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Abstract

Fuzzy sets are an important approach to model uncertainty. Defuzzification

maps fuzzy sets to non–fuzzy (crisp) values. Type–2 fuzzy sets model uncer-

tainty in the degree of membership in a fuzzy set. Type–2 defuzzification maps

type–2 fuzzy sets to non–fuzzy values. Type reduction maps type–2 fuzzy sets

to type–1 fuzzy sets, in order to make type–2 defuzzification easier and to im-

plement more efficient type–2 defuzzification algorithms.

This paper is a first step towards a theoretical foundation of the emerging

field of type reduction. Five mathematical properties of type reduction are

defined, and two existing type reduction methods (Nie–Tan and uncertainty

weight) are examined with respect to our five properties. Furthermore, two

new type reduction methods are proposed: consistent linear type reduction and

consistent quadratic type reduction. All our five properties are satisfied by

consistent quadratic type reduction.
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1. Introduction

Fuzzy sets [29] are an important approach to model and process uncertain

information. Fuzzy information processing (for example in fuzzy rule based

systems [14, 26]) usually yield fuzzy sets as outputs. If non–fuzzy outputs are

needed (for example in control applications [7, 18]), these can be obtained from

fuzzy outputs using defuzzification. Many defuzzification methods have been

proposed during the last decades, for an overview see [19, 20, 25], and the

mathematical properties of defuzzification have been studied in [24].

Interval type–2 fuzzy sets [13, 15, 30] are extensions of (type–1) fuzzy sets,

where the degrees of membership in a fuzzy set may be uncertain. Interval

type–2 fuzzy information processing yields interval type–2 fuzzy sets as outputs,

which can be converted to non–fuzzy outputs using interval type–2 defuzzifica-

tion. One of the most popular methods for interval type–2 defuzzification is the

Karnik–Mendel algorithm [11]. The mathematical properties of interval type–2

defuzzification have been studied in [22].

Recently, alternative methods for interval type–2 defuzzification have been

proposed that are based on type reduction. Type reduction of an interval type–2

fuzzy set means a mapping to a type–1 fuzzy set which then can be defuzzified

using type–1 defuzzification techniques. Examples are the Nie–Tan (NT) [17]

and the uncertainty weight (UW) method [23]. The relation between type–

1 defuzzification, type–2 defuzzification, and type reduction is illustrated in

Fig. 1.

type–2 fuzzy set

type–1 fuzzy set

non–fuzzy value-
type–2 defuzzification

-

type reduction
6

type–1 defuzzification

Figure 1: Type–1 and type–2 defuzzification and type reduction.
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The NT and UW methods (and also the CQTR and CLTR methods proposed

in this paper) are different from the Karnik–Mendel approach.These methods

reduce each interval type–2 fuzzy set to a type–1 fuzzy set upfront, and then

perform ordinary type–1 defuzzification. These methods can therefore also be

viewed as a tool to design type–1 membership functions in scenarios with dif-

ferent levels of uncertainty for different decision options.

Type–reduction based interval type–2 defuzzification reduces interval type–

2 fuzzy sets to type–1 fuzzy sets upfront, so we lose some ability to explicitly

consider the specific uncertainty of the memberships which is considered an

important advantage of interval type–2 fuzzy sets over type–1 fuzzy sets. It was

shown however for typical fuzzy controller scenarios that the NT method and

its variants yield very good approximations of the Karnik–Mendel algorithm

at a reduced computational cost [12, 23], which appears beneficial for a large

number of real–world applications.

The emerging field of type reduction needs a theoretical foundation that en-

ables researchers to assess, compare, and develop novel type reduction methods.

So the focus of this paper is not just proposing new type reduction formulas. We

also propose the required properties (a standard) for designing type reduction

methods. As a first step in this direction, this paper defines five mathemat-

ical properties of type reduction. There are infinitely many choices for type

reduction functions. An important criterion for type reduction functions is

(mathematical and computational) simplicity, so we will focus on linear and

quadratic functions in this paper. We will derive specific linear and quadratic

functions to meet our five proposed properties, which will lead us to propose

two new type reduction methods, consistent linear type reduction (CLTR) and

consistent quadratic type reduction (CQTR).

We start with a brief review of type–1 and interval type–2 defuzzification,

including the NT and UW methods (Section 2). Then we define five mathe-

matical properties for type reduction (Section 3) and evaluate the properties

of the NT and UW methods (Sections 4 and 5). Further, we propose the new

CLTR and CQTR type reduction methods and discuss their properties (Sections
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6 and 7). Finally, we summarize the properties of all considered methods, give

some illustrative examples (Section 8), and present our conclusions and ideas

for future research (Section 9).

