30

31

32

33

34

35

36

37

38

39

40

41

42

43

7

Comparative study of in situ N_2 rotational Raman spectroscopy

methods for probing energy thermalisation processes during

- spin-exchange optical pumping
- 6 Hayley Newton · Laura L. Walkup · Nicholas Whiting · Linda West ·
- 7 James Carriere · Frank Havermeyer · Lawrence Ho · Peter Morris ·
- 8 Boyd M. Goodson · Michael J. Barlow
- 9 Received: 13 June 2013/Accepted: 12 July 2013
- 10 © Springer-Verlag Berlin Heidelberg 2013

11 Abstract Spin-exchange optical pumping (SEOP) has

- 12 been widely used to produce enhancements in nuclear spin
- 13 polarisation for hyperpolarised noble gases. However, some
- 14 key fundamental physical processes underlying SEOP
- 15 remain poorly understood, particularly in regards to how
- 16 pump laser energy absorbed during SEOP is thermalised,
- 17 distributed, and dissipated. This study uses in situ ultra-low
- 18 frequency Raman spectroscopy to probe rotational temper-
- atures of nitrogen buffer gas during optical pumping under
- 20 conditions of high resonant laser flux and binary Xe/N₂ gas
- 21 mixtures. We compare two methods of collecting the Raman
- 22 scattering signal from the SEOP cell: a conventional
- 23 orthogonal arrangement combining intrinsic spatial filtering
- with the utilisation of the internal baffles of the Raman
- spectrometer, eliminating probe laser light and Rayleigh
- scattering, versus a new in-line modular design that uses
- scattering, versus a new m-nne modular design that uses
- 27 ultra-narrowband notch filters to remove such unwanted
- 28 contributions. We report a ~23-fold improvement in

detection sensitivity using the in-line module, which leads to faster data acquisition and more accurate real-time monitoring of energy transport processes during optical pumping. The utility of this approach is demonstrated via measurements of the local internal gas temperature (which can greatly exceed the externally measured temperature) as a function of incident laser power and position within the cell.

1 Introduction

Conventional nuclear magnetic resonance (NMR) spectroscopy and imaging (MRI) suffer from inherently low detection sensitivity; even in the highest available magnetic fields, the equilibrium nuclear spin polarisation is very low ($\sim 10^{-4}$ – 10^{-6}). In an effort to combat this sensitivity issue, the increased nuclear spin polarisation of hyperpolarised (HP) noble gases (e.g. 3 He, 129 Xe, and 83 Kr) has attracted

- A1 H. Newton · N. Whiting · P. Morris · M. J. Barlow (⋈)
- A2 Sir Peter Mansfield Magnetic Resonance Centre,
- A3 University of Nottingham, Nottingham NG7 2RD, UK
- A4 e-mail: michael.barlow@nottingham.ac.uk
- A5 H. Newton
- A6 e-mail: ppxhn@nottingham.ac.uk
- A7 N. Whiting
- A8 e-mail: nwhiting@mdanderson.org
- A9 P. Morris
- A10 e-mail: peter.morris@nottingham.ac.uk
- A11 L. L. Walkup · B. M. Goodson
- A12 Department of Chemistry and Biochemistry,
- A13 Southern Illinois University, Carbondale, IL 62901, USA
- A14 e-mail: laurawalkup@gmail.com
- A15 B. M. Goodson
- A16 e-mail: bgoodson@chem.siu.edu

- A17 Present Address:
- A18 N. Whiting
- A19 The University of Texas MD Anderson Cancer Center,
- A20 1515 Holcombe Blvd, Houston, TX 77030, USA
- A21 L. West · J. Carriere · F. Havermeyer · L. Ho
- A22 Ondax, Inc., 850 E. Duarte Road, Monrovia, CA 91016, USA
- A23 e-mail: lwest@ondax.com
- A24 J. Carriere
- A25 e-mail: jcarriere@ondax.com
- A26 F. Havermeyer
- A27 e-mail: havermeyer@ondax.com
- A28 L. Ho
- A29 e-mail: lho@ondax.com

