tion has been tested for three different operating speeds
(ωm = 2π30, 2π40, 2π50 [rad/s]) in order to experimentally
validate the stability of the position controllers in the operative
speed range. Fig. 9 a)-c) shows the rotor trajectory in a
x − y plane. It can be noticed that both the optimal and
the MR position controllers can achieve a more performing
bearingless operation keeping the rotor element well far from
the backup bearing inner surface. From the figures it can
also be observed that the MRC significantly improves the
levitation performances maintaining the rotor displacement
within 10 [µm] against the 40 [µm] of the optimal controller.
The harmonic spectrum of the x−axis position for the three
rotation speeds considered is presented in Fig. 10. It can be
well appreciated how the MRC manages to damp the first four
position harmonics corresponding to the pulsations ω1 = ωm,
ω2 = 2ω1, ω3 = 3ω1 and ω4 = 4ω1.
The previous experimental results validate the improvements
in terms of levitation performances of the MRC respect to
the optimal one in steady state operating conditions. However,
the rapidity of damping the position oscillation should also be
taken into account in the analysis, hence a transient test has
been performed running the motor progressively from stand
still to 2π30, 2π40 and 2π50 [Hz] within one second. The
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Fig. 11. Transient test results using the MRC: a) rotating speed; b) x − y
axis position measurement.

results are presented in Fig. 11 a) and b). The MR position
controller is activated after 10 [ms] and the rotor reaches the
reference position in about 15 [ms] (Fig. 11 b)), which is
in good agreement with the simulation result obtained. Then
the rotor is accelerated as shown in Fig. 11 a) and the MRC
quickly operates to damp the position oscillation during the
speed variations (Fig. 11 b)).

VI. CONCLUSIONS

In the presented work the theoretical principles of the torque
and suspension force generation of the bearingless MSPM
machine have been illustrated. The obtained mathematical
model has been exploited to calculate the optimal reference
current signals targeting the minimization of the Joule losses.
Then, a robust optimal position controller is introduced and
synthesized following a state space approach. The LQR
and the LMI techniques have been adopted to calculate the
controllers gains taking into account the robustness of the
overall closed loop system. A multi-resonant controller has
been finally added to compensate the periodic disturbances. A
comparison of the two proposed controllers is carried out by
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means of numerical simulations aiming the compensation of
the periodic disturbance.
Finally, the proposed position controller design is validated
experimentally on a prototype bearingless MSPM machine
showing that the MRC performs an effective rejection of the
position oscillations enhancing the levitation performance of
the bearingless drive.
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