2. Type–1 and Type–2 Defuzzification

A type–1 fuzzy set [29] over a universe X is specified by a membership

function u : X → [0, 1], so u(x) quantifies the degree of membership of any

x ∈ X in the type–1 fuzzy set. Type–1 defuzzification is a function d that maps

any type–1 fuzzy membership function to one representative crisp (non–fuzzy)

value in X.

d(u(x)) ∈ X (1)

One of the most popular type–1 defuzzification methods is the centroid defined

as

dC(u(x)) =

∫
X

u(x) · x dx∫
X

u(x) dx
(2)

which represents the (horizontal) position of the center of gravity (first moment)

of the area between the membership function and the x coordinate (abscissa).

Many other methods for type–1 defuzzification have been proposed in the liter-

ature. For an overview see [19, 20, 25].

An interval–fuzzy set [3, 9, 10] or closed interval type–2 fuzzy set [16] is

specified by two membership functions: a lower membership function u : X →

[0, 1] and an upper membership function u : X → [0, 1], where

u(x) ≤ u(x) (3)

for all x ∈ X. Interval type–2 fuzzy sets can be used to model uncertainty about

a membership function or to model risk in decision processes [21].

A popular interval type–2 defuzzification method is the Karnik–Mendel (KM)

algorithm [11] that considers all (type–1) membership functions u(x) between

the lower and upper membership functions u(x) and u(x), respectively,

u(x) ≤ u(x) ≤ u(x) (4)
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For one dimensional universes X ⊆ R, KM computes the lower and upper

centroids that can be written as

dC(u(x), u(x)) = inf
u(x)≤u(x)≤u(x)

dC(u(x)) (5)

dC(u(x), u(x)) = sup
u(x)≤u(x)≤u(x)

dC(u(x)) (6)

and returns the average of these

dKM(u(x), u(x)) =
dC(u(x), u(x)) + dC(u(x), u(x))

2
(7)

The Karnik–Mendel algorithm is iterative and computationally intensive, so

several enhanced methods and efficient implementations have been proposed in

the literature [6, 27, 28].

Nie and Tan [17] have introduced an alternative way to interval type–2 de-

fuzzification. The idea is to transform the lower and upper membership func-

tions u(x) and u(x) to one single (type–1) membership function u(x), and then

apply type–1 defuzzification, for example the centroid method, to u(x). The

conversion of the lower and upper interval type–2 membership functions to one

single type–1 membership function is called type reduction. Type reduction for

interval type–2 membership functions can be viewed as an application of a two–

dimensional fusion function [1, 4]. In their original paper, Nie and Tan [17]

proposed the Nie–Tan (NT) type reduction formula

uNT(x) =
u(x) + u(x)

2
(8)

which converts an interval type–2 fuzzy set to a type–1 fuzzy set by taking the

average of each respective upper and lower membership grades.

Recently, Runkler et al. [23] presented an alternative type reduction formula

called the uncertainty weight (UW) method

uUW(x) =
1

2
(u(x) + u(x)) · (1 + u(x)− u(x))α (9)

with a parameter α > 0 that quantifies to which degree uncertainty is taken

into account in defuzzification. Rather than simply taking the average of each
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respective upper and lower membership grades (which is used in the Nie–Tan

method), the uncertainty weight method multiplies this average by the weight

factor (1 + u(x) − u(x))α, which is zero for maximum uncertainty (u(x) = 0,

u(x) = 1) and one for minimum uncertainty (u(x) = u(x)), and which increases

linearly with the uncertainty for α = 1, less than linearly for all α < 1 and

more than linearly for all α > 1. The experiments in [12, 23] indicated that

both NT and UW can be used to yield good approximations of KM with low

computational effort. Fig. 2 shows the defuzzification results of the KM, NT,

and UW (α = 1) methods for an example of a triangular interval type–2 fuzzy

set. The vertical solid lines indicate the defuzzification results for the three

methods: dKM = 0.4650, dNT = 0.4667, and dUW = 0.4727, which are all

very similar for this example. The dashed curves at the NT and UW graphs

are the results of type reduction. The KM graph does not show any dashed

curve because KM directly produces a non–fuzzy value from a type–2 fuzzy

set, without type reduction to a type–1 fuzzy set. NT type reduction yields a

(type–1) membership function that passes right through the middle of the grey

area limited by the upper and lower interval type–2 membership functions. In

this example, UW type reduction yields a membership function partially lying

outside the grey area. The observation of this behavior was one of the main

motivations to define the properties of type reduction (most specifically the

so–called type–2 consistency property) which are introduced in the following

section.