 Journal : Large 340
 Dispatch : 20-7-2013
 Pages : 6

 Article No. : 5588
 □ LE
 □ TYPESET

 MS Code : APHB-D-13-00464
 □ CP
 ☑ DISK

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64 65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

attention for many diverse MR applications [1], including biomedical MRI of human lung space [2–4], probing porous materials and surfaces [5], and studying host–guest interactions of molecules [6–9]. ³He has a higher gyromagnetic ratio, but ¹²⁹Xe is attractive due to its far wider chemical shift range making it a sensitive MR probe [1], as well as greater physiological solubility and lipophilicity [1]. Additionally, ¹²⁹Xe is naturally abundant, and due to the worldwide ³He shortage [10], there exists an emerging market for HP ¹²⁹Xe technology.

HP 129 Xe is produced via spin-exchange optical pumping (SEOP) [11], a two-step process by which the angular momentum from circularly polarised laser light is absorbed by the electronic spins of an alkali metal vapour (e.g. Rb or Cs [12]), and then transferred to the nuclear spins of 129 Xe via collisions. Our previous work studying HP 129 Xe production at elevated Xe densities and high resonant laser flux [12–14] has led to improvements in Xe polarisation ($P_{\rm Xe}$), culminating in the recent design of 'open-source' clinical xenon polarisers capable of producing HP 129 Xe with $P_{\rm Xe}$ values approaching unity, despite the use of Xe-rich gas mixtures [15, 16].

Despite decades of study, some aspects of SEOP remain poorly understood, particularly under the demanding conditions of high resonant laser flux and Xe densities. One such facet concerns the transport of energy within the SEOP chamber (or 'OP cell'). Nitrogen is often added as a buffer gas to quench fluorescent re-emission (and other undesirable energetic processes [17]) from electronically excited alkali metal atoms via radiationless, two-body (Rb/N₂) collisions. However, these processes result in the accumulation of large amounts of energy in the ro-vibrational manifold of the N₂ buffer gas. In turn, this energy may be thermally distributed to other species throughout the cell in a heterogeneous fashion (with implications for various aspects of the SEOP process), and eventually dissipated to the cell walls and surroundings. Previous work by Walter et al. [18] explored the rotational and vibrational temperatures of N₂ in OP cells via Raman spectroscopy, performed with an orthogonal arrangement for excitation and collection, and subsequent fitting of the recorded Raman intensities to a Boltzmann model. N_2 rotational temperatures of up to ~ 200 °C above the apparent temperature for the exterior surface of the OP cell were reported for SEOP under relatively modest conditions, e.g. <15 W of ~ 2 nm full-width half maximum (FWHM) laser light with a ⁴He/N₂ gas mixture [18]. Walter et al. concluded that probing the outer surface temperature of the OP cell was often a poor indicator of the actual internal gas temperature compared to Raman measurements, given that the N_2 rotational temperature, T_{N2} , should quickly equilibrate with the translational temperature of N₂ and the other gas species in the cell. We have recently extended such work to the study of Rb/Xe SEOP with high resonant laser flux and high Xe densities [19, 20], and observed much larger temperature differences between the external and internal measurements. Other studies to examine energy transport in optical pumping include work performed by Parnell et al. [21] using diffusion sensitised gradients to measure laser heating, as well as numerical simulations of the production of HP ¹²⁹Xe by Fink et al. [22]. To further the study of energy transport during SEOP, here we introduce a new method for recording the Stokes/anti-Stokes rotational Raman lines used to determine the local internal gas temperature during optical pumping. We compare this method, a fibrecoupled 'in-line' module with ultra-narrow-band notch filters. with our previous home-built orthogonal arrangement [19, 20] for collecting Raman data during SEOP. The utility of the ~23-fold sensitivity improvement provided by the in-line module is demonstrated with measurements of the internal gas temperature elevation as a function of position and incident laser power, including a comparison of the effects of using frequency-narrowed compared to broadband lasers for SEOP.

