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Abstract1

The joint activity of neural populations is high dimensional and complex. One2

strategy for reaching a tractable understanding of circuit function is to seek the sim-3

plest dynamical system that can account for the population activity. By imaging4

Aplysia’s pedal ganglion during fictive locomotion, here we show that its population-5

wide activity arises from a low-dimensional spiral attractor. Evoking locomotion6

moved the population into a low-dimensional, periodic, decaying orbit - a spiral - in7

which it behaved as a true attractor, converging to the same orbit when evoked, and8

returning to that orbit after transient perturbation. We found the same attractor in9

every preparation, and could predict motor output directly from its orbit, yet individ-10

ual neurons’ participation changed across consecutive locomotion bouts. From these11

results, we propose that only the low-dimensional dynamics for movement control,12

and not the high-dimensional population activity, are consistent within and between13

nervous systems.14

Introduction15

The increasing availability of large scale recordings of brain networks at single neuron res-16

olution provides an unprecedented opportunity to discover underlying principles of motor17

control. However, such long-sought data sets are revealing a new challenge - the joint18

activity of large neural populations is both complex and high dimensional (Ahrens et al.,19

2012; Cunningham and Yu, 2014; Yuste, 2015). Population recordings have as many di-20

mensions as neurons, and each neuron’s activity can have a complex form. What strategies21

can we use to expose the hoped-for simplifying principles operating beneath the turbulent22

surface of real-world brain activity? One route is dimension reduction (Briggman et al.,23

2006; Cunningham and Yu, 2014; Kobak et al., 2016), which focuses on identifying the24
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components of activity that co-vary across the members of a neural population, shifting25

the focus from the high dimensional recorded data to a low-dimensional representation of26

the population.27

Such low-dimensional signals within joint population activity have been described in28

neural circuits for sensory encoding (Mazor and Laurent, 2005; Bartho et al., 2009),29

decision-making (Briggman et al., 2005; Harvey et al., 2012; Mante et al., 2013), navi-30

gation (Seelig and Jayaraman, 2015; Peyrache et al., 2015), and movement (Levi et al.,31

2005; Ahrens et al., 2012; Kato et al., 2015). Implicit in such dimension reduction ap-32

proaches is the hypothesis that the high-dimensional population activity being recorded,33

while highly heterogenous, is derived from a simpler, consistent low-dimensional system34

(Brody et al., 2003; Churchland et al., 2010; Kato et al., 2015; Miller, 2016). We sought to35

directly test this hypothesis by identifying the simplest dynamical system that can account36

for high dimensional population activity.37

A useful model to address these questions is the neural control of movement. Movement38

arises from the mass action of neuron populations (Georgopoulos et al., 1986; Getting,39

1989; Ahrens et al., 2012; Portugues et al., 2014; Yuste, 2015; Petersen and Berg, 2016).40

While individual neuron activity can correlate with specific aspects of movement (Chestek41

et al., 2007; Hatsopoulos et al., 2007; Churchland et al., 2010, 2012), the embedded low42

dimensional signals in population recordings (Briggman et al., 2005; Levi et al., 2005;43

Kato et al., 2015) and the intermittent participation of individual neurons across repeated44

movements in both vertebrates (Carmena et al., 2005; Huber et al., 2012) and invertebrates45

(Hill et al., 2010, 2015) together suggest that only the collective population activity, and46

not specifics of single neuron firing, are key to movement control. If so, then finding the47

underlying dynamical system will be necessary for a parsimonious theory of the neural48

control of movement (Briggman and Kristan, 2008).49

In order to identify the simplest dynamical system underlying population activity in50

movement control, we imaged large populations at single-neuron, single-spike resolution51

in the pedal ganglion of Aplysia during fictive locomotion (Figure 1A). The pedal gan-52

glion presents an ideal target for testing hypotheses of movement control as it contains the53

pattern generator (Jahan-Parwar and Fredman, 1979, 1980), motorneurons (Hening et al.,54

1979; Fredman and Jahan-Parwar, 1980) and modulatory neurons (Hall and Lloyd, 1990;55

McPherson and Blankenship, 1992) underlying locomotion. Moreover, its fictive locomo-56

tion is sustained for minutes, ideal for robustly characterising population dynamics. Using57

this model system, here we find its low-dimensional, underlying dynamical system, test if58

the low-dimensional signal encodes movement variables, and determine the contribution59

of single neurons to the low-dimensional dynamics.60

We show that evoking fictive locomotion caused heterogenous population spiking ac-61

tivity, but under which always lay a low-dimensional, slowly decaying periodic orbit. This62

periodic trajectory met the convergence and perturbation criteria for an attractor. Cru-63

cially, we identify the attractor as a stable, decaying spiral in every preparation. We64

decoded motorneuron activity directly from the low-dimensional orbit, showing that it di-65

rectly encodes the relevant variables for movement. Yet we found that individual neurons66

varied their participation in the attractor between bouts of locomotion. Consequently, only67

the low-dimensional signal and not the high-dimensional population activity was consis-68

tent within and between nervous systems. These findings strongly constrain the possible69

implementations of the pattern generator for crawling in Aplysia; and by quantifying the70

attractor they make possible future testing of how short- and long-term learning change71

properties of that attractor. Collectively, these results provide experimental support for72

the long-standing idea that neural population activity is a high-dimensional emergent73
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property of a simpler, low-dimensional dynamical system.74

Results75

We sequentially evoked three bouts of fictive locomotion in each of 10 isolated central76

nervous system preparations (Figure 1B). Each bout of locomotion was evoked by short77

stimulation of the tail nerve P9, mimicking a sensory stimulus to the tail that elicits the78

escape locomotion response (Hening et al., 1979); in intact animals, a strong tail stimulus79

typically elicits a two-part escape behavior consisting of several cycles of a vigorous arch-80

ing gallop, followed by several minutes of a more sedate rhythmic crawl (Jahan-Parwar81

and Fredman, 1979; Flinn et al., 2001). We imaged the dorsal pedal ganglion 30 s before82

through to 90 s after the evoking stimulus, aiming to capture the population dynamics83

initiating and driving the initial gallop before the transition to the crawl. Recorded popu-84

lations from the pedal ganglion comprised 120-180 neurons each, representing ≈10% of the85

network in each recording. The population recordings captured rich, varied single neuron86

dynamics within the ganglion’s network following the stimulus (Figure 1C). A dominant,87

slow (≤ 0.1 Hz) oscillation in neural firing (Figure 1D) is consistent with the periodic88

activity necessary to generate rhythmic locomotion. But the variety of single neuron dy-89

namics (Bruno et al., 2015) (Figure 1C) and the slowly decaying population firing rate90

(Figure 1F) post-stimulus hint at a more complex underlying dynamical system driving91

locomotion than a simple, consistent oscillator.92

Seeking the simplest dynamical system to account for these data, we first show here93

that the joint activity of the population meets the necessary conditions for a periodic94

attractor (Figure 1F). We identified these as: (1) applying a driving force causes the95

system’s activity to fall onto a stable, periodic orbit; (2) repeatedly driving the system96

causes convergence of its activity to the same orbit; and (3) the system should return to97

the periodic orbit after the end of transient perturbation. Figure 1 - figure supplement 198

demonstrates these conditions in a dynamical model of a neural periodic attractor.99