3. Properties of Type Reduction

This section follows a similar approach as early work on properties of type–1

defuzzification operators [24] and their extension to interval type–2 defuzzifica-

tion operators [22]. Based on intuitive requirements we define five mathematical

properties of type reduction methods for interval type–2 defuzzification and ex-

amine relations between these properties. This list of properties is not intended

to be complete, but should serve as a basis for discussion and extension. The
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Figure 2: Defuzzification of a triangular interval type–2 fuzzy set using the KM, NT, and UW

(α = 1) methods.

purpose of these properties is to evaluate, compare, and develop type reduction

methods.

Here, we only consider pointwise type reduction methods, i.e. for the com-

putation of a type–1 membership degree u(x) we only consider the lower and

upper interval type–2 membership degrees u(x) and u(x) at the same point x,

but not the membership degree u(y) and u(y) at any other point y 6= x. There-

fore, we can omit the argument x and simply write each type reduction method

as a function f : [0, 1]2 → [0, 1] with

u = f(u, u) (10)

So we will always consider the type–1 and type–2 memberships of only one single

element at a time. If we want to use the function f to reduce the lower and upper

interval type–2 membership functions u(x) and u(x) to a type–1 membership

function u(x), then we have to apply the function f to each x ∈ X. The graph of

each type reduction function f can be visualized in a three–dimensional diagram

with the coordinate axes u, u, and u. We will show such diagrams for each of

the discussed type reduction functions in the corresponding Sections 4–7.
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3.1. Type–1 Consistency

If the lower and upper interval type–2 memberships are equal, then we obtain

the special case of type–1 memberships.

u = u (11)

In this case there no uncertainty about the membership, and we expect the type

reduction to yield

⇒ u = u = u (12)

This means that if the uncertainty disappears, the interval type–2 fuzzy model

will reduce to a conventional type–1 fuzzy model. This property corresponds

to the (only) requirement that was used to derive the popular Karnik–Mendel

method. It also corresponds to the notion of idempotency, which is very well

known in algebra and in the field of aggregation functions [2].

Definition 1. A type reduction function f is type–1 consistent if and only if

f(u, u) = u for all u ∈ [0, 1] (13)

3.2. Type–2 Consistency

Let us assume arbitrary lower and upper interval type–2 memberships u, u ∈

[0, 1] with

u ≤ u (14)

A common interpretation of this situation is that there is uncertainty about the

membership, and the membership is at least u and at most u.

u ≤ u ≤ u (15)

This means that the effective (type–1) memberships produced by type reduction

will never be outside the interval of uncertainty specified for the type–2 mem-

berships, never lower than the lower bound, and never higher that the upper

bound.
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Definition 2. A type reduction function f is type–2 consistent if and only if

u ≤ f(u, u) ≤ u for all u, u ∈ [0, 1] with u ≤ u (16)

Theorem 1. If a function is type–2 consistent, then it is type–1 consistent.

Proof. Trivial.

Type–2 consistency is related to the notion of an averaging function (a func-

tion which is between the minimum and the maximum), but it is not the same

because we are not assuming symmetry here. Type reduction is also closely

related to the idea of ignorance functions and entropy for interval–valued fuzzy

sets [5]. We are planning to investigate in a future project if adding a symmetry

constraint could yield a generalized definition of type reduction in the context of

averaging functions, and we want to have a closer look at the relation between

type reduction and ignorance functions.

3.3. (Strict) Uncertainty Conformity

Let us assume that the membership is around u∗ ∈ [0, 1] with an uncertainty

of ±∆u, where

u∗ −∆u ≥ 0, u∗ + ∆u ≤ 1 (17)

so we obtain

u = u∗ −∆u, u = u∗ + ∆u (18)

For ∆u = 0 we have the type–1 case, and for any type–1 consistent function f

we obtain

u = f(u∗, u∗) = u∗ (19)

If we increase ∆u, then the average membership u∗ stays the same, but the

uncertainty around u∗ increases. If we have two objects x1, x2 ∈ X both with

memberships around u∗, one with uncertainty ∆u1 and the other with a higher

uncertainty ∆u2, ∆u1 ≤ ∆u2, then we may want to give the first (i.e. more

certain) object x1 a larger weight than x2, u(x1) > u(x2). This leads us to

require that u should be (strictly) monotonically decreasing with ∆u. If a
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type reduction operator has this property, then for two options with the same

average membership but with different levels of uncertainty (spread between the

lower and upper type–2 memberships) the option with lower uncertainty will be

preferred over the option with higher uncertainty, so the degree of uncertainty

is reflected in the type reduction process.