2 Methods

In order to record a sufficiently complete rotational Raman spectrum, it is necessary to suppress the scattered 'probe' laser signal well enough to resolve the much weaker Raman lines that may be only a few 10 s of cm⁻¹ away. Therefore, to observe such ultra-low frequency rotational Raman spectra, we have employed two contrasting assemblies. The first (Fig. 1a) has already been discussed in Refs. [19, 20] and has demonstrated our initial results using Raman spectroscopy to probe T_{N2} during SEOP. Briefly, the probe laser source (Coherent 'Verdi', 5 W, 532 nm) is fibre-coupled to a modular optical lens assembly near the OP cell, collimated, and then focused to a submillimetre point within the OP cell (along the x-axis) using a planoconvex lens; the Raman scattering is collected at a 90° angle to the laser source (i.e. along the y-axis), focused onto a 50-µm fibre, and fibre-coupled to the Raman spectrometer. Laser and Raleigh scattering are spatially filtered using the internal baffles of the Raman spectrometer. Our new approach uses an in-line (confocal) module (Fig. 1b, c) for excitation and detection of the Raman transitions along the same optical path (i.e. x-axis), custom-designed for our application in collaboration with Ondax Incorporated (XLF-C). The same 532 nm laser was used as the probe for the Raman system and was subsequently fibrecoupled into a double 1-m Horiba Jobin-Yvon U1000 Raman Spectrometer with an Andor Newton thermoelectrically cooled electron-multiplying CCD. The in-line module contains two SureBlockTM ultra-narrow-band notch filters, which allow both Stokes and anti-Stokes lines to be viewed simultaneously and increase the system's capacity to resolve ultra-low frequency Raman lines, as

 $\underline{\underline{\mathscr{D}}}$ Springer

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

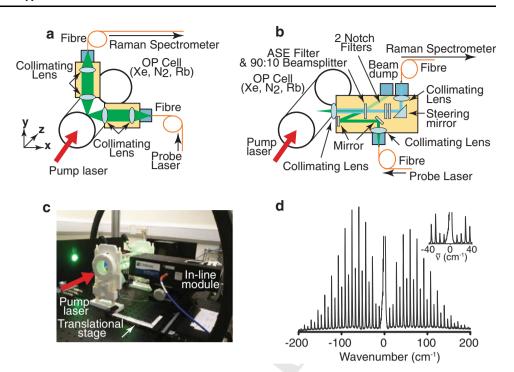
170

171

172

173

174


175

176

177

178

Fig. 1 Schematic of (a) orthogonal set-up (previously reported in Refs. [19, 20]) and (b) in-line module for excitation and detection for in situ Raman spectroscopy. c Corresponding photograph of the in-line module. The inline module is mounted onto a translational stage to allow three-dimensional mapping of $T_{\rm N2}$ within the cell. **d** Typical background-corrected rotational Raman spectrum from N2 gas within OP cell showing the full ranges of Stokes and anti-Stokes scattering frequencies centred around (and plotted as a difference in frequency from) the 532 nm (Rayleigh scattered) probe laser line. The inset shows a close-up of the ultra-low frequency region that is spectrally resolvable using the in-line apparatus

well as one NoiseBlockTM ultra-narrow-band beamsplitter filter that improves the spectrum of the incoming probe beam by reducing any laser sidebands, spontaneous laser diode emissions, or fibre-induced fluorescence. The NoiseBlock filter also acts as a spectrally sensitive 90:10 beamsplitter that transmits collected Raman signals and reduces Rayleigh scattered light by an order of magnitude. This system is capable of being easily translated to allow three-dimensional temperature mapping of the OP cell.

The OP cell under investigation is a 2.5 cm diameter, 15 cm long Pyrex glass cylinder coated with SurfaSilTM siliconising agent and filled with Rb (~ 500 mg), Xe (100 torr), and N₂ (1,900 torr), Fig. 1. The OP cell is heated by a 400-W heat pipe and controlled by a CAL 9,500 temperature controller, with corresponding Pt100 sensors on the oven inlet and outlet. Raman temperature data were acquired in three-second acquisitions to ensure nearly 'real-time' information. For demonstration, experiments involving the in-line module and two 'pump' (SEOP) lasers with similar overall laser output powers were compared: broadband (QPC Brightlase Ultra-100; ~ 2.13 nm FWHM) and frequency-narrowed (QPC Brightlock Ultra-100; ~ 0.26 nm FWHM).