Joint population activity forms a low-dimensional periodic orbit100

We first established that under the heterogenous population activity evoked by the tail-101

nerve stimulation there was a low dimensional periodic trajectory, consistent with there102

being a periodic attractor in the pedal ganglion. Projections of a population’s joint activity103

into three dimensions typically showed that stimulation caused a strong deviation from104

the spontaneous state, which then settled into repeated loops (Figure 2A). Capturing a105

significant proportion (80%) of the population variance generally required 4-8 embedding106

dimensions (Figure 2B), representing a dimension reduction by more than a factor of 10107

compared to the number of neurons. Thus, throughout our analysis, we projected each108

evoked program into the number of embedding dimensions needed to capture at least 80%109

of the variance in population activity (4-8 dimensions: inset of Figure 2B). However, we110

cannot directly visualise this space; therefore we could not tell by visual inspection if the111

low-dimensional trajectory repeatedly returned to the same position, and so was truly112

periodic.113

To determine whether population activity in higher dimensions reached a stable peri-114

odic orbit, we made use of the idea of recurrence (Lathrop and Kostelich, 1989; Marwan115

et al., 2007). For each time-point in the low-dimensional trajectory of the population’s116

activity, we check if the trajectory passes close to the same point in the future (Figure117

2C). If so, then the current time-point recurs, indicating that the joint activity of the118
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Figure 1: Population dynamics during fictive locomotion. A Voltage-sensitive dye record-
ing of the pedal ganglion (Pd) network in an isolated central nervous system preparation (top)
using a photodiode array (blue hexagon). The array covered the dorsal surface of the ganglion
(bottom). Ce: cerebral ganglion; Pl: pleural ganglion; Pd9/10: pedal nerve 9/10. B Stimulus
protocol. Three escape locomotion bouts were evoked in each preparation by stimulation of tail
nerve Pd9. Parameters are given for the stimulus pulse train. C Example population recording.
Raster plot of 160 neurons before and after Pd9 nerve stimulation. Neurons are grouped into
ensembles of similarly-patterned firing, and ordered by ensemble type (colors) - see Methods. D
Power spectra of each population’s spike-trains, post-stimulation (grey: mean spectrum of each
bout; black: mean over all bouts). E Network firing rate over time (grey: every bout; black:
mean; red bar: stimulation duration. Bins: 1s). F Terminology and schematic illustration of the
necessary conditions for identifying a periodic attractor (or “cyclical” attractor). Left: to char-
acterise the dynamics of a N -dimensional system, we use the joint activity of its N units at each
time-point t – illustrated here for N = 2 units. The set of joint activity points in time order
defines the system’s trajectory (black line). Right: the three conditions for identifying a periodic
attractor. In each panel, the line indicates the trajectory of the joint activity of all units in the
dynamical system, starting from the solid dot. The manifold of a dynamical system is the space
containing all possible trajectories of the unperturbed system – for periodic systems, we consider
the manifold to contain all periodic parts of the trajectories (grey shading). In (3), the dashed line
indicates where the normal trajectory of the system would have been if not for the perturbation
(red line). See Figure 1 - figure supplement 1 for a dynamical model illustrating these conditions.
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population revisits the same state at least once. The time between the current time-point119

and when it recurs gives us the period of recurrence. A strongly periodic system would120

thus be revealed by its population’s trajectory having many recurrent points with similar121

recurrence periods; random or chaotic dynamics, by contrast, would not show a single122

clustered recurrence period.123

Plotting recurrent time-points showed that the evoked low-dimensional population124

activity typically recurred with a regular period (example in Figure 2D). We found strongly125

periodic recurrence on the scale of 10-15 s in many but not all of the 30 evoked population126

responses (Figure 2E,F). This reflected the range of stimulation responses from strongly127

periodic activity across the population to noisy, stuttering, irregular activity (Figure 2 -128

figure supplement 1). Nonetheless, despite this heterogeneity across stimulus responses,129

the activity of almost all populations was dominated by a single periodic orbit (Figure130

2E), robust to the choice of threshold for defining recurrence (Figure 2 - figure supplement131

2).132

Joint population activity meets the conditions for a periodic attractor133

The trajectory of a periodic dynamical system remains within a circumscribed region of134

space – the manifold – that is defined by all the possible states of that system. (We135

schematically illustrate a manifold by the grey shading in Figure 1F (condition 2), and136

demonstrate the manifold of our model periodic attractor network in panel C of Figure137

1 - figure supplement 1). If the population responses of the pedal ganglion are from an138

underlying periodic attractor, then the population’s joint activity should rapidly reach and139

stay on its manifold when evoked; reach the same manifold every time it is evoked; and140

return to the manifold when perturbed (these three conditions are schematically illustrated141

in Figure 1F; see Figure 1 - figure supplement 1 for the corresponding examples from the142

dynamical model).143

We found that almost all evoked population responses quickly reached a state of high144

recurrence, within one oscillation period (Figure 3A), and were thereafter dominated by145

recurrence, indicating they quickly reached and stayed on the manifold.146

But does each population response from the same preparation reach the same man-147

ifold? The key problem in analysing any putative attractor from experimental data is148

identifying when the experimentally-measured dynamics are or are not on the attractor’s149

manifold, whether due to perturbations of the system or noise in the measurements. More-150

over, we cannot directly compare time-series between evoked responses because, as just151

demonstrated, each response may reach the manifold at different times (see also panel C152

in Figure 1 - figure supplement 1). Thus the set of recurrent time-points allowed us to153

identify when the joint population activity was most likely on the attractor’s manifold,154

and then to make comparisons between population responses.155

To determine if sequentially-evoked responses from the same preparation reached the156

same manifold, we projected all 3 population responses into the same set of embedding157

dimensions, using only the recurrent points (Figure 3B; Figure 3 - figure supplement 1158

shows these results are robust to other projections). Falling on the same manifold would159

mean that every recurrent point in one population response’s trajectory would also appear160

in both the others’ trajectories, if noiseless. Consequently, the maximum distance between161

any randomly chosen recurrent point in population response A and the closest recurrent162

point in population response B should be small. We defined small here as being shorter163

than the expected distance between a recurrent point in A and the closest point on a164

random projection of the activity in the same embedding dimensions. Despite the inherent165

noise and limited duration of the recordings, this is exactly what we found: pairs of evoked166
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Figure 2: Population dynamics form a low-dimensional periodic orbit. A Projection
of one evoked population response into 3 embedding dimensions, given by its first 3 principal
components (PCs). Dots: start of recording (black) and stimulation (pink); spontaneous activity
is shown in grey. Smoothed with 2 s boxcar window. B Proportion of population variance explained
by each additional embedding dimension, for every evoked population response (n = 30; light-to-
dark grey scale indicates stimulations 1 to 3 of a preparation). We chose a threshold of 80%
variance (red line) to approximately capture the main dimensions: beyond this, small gains in
explained variance required exponentially-increasing numbers of dimensions. Inset: Histogram of
the number of PCs needed to explain 80% variance in every recorded population response. C
Quantifying population dynamics using recurrence. Population activity at some time t is a point
in N -dimensional space (black circle), following some trajectory (line and open circles); that point
recurs if activity at a later time t + n passes within some small threshold distance θ. The time
n is the recurrence time of point t. D Recurrence plot of the population response in panel A.
White squares are recurrence times, where the low-dimensional dynamics at two different times
passed within distance θ. We defined θ as a percentile of all distances between points; here we
use 10%. Stimulation caused the population’s activity to recur with a regular period. Projection
used 4 PCs. E Histograms of all recurrence times in each population response (threshold: 10%),
ordered top-to-bottom by height of normalised peak value. Vertical line indicates the minimum
time we used for defining the largest peak as the dominant period for that population response.
Right: density of time-points that were recurrent, and density of recurrence points with times in
the dominant period. F Periodic orbit of each evoked population response, estimated as the mean
recurrence time from the dominant period.
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population responses from the same preparation fell close to each other throughout (Figure167

3C), well in excess of the expected agreement between random projections of the data onto168

the same embedding dimensions.169

We also checked that this convergence to the same manifold came from different initial170

conditions. The initiating stimulation is a rough kick to the system – indeed a fictive171

locomotion bout can be initiated with a variety of stimulation parameters (Bruno et al.,172