Definition 3. A type reduction function f is uncertainty conform if and only

if for any u∗ ∈ [0, 1] and any ∆u1,∆u2 ≥ 0, ∆u1 < ∆u2 with

u∗ −∆u2 ≥ 0, u∗ + ∆u2 ≤ 1 (20)

the following condition holds:

f(u∗ −∆u1, u
∗ + ∆u1) ≥ f(u∗ −∆u2, u

∗ + ∆u2) (21)

Definition 4. A type reduction function f is strictly uncertainty conform if

and only if for any u∗ ∈ [0, 1] and any ∆u1,∆u2 ≥ 0, ∆u1 < ∆u2 with

u∗ −∆u2 ≥ 0, u∗ + ∆u2 ≤ 1 (22)

the following condition holds:

f(u∗ −∆u1, u
∗ + ∆u1) > f(u∗ −∆u2, u

∗ + ∆u2) (23)

Lemma 1. The preconditions of Definitions 3 and 4 imply ∆u ≤ 0.5.

Proof.

For u∗ ∈ [0, 0.5] : u∗ −∆u ≥ 0 ⇒ ∆u ≤ u∗ ≤ 0.5 (24)

For u∗ ∈ [0.5, 1] : u∗ + ∆u ≤ 1 ⇒ ∆u ≤ 1− u∗ ≤ 0.5 (25)

So for u∗ ∈ [0, 1] we have ∆u ≤ 0.5.

Theorem 2. If a function is strictly uncertainty conform, then it is uncertainty

conform.

Proof. Trivial.
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3.4. Ignorance of Indifference

The most uncertain interval type–2 membership values are

u = 0, u = 1 (26)

In this case we have no information about the membership at all, so we may

want to completely ignore such indifferent objects

⇒ u = 0 (27)

If a type reduction operator has this property, then options with complete un-

certainty will receive zero memberships and hence will receive weight zero in the

defuzzification process.

Definition 5. A type reduction function f ignores indifference if and only if

f(0, 1) = 0 (28)

4. Properties of the Nie–Tan Method

The Nie–Tan (NT) method [17] is specified by the type reduction function

fNT(u, u) =
u+ u

2
(29)

In this section we examine fNT with respect to the five properties defined in the

previous section. The properties of the NT and all other methods considered in

this paper will be summarized in section 8.

Theorem 3. The Nie–Tan type reduction function is type–1 consistent.

Proof.

fNT(u, u) =
u+ u

2
= u for all u ∈ [0, 1] (30)

Theorem 4. The Nie–Tan type reduction function is type–2 consistent.

Proof. For all u, u ∈ [0, 1] with u ≤ u

fNT(u, u) =
u+ u

2
≥ u+ u

2
= u (31)

fNT(u, u) =
u+ u

2
≤ u+ u

2
= u (32)
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Theorem 5. The Nie–Tan type reduction function is uncertainty conform.

Proof. For any u∗ ∈ [0, 1] and any ∆u ≥ 0 we obtain

fNT(u∗ −∆u, u∗ + ∆u) =
u∗ −∆u+ u∗ + ∆u

2
= u∗ (33)

so for ∆u1 ≥ ∆u2

fNT(u∗ −∆u1, u
∗ + ∆u1) = fNT(u∗ −∆u2, u

∗ + ∆u2) = u∗ (34)

⇒ fNT(u∗ −∆u1, u
∗ + ∆u1) ≥ fNT(u∗ −∆u2, u

∗ + ∆u2) (35)

Theorem 6. The Nie–Tan type reduction function is not strictly uncertainty

conform.

Proof. From (34) follows

fNT(u∗ −∆u1, u
∗ + ∆u1) 6> fNT(u∗ −∆u2, u

∗ + ∆u2) (36)

Theorem 7. The Nie–Tan type reduction function does not ignore indifference.

Proof.

fNT(0, 1) =
0 + 1

2
= 0.5 6= 0 (37)

Fig. 3 shows the graph of the NT function over the triangle (u, u) ∈ [0, 1]2 with

u ≤ u. The graph of the NT function is a triangle with the edge points (u, u, u) =

(0, 0, 0), (1, 1, 1), and (0, 1, 0.5), which contradicts ignorance of indifference. The

graph of the NT function is linear with a slope of 0.5 along both the u and u

axes.

5. Properties of the Uncertainty Weight Method

Runkler et al. proposed the uncertainty weight (UW) method [23] specified

by the type reduction function

fUW(u, u) =
1

2
(u+ u) · (1 + u− u)α (38)

with the parameter α > 0. Obviously, UW converges to NT as α approaches 0.

lim
α→0

fUW = fNT (39)
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Figure 3: Graph of the NT function.

