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THE STRUCTURE OF A DEWETTING RIM WITH STRONG SLIP:
THE LONG-TIME EVOLUTION∗

P. L. EVANS† , J. R. KING‡ , AND A. MÜNCH§

Abstract. When a thin viscous film dewets from a solid substrate, the liquid forms a charac-
teristic rim near the contact line as the contact line retracts. The shape of the rim and also the
retraction rate vary strongly with the amount of slip that occurs at the liquid-solid substrate. If
the slip length is very large compared to the thickness of the film, extensional stresses dominate the
shear stresses, and the film evolution can be modelled by a thin-film model similar to the ones that
occur in freely suspended films, with a correction from the viscous friction due to the large but finite
slip. Asymptotic investigation of this model reveals that the rim has an amazingly rich asymptotic
structure that moreover changes as the solution passes through four distinct time regimes. This pa-
per continues previous work that focused on the first of these regimes [Evans, King, Münch, AMRX
2006:25262, 2006]. The structure of the solution is analyzed in detail via matched asymptotics and
then the predictions for the contact line and profile evolution are compared with numerical results.

1. Introduction. When a liquid film is deposited on a solid substrate that is not
perfectly wettable by the liquid, the formation of a hole (either by spinodal decompo-
sition or nucleation) or a trench gives rise to a contact line that will typically retract,
reducing the gas-liquid and liquid-solid interface areas in favour of the energetically
preferable gas-solid interface. The liquid typically collects in a characteristic elevated
capillary rim near the contact line. The shape of the rim profile and the retraction
rates vary depending on both the bulk and the interface properties and have thus
been the target of extended experimental and theoretical research. In these experi-
ments, the films are typically very thin – in the micron or submicron range – and the
observations of the profile and contact-line evolution can deliver important clues to
the microscopic physics. This is particularly true for the role of real or apparent slip
in microfluidics; see for example Lauga et al. [23] for a review.

In macroscopic flows, no-slip conditions are usually assumed at the liquid/solid
interface, but for thin, micron and submicron polymer films, considerable apparent
slip is possible and this has been used to explain the differences in the observed
rim shapes and dewetting rates [31, 32]. In particular, for the no-slip situation, the
contact line position advances approximately linearly in time t, while in the presence
of large amount of slip as compared to the film thickness, it follows a t2/3 power law.
These laws have been derived using scaling arguments and have been compared with
experiments [31, 32]. They can also be obtained from lubrication models which have
different mobilities in the no-slip and the large slip case. The predicted retraction rates
of the contact line are recovered from numerical solutions of these models as well as
through approximations using matched asymptotics expansions [13, 21, 25, 27, 24].
Occasionally, the case of finite, non-zero slip has been considered as well [15, 24].

Systematic asymptotic approximation of the Stokes equations with a capillary
interface and a Navier-slip condition at the liquid/solid interface reveals that beyond
the large slip region considered previously, called the intermediate slip regime in [27],
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there is a distinguished limit for which extensional stresses enter the balance. This
strong-slip limit leads to a system of partial differential equations (PDEs) [27, 16]
instead of a scalar lubrication equation, similar to what appears in the modelling of
free, suspended films [7] and extended to viscoelastic flow in [26]. A derivation in the
context of poroviscous flows is given in [22] and in [12], which also contains gravity.
A physical derivation of a model which includes the effect of extensional stresses but
without explicit inclusion of surface tension can be found in [39].

The solutions of the strong-slip model behave quite differently compared to the
models with less slip. Numerical solutions for the strong-slip model suggest that
for large enough values of the slip parameter, the contact line first approaches a
linear evolution in t before it tends to a 2/3-power law behaviour. Also, the cross
section of the spatial profile decays monotonically to the unperturbed film, which is
in marked contrast to the rims in the other models where the decay occurs through
spatial oscillations (capillary ripples) [27, 36]. This explains suprising observations of
monotone profiles made in experiments, which have been in fact exploited to determine
slip lengths quantitatively [9, 10, 11, 1]. As the rim accumulates liquid and grows, the
cross section changes from a very asymmetric to a more symmetric, rounded shape
and eventually the oscillatory decay is recovered [27]. We remark that in addition to
the differences observed for a retracting rim, the early stages of the onset of rupture
via spinodal decomposition, as observed in the growth rates of the linear stability
analysis of a flat, unstable film, are quite different [16, 30]. A rigorous investigation
of the later stages of rupture in a strong-slip regime was carried out in [29, 28].

In this paper, we seek to understand the long-time evolution of the dewetting
film for a strong-slip thin film model in one dimension, so that the contact line is
straight [2, 33]. This evolution is characterised by a rim of fluid increasing in thickness
as it overruns the initial fluid film, taking up fluid from the latter. A careful asymptotic
analysis and comparison with numerical results gives a comprehensive and detailed
view of the intricate and complex evolution (through four major time scales and
a continuum of intermediate timescales accompanied the appearance and merging of
numerous spatial scales), which explains and complements observations from previous
studies and quantifies the regimes in which different qualitative (oscillatory vs non-
oscillatory, symmetric vs asymmetric) and power-law behaviours occur, aiding the
interpretation of numerical and experimental results.

Given how innocuous the governing systems (2.1) appears, the asymptotic analy-
sis is surprisingly involved and exemplifies features that are likely to be present in the
treatment of other PDE systems, notably timescale separation involving only logarith-
mic differences between scales (see Section 4.1) resulting from exponential dependence
on space and a continuum of intermediate timescales (see Section 5) associated with
logarithmic dependence on time. Indeed, delicate exponential matching - here at the
leading edge of the rim (see (4.14), (4.31)) – can be crucial in governing the evolution.
Specific other features of more general relevance in PDE theory include the appear-
ance of both pseudoparabolic (mixed) and high-order derivatives, with (2.9) providing
the simplest such representation, and of non-local moving-boundary formulations –
see (4.28) and (6.2); to emphasise this point, we record the first of the latter here
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Fig. 1. Schematics of the dewetting (retracting) rim. (a), left: Rim with monotone decay to
the undisturbed film, typical for the earlier regimes. (b), right: Rim with an oscillatory decay, the
transition to which happens on the fourth (and final) time scale, as described in the introduction
and in Section 6 (with a different asymptotic notation).

without the distracting asymptotic notation required below, namely

h
∂2h

∂x2
− 1

2

(
∂h

∂x

)2

= ṡx− 1

2
, 0 < x < x0(t),(1.1)

h = 0 at x = 0 and x0(t)(1.2)

ṡ(t) =
1

2(x0(t) + 2)
,(1.3) ∫ x0(t)

0

h(x, t) dx = s(t);(1.4)

this nonlinear boundary value problem determines the fluid thickness h(x, t) within
the rim, the moving boundary x0(t), which measures the rim width (see fig. 1(b)),
and, via the non-local (mass) constraint (1.4), the location s(t) of the contact line
separating wet and dry regions; via (1.3)-(1.4), x0(t) and s(t) are coupled in a non-
trivial way.

This study is the second part of earlier work by the same authors which covered the
first time scale [8]. In section 2, we briefly recapitulate the formulation of the model
and briefly state the main result from [8] for the contact-line evolution in the first time
scale. The asymptotic investigation is carried out in sections 2-6, and comparisons
with numerical solutions are carried out in section 8. Finally we summarise and
conclude in section 9.

2. Formulation.

2.1. The initial boundary value problem. The model for a dewetting thin
viscous film that we investigate here was considered by the same authors in [8], with
a detailed derivation given in [27], so here we only recall the salient features. A
schematic of the situation is shown in fig. 1.

Of primary interest is the evolution of the free surface which we describe by
the film thickness z = h(x, t), where x and z are the position along and normal to
the substrate, respectively, and t denotes time. The flow in the film is governed by
the Navier-Stokes equations for a viscous incompressible liquid. The free surface is
assumed to subject to normal stresses due to capillarity but not to tangential stresses.
At the substrate, we impose impermeability by setting the normal component to zero

3



and a Navier-slip condition

U|| = B
∂U||

∂z

with a fixed slip length B for the tangential component U||. We consider here the
situation after a dewetted region has nucleated in the film, leading to the formation
of a contact line at the position x = s(t) in the lab frame, where the free surface
meets the substrate at a given non-zero contact angle. The contact-line position is an
unknown of the problem.