2015) – applied to ongoing spontaneous activity. Together, the stimulation and the state173

of spontaneous activity when it is applied should give different initial conditions from174

which the attractor manifold is reached. We found that the stimulation caused population175

responses within the same preparation to diverge far more than in either the spontaneous176

activity or after coalescing to the manifold (Figure 3D). Thus, a wide range of initial177

driven dynamics in the pedal ganglion population converged onto the same manifold.178

Previous studies have used the consistency of pairwise correlations between neurons179

across conditions as indirect evidence for the convergence of population activity to an180

underlying attractor (Yoon et al., 2013; Peyrache et al., 2015). The intuition here is181

that neurons whose activity contributes to the same portion of the manifold will have182

simultaneous spiking, and so their activity will correlate across repeated visits of the183

population’s activity to the same part of the manifold. To check this, we computed the184

pairwise similarity between all neurons within an evoked population response (Figure 3E),185

then correlated these similarity matrices between responses from the same preparation.186

We found that pair-wise similarity is indeed well-preserved across population responses in187

the same preparation (Figure 3F). This also shows that the apparent convergence to the188

same manifold is not an artefact of our choice of low-dimensional projection.189

In many population responses, we noticed spontaneous perturbations of the low-190

dimensional dynamics away from the trajectory (examples in Figure 3 - figure supplement191

2), indicated by sudden falls in the density of recurrent points (Figure 3G). That is, pertur-192

bations could be detected by runs of contiguous points on the population trajectory that193

were not recurrent. As each spontaneous perturbation was a cessation of recurrence in a194

trajectory accounting for 80% of the co-variation between neurons, each was a population-195

wide alteration of neuron activity (see example rasters in Figure 3 - figure supplement 2).196

In most cases (90%), the population dynamics returned to a recurrent state after the197

spontaneous perturbation (Figure 3H; Figure 3 - figure supplement 2, panel B), consistent198

with the pertubation being caused by a transient effect on the population The two pertur-199

bations that did not return to a recurrent state were consistent with the end of the evoked200

fictive locomotion and a return to spontaneous activity (Figure 3 - figure supplement 2,201

panel A). Of those that returned, all but three clearly returned to the same manifold202

(Figure 3I); for those three, the spontaneous perturbation appeared sufficient to move the203

population dynamics into a different periodic attractor (Figure 3 - figure supplement 2,204

panel C). Potentially, these are the known transitions from the escape gallop to normal205

crawling (Flinn et al., 2001). The low dimensional dynamics of the pedal ganglion thus206

meet the stability, manifold convergence, and perturbation criteria of a periodic attractor207

network.208

Heterogenous population activity arises from a common attractor209

While these results show the existence of a periodic orbit on an attractor in the evoked210

population responses, they cannot address whether these arise from the same putative211

attractor within and, crucially, between animals. To determine if there is a common212

underlying attractor despite the heterogeneity in spiking patterns across the population213

responses (Figure 2 - figure supplement 1), we introduced a statistical approach to quan-214



8

Occurrence

0 10 20

Not returned

Returned

All

2

17

19

Density of recurrence points (%)

20 40 60 80 100

T
im

e
 t

o
 c

o
a

le
s
c
e

n
c
e

 (
s
)

0

10

20

30

40

50
C

Data: distance between programs (a.u.)

0 10 20 30

C
o

n
tr

o
l: 

d
is

ta
n

c
e

 b
e

tw
e

e
n

 p
ro

g
ra

m
s
 (

a
.u

.)

0

10

20

30

Data correlation

0 0.2 0.4 0.6 0.8 1

C
o

n
tr

o
l c

o
rr

e
la

tio
n

0

0.2

0.4

0.6

0.8

1

A B

E F H

I

Stim. 2

Stim. 3
Neuron

Neuron

N
eu

ro
n

N
eu

ro
n

stimulus

Time (s)

0 20 40 60 80

D
e

n
s
ity

 (
%

)
0

50

100

Time (s)

0 20 40 60 80R
e

c
u

rr
e

n
c
e

 t
im

e
 (

s
)

0

50

G

5 10 15
0

50

100

Divergence No.

S
a

m
e

 m
a

n
ifo

ld
 (

%
)

D
is

ta
n

c
e

 b
e

tw
e

e
n

 p
ro

g
ra

m
s
 (

a
.u

.)

0

20

40

60

80

D

Stimulation 
onset

Maximum
divergence

Manifold

Figure 3: Low dimensional population dynamics meet the conditions for a periodic
attractor. A Distribution of the time the population dynamics took to coalesce onto the attractor
from the stimulation onset, and the subsequent stability of the attractor (measured by the pro-
portion of recurrent points). Colours indicate evoked responses from the same preparation. The
coalescence time is the mid-point of the first 5 second sliding window in which at least 90% of
the points on the population trajectory recurred in the future. B Projection of three sequential
population responses from one preparation onto the same embedding dimensions. Dots are time
of stimulus offset. C Sequential population responses fall onto the same manifold. Dots indicate
distances between pairs of population responses in the same preparation; color indicates prepara-
tion. Control distances are from random projections of each population response onto the same
embedding dimensions - using the same time-series, but shuffling the assignment of time series
to neurons. This shows how much of the manifold agreement is due to the choice of embedding
dimensions alone. The two pairs below the diagonal are for response pairs (1,2) and (1,3) in prepa-
ration 4; this correctly identified the unique presence of apparent chaos in response 1 (see Figure 3
- figure supplement 1). D Distances between pairs of population responses from the same prepa-
ration in three states: the end of spontaneous activity (at stimulus onset); between stimulation
onset and coalescence (the maximum distance between the pair); and after both had coalesced
(both reaching the putative attractor manifold; data from panel C). E Example neuron activity
similarity matrices for consecutively evoked population responses. Neurons are ordered according
to their total similarity in stimulation 2. F Correlation between pairs of neuron similarity matrices
(Data) compared to the expected correlation between pairs of matrices with the same total sim-
ilarity per neuron (Control). Values below the diagonal indicate conserved pairwise correlations
between pairs of population responses within the same preparation. The two pairs on the diagonal
are response pairs (1,3) and (2,3) in preparation 7; this correctly identified the unique presence
of a random walk in response 3 (see Figure 3 - figure supplement 1). G Spontaneous divergence
from the trajectory. For one population response, here we plot the density of recurrence points
(top) and the mean recurrence delay in 5s sliding windows. Coalescence time: grey line. The
sustained “divergent” period of low recurrence (grey shading) shows the population spontaneously
diverged from its ongoing trajectory, before returning. Black dot: pre-divergence window (panel I).
H Breakdown of spontaneous perturbations across all population responses. Returned: population
activity became stably recurrent after the perturbation. I Returning to the same manifold. For
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tifying the low-dimensional trajectory. We first fitted a linear model of the local dynamics215

around each time point in the low-dimensional projection (see Methods). For each N -216

dimensional point P (t) in this projection, we fitted the N -dimensional model Ṗ ∗ = AP ∗217

to the trajectory forwards and backwards in time from point P (t). In this model, the218

change in the trajectory over time Ṗ ∗ in the neighbourhood of point P (t) is determined219

by the values of the N × N matrix A. The maximum eigenvalue of A thus tells us220

whether the trajectory around point P (t) is predominantly expanding or contracting in221

the N -dimensional projection, and whether or not it is rotating (Strogatz, 1994).222

By fitting the linear model to each point on the trajectory we obtained time-series of223

the maximum eigenvalues, describing the local dynamics at each point along the trajec-224

tory. The time-series of eigenvalues typically showed long periods of similar magnitude225

eigenvalues, corresponding to the recurrent points (Figure 4A). Consequently, by then226

averaging over the eigenvalues obtained only for recurrent points, we could potentially227

capture the dynamics of the underlying attractor. Doing so, we found that the evoked228

population responses had highly clustered maximum eigenvalues (Figure 4B,C), and thus229

highly similar underlying dynamics despite the apparent heterogeneity of spike-train pat-230

terns between them. The dominance of negative complex eigenvalues implies the pedal231

ganglion network implements a contracting periodic orbit - it is a stable spiral attractor232