In this section we examine fUW with respect to the five properties defined in

this paper.

Theorem 8. The uncertainty weight type reduction function is type–1 consis-

tent.

Proof.

fUW(u, u) =
1

2
(u+ u) · (1 + u− u)α = u for all u ∈ [0, 1] (40)

Theorem 9. The uncertainty weight type reduction function is not generally

(i.e. for any α > 0) type–2 consistent.

Proof. Let for example u = 0.5, u = 1. Then

fUW(0.5, 1) =
1

2
(0.5 + 1) · (1 + 0.5− 1)α = 0.5

3

2α+1
6≥ 0.5 = u

for 2α+1 > 3 ⇒ α >
log 3

log 2
− 1 ≈ 0.585 (41)

Theorem 10. The uncertainty weight type reduction function is strictly uncer-

tainty conform.

Proof.

fUW(u∗ −∆u, u∗ + ∆u)

=
1

2
(u∗ −∆u+ u∗ + ∆u) · (1 + u∗ −∆u− u∗ −∆u)α = u∗(1− 2∆u)α (42)

is strictly monotocially decreasing with ∆u for ∆u ≤ 0.5 (Lemma 1) and for

α > 0.
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Theorem 11. The uncertainty weight type reduction function is uncertainty

conform.

Proof. Follows from Theorems 2 and 10.

Theorem 12. The uncertainty weight type reduction function ignores indiffer-

ence.

Proof.

fUW(0, 1) =
1

2
(0 + 1) · (1 + 0− 1)α = 0 (43)

Fig. 4 shows the graphs of the UW function for α ∈ {0.2, 1, 5}. All three graphs

are nonlinear but smooth, and contain the points (u, u, u) = (0, 0, 0), (1, 1, 1),

and (0, 1, 0), corresponding to ignorance of indifference. For α = 0.2 (left), the

UW function looks very similar to the NT function at Fig. 3, only the very edge

at u = 0 and u = 1 is bent from u = 0.5 to u = 0 (ignorance of indifference).

Depending on the value of the parameter α the graph of the UW function is

bent in different ways. It is monotonically increasing along the u axis with

increasing (α = 0.2) or decreasing slope (α = 5). It is however not generally

monotonic along the u axis. Consider for example the front edge curve at u = 0

which is distinctly bent up for medium values of u ≈ 0.5 for α = 0.2 (left)

and α = 1 (center). For α = 5 (right), the UW function always yields very

small memberships u ≈ 0 except near the main diagonal at u = u, where it

yields u = u = u (type–1 consistency). For α = 1 (center), the UW function is

quite flat along the u axis, and almost linearly increases along the u axis, so it

approximates the function u = u.

6. Linear Type Reduction

Besides NT and UW we can construct infinitely many type reduction func-

tions f . For reasons of simplicity we first consider linear functions and derive

specific instances of linear functions trying to satisfy our five proposed proper-

ties. So we start with the general case of linear functions for type reduction

u = a · u+ b · u+ c (44)
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Figure 4: Graphs of the UW function for α ∈ {0.2, 1, 5}.

with arbitrary parameters a, b, c ∈ R. If we require type–1 consistency, then we

obtain

u = 0, u = 0, u = 0 ⇒ c = 0 (45)

u = 1, u = 1, u = 1 ⇒ 1 = a+ b+ c ⇒ b = 1− a (46)

and so

u = a · u+ (1− a) · u (47)

If we further require type–2 consistency, then we obtain

u ≤ a · u+ (1− a) · u ⇒ (1− a) · (u− u) ≥ 0 ⇒ a ≤ 1 (48)

a · u+ (1− a) · u ≤ u ⇒ a · (u− u) ≥ 0 ⇒ a ≥ 0 (49)

which leads us to

Definition 6. The consistent linear type reduction (CLTR) function is defined

as

fCLTR(u, u) = a · u+ (1− a) · u (50)

with a ∈ [0, 1]

While the Nie–Tan type reduction function computes the plain average of the

upper and lower membership grades, the CLTR function uses a convex combi-

nation of the upper and lower membership grades, which represents a weighted

average with the weight a for the lower membership grades and the weight 1−a
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for the upper membership grades. For a = 0, CLTR will yield the upper mem-

bership function; for a = 0.5, CLTR will yield the average of the upper and

lower membership functions, which is also the result of the NT type reduction

function (so the NT type reduction function is a special case of the CLTR func-

tion); and for a = 1, CLTR will yield the lower membership function. For all

other values of a ∈ [0, 1], CLTR will linearly interpolate between these special

cases.