Using the thin-film approximation via expansions in terms of a small parameter
related to the magnitude of the free surface slope, and neglecting inertia, one obtains
the strong-slip model proposed by Münch et al. [27], Flitton [12] and Kargupta et al.
[16],

∂h

∂t
+

∂

∂x
(uh) = 0 ,(2.1a)

4
∂

∂x

(
h
∂u

∂x

)
+ h

∂3h

∂x3
= ε(ṡ+ u) ,(2.1b)

where u represents the depth averaged tangential velocity, in contrast to the u in
the Navier-slip condition, which denotes the value of the tangential velocity at the
substrate. These equations are supplemented by the boundary conditions

h = 0,
∂h

∂x
= 1, h

∂u

∂x
= 0, u = 0 at x = 0,(2.2a)

h→ 1, u→ −ṡ as x→∞.(2.2b)

Note that in (2.1), the model is formulated in a frame of reference that is moving with
the contact line, so that h = 0 at a fixed position x = 0, but the unknown ṡ remains
in the problem via (2.1b) and (2.2b) instead. Moreover, h, x and s have been scaled
by h∞, h∞/λ and h∞/λ, respectively, where h∞ is the thickness of the unperturbed
film far away from the retracting rim and arctanλ is the contact angle. For the thin-
film approximation to be uniformly valid, arctanλ is required to be small, so that
in particular, we can use arctanλ ≈ λ. The velocity u and time t have been scaled
by σλ/µ and µh∞/σλ

2, respectively, where σ and µ are the surface tension at the
liquid/air interface and µ the dynamic viscosity of the liquid. The model leaves us
with one parameter, ε = h∞/Bλ

2, which we assume to be small, i.e. the slip length
is very large, B/h∞ � 1/λ2. This was called the strong-slip regime in Münch et
al. [27]. The model equations (2.1) represent dewetting in two dimensions, such as
when nucleation has occurred along a straight edge, as in experiments by Reiter et
al. [33] and Jacobs et al. [2].

As initial data for (2.1), we set

(2.3) s(0) = 0 and h(x, 0) = hinit(x) for x ≥ 0,

where, for definiteness in the numerical simulations,

(2.4) hinit(x) =

{
1− (1− x/2)2 for 0 ≤ x ≤ 2,

1 for 2 < x.

In general, it is sufficient if hinit(x) is smooth and positive for x > 0 and is consistent
with the boundary conditions for h in (2.2). The long-time behaviour was not found
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to depend significantly on the details of the initial profile hinit, provided it makes the
transition from hinit(x) = 0 at the contact line to hinit(x) ≈ 1 over a region of width
O(1). Notice that no separate initial condition is required for u.

Incidentally, reverting to the laboratory frame by setting ṡ = 0 in (2.1) we obtain

∂

∂t

(
1

2

(
∂h

∂x

)2
)

+
∂

∂x

(
∂h

∂x

∂

∂x
(uh)− ∂2h

∂x2
uh+ 4u

∂

∂x

(
h
∂u

∂x

))

= −4h

(
∂u

∂x

)2

− εu2(2.5)

as the equation governing the dissipation of the surface-energy density (kinetic energy
being negligible in the current framework). The first term on the right-hand side of
(2.5) represents viscous dissipation within the fluid, and the second that due to friction
with the substrate.

2.2. Boundary condition counts. Various sub-problems will (of course) arise
in the asymptotic analysis and it will be important to ensure that each is correctly
specified. Boundary condition counts play a key role in this regard and here we
set out the relevant results for our full system (2.1)-(2.2), both to confirm that the
formulation just described is correctly specified and to establish properties instructive
for the analysis that follows. This system is of fourth order in x, one way to see this
being to introduce the mass variable

m(x, t) =

∫ x

0

h(x′, t) dx′,

whereby

(2.6)
∂m

∂t
+ u

∂m

∂x
= 0,

allowing the system to be rewritten as a scalar equation, namely

(2.7) − 4
∂

∂x

(
∂m

∂x

∂

∂x

(
∂m

∂t

/
∂m

∂x

))
+
∂m

∂x

∂4m

∂x4
= ε

(
ṡ− ∂m

∂t

/
∂m

∂x

)
.

Because s(t) is an unknown moving boundary, five boundary conditions are thus
required in all. The local behaviour of (2.1)-(2.2) as x→ 0+ takes the form

h ∼ x+ α(t)x2 lnx+ βtx2, u ∼ a(t)x2 lnx+ b(t)x2,

with
α̇ = −3a, β̇ = −a− 3b, 2α = εṡ,

so that

(2.8) h ∼ x− ε

2
ṡx2 lnx+ βx2, u ∼ −ε

6
s̈x2 lnx+

1

3

(ε
6
s̈− β̇

)
x2 as x→ 0+,

containing arbitrary functions β(t) and s(t) as the only bona fide degrees of free-
dom. Because s(t) arises in the PDEs rather than the local expansion per se, (2.8)
corresponds to three boundary conditions holding at x = 0, i.e., there is a single re-
dundancy in (2.2a): indeed, (2.1a) and the first two of (2.2a) immediately imply the
fourth of (2.2a).
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As x→∞ we set
h ∼ 1 +H, u ∼ −ṡ+ U,

and linearise to obtain

∂H

∂t
+
∂U

∂x
= 0, 4

∂2U

∂x2
+
∂3H

∂x3
= εU,

giving the high-order pseudoparabolic equation

(2.9) ε
∂H

∂t
= 4

∂3H

∂x2∂t
− ∂4H

∂x4
.

Applying the Liouville-Green (JWKB) method to determine the possible far-field
behaviours of (2.9), where we stress that ε is to be viewed as O(1) for the current
purposes, we find that there are two exponentially decaying degrees of freedom, i.e.
the boundary condition count is as it should be. The first of these degrees of freedom
appears as Φ is the far-field balance,

(2.10) H ∼ 1

t1/2
Φ
(x
t

)
e−x

2/t as x→∞,

whereby the right-hand side of (2.9) dominates, i.e. a heat-equation balance pertains.
The second follows on neglecting the final term in (2.9), so that

(2.11) lnH ∼ −ε1/2x/2 as x→∞.

There is a subtlety in this second case: setting

H = e−ε
1/2x/2G

in (2.9) implies the far-field balance

(2.12)
∂2G

∂x∂t
∼ −ε

3/2

64
G

so that (2.11) in fact subdivides into two:

(2.13) H ∼ 1

t1/2
e−ε

1/2x/2
(

Φ+

(x
t

)
eiε

3/4(xt)1/2/4 + Φ−

(x
t

)
e−iε

3/4(xt)1/2/4
)
.

However, it is clear from the nature of the characteristics of the hyperbolic PDE (2.12)
that, although there are two degrees of freedom, Φ+ and Φ−, in (2.13), the accounting
attributes only one to the far-field, the other being associated with the initial data.

3. Limit Problems.

3.1. Quasi-steady behaviour for negligible surface tension. Two limit
cases of (2.1) recur in the asymptotic analysis that follows in section 4 and we therefore
undertake their analysis in detail here in order not to break the flow of the subsequent
asymptotic analysis; moreover, these subproblems (see (3.1) and (3.7)) both comprise
ODEs and are potentially of interest in their own right. Firstly, for sufficiently large
x scalings, the time derivative in (2.1a) and the third derivative term in (2.1b) turn
out to be negligible in a number of the asymptotic regimes that arise below. In view
of (2.2b), we then have

(3.1) uh = −ṡ, 4
∂

∂x

(
1

h

∂h

∂x

)
= ε

(
1− 1

h

)
.
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Hence

(3.2)
1

h2

(
∂h

∂x

)2

=
ε

2

(
lnh+

1

h
− 1

)
.

i.e. (3.1) can be solved fully in terms of a single quadrature. Corresponding to
ε1/2(x0 − x) � 1 in (3.3), the 1/h term in (3.2) is negligible, and retaining all the
remaining terms implies

(3.3) h ∼ e1+ε(x0−x)2/8, u ∼ −ṡe(1+ε(x0−x)2/8),

for arbitrary x0(t); these balances will play an important role in the matching – see
(4.14) and (4.31) below.