(Figure 4D).233

In most population responses, the low-dimensional trajectory had negative, complex234

eigenvalues in all embedding dimensions, meaning that the spiral attractor completely235

characterised the population dynamics (Figure 4 - figure supplement 1). Intriguingly, a236

few population responses had a positive real eigenvalue in one low-variance dimension237

(Figure 4 - figure supplement 1), implying a simultaneous minor expansion of the popu-238

lation trajectory. This corresponded to the appearance of a small sub-set of neurons with239

increasing firing rates (Figure 4E).240

The identification of a stable spiral makes a clear prediction for what should and should241

not change over time in the dynamics of the population. The negative complex eigenvalues242

mean that the magnitude of the orbit decays over time, corresponding to the decreasing243

population spike rate in most evoked responses (Figure 1E). However, a stable spiral244

indicates only a decrease in magnitude; it does not mean the orbital period is also slowing.245

Consequently, the presence of a stable spiral attractor predicts that the magnitude and246

period of the orbit are dissociable properties in the pedal ganglion network.247

We checked this prediction using the linear model. The linear model estimated a mean248

orbital period of around 10 s (Figure 4C), consistent with the directly-derived estimate249

from the recurrent points (Figure 2F). This indicated the linear model was correctly cap-250

turing the local dynamics of each program. But our linear model also gave us a time-series251

of estimates of the local orbital period (Figure 5A), which we could use to check whether252

the orbital period was changing during each evoked response. We found that the popula-253

tion responses included all possible changes in periodic orbit: slowing, speeding up, and254

not changing (Figure 5B). As predicted there was no relationship between the contraction255

of the periodic orbit and its change in period (Figure 5C).256

The locomotion motor program can be decoded from the low-dimensional257

orbit.258

Collectively, these periodic, decaying dynamics are ethologically consistent with locomo-259

tion that comprises a repeated sequence of movements that decays in intensity over time260

(Jahan-Parwar and Fredman, 1979; Flinn et al., 2001; Marinesco et al., 2004). If this pu-261

tative low-dimensional periodic attractor is the “motor program” for locomotion, then we262
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dicates stimulus duration. B Dominant dynamics for each evoked population response. Dots and
lines give means ± 2 s.e.m. of the real and imaginary components of the maximum eigenvalues for
the local linear model. Colours indicate responses from the same preparation. Black dot gives the
mean over all population responses. Grey shaded regions approximately divide the plane of eigen-
values components into regions of qualitatively different dynamics: fixed point attractor; stable
spiral (bottom-right schematic); unstable spiral (top-right schematic). C As panel B, converted
to estimates of orbital period and rate of contraction. (Note that higher imaginary eigenvalues
equates to faster orbital periods, so the ordering of population responses is flipped on the x-axis
compared to panel B). D A preparation with a visible spiral attractor in a three-dimensional pro-
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should be able to decode the locomotion muscle commands from its trajectory. In 3 of the263

10 preparations we were able to simultaneously record activity from the P10 nerve that264

projects to the neck muscles (Xin et al., 1996) for all three evoked population responses.265

The spiking of axons in this nerve should correspond to the specific neck contraction266

portion of the cyclical escape locomotion. We thus sought to decode the spiking of P10267

directly from the low-dimensional population trajectory (Figure 6A).268

We first confirmed that each recorded neural population did not appear to contain269

any motorneurons with axons in P10, which could make the decoding potentially trivial270

(Figure 6 - figure supplement 1). To then decode P10 activity, we used a statistical model271

that predicts the firing rate of nerve P10 at each time point, by weighting and summing the272

recent history (up to 100 ms) of the trajectory in the low dimensional space, and using a273

non-linearity to convert this weighted sum into a firing rate. We controlled for over-fitting274

using cross-validation forecasting: we fit the model to a 40 s window of trajectory data,275

and predicted the next 10 s of P10 activity (Figure 6B). By sliding the window over the276

data, we could assess the quality of the forecast over the entire recording (Figure 6C).277

The model could accurately fit and forecast P10 activity from the low-dimensional278

trajectory in all 9 population responses (Figure 6D). Emphasising the quality of the model,279

in Figure 6D we plot example forecasts of the entire P10 recording based on fitting only to280

the first 40s window, each example taken from the extremes we obtained for the fit-quality281

metrics. Notably, in one recording the population response shutdown half-way through;282

yet despite the model being fit only to the 40s window containing strong oscillations, it283

correctly forecasts the collapse of P10 activity, and its slight rise in firing rate thereafter.284

Thus, the low dimensional trajectory of the periodic attractor appears to directly encode285

muscle commands for movement.286

To confirm this, we asked whether the encoding – as represented by the P10 activity287

– was truly low-dimensional. The successful decoding of future P10 activity was achieved288

despite needing only 3-5 embedding dimensions to account for 80% variance in the popu-289

lation activity for these nine recordings (Figure 6 - figure supplement 2). Increasing the290

number of embedding dimensions to account for 90% variance, at least doubling the num-291

ber of embedding dimensions, did not improve the forecasts of P10 activity (Figure 6 -292

figure supplement 2). These results suggest that the low dimensional population trajectory293



12

MAE (spikes/s)

0 10 20 30 40

R
2

0

0.2

0.4

0.6

0.8

1

A Training fit Forecast fit

P10 data

Time (s)

0 20 40 60 80

P
10

 fi
rin

g 
(s

pi
ke

s/
s)

0

100

200

300

Forecast start (s)

50 60 70 80

M
A

E
 (

sp
ik

es
/s

)

0

5

10

15
R

MAE

0

0.25

0.5

0.75

1

R

Training fit Forecast (full)

P10 data

Time (s)

0 20 40 60 80

P
10

 fi
rin

g 
(s

pi
ke

s/
s)

0

100

200

300

Time (s)

0 20 40 60 80

P
10

 fi
rin

g 
(s

pi
ke

s/
s)

0

200

400

600

800

B

Time (s)

0 20 40 60 80

P
10

 fi
rin

g 
(s

pi
ke

s/
s)

0

100

200

300

400

500

P
C

3

PC1

C

D

MAE (spikes/s)

0 10 20 30 40

R
2

0

0.5

1

Figure 6: Motor output can be decoded directly from the low-dimensional trajectory
of population activity. A An example two-dimensional projection of one population’s response
trajectory, color-coded by simultaneous P10 firing rate. In this example pair of dimensions, we can
see nerve P10 firing is phase-aligned to the periodic trajectory of population activity. B Example
fit and forecast by the statistical decoding model for P10 firing rate. Grey bar indicates stimulation
time. C For the same example P10 data, the quality of the forecast in the 10 s after each fitted
40 s sliding window. Match between the model forecast and P10 data was quantified by the fits to
both the change (R: correlation coefficient) and the scale (MAE: median absolute error) of activity
over the forecast window. D Summary of model forecasts for all 9 population responses with P10
activity (main panel). Dots and lines show means ± 2 s.e.m. over all forecast windows (N = 173).
Three examples from the extremes of the forecast quality are shown, each using the fitted model to
the first 40 s window to forecast the entire remaining P10 time-series. The bottom right example is
from a recording in which the population response apparently shutdown half-way through. Inset,
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is sufficient to encode the locomotion muscle commands.294

Variable neuron participation in stable motor programs295

If the low-dimensional trajectory described by the joint activity of the population just296

is the motor program for locomotion, then how crucial to this program are the firing of297

individual neurons (Katz et al., 2004; Carmena et al., 2005; Hill et al., 2012; Huber et al.,298