Raman data were analysed by first applying a baseline correction to the spectra, then fitting each peak to a Gaussian line shape and obtaining peak heights, S(J), for six of the Stokes lines (J=4, 6, 8, 10, 12). These values were then linearly fit using J(J+1) versus $I_{J}(J) = \frac{1}{2(2J+3)J}(3(J+1)(J+2))$, according to the equations discussed by Hickman et al. [23]. This process results in a line with a slope equal to Bhc/kT, from which the rotational temperature, T_{J} , of the system can be computed using the

rotational constant for N_2 ($B \approx 2$ cm⁻¹), Planck's constant (h), the speed of light (c), and Boltzmann's constant (k). The error bars of the calculated temperature data points reflect the fit error of these plots.

3 Results and discussion

When utilising the orthogonal arrangement [19, 20] (Fig. 1a), contributions from Rayleigh scattering and the probe laser are minimised by exciting and detecting along different axes (x and y, respectively), as well as spatially filtered by the internal baffles of the Raman spectrometer. However, submm³ accuracy is needed for aligning the focal points of the excitation and receive optics; this critical alignment is tedious to set up and prone to drift over time. In contrast, the in-line module uses two ultra-narrow-band notch filters, with an optical density greater than 4 and FWHM of 0.35 nm for each filter, to allow transmission of the Raman light while dramatically reducing the infiltration of laser light and Raleigh scattering into the Raman spectrometer. The application of these filters enables ultra-low frequency Stokes and anti-Stokes Raman scattering [24] peaks to be resolved as close as 10 cm⁻¹ from the probe laser line (Fig. 1d).

Examples of typical rotational Raman spectra acquired with the conventional 'orthogonal' and 'in-line' set-ups are shown in Fig. 2a, b, respectively. The spectra, obtained under identical conditions from a cell containing 100 torr Xe/1,900 torr N_2 , were each acquired over 15 s at room temperature (in the absence of pump laser irradiation). The in-line module was found to provide ~ 23 -fold improved

179

180

181

182

183

184

185

186

187

188

189

190

191 192

193 194

195

196

197

198

199

200

201

202

203

204

205

208

209

210

211

212

213

214

215

216

217

218

219

220

221

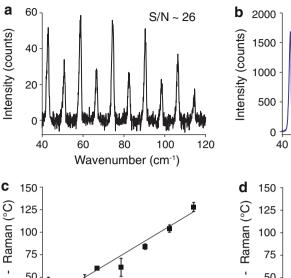
222

223

224

225

226


227

228

229

230

231

150

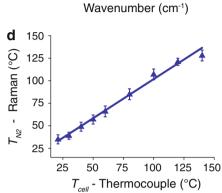


Fig. 2 Comparison of typical rotational Raman spectra from N₂ gas at 24 °C using either the 'orthogonal' detection system (a) or the 'inline' module (b). Spectra were obtained under identical conditions (OP cell containing 100 torr Xe/1,900 torr N₂, 15 s acquisition time, no pump laser illumination), and indicate a SNR improvement of \sim 23-fold when using the in-line apparatus. Corresponding

25

50

75

 T_{cell} - Thermocouple (°C)

100

125

50

25

temperature calibration plots obtained using the 'orthogonal' and 'in-line' set-ups are shown, respectively, in c and d with R-square values of 0.94 and 0.99. Oxygen peaks appearing in b are due to contributions from atmospheric O2 in the optical path (but outside of the SEOP cell); the contributions from atmospheric N2 and O2 were found to be negligible in determining $T_{\rm N2}$ under present conditions