To clarify the status of this asymptotic balance, we set

x = ε−1/2y, h = η/δ

with 0 < δ � 1 so that (3.2) becomes

∂η

∂y
= −2−1/2η (ln(1/δ) + ln η − 1 + δ/η)

1/2
,

which we will analyse systematically in the limit δ → 0, wherein a continuum of scales
arises: to all powers of ln(1/δ), the final term can be neglected for η = O(δγ) for any
γ < 1, in which case

(3.4) η ∼ δe1+(Y0−y)2/8,

as in (3.3), applies for some Y0(t) = ε1/2x0(t) i.e. (3.4) captures the asymptotic
behaviour of (3.2) over the continuum of scales

η = O(δγ), Y0 − y = O(ν ln
1
2 (1/δ))

where ν = (8(1− γ))
1/2

> 0. This of course requires y < Y0 and breaks down for ξ,
h = O(1), where y = Y0 + ξ, giving the full balance

(3.5)
dh

dξ
= −2−1/2h

(
lnh+

1

h
− 1

)1/2

, as ξ → −∞ h ∼ e1+ξ2/8,

in (3.2), implying that

dh

dξ
∼ −1

2
(h− 1)

as h→ 1+, so that

(3.6) h ∼ Ae−ξ/2 as ξ → +∞

where the constant A can be determined from (3.5), which is solvable as a quadra-
ture. There is then a transition to (2.13) that can be described by a Liouville-Green
approach.
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3.2. Quasi-steady behaviour for negligible substrate friction. The second
limit case worth covering at this stage involves again neglecting the time derivative
in (2.1a), but now also disregarding of the right-hand side of (2.1b), giving

(3.7) uh = −ṡ, 4ṡ
1

h

∂h

∂z
+ h

∂2h

∂z2
− 1

2

(
∂h

∂z

)2

= −1

2
Λ2(t),

wherein z is a (time-dependent) translate of x that will in what follows be determined
by matching and the boundary conditions (2.2) do not in general apply, so in par-
ticular, Λ ≡ 1 need not hold. This reduction plays a key role below: see the remark
following (4.23) and the leading-order solution given by (4.30); the role of Λ(t) as
a mesoscopic contact angle is apparent from the latter in particular. The relevant
boundary conditions for the ODE in (3.7) that will be of interest are

(3.8) h = Λ(t)(−z) as z → −∞, h→ 0 as z → +∞.

Setting

(3.9) h(z, t) = 4ṡG(ξ)/Λ(t), u(z, t) = −Λ(t)/4G(ξ), ξ = Λ2(t)z/4ṡ

allows ṡ and Λ to be scaled out, leaving the parameter-free initial value problem

(3.10)
G
d2G

dξ2
− 1

2

(
dG

dξ

)2

+
1

G

dG

dξ
= −1

2

G = −ξ as ξ → −∞,

which determines G up to translations of ξ. It follows from (3.10) that

(3.11) G ∼ Be−ξ/2 as ξ → +∞

for some positive constant B that can be set to unity by choice of the origin of ξ,
though to determine this choice of origin in what follows would require higher-order
matching, which we shall not undertake. This boundary value problem determines ḡ
both in (4.22) and in (4.30) below.

4. Asymptotic analysis.

4.1. The first timescale and a subsequent rescaling. In the following, we
focus on understanding the evolution of the rim for small ε � 1. It turns out that
there are several distinguished limits. The first timescale, for moderate (“early”)
times, t = O(1), was the focus of the earlier paper by Evans et al. [8], so we only give
a brief summary here. In this limit, the asymptotic structure comprises two regions,
namely an inner region, close to the contact line, and an outer region. For t → ∞,
the inner solution takes on a self-similar form, while the outer solution subdivides
into three regions. Until the inner merges with the adjacent outer subregion, which
signals the distinguished limit that defines the second timescale, the evolution of the
contact line s(t) = ε−1/2S(t; ε) is given by S(t; ε) = S0(t) + o(1), with

(4.1) S0 ∼
t

4
√

2 ln1/2 t
for t→∞.

For later reference, we record here that in [8], this expression was derived as an
asymptotic solution of

(4.2) Ṡ0 =
1

4
√

2

(
ln

(
t

8

)
− 1

)−1/2
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for t→∞.
The next two timescales differ from each other only by scalings logarithmic in ε.

In terms of powers of ε, the appropriate initial rescalings are

(4.3) t = ε−1/2τ, x = ε−1/2y, h = ε−1/2g, s(t) = ε−1σ(τ),

which give

∂g

∂τ
+

∂

∂y
(gu) = 0,(4.4a)

4
∂

∂y

(
g
∂u

∂y

)
+ g

∂3g

∂y3
= σ̇ + ε1/2u,(4.4b)

where the dot henceforth denotes differentiation with respect to the relevant timescale
– here τ . Thus, to all orders in 1/µ(ε), where

µ ≡ ln1/2(1/ε),

the inner equations will be given by (4.4a) and a suitable limit of

(4.5) 4g
∂u

∂y
+ g

∂2g

∂y2
− 1

2

(
∂g

∂y

)2

= σ̇y − 1

2
.

In both cases, the behaviour in the outer regions is captured by the balance in Sec-
tion 3.1.

4.2. The second timescale. Guided by the need to match into the first time-
scale, here we set

(4.6) τ =
1

µ
τ̄ , y =

1

µ
ȳ, g =

1

µ
ḡ, σ(τ) =

1

µ2
σ̄(τ).

The σ̇ term in (4.5) is a factor 1/µ2 smaller than the other terms, giving the leading-
order balance

∂ḡ

∂τ̄
+

∂

∂ȳ
(ḡu) = 0,(4.7a)

4ḡ
∂u

∂ȳ
+ ḡ

∂2ḡ

∂ȳ2
− 1

2

(
∂ḡ

∂ȳ

)2

= −1

2
,(4.7b)

with

(4.8) ḡ = 0, u = 0 at ȳ = 0, ḡ = 0 at τ̄ = 0.

The asymptotic reduction (4.7a)-(4.7b) is precisely the one that can be reformulated
as the reaction-diffusion equation (B.5) in the appendix.

The appropriate next step is to undertake a degree-of-freedom count on (4.7). As
y → 0, we have

g ∼ y + γ(τ̄)y2, u ∼ 1

3
γ̇(τ̄)y2,

containing a single degreee of freedom γ(τ̄). As ȳ →∞, (4.7a) implies

(4.9) ḡu→ −J̄(τ̄) as ȳ →∞
9



where τ̄ remains to be determined. (4.7b) then gives

(4.10) ḡ ∼ B̄(τ̄) e−ȳ/8J̄ as ȳ →∞.

Finally, a further degree of freedom arises from the highest derivative term in (4.7b):
setting

(4.11) ḡ ∼ B̄(τ̄)e−ȳ/8J̄ + · · ·+ Ḡ as ȳ →∞

and linearising implies

4J̄

B̄

∂

∂ȳ

(
eȳ/8J̄Ḡ

)
+ B̄e−ȳ/8J̄

(
∂2Ḡ

∂ȳ2
+

1

8J̄

∂Ḡ

∂ȳ
+

1

64J̄2
Ḡ

)
= 0,

where the ellipsis in (4.11) is required because Ḡ proves exponentially smaller than
the leading term therein. Applying the Liouville-Green (JWKB) method then yields

(4.12) Ḡ ∼ C̄(τ̄) exp

(
−16J̄2

B̄2
exp

(
ȳ/4J̄

)
− ȳ/4J̄

)
as ȳ →∞.

Thus there are three (i.e. the maximal possible number) of degrees of freedom, namely
J̄ , B̄ and C̄ in (4.9), (4.10) and (4.12), in the far-field behaviour of (4.7)-(4.8) and its
correct specification requires matching with outer regions, these being as analysed in
Section 3.1. Under the current scalings, the first of (3.1) implies immediately that

(4.13) ˙̄σ(τ̄) = J̄(τ̄)

in (4.9). However, σ̄ is itself unknown and (4.13) should be viewed as the equation
that determines it from J̄ , rather than vice versa.