2012; Carroll and Ramirez, 2013; Hill et al., 2015)? Having quantified the motor program299

as the low-dimensional activity trajectory, we could uniquely ask how much each neuron300

participated in each evoked program. We quantified each neuron’s participation as the301

absolute sum of its weights on the principal axes (eigenvectors): large total weights indicate302

a dominant contribution to the low-dimensional trajectory, and small weights indicate little303

contribution. So quantified, participation is a contextual measure, giving the contribution304

to the population trajectory of both a neuron’s firing rate and its synchrony with other305

neurons, relative to the rate and synchrony of all other neurons in the population (Figure306

7 - figure supplement 1).307

Every population response had a long-tailed distribution of participation (Figure 7A),308

indicating that a minority of neurons dominated the dynamics of any given response.309

Nonetheless, these neurons were not fixed: many with high participation in one popula-310

tion response showed low participation in another (Figure 7B,C). To rule out noise effects311

on the variability of participation (for example, due to the finite duration of recording), we312

fitted a noise model to the change in participation separately for each preparation (Figure313

7D,E). Every preparation’s pedal ganglion contained neurons whose change in partici-314

pation between responses well-exceeded that predicted by the noise model (Figure 7F).315

Consequently, the contribution of single neurons was consistently and strongly variable316

between population responses in the same preparation.317

We also tested for the possibility that hidden within the variation between programs318

is a small core of neurons that are strongly participating, yet invariant across programs.319

Such a core of phasically active neurons may, for example, form the basis of a classical320

central pattern generator. However, in our observed portion of the ganglion we found321

no evidence for a core of strongly participating, invariant, and phasically active neurons322

across the preparations (Figure 7 - figure supplement 2).323

These data show that a neuron’s role within the locomotion motor program is not324

fixed, but leave open the question of whether single neuron variability causes variation325

in the program itself. In our analysis, variation between sequentially-evoked population326

responses is quantified by the distance between their low-dimensional projections (as in327

Figure 3C). We found that the distance between a pair of population responses did not328

correlate with either the total change in neuron participation between the two responses329

(Figure 7G) or the distance between their participation distributions (Figure 7H). The330

execution of the motor program is thus robust to the participation of individual neurons.331

Participation maps identify potential locations of the pattern generator332

network333

To get some insight into the physical substrate of the attractor, we plotted maps of the334

participation of each neuron in each preparation. We found that neurons with strong335

participation across the three evoked population responses were robustly located in the336

caudo-lateral quadrant of the ganglion (Figure 8A,B). Maps of the right ganglion also337

indicated strong participation in the rostro-medial quadrant; due to the low numbers338

of maps for each side, it is unclear whether this is a true asymmetry of the ganglia or339
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Figure 7: Single neuron participation varies within and between evoked locomotion
bouts. A Distributions of single neuron participation per evoked population response. We plot
the distribution of participation for all neurons in a population (grey line), expressed as a percent-
age of the maximum participation in that population’s response. Black line gives the mean over
all 30 population responses. B Change in participation between evoked locomotion bouts. Each
dot plots one neuron’s maximum participation over all 3 evoked population responses, against its
maximum change in participation between consecutive responses (n = 1131 neurons). C Two
example neurons with variable participation between responses, from two different preparations.
D Distribution of the change in participation between responses for one preparation. E Detecting
strongly variable neurons. Gaussian fit (red) to the distribution of change in participation (black)
from panel D. Neurons beyond thresholds (grey lines) of mean ±3SD of the fitted model were
identified as strongly variable. F Proportion of identified strongly variable neurons per prepa-
ration. G Distance between pairs of population responses as a function of the total change in
neuron participation between them. Each dot is a pair of responses from one preparation; the
distance between them is given as a proportion of the mean distance between each response and a
random projection (< 1: closer than random projections), allowing comparison between prepara-
tions (Figure 3C). Black dots are excluded outliers, corresponding to the pairs containing response
1 in preparation 4 with apparent chaotic activity (Figure 3 - figure supplement 1). H Distance
between pairs of population responses as a function of the distance between the distributions of
participation (panel A). Conventions as for panel G.



15

A B

C D

Rostral M
edia

l

Rostral M
edia

l

Rostral

M
ed
ia
l

M
ed
ia
l

Rostral

Caudal

La
te
ra
l

Caudal

Lateral

Caudal

La
te
ra
l

Caudal

Lateral

Figure 8: Mapping of participation in the attractor across the ganglion network. Here
we plot neuron location with respect to the photodiode array (yellow hexagon). Each plot pools
neurons from preparations of the left (n = 4 preparations) or right (n = 4) ganglia. A,B Maps
of maximum participation across the three evoked population responses for left (A) and right (B)
ganglion recordings. The area of each marker is proportional to the neuron’s maximum partici-
pation. Neurons are colour coded (light orange to dark red) by the quintile of their participation
across all preparations. C,D As for panels (A,B), but plotting the range of participation across
the three evoked population responses.

simply reflects sampling variation. Neurons with highly variable participation between340

population responses (Figure 8C,D) were similarly found in the caudo-lateral quadrants341

of both ganglia. Strongly participating neurons were thus confined to specific distributed342

regions of the pedal ganglion’s network.343

These data are consistent with a network-level distribution of the attractor, with a344

particularly strong contribution from the caudo-lateral quadrant. Encouragingly, from345

a different data-set we previously described this region as containing neural ensembles346

that generated a cyclical packet of neural activity, which moved in phase with activity347

from the neck-projecting P10 nerve (Bruno et al., 2015). Consequently, both those data348

and our new data support our hypothesis that the pattern generator for locomotion is349

predominantly located in the caudo-lateral network.350

Discussion351

Locomotion networks provide a tractable basis for testing theories of neural dynamics352

(Lewis and Kristan, 1998; Briggman et al., 2005; Levi et al., 2005; Briggman and Kris-353

tan, 2006; Berg et al., 2007; Bruno et al., 2015; Petersen and Berg, 2016), as they couple354

complex dynamics with clearly defined outputs. We took advantage of this to comprehen-355

sively test the idea that high-dimensional population activity arises from an underlying356

low-dimensional dynamical system: to determine what dynamical system accounts for the357

population activity, whether its low-dimensional signal encodes movement, and how sin-358

gle neuron activity relates to that signal. We showed here that Aplysia’s pedal ganglion359
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contains a spiral attractor, that the low-dimensional signal it generates directly encodes360

muscle commands, and yet individual neurons vary in their participation in the attractor.361

A consistent low-dimensional spiral attractor362

Testing the idea that high-dimensional population activity contains a low-dimensional sig-363

nal has only been possible in the last decade or so, due to the necessary combination364

of large-scale multi-neuron recording and dimension reduction approaches (Brown et al.,365

2004; Briggman et al., 2006; Cunningham and Yu, 2014; Kobak et al., 2016). Landmark366

studies have used this combination to project high-dimensional population activity into367

a more tractable low-dimensional space. In this space, studies have shown how activity368

trajectories are different between swimming and crawling (Briggman et al., 2005); dis-369

tinguish olfactory (Mazor and Laurent, 2005), auditory (Bartho et al., 2009), and visual370

(Mante et al., 2013) stimuli; and distinguish upcoming binary choices (Harvey et al., 2012).371

Here we have gone a step further than previous studies by not only observing such low-372

dimensional signals, but explicitly testing for the first time the type of dynamical system373

that gives rise to the low-dimensional trajectories and its consistency between animals.374

Across all 30 evoked population responses examined here, there was a remarkable het-375

erogeneity of spike-train patterns, from visually evident widespread oscillations to noisy,376

stuttering oscillations in a minority of neurons (Figure 2 - figure supplement 1). Yet377

our analysis shows that underpinning this heterogeneity is the same dynamical system:378

a low-dimensional, decaying, periodic orbit. We found a remarkably consistent periodic-379

ity and rate of orbital decay across evoked responses within a preparation and between380

preparations. The stability of these dynamics, and the convergence of population activity381

to the same manifold, are all consistent with the expected behaviour of a true attractor.382