Theorem 13. The consistent linear type reduction function is type–1 and type–

2 consistent.

Proof. Follows immediately from the requirements for consistent linear type

reduction functions (45)–(49).

Theorem 14. The consistent linear type reduction function is uncertainty con-

form if and only if a ≥ 0.5.

Proof.

fCLTR(u∗ −∆u, u∗ + ∆u)

= a · (u∗ −∆u) + (1− a) · (u∗ + ∆u) = u∗ + (1− 2a) ·∆u (51)

is monotocially decreasing with ∆u for α ∈ [0.5, 1].

Theorem 15. The consistent linear type reduction function is strictly uncer-

tainty conform if and only if a > 0.5.

Proof. (51) is strictly monotocially decreasing with ∆u for α < (0.5, 1].

Notice that the NT type reduction function is the only instance of the CLTR

function that is uncertainty conform but not strictly uncertainty conform.

Theorem 16. The consistent linear type reduction function ignores indifference

if and only if a = 1.

Proof.

fCLTR(0, 1) = a · 0 + (1− a) · 1 = 1− a = 0 ⇔ a = 1 (52)
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Fig. 5 shows the graphs of the CLTR function for a ∈ {0.5, 0.75, 1}. All three

graphs are triangles through (u, u, u) = (0, 0, 0) and (1, 1, 1). The third edge

of each triangle is at (0, 1, 1 − a). The intersection of all CLTR graphs is the

unit main diagonal through (0, 0, 0) and (1, 1, 1) (type–1 consistency). All three

graphs are linear with non–negative slopes along u and u. The slope is zero

along u for a = 1. All these three CLTR instances are uncertainty conform,

because a ∈ [0.5, 1]. The left graph (a = 0.5) corresponds to the NT function

at Fig. 3. The right graph (a = 1) corresponds to the only CLTR function that

ignores indifference, u = u, which is approximately equal to the UW function

for α = 1 (Fig. 4 center). For a = 1, the CLTR function always yields u = u,

so the complete information about u is lost in this case. Hence, if we want to

keep the information about both u and u, and at the same type satisfy all our

five properties, then we have to use a nonlinear type reduction function.
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Figure 5: Graphs of the CLTR function for a ∈ {0.5, 0.75, 1}.

7. Nonlinear Type Reduction

As shown in the previous section, linear functions for type reduction may

satisfy type–1 consistency, type–2 consistency, and (strict) uncertainty confor-

mity, but we are not able to define any non–trivial (a 6= 1) linear function for

type reduction that ignores indifference. So, this property can only be satis-

fied by nonlinear type reduction functions. In this section we will therefore try

to derive a nonlinear type reduction function that is as simple as possible and
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should be able to satisfy all five proposed properties.

To find such a function we start with the linear approach (44) and add a

nonlinear term. This nonlinear term should be suitable to indicate indifference,

so it should contain u and u. In order to stay type–1 consistent, the nonlinear

term should be zero when u = u. So, the nonlinear term could be defined as

g(u − u) with a suitable function g where g(0) = 0. Here for simplicity we use

a quadratic function for g and obtain

u = a · u+ b · u+ c+ d · (u− u)2 (53)

with arbitrary parameters a, b, c, d ∈ R. If we require type–1 consistency, then

we obtain just as in (45) and (46)

u = 0, u = 0, u = 0 ⇒ c = 0 (54)

u = 1, u = 1, u = 1 ⇒ 1 = a+ b+ c ⇒ b = 1− a (55)

and so

u = a · u+ (1− a) · u+ d · (u− u)2 (56)

If we further want to ignore indifference, then we obtain

u = 0, u = 1, u = 0 ⇒ 0 = 1− a+ d ⇒ d = −(1− a) (57)

and so

u = a · u+ (1− a) · u− (1− a) · (u− u)2 (58)

If we further require type–2 consistency, then we obtain

u ≤a · u+ (1− a) · u− (1− a) · (u− u)2

⇒ (1− a) · (u− u) ≥ (1− a) · (u− u)2 ⇒ a ≤ 1 (59)

and

a · u+ (1− a) · u− (1− a) · (u− u)2≤ u

⇒ a · (u− u) ≥ (a− 1) · (u− u)2 ⇒ a ≥ 0 (60)

which leads us to
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Definition 7. The consistent quadratic type reduction (CQTR) function is de-

fined as

fCQTR(u, u) = a · u+ (1− a) · u− (1− a) · (u− u)2 (61)

with a ∈ [0, 1]

The CQTR function (61) is equal to the CLTR function (50) minus the term

(1 − a) · (u − u)2 which is zero for minimum uncertainty (u(x) = u(x)) and

maximal (equal to 1 − a) for maximum uncertainty (u(x) = 0, u(x) = 1), and

which increases quadratically with the uncertainty. For a = 0, CQTR will yield

the upper membership function minus the quadratic uncertainty, u− (u− u)2;

and for a = 1, CQTR will simply yield the lower membership function u. For

all other values of a ∈ [0, 1], CQTR will linearly interpolate between these two

cases.