Next, setting x0 = ε−1/2µȲ0(ε) in the first of (3.3) – which is in keeping with the
validity of (3.3) requiring that ε1/2(x0 − x)� 1 – leads on matching with (4.10) to

(4.14) B̄e−ȳ/8J̄ ∼ µε1/2e1+µ2Ȳ 2
0 /8−Ȳ0ȳ/4,

so that the algebraic dependence on ε requires that Ȳ0 ∼ 2, and equating the final
terms on the left and right then yields J̄ , and hence, by (4.13), σ̄:

(4.15) J̄ ∼ 1

4
, σ̄ ∼ τ̄

4
,

the latter matching with (4.1). Thus (4.7)-(4.8) are supplemented by the condition

(4.16) ḡu→ −1

4
as ȳ →∞

to give a correctly specified IBVP, σ̄ being determined in (4.15) without requiring this
IBVP to be solved. We note using (4.16) that it follows from (4.7a) and (4.8) that

(4.17)

∫ ∞
0

ḡ(ȳ, τ̄)dȳ =
τ̄

4

We emphasize that (4.16) can be inferred only through the above matching to
(3.3), which is associated with the transition to the initial film thickness h = 1: in
no sense is it implicit in (4.7)–(4.8), and it is the only way substrate friction enters
the leading-order problem on this timescale, it being absent from (4.7)–(4.8). We
now analyse (4.7)-(4.8) subject to (4.16) as τ̄ → 0 and as τ̄ → +∞, the latter in
preparation for the analysis of the next timescale and the former to confirm matching
with the results of [8].
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Small τ̄ . As τ̄ → 0 we have the separable behaviour

ḡ ∼ τ̄G(ȳ), u ∼ 1

τ̄
U(ȳ),

whereby the dominant balance in (4.7) becomes

(4.18) G+
d

dȳ
(GU) = 0, 4G

dU

dȳ
= −1

2
,

and hence, using (4.16),

(4.19) G =
1

8
e−ȳ/2, U = −2

(
eȳ/2 − 1

)
,

so that in (4.11)

B̄(τ̄) ∼ 1

8
τ̄ as τ̄ → 0+.

(4.18) disregards the highest derivative in (4.7b), necessitating a boundary layer in
which the similarity reduction,

ḡ ∼ τ̄ Ḡ(ξ̄), u ∼ Ū(ξ̄), ξ̄ = ȳ/τ̄ ,

which represent a full balance in (4.7), pertains; the boundary and matching condi-
tions read

Ḡ = Ū = 0 at ξ̄ = 0, Ḡ ∼ 1

8
, Ū ∼ −ξ̄ as ξ̄ → +∞.

Large τ̄ . The large τ̄ limit also subdivides into two, an inner region discussed
below, and an outer one containing most of the mass (4.17), with ȳ, ḡ = O(τ̄1/2),
u = O(τ̄−1/2), whereby the first term in (4.7b) is the only negligible one in (4.7).
This implies

(4.20) ḡ ∼ ȳ (1− ȳ/ȳ0)+ , ȳ0 ∼ Kτ̄1/2 as τ̄ →∞

for some constant K that is determined below, and hence by (4.7a)

(4.21) u ∼ − ˙̄y0ȳ
2
/

3ȳ2
0(1− ȳ/ȳ0) as τ̄ →∞.

Here, ȳ0 corresponds to the width of a growing rim of fluid in which h is much larger
than the initial layer depth; this quantity will play an important role henceforth. It is
noteworthy that the rim profile (4.20) for τ̄ � 1 is parabolic (and hence, in particular,
symmetric), as it is for large times in the no-slip and weak slip regime [13, 31].

In the inner region ξ̄ = O(1), where ȳ = ȳ0(τ̄) + ξ̄, the scalings on the dependent
variables are simply ḡ = O(1), u = O(1), with u given in terms of ḡ by

(4.22) ḡu ∼ −1/4,

and matching with (4.20)–(4.21) for ȳ ∼ ȳ0 requires requires

ȳ0 ˙̄y0/3 = 1/4,

so that

(4.23) K =

√
3

2
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in (4.20). Furthermore ḡ ∼ G(ξ̄), where G is given by the BVP (3.10), but with a
higher-order calculation being required to determine the ξ translate referred to there,
and hence B in (3.11). Given G(ξ), u can be then be obtained from (4.22), with

(4.24) B̄(τ̄) ∼ Beȳ0(τ)/2 as τ̄ →∞

holding in (4.10), B being as in (3.11).
Two final comments are in order here. Firstly, it will prove instructive to note

that equating the two sides of (4.14) exactly (rather than asymptotically for small ε
and hence large µ, this being the limit in which the balance has been derived) gives

(4.25) Ȳ0 = 2

(
1 + 2

ln(B̄/µ)− 1

µ2

)1/2

, J̄ = 1/2Ȳ0,

so the above analysis will break down when B̄ becomes sufficiently large with respect
to µ, leading on to the third timescale. Secondly, for the record we note that the
corresponding IBVP for the reduced order problem (B.5) in the appendix has that
(B.5) holds for 0 < m < t/4 (cf. (4.17)) with (here we revert to the original notation)

ω ∼ (2m)−3/4 as m→ 0+, ω ∼
(

1

2

(
t

4
−m

))−3/2

as m→ t−

4

i.e. one has singular boundary data on the reaction-diffusion equation.

4.3. The third timescale. Because ȳ scales with τ̄1/2 in (4.20), the neglected
σ̇ term from (4.5) ceases to be negligible when τ̄ = O(µ4). We accordingly set

(4.26) τ = µ3τ̂ , y = µŷ, g = µĝ, u = û/µ2, σ(τ) = µ2σ̂(τ̂),

to give

∂ĝ

∂τ̂
+

∂

∂ŷ
(ĝû) = 0,(4.27a)

4

µ2
ĝ
∂û

∂ŷ
+ ĝ

∂2ĝ

∂ŷ2
− 1

2

(
∂ĝ

∂ŷ

)2

= ˙̂σŷ − 1

2
.(4.27b)

Thus in the outer region ŷ = O(1), 0 < ŷ < ŷ0(τ̂), we have (4.27a), and, at leading
order,

(4.28) ĝ
∂2ĝ

∂ŷ2
− 1

2

(
∂ĝ

∂ŷ

)2

= ˙̂σŷ − 1

2
.

Before completing the specification of this outer problem, we must turn to the
inner one, whereby

(4.29) ŷ = ŷ0(τ̂) + ξ̂/µ2,

with ξ̂, ḡ, u = O(1) and at leading order

ḡu = − ˙̂σ, 4ḡ
∂u

∂ξ̂
+ ḡ

∂2ḡ

∂ξ̂2
− 1

2

(
∂ḡ

∂ξ̂

)2

= ˙̂σŷ0 −
1

2
.

12



Hence we can again appeal to the analysis of Section 3.2 to infer that

ḡ(ξ̂, τ̂) = 4 ˙̂σG(ξ̂)

/(
1− 2 ˙̂σŷ0

)1/2

,(4.30a)

u(ξ̂, τ̂) = −
(

1− 2 ˙̂σŷ0

)1/2

/4G(ξ) , ξ = (1− 2 ˙̂σŷ0)ξ̂
/

4 ˙̂σ ,(4.30b)

with G(ξ) given by (3.10). It is clear that (4.30) will become singular when ˙̂σŷ0

approaches 1/2, the significance of which will become apparent shortly.
Using (3.11) and matching to (3.3) with x0 = ε−1/2µŶ0(τ̂ , ε) yields

4 ˙̂σB(
1− 2 ˙̂σŷ0

)1/2
exp

[
−1− 2 ˙̂σŷ0

8 ˙̂σ
ξ̂

]

∼ µε1/2 exp

[
1 +

µ2(Ŷ0 − ŷ0)2

8
− Ŷ0 − ŷ0

4
ξ̂

]
.(4.31)

The comparison of (4.31) with (4.14) is instructive: the rim width ŷ0 and the offset
Ŷ0 have become comparable. Requiring the algebraic terms in ε on the right-hand
side of (4.31) to cancel requires Ŷ0 = ŷ0 + 2; (4.24) and the first of (4.25) are readily

seen to be consistent with this in the limit of small ŷ0. Comparison of the ξ̂ terms
then yields

(4.32) ˙̂σ = 1/2(ŷ0 + 2),

thereby relating contact-line motion to rim thickness.
We are now in a position to return to the outer problem (4.27a), (4.28). While

these PDEs are a familiar leading-order balance (see [13, 21, 27], for example), the
BVP that follows is not the conventional one. Thus (4.28) is to be solved as a non-local
BVP subject to

(4.33) ĝ = 0 at ŷ = 0 and at ŷ = ŷ0(τ̂),

(4.34)

∫ ŷ0(τ̂)

0

ĝ(ŷ, τ̂)dŷ = σ̂(τ̂),

together with (4.32) and σ̂(τ̂) = 0 at τ̂ = 0. Once ĝ and σ̂ are determined in this way,
û is given by integration of (4.27a) subject to û = 0 and σ̂ on ŷ = 0. We note that
from (4.28), (4.33) we have that

(4.35)
∂ĝ

∂ŷ
= −

(
1− 2 ˙̂σŷ0

)1/2

at ŷ = ŷ0.