Our data thus suggest that only the low-dimensional system and not the high-dimensional383

population activity are consistent within and between nervous systems.384

We advance the hypothesis that the properties of the spiral attractor fully determine385

the parameters of the escape gallop: its frequency, physical distance per cycle, and du-386

ration. In this hypothesis, the orbital period of the attractor determines the period of387

the rhythmic gallop – the sequential activity of the neurons in each orbit thus driving388

the sequential contraction of the muscles driving the escape gallop (Bruno et al., 2015).389

Further, the amplitude of the orbital period, corresponding to the spike rate of the neural390

population, could determine the strength of muscle contraction during the escape gallop,391

allowing control of the physical distance covered by each arching movement. Finally, the392

contraction rate of the attractor determines the duration of the escape: the faster the393

contraction rate, the shorter the escape gallop’s duration. The variation of these attractor394

properties between animals then determines the natural variability in the escape gallop.395

It follows that changes to parameters of the escape gallop caused by neuromodulation396

should correlate with changes to the orbital period and/or contraction rate of the at-397

tractor. For example, the reported increase in gallop duration by systemic injection of398

serotonin (Marinesco et al., 2004) should correlate with a decreased contraction rate of399

the attractor. Future work could test this hypothesis by determining the effects of neu-400

romodulators on the spiral attractor’s properties and correlating those with read-outs of401

the escape gallop.402

Treating a neural circuit as a realisation of a dynamical system takes the emphasis403

away from the details of individual neurons - their neurotransmitters, their ion channel404

repertoire - and places it instead on their collective action. This allows us to take a405

Marr-ian perspective (Marr, 1982), which neatly separates the computational, algorith-406

mic, and implementation levels of movement control. The computational problem here is407
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of how to generate rhythmic locomotion for a finite duration; the algorithmic solution is408

a decaying periodic attractor - a spiral; and the implementation of that attractor is the409

particular configuration of neurons in the pedal ganglion - one of many possible imple-410

mentations (Kleinfeld and Sompolinsky, 1988; Pasemann, 1995; Eliasmith, 2005; Rokni411

and Sompolinsky, 2012). Indeed, a spiral attractor is potentially a general solution to the412

problem of how to generate a finite rhythmic behaviour.413

Insights and challenges of variable neuron participation414

We saw the separation of these levels most clearly in the variable participation of the in-415

dividual neurons between evoked bouts of fictive locomotion. The projection of the pedal416

ganglion network’s joint activity into a low dimensional space captured the locomotion417

motor program independently of any single neuron’s activity. Even the most strongly par-418

ticipating neurons in a given population response could more than halve their participation419

in other evoked responses. These results suggest that the pedal ganglion’s pattern gener-420

ator is not driven by neurons that are endogenous oscillators, as they would be expected421

to participate equally in every response. Rather, this variation supports the hypothesis422

that the periodic activity is an emergent property of the network.423

The adaptive function of having variably participating neurons is unknown. One pos-424

sibility is that, by not relying on any core set of neurons to generate rhythmic activity, the425

pedal ganglion’s ability to generate locomotion is robust to the loss of neurons. A related426

possibility is that there is “sloppiness” (Panas et al., 2015) in the pedal ganglion network,427

such that there are many possible configurations of neurons and their connections able to428

realise the spiral attractor that drives locomotion (Marder et al., 2015). Such sloppiness429

allows for a far more compact specification of the developmental program than needing to430

genetically specify the type and wiring configuration of each specific neuron.431

The wide variation of single neuron participation between evoked bouts of fictive lo-432

comotion also raises new challenges for theories of neural network attractors (Marder and433

Taylor, 2011). While a variety of models present solutions for self-sustaining periodic ac-434

tivity in a network of neurons (Kleinfeld and Sompolinsky, 1988; Eliasmith, 2005; Rokni435

and Sompolinsky, 2012), it is unclear if they can account for the variable participation of436

single neurons. A further challenge is that while the variable participation of individual437

neurons does not affect the underlying program, clearly it takes a collective change in438

single neuron activity to transition between behaviours - as, for example, in the transition439

from galloping to crawling in Aplysia. What controls these transitions, and how they440

are realised by the population dynamics, is yet to be explored either experimentally or441

theoretically.442

Possible implementations of rhythmic locomotion by the pedal ganglion443

network444

Our results nonetheless argue against a number of hypotheses for the implementation of445

rhythmic locomotion by the pedal ganglion. As noted above, such single neuron variability446

between sequential locomotion bouts argues against the generation of rhythmic activity by447

one or more independent neurons that are endogenous oscillators. Our results also argue448

against the existence of many stable periodic states in this network (Pasemann, 1995).449

Such meta-stability would manifest as changes in periodicity following perturbation. Our450

results show that spontaneous divergences from the attractor overwhelmingly returned to451

the same attractor.452
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How then might the pedal ganglion network implement a spiral attractor? Our data453

were collected from an isolated central nervous system preparation, in which the modu-454

latory influence of neurons outside the pedal ganglion cannot be discounted (Jing et al.,455

2008). Nonetheless, as the pedal ganglion contains the central pattern generator for loco-456

motion (Jahan-Parwar and Fredman, 1980), we can suggest how that generator is realised.457

Our results here support the hypothesis that the periodic activity is an emergent property458

of the ganglion’s network. We know the pedal ganglion contains a mix of interneurons459

and motorneurons (Fredman and Jahan-Parwar, 1980), and that the motorneurons are460

not synaptically coupled (Hening et al., 1979), suggesting they read-out (and potentially461

feedback to) the dynamics of an interneuron network. An hypothesis consistent with our462

results here is that the ganglion contains a recurrent network of excitatory interneurons,463

centred on the caudo-lateral quadrant, which feed-forward to groups of motorneurons464

(Bruno et al., 2015). This recurrent network embodies the attractor, in that stimulation465

of the network causes a self-sustained packet of activity to sweep around it (Bruno et al.,466

2015). We see this as the periodic trajectory of joint population activity (cf Figure 2A,467

Figure 3B).468

Multiple periodic attractors and multi-functional circuits469

Our data further suggest that the pedal ganglion network supports at least two stable470

states, the spontaneous activity and the stable-spiral attractor. Reaching the stable-spiral471

attractor from the spontaneous activity required long-duration, high-voltage pedal nerve472

stimulation (Figure 1; Bruno et al., 2015). In dynamical systems terms, this suggests that473

the spontaneous state’s basin of attraction is large: most perturbations return to that474

state, and it takes a large perturbation to move into a different basin of attraction.475

Multiple co-existing periodic attractors in a single network is also a challenge for cur-476

rent theories. While point attractor networks, such as Hopfield networks, can have vast477

number of stable states defined by different arrangements of the equilibrium activity of478

their neurons (Miller, 2016), a stable periodic attractor network typically has only two479

stable states: silence and periodic activity. The co-existence of stable spontaneous and480

periodic states in the same network suggests that something must reconfigure the network481

to sustain periodic activity (Calin-Jageman et al., 2007); otherwise, irrespective of the482

stimulation, the network would always return to the spontaneous state. One possibility483

in the pedal ganglion is that serotonin alters the effective connections between neurons:484

escape galloping is both dramatically extended by systemic injection of serotonin alongside485

tail stimulation (Marinesco et al., 2004), and evoked by stimulating serotonergic command486

neurons CC9/CC10 in the cerebral ganglion (Jing et al., 2008). Future experimental work487

should thus test the stability of the spontaneous state, and test how manipulating sero-488

tonin affects reaching and sustaining the stable-spiral attractor.489

There are potentially more stable states within the pedal ganglion’s network. The490

long-lasting crawl that follows the escape gallop is slower and omits the periodic arching491

of the body (Flinn et al., 2001). We saw three perturbations of the attractor activity492

that were suggestive of a transition to a different, slower periodic orbit (e.g. panel C in493