S/N ~ 595

SNR, which translates directly into more precise temperature measurements, as indicated by the corresponding temperature calibration plots (Fig. 2c, d). One complication of the in-line module is the contribution of signals arising from Raman scattering from atmospheric N₂ and O₂ along the optics path outside of the SEOP cell, as manifested by the appearance of the small O₂ peaks in Fig. 2b (note that the molar scattering intensity of O_2 is roughly twice that of N₂ [25]). Removal of these unwanted contributions was attempted by collecting background spectra using an evacuated OP cell. However, slight spectral drifts caused the subtraction of these peaks to lead to non-realistic difference spectra resulting in poorer fits to the Boltzmann model, and hence, more imprecise temperature measurements compared to results obtained simply by fitting the spectra without subtraction. In any case, when combined with CCD detection (as opposed to using a photomultiplier tube to collect the Raman-scattered photons), the in-line module provides an improvement in SNR compared to the previous orthogonal set-up used by Walter et al. [18], according to calculations considering the acquisition time for a given spectral window of equivalent gas loading and the corresponding spectral SNR obtained.

Once optimised and calibrated, the in-line module was used to demonstrate the in situ measurement of the gas mix

temperature inside cells during Rb/129Xe spin-exchange optical pumping. For example, we evaluated the effects of pump laser-induced cell heating by comparing the spatial profile (along the x-axis) of $T_{\rm N2}$ (Fig. 3a) using both frequency-narrowed (Fig. 3c) and broadband (Fig. 3d) laser diode arrays, both operating at 60 W, after only 5 min of optical pumping. N2 rotational Raman spectra were measured transversely as a function of position across the cell (\sim 21 mm behind the front window) at 1 mm intervals, perpendicular to the main pump laser beam (Fig. 3b); these spectra were then converted to temperatures as described above. Illumination by the broadband pump laser resulted in internal gas temperatures (as manifested by $T_{\rm N2}$ values) that were ~ 40 °C in excess of $T_{\rm cell}$, and the temperature (measured via thermocouple) from the forced air oven used to externally heat the OP cell. On the other hand, the dramatically increased resonant energy emitted by the frequency-narrowed laser gave rise to $T_{\rm N2}$ values that were ~ 200 °C elevated relative to $T_{\rm cell}$. Figure 3 also

1FL03 1FL04 1FL05

232

233

234 235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

The much larger differences between internal (gas) and external 1FL01 (wall/oven) temperatures measured in ref [19] likely reflect the much longer optical pumping times for those experiments (allowing more thermal energy to accumulate within the cell), as well as any gas mixture-dependent effects.

252

253

254

255

256

257

258

259

260

261

262

263

264

265

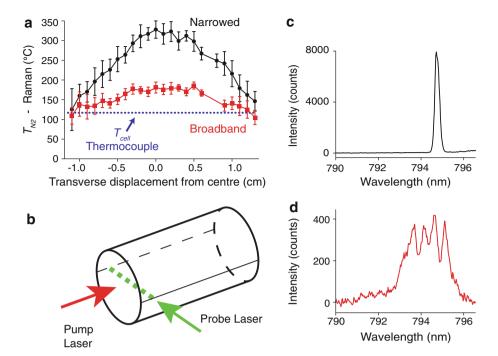
266

267

268

269

270


271

272

273

274

275

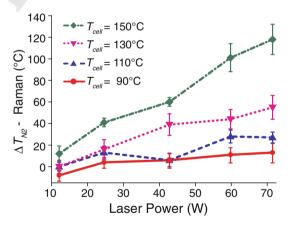


Fig. 3 a Plots showing the spatial variation of the steady-state values of $T_{\rm N2}$ during SEOP, as induced by the 'pump' LDAs [acquired after 5 min of illumination by either a 60 W broadband (*red squares*) or 60 W VHG-narrowed LDA [14] (*black circles*)]. Plots are compared to the temperature of the external glass wall near the front of the cell, as measured with a thermocouple (*dotted line*); $T_{\rm cell}$ values were 110 and 150 °C near the front and back of the cell, respectively (*lines* are

meant to guide the eye). Values for $T_{\rm N2}$ (three-second integration time) were measured in 1-mm increments by translating the focused spot horizontally across the cross-section of the cell, transverse to the pump beam (b). The spectral profiles of the VHG-narrowed and broadband LDAs are shown, respectively, in $\bf c$ and $\bf d$; FWHM = 0.26 and 2.13 nm

showcases the ability of the in-line module to spatially translate to collect data from different regions of the OP cell.