Small and large τ̂ . The small τ̂ limit of this BVP can be shown to match into
the τ̄ →∞ analysis of Section 4.2, see (4.20)-(4.23), but we omit details. In the limit
τ̂ → ∞, we obtain the more conventional zero-contact angle case because ŷ0 → ∞
holds, leading from (4.32) to

(4.36) ˙̂σ ∼ 1

2ŷ0
,
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and hence to the singular behaviour noted above in connection with (4.30). In more
detail, as τ̂ → ∞, the outer region itself splits into two, its own outer, ŷ = O(ŷ0),
being given by

ĝ(ŷ, τ̂) ∼ ŷ0Φ(ζ̂), ζ̂ = ŷ/ŷ0,

with

Φ
∂2Φ

∂ζ̂2
− 1

2

(
∂Φ

∂ζ̂

)2

=
1

2
(ζ̂ − 1),(4.37a)

Φ = 0 at ζ̂ = 0 and at ζ̂ = 1,(4.37b)

so that, using (4.34) and (4.36),

(4.38) σ̂(τ̂) ∼
(

3κτ̂

4

)2/3

, ŷ0(τ̂) ∼
(

3τ̂

4κ2

)1/3

as τ →∞

where the constant κ is given in terms of (4.37) by

κ =

[∫ 1

0

Φ(ζ̂)dζ̂

]1/2

.

Using numerical results from [27], we obtain that κ = 2
√
M , with M ≈ 0.0272, so

that κ ≈ 0.330. It follows from (4.37) that

(4.39) Φ(ζ̂) ∼ 2√
3

(
1− ζ̂

)3/2

as ζ̂ → 1−.

By (4.27a), û = O(τ̂−2/3) in this region: setting

ĝ ∼ τ̂1/3Ĝ(η̂), û ∼ τ̂−2/3V̂ (η̂), η̂ = ŷ/τ̂1/3

wherein Ĝ and η̂ are rescaled versions of Φ and ζ̂, implies that V̂ is given by

1

3

(
Ĝ− η̂ dĜ

dη̂

)
+

d

dη̂

(
ĜV̂

)
= 0,

V̂ = 0 at η̂ = 0;

the mass flux ĝû therefore scales as τ̂−1/3.
The inner regime associated with the τ̂ →∞ limit of the outer problem (4.27a),

(4.28) exploits the ŷ0 →∞ implication of (4.32) that

(4.40) 1− 2 ˙̂σŷ0 ∼ 2/ŷ0,

so by (4.35) the effective contact angle ∂ĝ/∂ŷ at ŷ = ŷ0 scales with τ̂−1/6. By (4.39),
this in turn implies

1− ζ̂ = O(τ̂−1/3), ŷ0 − ŷ = O(1), ĝ = O(τ̂−1/6), û = O(τ̂−1/6),

and the scalings

(4.41) ŷ = ŷ0 + Ẑ, ĝ = ŷ
−1/2
0 Ĥ(Ẑ), û = ŷ

−1/2
0 Û(Ẑ)
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give

(4.42) ĤÛ = −1

2
, Ĥ

d2Ĥ

dẐ2
− 1

2

(
dĤ

dẐ

)2

= −1 +
1

2
Ẑ

in Ẑ < 0, subject to

(4.43) Ĥ = 0, at Ẑ = 0, Ĥ ∼ 2√
3

(
−Ẑ
)3/2

as Ẑ → −∞,

completing the description of the large τ̂ limit of the outer problem; that of the inner
follows at once from the scaling laws (4.30).

An exact calculation from (4.31) is again revealing, giving

Ŷ0 = 1/2 ˙̂σ,(4.44a)

1− 2 ˙̂σŷ0 = 4 ˙̂σ
(

1 +
(

2
(

ln
(

4B ˙̂σ/µ
)
− 1
)
− ln

(
1− 2 ˙̂σŷ0

))
/µ2
)1/2

.(4.44b)

5. A continuum of timescales between the third and fourth timescales.
The important clue for what follows is (4.44b): if ŷ0 is exponentially large with respect
to µ2 then it implies, bearing in mind (4.32) and (4.40),

(5.1) 1− 2 ˙̂σŷ0 ∼
2

ŷ0

(
1− ln ŷ0

µ2

)1/2

,

the 1/µ2 term having been negligible in Section 4.3. Since this result modifies only
the Ẑ = O(1) region of that subsection (in particular, (4.38) remains valid), we can
set

(5.2) ln ŷ0 ∼
1

3
ln τ̂

in (5.1). Defining
T = ln τ̂ / ln(1/ε),

(5.1) becomes

(5.3) 1− 2 ˙̂σŷ0 ∼
2

ŷ0

(
1− T

3

)1/2

.

The results of this section apply for 0 < T < 3 and hence for t scaling with the powers
of ε between ε−1/2 and ε−7/2, corresponding to the continuum of scales noted in this
section’s heading.

The only resulting change to the analysis of Section 4.3 results from the implica-
tions of (5.3) for the effective contact angle, whereby the second of (4.42) is modified:
on suppressing the hats, we instead have

(5.4) HU = −1

2
, H

∂2H

∂Z2
− 1

2

(
∂H

∂Z

)2

= −
(

1− T

3

)1/2

+
1

2
Z;

now introducing hatted variables with different meanings from that above by defining

(5.5)

Z =

(
1− T

3

)1/2

Ẑ,

H(Z, T ) =

(
1− T

3

)3/4

Ĥ(Ẑ), U(Z, T ) =

(
1− T

3

)−3/4

Û(Ẑ),
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we recover the BVP (4.42)-(4.43).
This in effect concludes the analysis of these intermediate timescales, the main

implication of which is the evolution of the (small) effective contact angle at the
leading edge of the rim implied by (5.4), whereby

∂H

∂Z
= −2

1
2

(
1− T

3

)1/4

at Z = 0.
However, to set things up for the analysis of the final, and for the current purposes

most important, timescale – i.e. the fourth timescale – we need to examine some
aspects in slightly more detail. A refined analysis of (4.44) is required in order to
understand the behaviour when T is close to 3. The scalings required to give a
distinguished limit therein are

(5.6) τ̂ = µ−3ε−3t̂, 1− 2 ˙̂σŷ0 = Ω/µŷ0,

(this defines Ω) so that t = ε−7/2t̂, the fourth timescale being given by t̂ = O(1). This
leads using (5.2) to

Ω ∼ 2

(
ln(1/ε)− 1

3
ln τ̂ − ln Ω

)1/2

and hence to

Ω ∼ 2

(
−1

3
ln
(
Ω3t̂

))1/2

;

as t̂→ 0 we recover (5.3), so that

(5.7) Ω ∼ 2 ln1/2
(
1/t̂
)/√

3

captures the relevant aspects of the small t̂ behaviour of the fourth timescale, this
analysis also serving to illustrate how (5.3) breaks down for t̂ = O(1).

Similar slight modifications to a number of scalings are needed when setting t̂ =
O(1) within the current results: (4.44) implies using (4.36) that

(5.8) Ŷ0 ∼ ŷ0 + Ω/µ.

In (4.30)

ξ ∼ Ωξ̂/2µ

holds, so that ξ̂ = O(µ) and hence

(5.9) ŷ = ŷ0 +O(1/µ)

holds both in the inner region associated with (4.30) and, because of (5.5), in that
described by (5.4); moreover, in view of (5.8), Ŷ0 − ŷ0 scales in the same way, indi-
cating the merging together of multiple regions and, in particular, (3.3) is no longer
applicable.

We are now in a position to turn to our final timescale.