Figure 3 - figure supplement 2), consistent with a transition from galloping to crawling.494

Such crawling is also the animal’s normal mode of exploration (Leonard and Lukowiak,495

1986), and so the “crawling” attractor must be reachable from the spontaneous state496

too. Aplysia’s exploratory head-wave, moving its head side-to-side presumably to allow497

its tentacles and other head sensory organs to sample the environment (Leonard and498

Lukowiak, 1986), is also controlled by motorneurons in the pedal ganglion (Kuenzi and499

Carew, 1994). Previous studies of the Aplysia’s abdominal ganglion (Wu et al., 1994), the500
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leech segmental ganglion (Briggman and Kristan, 2006), and the crustacean stomatogastric501

ganglion (reviewed in Marder and Bucher, 2007) have described multi-functional networks502

in which the same neurons are active in different motor behaviours. Our work here is503

consistent with the hypothesis that such multi-function is due to the neurons participating504

in different attractors realised by same network (Briggman and Kristan, 2008). Further505

work is needed to map the pedal ganglion network’s dynamics to the full range of Aplysia506

motor behaviour.507

Outlook508

Finding and quantifying the attractor required new analytical approaches. We introduce509

here the idea of using recurrence analysis to solve two problems: how to identify periodic510

activity in a high-dimensional space; and how to identify when the recorded system is and511

is not on the manifold of the attractor. By extracting the times when the population ac-512

tivity is on the manifold, we could then quantify and characterise the attractor, including513

identifying transient perturbations, and estimating changes in orbital period. Crucially,514

these manifold-times let us further introduce the idea of using linear models as a statistical515

estimator, to identify the type of attractor, and compare the detected attractor’s param-516

eters within and between preparations. Our analysis approach thus offers a road-map for517

further understanding the dynamics of neural populations.518

There is rich potential for understanding spontaneous, evoked or learning-induced519

changes in the dynamics of populations for movement control. The dynamics of movement520

control populations transition between states either spontaneously or driven by external521

input (Briggman et al., 2005; Levi et al., 2005). Our recurrence approach allows both522

the detection of transitions away from the current state (Figure 3) and the characteri-523

sation of the attractor in the new state. For learning, taking an attractor-view allows524

us to distinguish three distinct ways that short (Stopfer and Carew, 1988; Katz et al.,525

1994; Hill et al., 2015) or long-term (Hawkins et al., 2006) plasticity could change the526

underlying attractor: by changing the shape of the manifold; by changing the rate of527

movement of the low-dimensional signal on the manifold; or by changing the read-out of528

the manifold by downstream targets. Such insights may contribute to the grand challenge529

of systems neuroscience, that of finding simplifying principles for neural systems in the530

face of overwhelming complexity (Koch, 2012; Yuste, 2015).531

Materials and methods532

Data and code availability Bandpassed optical data, spike-sorted data, and available533

P10 nerve recordings are hosted on CRCNS.org at: [DOI to follow].534

All research code is available under a MIT License from (Humphries, 2017): https:535

//github.com/mdhumphries/AplysiaAttractorAnalysis536

Imaging Full details of the Aplysia californica preparation are given in Bruno et al.537

(2015). Briefly, the cerebral, pleural and pedal ganglia were dissected out, pinned to the538

bottom of a chamber, and maintained at 15 − 17◦C. Imaging of neural activity used the539

fast voltage sensitive absorbance dye RH-155 (Anaspec), and a 464-element photodiode540

array (NeuroPDA-III, RedShirtImaging) sampled at 1600 Hz. Optical data from the 464541

elements were bandpass filtered in Neuroplex (5 Hz high pass and 100 Hz low pass Butter-542

worth filters), and then spike-sorted with independent component analysis in MATLAB543

to yield single neuron action potential traces (the independent components), as detailed544

https://github.com/mdhumphries/AplysiaAttractorAnalysis
https://github.com/mdhumphries/AplysiaAttractorAnalysis
https://github.com/mdhumphries/AplysiaAttractorAnalysis
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in (Hill et al., 2010). Rhythmic locomotion motor programs were elicited using 8V 5ms545

monophasic pulses delivered at 20Hz for 2.5s via suction electrode to pedal nerve 9. A546

separate suction electrode was attached to pedal nerve 10 to continuously monitor the547

locomotion rhythm (Xin et al., 1996). Evoked activity could last for many minutes; our548

system allowed us to capture a maximum of ≈ 125 s, divided between 30 s of spontaneous549

activity and 95 s of evoked activity. The stimulation protocol (Figure 1B) used short (15550

mins) and long (60 mins) intervals between stimulations, as the original design also sought551

effects of sensitisation.552

Spike-train analysis Power spectra were computed using multi-taper spectra routines553

from the Chronux toolbox (Bokil et al., 2010). We computed the power spectrum of each554

neuron’s spike-train post-stimulation, and plot means over all spectra within a recorded555

population, and the mean over all mean spectra. We computed the spike-density function556

f(t) for each neuron by convolving each spike at time ts with a Gaussian G: f(t) =557 ∑
t0<ts<t1 G(ts)/

∫ t1
t0
G(t∗)dt∗, evaluated over some finite window between t0 and t1 (see558

Szucs, 1998). We set the window to be ±5σ, and evaluated the convolution using a time-559

step of 10 ms. We defined the standard deviation σ of the Gaussian by the median inter-560

spike interval of the population: σ = {median ISI in population}/
√

12 (see Humphries,561

2011).562

To visualise the entire population’s spiking activity (Figure 1C), we cluster neurons563

by the similarity of their firing patterns using our modular deconstruction toolbox (Bruno564

et al., 2015). Different dynamical types of ensembles were identified by the properties of565

their autocorrelograms: tonic, oscillator, burster, or pauser - see (Bruno et al., 2015) for566

details. We also assigned each neuron in the ensemble the same dynamical label, which567

we use in the analysis of Figure 7 - figure supplement 2. To demonstrate the firing rate568

change of each ensemble (Figure 4), we first counted the number of spikes emitted by that569

ensemble in 20s windows, advanced in 5s steps from the onset of stimulation. We then570

correlated (Pearson’s R) the time of each window against its spike count: ensembles were571

classified as decreasing rate if R < −0.2, and increasing if R > 0.2.572

Model network We used a three-neuron network to demonstrate the dynamical prop-573

erties of a periodic attractor as realised by neurons (Figure 1 - figure supplement 1).574

Each neuron’s membrane dynamics were given by τaȧi = −ai(t) + ci(t) +
∑3

j=1wjirj(t)−575

γyi(t), with adaptation dynamics τyẏi = −yi(t) + ri(t), and output firing rate ri(t) =576

max {0, ai(t)}. Weights wji ≤ 0 give the strength of inhibitory connections between577

the neurons, each of which receives a driving input ci. This model, due to Matsuoka578

(Matsuoka, 1985, 1987), generates self-sustained oscillation of network firing rates given579

constant scalar inputs ci(t) = c, despite each neuron not being an endogenous oscilla-580

tor: consequently the oscillations are an emergent property of the network. The time581

constants of membrane τa and adaptation τy dynamics, together with the strength of582

adaptation γ, determine the periodicity of the oscillations (Matsuoka, 1985, 1987). Here583

we use τa = 0.025 s, τy = 0.2 s, and γ = 2; input was ci = 3 throughout except where584

noted.585

Recurrence analysis Low dimensional projections of the joint population activity were586

obtained for each program using standard principal components analysis, applied to the587

covariance matrix of the spike-density functions. The d leading eigenvectors Wi of the co-588

variance matrix define the d principal dimensions, and the d corresponding eigenvalues are589

proportional to the variance accounted for by each dimension. The projection (the “prin-590
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cipal component”) onto each of the chosen dimensions is given by pi(t) =
∑n

k=1W
k
i f

k(t),591

where the sum is taken over all n neurons in the analyzed population.592

We used recurrence analysis (Lathrop and Kostelich, 1989; Marwan et al., 2007) to593

determine if the low-dimensional projection contained a stable periodic orbit. To do so, we594

checked if the low-dimensional projection P (t) = (p1(t), p2(t), . . . , pd(t)) at time t recurred595

at some time t + δ in the future. Recurrence was defined as the first point P (t + δ) =596