Theorem 17. The consistent quadratic type reduction function is type–1 and

type–2 consistent, and ignores indifference.

Proof. Follows immediately from the requirements for consistent linear type

reduction functions (54)–(60).

Theorem 18. The consistent quadratic type reduction function is uncertainty

conform if and only if a ≥ 0.5.

Proof.

fCQTR(u∗ −∆u, u∗ + ∆u)

= a · (u∗ −∆u) + (1− a) · (u∗ + ∆u)− (1− a) · (2∆u)2

= u∗ + (1− 2a) ·∆u− 4(1− a)∆u2 (62)

is monotocially decreasing with ∆u for a = 1. For a < 1 consider the slope

∂fCQTR

∂∆u
= 1− 2a− 8(1− a)∆u (63)

This slope is negative or zero for any a < 1 if 1 − 2a ≤ 0 ⇒ a ∈ [0.5, 1). So,

a ∈ [0.5, 1].
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Theorem 19. The consistent linear type reduction function is strictly uncer-

tainty conform if and only if a > 0.5.

Proof. (62) is strictly monotocially decreasing with ∆u for a = 1. (63) is nega-

tive for any a < 1 if 1− 2a < 0⇒ a ∈ (0.5, 1). So, a ∈ (0.5, 1].

Fig. 6 shows the graphs of the CQTR function for a ∈ {0.5, 0.75, 1}. All three

graphs contain the points (u, u, u) = (0, 0, 0), (1, 1, 1), and (0, 1, 0) (ignorance

of indifference). All three graphs are strictly monotonically increasing along u

with non–increasing slopes. For a = 1 (right), the graph is linear; here the

CQTR function is equal to the CLTR function for a = 1 (Fig. 5 right), u = u.

This is the only intersection point of the CLTR and CQTR function instances.

For a = 0.5 (left) and a = 0.75 (center), the graph of the CQTR function looks

somewhat similar to the graph of the UW function for α = 1 (Fig. 4 center) but

the front edge curve is bent more strongly.
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Figure 6: Graphs of the CQTR function for a ∈ {0.5, 0.75, 1}.

8. Summary and Examples

The properties of the NT, UW, CLTR, and CQTR functions are summarized

in Table 1. The NT function is not strictly uncertainty conform and does

not ignore indifference. The UW function is not type–2 consistent. CLTR

is uncertainty conform for a ∈ [0.5, 1] and strictly uncertainty conform for a ∈

(0.5, 1] but ignores indifference only for a = 1. If we ignore this trivial special
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case, the only function considered here that satisfies all five properties is CQTR

for a ∈ (0.5, 1].

Table 1: Properties of the NT, UW, CLTR, and CQTR functions.

NT UW CLTR CQTR

type–1 consistent     

type–2 consistent    

uncertainty conform     

strictly uncertainty conform    

ignores indifference  #  

 only for a ∈ (0.5, 1] or [0.5, 1], # only for a = 1

To illustrate the practical relevance of these properties we look at three

selected interval type–2 fuzzy sets and present the results for the four different

(families of) type reduction functions.

Fig. 7 left illustrates type–2 consistency for the interval type–2 membership

function (shaded area) computed as

u(x) = 1.8 · ((x− 0.3) · (x− 0.5) · (x− 0.7) + 0.15) (64)

u(x) = 3.5 · ((x− 0.2) · (x− 0.6) · (x− 1) + 0.25) (65)

These polynomial functions represent an example for smooth and continuous

membership functions where the individual options possess different levels of

preference and also different levels of uncertainty, where preference and uncer-

tainty are not directly correlated. The maximum of the upper membership is at

x ≈ 0.3, but here the uncertainty is quite high. For x ≈ 1 the upper membership

is quite high but the uncertainty is much lower, so this area may be considered

as a preferable choice in defuzzification. For this example NT (solid), CLTR

(a = 0.75, dotted), and CQTR (a = 0.75, dash–doted) yield type–1 membership

functions that pass through the shaded area between u(x) and u(x). Only UW

(α = 1, dashed) yields a type–1 membership function that partially lies outside
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the shaded area. As illustrated in this example, NT, CLTR, and CQTR are

type–2 consistent and therefore yield memberships inside the uncertainty range

of the type–2 memberships (between the lower and upper type–2 membership),

whereas UW is not type–2 consistent and therefore may yield memberships

outside this uncertainty range.
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Figure 7: Example applications of type reduction functions: NT (solid), UW (α = 1, dashed),

CLTR (a = 0.75, dotted), CQTR (a = 0.75, dash–doted).