16



6. The fourth timescale. As implied by the preceding analysis, the appropriate
timescale here is

(6.1) t = ε−7/2t̆

(i.e. t̆ = t̂, the change in notation being expedient here) so (4.38) implies the outer
rescalings

ŷ = x̆/εµ, ŷ0(τ̂) = x̆0(t̆)/εµ, σ̂(τ̂) = s̆(t̆)/ε2µ2,

i.e. in the original variables

x = ε−3/2x̆, s = ε−3s̆,

while the scalings leading to (4.37) similarly imply

h = ε−3/2h̆, u = ε2ŭ

to give at leading order a non-local problem in 0 < x̆ < x̆0(t̆), namely

∂h̆

∂t̆
+

∂

∂x̆

(
ŭh̆
)

= 0,(6.2a)

h̆
∂2h̆

∂x̆2
− 1

2

(
∂h̆

∂x̆

)2

= ˙̆sx̆− 1

2
,(6.2b)

h̆ = 0, ŭ = 0 at x̆ = 0, h̆ = 0 at x̆ = x̆0(t̆),∫ x̆0

0

h̆dx̆ = s̆(t̆), ˙̆sx̆0 = 1/2, s̆(0) = x̆0(0) = 0,

this IBVP determining s̆ and x̆0 as well as h̆ and ŭ and implying that ŭh̆ = − ˙̆s at
x̆ = x̆0(t). It is identical to that arising in the large τ̂ analysis of Section 4.3, so that,
in particular,

(6.3) s̆(t̆) =

(
3κt̆

4

)2/3

, x̆0(t̆) =

(
3t̆

4κ2

)1/3

;

see (4.38). We note here that these scaling laws for the contact-line location s̆ and
the rim width x̆0 are the ones found (for equivalent reasons) for the scalar slip-
dominated/intermediate-slip thin-film model (i.e. with mobility h2) in [13] and [27].
We make use of this later in Section 8.

The arguments at the end of Section 5 imply for the merged inner that the scalings

x̆ = x̆0(t̆) + εz̆, h̆ = ε3/2h, u = ε1/2Ŭ ,

hold, yielding at leading order the ODE system

(6.4) Ŭh = − ˙̆s, 4
∂

∂z̆

(
h
∂Ŭ

∂z̆

)
+ h

∂3h

∂z̆3
= ˙̆s+ Ŭ .

The scaling properties of the above system imply

h̆(x̆, t̆) = t̆1/3f̆(x̆/t̆1/3), ŭ(x̆, t̆) = t̆−2/3v̆(x̆/t̆1/3).
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Since

h̆ ∼

(
8 ˙̆s

3

)1/2

(x̆0 − x̆)3/2, ŭ ∼ −

(
3 ˙̆s

8

)1/2

(x̆0 − x̆)−3/2 as x̆→ x̆−0

express the local behaviour at the edge of the rim in the inner variables, (6.4) is
subject to the matching conditions

(6.5) h̆ ∼

(
8 ˙̆s

3

)1/2

(−z̆)−3/2, ŭ ∼ −

(
3 ˙̆s

8

)1/2

(−z̆)−3/2 as z̆ → −∞.

The system (6.4) is equivalent to

(6.6) 4 ˙̆s
∂

∂z̆

(
h
∂h

∂z̆

)
+ h

∂3h

∂z̆3
= ˙̆s

(
1− 1

h

)
and a degree-of-freedom count on (6.5), cf. [20], shows that (6.5) constitutes a single
boundary condition as z̆ → −∞. Given the z̆-translation invariance of (6.4) only one
boundary condition is needed as z̆ → +∞ and it is readily seen that

(6.7) h→ 1 as z̆ → +∞

suppresses a single exponentially growing term, implying that (6.5), (6.7) specify the
solution to (6.6) up to translations of z̆. This far-field is worth elaborating upon
further since it captures a qualitative transition that takes place on this timescale:
Setting h ∼ 1 + exp(−λz̆) and linearising for exp(−λz̆)� 1 leads to

(6.8) λ3 − 4 ˙̆sλ2 + ˙̆s = 0.

For ˙̆s sufficiently large, corresponding to sufficiently small t̆, (6.8) has three real roots,
one negative, which must be suppressed, and two positive. For ˙̆s sufficiently small,
that is t̆ sufficiently large, there is one negative real root and a complex-conjugate pair
with positive real part. The transition between the two occurs at the repeated-root
value

λ = 3 ˙̆s/8, ˙̆s = (27)1/2/16

and the corresponding value of t̆ can then be obtained from (6.3). Thus one has a
rather precise criterion for the transition from monotonic decay at the leading edge
of the rim for smaller values of t̆ to oscillatory decay (with an infinite sequence of
oscillations) for larger t̆. This type of profile is indicated in the initial schematic,
fig. 1(b).

7. Summary. Here we summarise the balances that hold on the various time
scales and highlight some of the key features. In this section, we adopt the notation
H(η), U(η), S (where S is a constant) for all similarity solutions: these differ in form
in each case, but η = O(1) characterises the width of the rim. Further quantities
of interest are the gap between y = y0, the leading edge of the thickening rim, and
y = Y0, about which the rapid drop off to the initial film thickness h = 1 occurs,
together with the effective contact angle at y = y0.
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7.1. Second and third timescales. Equations (4.4a) and (4.5) govern the be-
haviour to all orders in 1/µ, and the subdivision into two distinct timescales generates
leading-order solutions that are only logarithmically accurate with respect to ε. On
the second timescale (4.7) governs the outer behaviour, substrate friction entering
only implicitly via the far-field (matching) condition (4.16). The time dependence of
the large τ̄ behaviour can be expressed in the form

(7.1) h ∼ t1/2H(η), u ∼ t−1/2U(η), s ∼ St, η = x/t1/2,

wherein H adopts a parabolic – and hence symmetric – profile. On this timescale, the
rim is diffuse in the sense that its thickness drops off exponentially, as in (4.10), rather
than the asymptotics leading to a sharp-interface limit, though one such is manifest
as τ̄ → ∞, as in (4.20), for which the symmetry of the rim profile implies that the
effective contact angle at the leading edge of the rim coincides with the imposed one
at the trailing edge. On the third timescale substrate friction makes itself felt in the
outer region – see (4.28), which is coupled to (4.27a). The non-local nature of the
problem that determines the rim profile over this timescale is worth highlighting. Its
large τ̂ behaviour (see (4.38)) is associated with the time dependence

(7.2) h ∼ t1/3H(η), u ∼ t−2/3U(η), s ∼ St2/3, η = x/t1/3,

The spacing Ŷ0 − ŷ0 alluded to above its fixed at two over this timescale and the
leading-edge contact-angle is given by (4.35): since

1− 2 ˙̂σŷ0 = 4 ˙̂σ

over this timescale, which scales at t−1/6 as τ̂ → ∞, the leading-order similarity
solution has zero contact angle at the leading edge.

7.2. Transition timescales. Over the timescales described in Section 5, (7.2)
is entirely unaltered, but now

Ŷ0 − ŷ0 ∼ 2(1− τ/3)1/2

and (4.35) is replaced by

∂ĝ

∂ŷ
∼ −2 ˙̂σ1/2 (1− τ/3)

1/4
at ŷ = ŷ0

indicating a further drop off in the effective contact angle at the leading edge of the
rim.

7.3. Fourth timescale. From the large τ̄ behaviour on the second timescale
onwards, the first term in (2.1b) is negligible in the governing PDEs in the outer
region, so the dominant balance in (2.1) is simply

(7.3)
∂h

∂t
− ṡ ∂h

∂x
+

1

ε

∂

∂x

(
h2 ∂

3h

∂x3

)
= 0

or a limit case thereof – in other words one has (in a convected frame of reference) a
very familiar thin-film equation. Nevertheless, on the second and third timescales the
first term in (2.1b) does have an important effect through the leading-edge contact-
angle condition on the rim – see (4.35), in particular – and many of the subtleties of the
above analysis are associated with this non-trivial matching. However, by the τ̂ →∞
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Regime Lower bound Upper bound Contact-line behaviour

A – 1 Determined by initial condition

B 1 ε−1/2 ln3/2(1/ε) ρ approaches 1

C ε−1/2 ln3/2(1/ε) ε−7/2 ρ approaches 2/3
D ε−7/2 – ρ(t) ∼ 2/3

Table 1
Overview of the time regimes, grouped by the typical behaviour of the contact line evolution s(t)

as represented by the exponent ρ(t) defined in (8.1). The table shows the lower and upper asymptotic
bound for each regime. Further explanations are given in the text.

limit of the third time scale, the rim has become so deep that the effective contact
angle becomes negligible, so that over the fourth timescale we are in territory familiar
from the analysis of (7.3). However, the inner analysis there – see (6.6) – does include
otherwise-neglected terms and yields additional insights into the transition between
monotonic and oscillatory decay that is experimentally observable.