We also used the frequency-narrowed laser to examine the relationship between illuminated laser powers and ΔT_{N2} $(T_{\rm N2}-T_{\rm cell})$ for various external oven cell temperatures, Fig. 4. We found a quasi-linear dependence of $\Delta T_{\rm N2}$ on emitted laser power for each oven temperature setting, with the largest increase in $\Delta T_{\rm N2}$ observed at the highest laser powers and T_{cell} . The fact that the slope of the lines rises with T_{cell} is likely explained by concomitant increases in Rb density [26]; the increased concentration of gaseous absorbers of the incident laser light will drive up the energy deposition rate into the N2 ro-vibrational degrees of freedom. Moreover, the absorber concentration will also increase as $P_{\rm Rb}$ suffers from poorer cell illumination [13]; these effects can be rapidly compounded as macroscopic heating from the laser absorption drives more Rb atoms into the vapour phase, increasing the optical density of the cell, which then further increases the laser absorption, thereby fuelling the 'Rb runaway' positive feedback loop [14, 27]. On the other hand, it appears that SEOP performed at lower T_{cell} values gives rise to relatively stable T_{N2} behaviour, Fig. 4, as many of the available photons are not absorbed, as monitored by the laser power meter behind the cell.

Fig. 4 The temperature difference between $T_{\rm N2}$ and $T_{\rm cell}$ ($\Delta T_{\rm N2}$) measured in the middle of the OP cell after 2-min pump laser illumination, plotted as a function of pump laser power for $T_{\rm cell}$ values ranging from 90–150 °C

4 Summary

We have implemented a new in-line Raman module for rapidly measuring local internal gas temperatures during SEOP. This apparatus, which obtains N₂ rotational temperatures by probing the ultra-low frequency Stokes/anti-Stokes Raman lines, was shown to provide improvements

okes/antiovements 280

Springer

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341 342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

in detection sensitivity (SNR increase ~ 23 -fold, with corresponding gains in spatiotemporal resolution), accuracy and precision in determining T_{N2} values, and ease of use compared to our previous orthogonal arrangement. The utility of the in-line approach was demonstrated by exploring the effects of laser heating during SEOP as a function of pump laser power, linewidth, and position within the OP cell. Future experiments will use this in-line module to dynamically probe T_{N2} for a variety of SEOP parameters, most notably at elevated resonant pump laser powers and as a function of gas mixture, where the benefits of greater understanding of energy transport and thermalisation processes during SEOP can be directly translated to improved designs and practices for next-generation clinical polarisers for ¹²⁹Xe, as well as other noble gas isotopes.

Acknowledgments We thank S. Fitzgerald, W. Twigger, R. Senghani, and A. Knowles (Horiba Jobin–Yvon) for experimental assistance and loan of equipment, as well as Prof. A. Compaan (U. of Toledo) for helpful discussions. H. Newton is funded by an EPSRC studentship. N. Whiting is an NSF International Research Fellow (OISE 0966393). B.M. Goodson is a Cottrell Scholar of Research Corporation. Work at Southern Illinois University Carbondale is supported by DoD CDMRP (W81XWH-12-1-0159/BC112431) and SIUC OSPA. M.J. Barlow acknowledges the School of Clinical Sciences, University of Nottingham and ESPRC grant EP/G003076/1.

References

- 1. B.M. Goodson, J. Magn. Reson. 155, 157 (2002)
- I. Dregely, J.P. Mugler III, I.C. Ruset, T.A. Altes, J.F. Mata, W. Miller, J. Ketel, S. Ketel, J. Distelbrink, F.W. Hersman, K. Ruppert, J. Magn. Reson. 33, 1052 (2011)
- S. Sivaram Kaushik, Z.I. Cleveland, G.P. Cofer, G. Metz, D. Beaver, J. Nouls, M. Kraft, W. Auffermann, J. Wolber, H.P. McAdams, B. Driehuys, Magn. Reson. Med. 65, 1155 (2011)
- X. Xu, G. Norquay, S.R. Parnell, M.H. Deppe, S. Ajraoui, R. Hashoian, H. Marshall, P.D. Griffiths, J. Parra-Robles, J.M. Wild, Magn. Reson. Med. 68(6), 1900 (2012)
- A. Nossov, E. Haddad, F. Guenneau, C. Mignon, A. Gedeon, D. Grosso, F. Babonneau, C. Bonhomme, C. Sanchez, Chem. Commun. 21, 2476 (2002)