Fig. 7 center illustrates strict uncertainty conformity for the interval type–2

membership function

u(x) = 0.5 · (1− x) (66)

u(x) = 0.5 · (1 + x) (67)

This is an example where the average degree of preference is constant but where

the uncertainty increases linearly with x, from zero at x = 0 to maximum

uncertainty at x = 1, so we may prefer the option with minimum uncertainty

in defuzzification. For this example UW (α = 1, dashed), CLTR (a = 0.75,

dotted), and CQTR (a = 0.75, dash–doted) take into account the uncertainty

and yield lower type–1 membership values for increasing uncertainty (increasing

x). Only NT (solid) ignores the different levels of uncertainty and always yields

a constant type–1 membership value of 0.5. As illustrated in this example,

UW, CLTR, and CQTR are (for a ∈ (0.5, 1]) strictly uncertainty conform and

therefore yield lower type–1 membership when the uncertainty is high, whereas
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NT is not strictly uncertainty conform and therefore does not recognize different

levels of uncertainty.

Fig. 7 right illustrates ignorance of indifference for the interval type–2 mem-

bership function

u(x) =

{
4.5 · ((x− 0.3) · (x− 0.5) · (x− 0.7) + 0.11) for x ∈ [0.1, 0.9]

0 otherwise
(68)

u(x) =

{
4.5 · ((x− 0.3) · (x− 0.5) · (x− 0.7) + 0.11) for x ∈ [0.1, 0.9]

1 otherwise
(69)

This is an example where the uncertainty is zero in a certain interval (here

x ∈ [0.1, 0.9]), so here the memberships are of type-1, and outside this interval

we have maximum uncertainty, u(x) = 0 and u(x) = 1, for x ∈ [0, 0.1) and

for x ∈ (0.9, 1] (shaded areas), so we may want to ignore the areas of extreme

uncertainty in defuzzification. For this example all four methods correctly rec-

ognize the type–1 part of this membership function. However, only UW (α = 1,

dashed) and CQTR (a = 0.75, dash–doted) yield zero type–1 membership val-

ues for the two areas of indifference, whereas NT (solid) yields 0.5, and CLTR

(a = 0.75, dotted) yields 0.25 there. As illustrated in this example, UW and

CQTR (for a ∈ (0.5, 1]) ignore indifference and therefore always yield zero mem-

bership for options with maximal uncertainty, whereas NT and CLTR (for a 6= 1)

do not ignore indifference and therefore yield non–zero memberships here.

9. Conclusions

As a first step towards a theoretical foundation of type reduction we have

introduced a set of five mathematical properties and illustrated some relations

between these properties.

Our experimental studies have proven the merit of objective mathematical

criteria for the study of type reduction operators. The Nie–Tan (NT) method is

a good choice for type reduction when it is important to be type–2 consistent,

but not important to be strictly uncertainty conform or to ignore indifference.

The uncertainty weight (UW) method is a good choice when it is important to be
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strictly uncertainty conform and to ignore indifference, but when not important

to be type–2 consistent.

Further we have proposed two new type reduction methods, consistent linear

type reduction (CLTR) and consistent quadratic type reduction (CQTR). CLTR

satisfies all our five properties except ignorance of indifference, and CQTR com-

pletely satisfies all five properties (for a ∈ (0.5, 1]). So, CLTR and CQTR are

considered good alternatives to NT and UW with attractive mathematical prop-

erties.

The purpose of this paper is to provide a foundation of the theory of type

reduction. Given the width of this field, this paper has to leave many impor-

tant aspects open for further research, for example: Can we find a real–world

application example where satisfying our five properties will improve system

performance? How can our list of five properties of type reduction be reason-

ably refined and/or extended? How can similar properties be defined for other

types of (non–interval) type–2 fuzzy sets? How does type reduction relate to

averaging and ignorance functions [5]? How can we define properties of type re-

duction for non–pointwise type reduction, for example in constrained fuzzy sets

[8], where a type–2 fuzzy set is generated by wobbling a type–1 fuzzy set along

the horizontal axis? What kind of properties can we realize with nonlinear type

reduction functions other than UW and CQTR? Where can type reduction be

applied beyond defuzzification?
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