8. Comparison with numerical solutions. The systematic asymptotic anal-
ysis has revealed a rich behaviour of the solution which can be compared to numerical
results. We will focus here on two features. Since we have identified power laws or
near power laws as leading-order approximations of the evolution of the contact line
s(t) in various time regimes, our first, semi-quantitative comparison will centre on
identifying the exponents of this behaviour in the numerical results. For the second
comparison, we look at the transition from monotonic decay at the leading edge of
the rim to oscillatory decay described at the end of Section 6.

Regarding the first point, we first illustrate the general behaviour of the contact
line by presenting numerical results for s(t) in fig. 2 for three different values of ε; de-
tails of the finite-difference discretisation method are given in Appendix A. We notice
that s(t) increases faster for the smaller ε, as one may expect since this represents
larger slip. Taking into account the log-log scaling of the axes, the difference is quite
dramatic and leads to a rapid growth of the rim for the smaller values of ε. More-
over, all three lines are not straight, signalling a departure from a single power-law
behaviour as predicted by the asymptotics. To quantify this change, we note that

(8.1) ρ(t) ≡ d ln s

d ln t
=
t

s

ds

dt
.

can be used to extract the exponent of an approximate power-law behaviour of s(t).
If, for instance, s(t) ∼ η(t)tr for t→∞, with constant r and a prefactor η that varies
more slowly in t than any power law (logarithmic factors do not change ρ to leading
order), then (8.1) gives ρ(t) ∼ r. Moreover, if s follows a power law behaviour in a
particular time regime when ε → 0, then ρ converges to the corresponding exponent
in this regime.

The asymptotic results predict up to four distinctive regimes for ρ(t), summarised
in table 1: an initial regime A, t up to O(1), where the solution is determined by the
inital condition, followed by the regime B between the first and third time scale,
1� t� ε−1/2 ln3/2(1/ε), where ρ(t) approaches 1. After that, we have the regime C,

t = O(ε−1/2 ln3/2(1/ε)) up to t� ε−7/2, i.e. from the third to the fourth time scale,
where the trend is reversed so that ρ begins to decrease until it approaches 2/3, where
it stays for the final regime D, t = O(ε−7/2), i.e. for times of the order of the fourth
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Fig. 2. The evolution of the contact line s(t), obtained from numerical solutions for the profile
and contact line evolution. Shown are the results for three values of ε = 0.01, 10−4, and 10−6 by
the solid, dashed and dot-dashed curves, respectively. The thin dotted straight lines are included as
a visual aid to make it easier to see that these curves are not straight.

time scale, and beyond. While the exponent ρ does not change to leading order in
the final regime, the downstream part transitions to a profile with an infinite train of
capillary waves. This feature will be investigated further below.

The numerical results for ρ are shown in fig. 3(a) for three different values of ε.
For the two smaller values, one clearly sees that, after an initial descending transient,
ρ indeed increases, indicating that we have entered regime B. To get a more precise
estimate for the validity of (4.1), and hence for the onset of the increase, recall that
(4.1) is the approximate solution of (4.2), which, in fact, assumes that ln(t/8)� 1. A
value of t = 200 gives ln(t/8) ≈

√
10, which we take as a suitable minimum for (4.1)

to be valid. This value is shown in fig. 3(a) as a dotted vertical line, and it is indeed
near where the graphs for ρ for the two smaller values of ε have a minimum.

On the other hand, the solid bullets mark, for each of the curves, the times
t = ε−1/2 ln3/2(1/ε), to indicate the lower bound of regime C in which we expect the
trend of ρ to be reversed. Indeed, for all three curves, the bullet lies in a region where
the graphs are monotonically decreasing. Moreover, for ε = 10−2, the bullet lies left
of 200 so that the transition to regime C occurs before regime B can fully develop.
This explains why a region with an increase of ρ is only visible in the graphs for the
two smaller ε.

We now focus on the regime D and the appearance of capillary waves at x→∞,
i.e. where the rim profile h decays towards a flat film of thickness 1, as indicated in
the schematic in fig. 1(b). This regime is characterised by the time scale t = ε−7/2,
which is large and difficult to access numerically, so we only followed our numerical
simulations up to this regime for the largest of our three values of ε = 10−2, so
that ε−7/2 = 107. The transition to a rim profile with an oscillatory decay has been
observed previously for a thin film model with an intermolecular potential [27] and
in experiments [2], but now we can give an analytical expression for the time ttrans

when this transition occurs.
We first note that the train of capillary waves appears when ˙̆s passes the value

where the roots of (6.8) become complex conjugate. This value was determined in
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Fig. 3. (a), left: The evolution of the exponent ρ(t) as defined in (8.1), obtained from numerical
solutions for the profile and contact line evolution. Shown are the results for three values of ε = 0.01,
10−4, and 10−6 by the solid, dashed and dot-dashed curves, respectively. The vertical dotted line
and the symbols are explained in the text. (b), right: Profiles for h − 1 for ε = 0.01 at times
t = 0.275 × 107, t = 0.575 × 107 and t = 0.759 × 107 in a semi-log plot, shown by solid, dashed and
dash-dotted lines, respectively.

the previous section to be ˙̆s =
√

27/16. Using the derivative of the first expression
in (6.3) to approximate ˙̆s(t̆), we can estimate the corresponding t̆trans and then scale
back to obtain ttrans. The constant κ which appears in (6.3) needs to be determined
numerically by solving (4.37). Hence, using the previously stated value for κ ≈ 0.330,
we obtain

(8.2) t̆trans =
211

311/2
κ2 = 0.529,

that is ttrans = 0.529 ε−7/2. In fig. 3(a), this value is shown only for ε = 0.01, it being
indicated by an open circle (placed at t = 0.529× 107).

The behaviour of the numerically obtained rim profiles is best seen in a semilog
plot of |h−1|. Whenever h−1 passes through zero, the plot of |h−1| produces a readily
observable ‘spike’. A superposition of two exponentials exp(−λz̆) in the linearisation
of h − 1 with two real values for λ only allows for at most one zero at finite values
of z̆; two and more zeros arise if, and only if, there is a conjugate complex pair of
λ’s and hence indicate the transition to a profile with a train of decaying capillary
waves (which would have infinitely many oscillations on an infinite domain). It is
clearly seen that the left, solid curve for t = 0.275 × 107 has only one spike, while
the dash-dotted one, which is for t = 0.759 × 107, has three. For t = 0.575 × 107,
we see a second spike close to the cut-off provided by the accuracy of our numerical
calculations. This time is very close to the value predicted for ttrans.

9. Summary and conclusion. For a model of a dewetting liquid with strong
slip, characterised by small ε, we have analyzed the evolution of the film and contact
line asymptotically. The problem shows a rich behaviour as ε → 0, passing through
several time regimes. Two predictions from the asymptotics regarding the exponents
of an approximation by a power-law type behaviour and the transition from a mono-
tonically decaying profile to one with an train of decaying capillary waves could be
identified in numerical solutions.

To see that all the regimes of the rim evolution occur for a single set of parameters
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and initial data, and in particular, first see an increase of ρ towards 1 (in regime B)
and then convergence to a 2/3 law (in regime C), one needs to use very large slip
lengths – that is ε < 10−4 – and observe the evolution up to dimensionless times on
the order of 106 before ρ(t) is less than, say, 0.7. By this time, the height of the rim
has already grown by a factor of about 1000. In typical physical experiments, only
factors on the order 10s are achieved [2] at best, so the observation of both trends for
ρ in a single experiment seems elusive. However, individual phases of the evolution
are within reach. The transition from a profile with a monotonically decaying to an
oscillatory tail has been observed in experiments with dewetting polystyrene films [2]
for large, but not too large, β. The slip length in these experiments is on the order
of ten compared to the thickness of the unperturbed film, and with typical slopes on
the profile facing the undisturbed rim not being small, about 0.4 (which is, in fact,
at the margin of where a thin film theory is valid), ε is not too much larger than
1 and the transition to an oscillatory profile happens within the limitations of the
experiment. In contrast, observations of a non-monotonic behaviour of the power-law
exponent ρ, as seen for the dashed and dot-dashed curves in fig. 3(a), require a value
for ε of 10−3 or less, meaning slip lengths more than 10000 times the thickness of the
originally deposited film. This is beyond the values that can be obtained in typical
experiments [9, 10].