- G. Huber, L. Beguin, H. Desvaux, T. Brotin, H.A. Fogarty, J.P. Dutasta, P. Berthault, J. Phys. Chem. A 112(45), 11363 (2008)
- T. Meldrum, K.L. Seim, V.S. Bajaj, K.K. Palaniappan, W. Wu, M.B. Francis, D.E. Wemmer, A. Pines, J. Am. Chem. Soc. 132(17), 5936 (2010)
- Y.-Q. Song, B.M. Goodson, R.E. Taylor, D.D. Laws, G. Navon,
 A. Pines, Angew. Chem. Int. Ed. Engl. 36(21), 2368 (1997)
- L. Dubois, P. Da Silva, C. Landon, J.G. Huber, M. Ponchet, F. Vovelle, P. Berthault, H. Desvaux, J. Am. Chem. Soc. 126(48), 15738 (2004)
- 10. R. T. Kouzes, U.S. Department of energy, PNNL-18388 (2009)
- 11. T.G. Walker, W. Happer, Rev. Mod. Phys. 69(2), 629 (1997)
- N. Whiting, N.A. Eschmann, B.M. Goodson, M.J. Barlow, Phys. Rev. A 83, 053428 (2011)
- P. Nikolaou, N. Whiting, N.A. Eschmann, K.E. Chaffee, B.M. Goodson, M.J. Barlow, J. Magn. Res. 197, 249 (2009)
- N. Whiting, P. Nikolaou, N. Eschmann, M. Barlow, R. Lammer, J. Ungar, W. Hu, L. Vaissie, B. Goodson, Appl. Phys. B. 106, 775 (2012)
- P. Nikolaou, A. Coffey, L. Walkup, B. Gust, N. Whiting, H. Newton, S. Barcus, I. Muradyan, M. Dabaghyan, G. D. Moroz, M. Rosen, S. Patz, M. J. Barlow, E. Chekmenev, and B. M. Goodson, Proc. Natl. Acad. Sci. USA (submitted) (2013)
- P. Nikolaou, A. Coffey, L. Walkup, B. Gust, H. Newton, I. Muradyan, M. Rosen, S. Patz, M. J. Barlow, B. M. Goodson, and E. Chekmenev, presented at the 54th ENC, Pacific Grove, 2013
- I. Saha, P. Nikolaou, N. Whiting, B.M. Goodson, Chem. Phys. Lett. 428, 268 (2006)
- D.K. Walter, W.M. Griffith, W. Happer, Phys. Rev. Lett. 86, 3264 (2001)
- N. Whiting, H. Newton, M. J. Barlow, P. Morris, and B. M. Goodson (manuscript in preparation) (2013)
- N. Whiting, H. Newton, M. J. Barlow, P. Morris, and B. M. Goodson, Presented at the 53rd ENC, Miami, (2012)
- S.R. Parnell, M.H. Deppe, S. Ajraoui, J. Parra-Roubles, S. Boag, J.M. Wild, J. Appl. Phys. **107**, 094904 (2010)
- 22. A. Fink, D. Baumer, E. Brunner, Phys. Rev. A 72, 053411 (2005)
- 23. R.S. Hickman, L.H. Liang, Rev. Sci. Instrum. 43(5), 796 (1972)
- C. Moser and F. Havermeyer, United States patent 8184285 (2012)
- 25. G.W. Faris, R.A. Copeland, Appl. Opt. **36**(12), 2684 (1997)
- D. A. Steck, "Rubidium 87 D line data," available online at http://steck.us/alkalidata. Revision 2.1.4. (2010)
- A.L. Zook, B.B. Adhyaru, C.R. Bowers, J. Magn. Reson. 159(2), 175 (2002)