Several extensions would be interesting. The first is to extend the analysis to the
case where the contact angle is not small. Moderate contact angles are of practical
interest, since liquid film dewetting with strong slip has been typically observed in
experiments with very hydrophobic liquid/solid combination, where contact angles
are in the range of 67◦ or more [9, 10, 11]. This means that a thin-film approximation
is no longer uniformly valid, so that the full fluid-mechanical equations need to be
used in some of the spatial and temporal regimes. A practical, albeit asymptotically
slightly inconsistent, approach that has been frequently used for free suspended films
that rupture, is to apply the thin-film approximation in the bulk but retain the full
nonlinear curvature in the expression for the surface tension [14, 5].

For long chain lengths, polymer liquids also tend to exhibit non-Newtonian flow
properties, in particular viscoelastic behaviour [33], which can be easily included in
a strong slip model [4]. Also, while the model in this paper does not explicitly in-
corporate intramolecular forces via a conjoining/disjoining pressure, they are easily
included in a thin film model [27]. Their effect is important where rupture phenomena
are studied either through spinodal decomposition of a flat film [16, 30] or as satel-
lite hole formation through secondary rupture events induced by the capillary waves
preceding a dewetting rim [3].

An aspect that is also straightforward to incorporate in the strong-slip model
is the presence of inertia [27]. This would become relevant in situations where the
slip length becomes very large and the film-profile evolution approaches that of a
suspended film where no substrate is present. The evolution of suspended thin films
as they arise from bursting bubbles or, for a different geometry, from retracting jets
has been extensively studied, e.g. [35, 14, 18, 34, 37, 38, 6, 17] and references therein.
For a planar suspended film that is symmetric with respect to its mid-plane, there
no tangential stresses along this plane, corresponding to a substrate with an infinite
slip length, i.e. ε = 0. It remains to be seen if range of very large slip lengths can
be realised in experiments, but from a mathematical point of view, a discussion of
regimes where both inertial and slip effects are significant would be interesting but
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also challenging.

Appendix A. Numerical method.
For the numerical discretisation of (2.1)-(2.2), we first truncate the semi-infinite

spatial domain at x = L, where L > 0 is chosen to be large enough so that effect of
the growing rim on the unperturbed film near x = L is negligibly small over the time
period for which the simulation is carried out. At x = L, we impose

(A.1) h = 1, u = −ṡ.

We then use a staggered grid approximation by first introducing an equidistant
grid with nodes xi = i∆x, i = 0 . . . N , ∆x = L/N , and then approximating h(xi) ≈ hi
and u(xi+1/2) ≈ ui+1/2. The PDEs are discretised by central finite differences in space
and an implicit Euler step in time (with step size ∆t) so that

h+
i − hi
∆t

+
1

∆x

[
h+
i+1 + h+

i

2
u+
i+1/2 −

h+
i + h+

i−1

2
u+
i−1/2

]
= 0, i = 1, . . . , N − 1,

(A.2)

h+
i+1 + h+

i

2

h+
i+2 − 3h+

i+1 + 3h+
i − h

+
i−1

(∆x)3
+ 4

v+
i+1 − v

+
i

∆x
= ε

(
u+
i+1/2 +

s+ − s
∆t

)
,

i = 0, . . . , N − 1.(A.3)

The superscript + indicates grid values taken on the new time level, and vi are given
by

v+
0 = 0, v+

N = 0,(A.4)

v+
i = h+

i

u+
i+1/2 − u

+
i−1/2

∆x
, i = 1, . . . , N − 1,(A.5)

and we set

h+
0 = 0, h+

−1 = h+
1 − 2∆x,(A.6)

h+
N−1 = h+

N+1, u+
N−1/2 = −s

+ − s
∆t

.(A.7)

The equations in (A.6) result from the discretisation of the first two boundary con-
ditions in (2.2a), and the ones in (A.7) result from (A.1). Near x = L, u becomes
spatially uniform, so hux vanishes, justifying the second of the two conditions in
(A.4). To argue for the first, notice that by combining (2.1a) and (2.2a) one gets
0 = ht + (uh)x = hux at x = 0.

Instead of enforcing u = 0 at x = 0 from (2.2a) for the final equation, we use
global mass conservation, which can obtained from (2.1) and (2.2) via integration by
parts, and discretize the relation via the trapezoidal rule, to get

(A.8)

N−1∑
i=0

h+
i + h+

i+1

2
∆x−

N−1∑
i=0

h0
i + h0

i+1

2
∆x = s+.

Here, h0
i denotes the value of the initial condition for h at the i-th grid point. The

nonlinear set of equations is solved using Newton’s method, and step doubling is used
to estimate the error and adjust the step sizes.

Appendix B. Non-local transformations. This appendix is included largely
to record connections between the system (2.1) and PDEs that have arisen in other
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contexts. In view of (2.6), m can (as usual) be interpreted as a Lagrangian variable,
whereby

u =
∂x

∂t
(m, t)

and, under the hodograph transformation, (2.7) is equivalent to

4

(∂x/∂m)

∂

∂m

(
1

(∂x/∂m)2

∂2x

∂m∂t

)
− 1

(∂x/∂m)2

∂

∂m

(
1

(∂x/∂m)

∂

∂m

(
1

(∂x/∂m)3

∂2x

∂m2

))
= ε

(
ṡ+

∂x

∂t

)
.

Hence

(B.1) ε
∂σ

∂t
= 4

∂

∂m

(
1

σ

∂

∂m

(
1

σ2

∂σ

∂t

))
− ∂

∂m

(
1

σ2

∂

∂m

(
1

σ

∂

∂m

(
1

σ3

∂σ

∂m

)))
where σ = ∂x/∂m = 1/h. Note that σ in this section has a different meaning
from elsewhere in the paper. Equation (B.1) is a highly nonlinear high-order scalar
pseudoparabolic equation and various balances within it are instructive. That between
the first and last terms is a special case of one of the classes analysed in [19], and the
analysis therein implies that (B.1) can be written in the alternative form

(B.2) ε
∂σ

∂t
=

∂

∂m

(
1

σ

∂

∂m

(
4

σ2

∂σ

∂t
− 1

σ5/2

∂

∂m

(
1

σ5/2

∂σ

∂m

)))
.

The version (B.2) is particularly instructive when the left-hand side can be neglected;
since

4h
∂u

∂x
+ h

∂2h

∂x2
− 1

2

(
∂h

∂x

)2

=
4

σ2

∂σ

∂t
− 1

σ5/2

∂

∂m

(
1

σ5/2

∂σ

∂m

)
and (2.2a) implies on neglecting the right-hand side of (2.1b) that

(B.3) 4h
∂u

∂x
+ h

∂2h

∂x2
− 1

2

(
∂h

∂x

)2

= −1

2
,

the corresponding simplification of (B.2) is the reaction-diffusion equation

(B.4)
∂σ

∂t
=

1

4σ1/2

∂

∂m

(
1

σ5/2

∂σ

∂m

)
− σ2

8

i.e., introducing ω = σ3/2,

(B.5)
∂ω

∂t
=

1

4

∂

∂m

(
ω−2 ∂ω

∂m

)
− 3

16
ω5/3.

Equation (B.5) is explicitly solvable when either of the terms on the right-hand side
is negligible – this is obvious when the first is neglected; when the second can be,
we have a nonlinear diffusion equation that is well-known to be transformable to
the heat equation: integrating via ω = ∂w/∂m and performing a further hodograph
transformation gives, without loss of generality,

∂m

∂t
=
∂2m

∂w2
.
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More generally, the reduction of the original fourth-order system to the second-order
equation (B.4) is a significant one, though we shall make little use of it here. One
reduction of order is achieved via the first integral (B.3) that holds on neglecting the
right-hand side of (2.1b). The second follows because the relevant equation allowing
h(x, t), u(x, t) to be reconstructed from σ(m, t), namely the first-order ODE

∂x

∂m
= σ,

decouples from (B.4); the remaining relationships

u =
∂x

∂t
, h = 1/σ,

require no integrations.
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