(p1(t + δ), p2(t + δ), . . . , pd(t + δ)) that was less than some Euclidean distance θ from597

P (t). The recurrence time of point P (t) is thus δs. Contiguous regions of the projection’s598

trajectory from P (t) that remained within distance θ were excluded. Threshold θ was599

chosen based on the distribution of all distances between time-points, so that it was scaled600

to the activity levels in that particular program. Throughout we use the 10% value of that601

distribution as θ for robustness to noise; similar periodicity of recurrence was maintained602

at all tested thresholds from 2% upwards (Figure 2 - figure supplement 2).603

We checked every time-point t between 5s after stimulation until 10s before the end of604

the recording (around 7770 points per program), determining whether it was or was not605

recurrent. We then constructed a histogram of the recurrence times using 1s bins to detect606

periodic orbits (Figure 2E): a large peak in the histogram indicates a high frequency of the607

same delay between recurrent points, and thus a periodic orbit in the system. All delays608

less than 5s were excluded to eliminate quasi-periodic activity due to noise in otherwise609

contiguous trajectories. Peaks were then defined as contiguous parts of the histogram610

between empty bins, and which contained more than 100 recurrent points. Programs had611

between one and four such periodic orbits. The peak containing the greatest number of612

recurrent points was considered the dominant periodic orbit of the program; the majority613

of programs had more than 50% of their recurrent points in this peak (blue-scale vectors614

in Figure 2E). The mean orbit period of the program was then estimated from the mean615

value of all recurrence times in that peak.616

We measured the attractor’s stability as the percentage of all points that were in617

periodic orbits. Evolving dynamics of each program were analysed using 5 s sliding win-618

dows, advanced in steps of 1 s. We defined the “coalescence” time of the attractor as the619

mid-point of the first window in which at least 90% of the points on the trajectory were620

recurrent.621

Testing convergence to the same manifold To determine if sequentially-evoked622

programs had the same manifold, we determined how closely the trajectories of each pair623

of programs overlapped in the low-dimensional space. We first projected all three programs624

from one preparation onto the principal axes of first program, to define a common low-625

dimensional space. For each pair of programs (A,B) in this projection, we then computed626

the Haussdorf distance between their two sets of recurrent points, as this metric is suited to627

handling tests of closeness between irregularly shaped sets of points. Given the Euclidean628

distances {d(A,B)} from all recurrent points in A to those in B, and vice-versa {d(B|A)},629

this is the maximum minimum distance needed to travel from a point in one program630

to a point in the other (namely max{min{d(A,B)},min{d(B,A)}). To understand if631

the resulting distances were close, we shuffled the assignment of time-series to neurons,632

then projected onto the same axes giving shuffled programs A∗, B∗. These give the633

trajectories in the low-dimensional space determined by just the firing patterns of neurons.634

We then computed the shuffled Haussdorf distance max{min{d(A,B∗)},min{d(B,A∗)}).635

The shuffling was repeated 100 times. Mean ± 2SEM of the shuffled distances are plotted636

in (Figure 3C); the error bars are too small to see.637

To check the robustness of the convergence to the same manifold, we repeated this638



22

analysis starting from a common set of principal axes for the three programs, obtained639

using principal component analysis of their concatenated spike-density functions. We plot640

the results of this analysis in panel A of Figure 3 - figure supplement 1.641

As a further robustness control, we sought evidence of the manifold convergence in-642

dependent of any low-dimensional projection. We made use of the idea that if neurons643

are part of sequential programs on a single manifold, then the firing of pairs of neurons644

should have a similar time-dependence between programs (Yoon et al., 2013; Peyrache645

et al., 2015). For each pair of programs (A,B) from the same preparation, we computed646

the similarity matrix S(A) between the spike-density functions of all neuron pairs in A,647

and similarly for B, giving S(B). We then computed the correlation coefficient between648

S(A) and S(B): if A and B are on the same manifold, so their pairwise correlations649

should themselves be strongly correlated. As a control we computed a null model where650

each neuron has same total amount of similarity as in the data, but its pairwise similarity651

with each neuron is randomly distributed (Humphries, 2011). The expected value of pair-652

wise correlation between neurons i and j under this model is then Eij = sisj/T , where653

(si, sj) are the total similarities for neurons i and j, and T is the total similarity in the654

data matrix. For comparison, we correlated S(A) with E, and plot these as the control655

correlations in Figure 3E.656

Testing return to the same manifold after perturbation We detected divergences657

of the trajectory away from the putative manifold, indicating spontaneous perturbations658

of population dynamics. We first defined potential perturbations after coalescence as a659

contiguous set of 5s windows when the density of recurrent points was below 90% and fell660

below 50% at least once. The window with the lowest recurrence density in this divergent661

period was labelled the divergent point. We removed all such divergent periods whose662

divergent point fell within 2 oscillation cycles of the end of the recording, to rule out a fall663

in recurrence due solely to the finite time horizon of the recording. For the remaining 19664

divergent periods, we then determined if the population activity returned to a recurrent665

state after the divergent point; that is, whether the density of recurrence returned above666

90% or not. The majority (17/19) did, indicating the perturbation returned to a manifold.667

For those 17 that did, we then determined if the recurrent state post-divergence was668

the same manifold, or a different manifold. For it to be the same manifold after the669

spontaneous perturbation, then the trajectory before the perturbation should recur after670

the maximum divergence. To check this, we took the final window before the divergent671

period, and counted the proportion of its recurrent delays that were beyond the end of672

the divergent period, so indicating that the dynamics were in the same trajectory before673

and after the divergence. We plot this in Figure 3H.674

Statistical estimation of the attractor’s parameters We introduce here a statistical675

approach to analysing the dynamics of low-dimensional projections of neural activity time-676

series obtained from experiments. We first fitted a linear model around each point on the677

low-dimensional trajectory to capture the local dynamics. For each point P (t), we took the678

time-series of points before and after P (t) that were contiguous in time and within 2.5× θ679

as its local neighbourhood; if less than 100 points met these criteria P (t) was discarded.680

We then fitted the dynamical model Ṗ ∗ = AP ∗ that described the local evolution of681

the low-dimensional projection P ∗ by using linear regression to find the Jacobian matrix682

A; to do so, we used the selected local neighbourhood time-series as P ∗, and their first-683

order difference as Ṗ ∗. The maximum eigenvalue λ = a+ ib of A indicates the dominant684

local dynamics (Strogatz, 1994), whether contracting or expanding (sign of the real part685
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a of the eigenvalue), and whether oscillating or not (existence of the complex part of686

the eigenvalue i.e. b 6= 0). The other eigenvalues, corresponding to the d − 1 remaining687

dimensions, indicate other less-dominant dynamics; usually these were consistent across all688

dimensions (Figure 4 - figure supplement figure 1). We fitted A to every point P (t) after689

the stimulation off-set, typically giving ≈ 5000 local estimates of dynamics from retained690

P (t). The dominant dynamics for the whole program were estimated by averaging over691

the real a and the complex b parts of the maximum eigenvalues of the models fitted692

to all recurrent points in the dominant periodic orbit. The linear model’s estimate of693

the orbit rotation period was estimated from the complex part as ω = 2πb∆t, with the694

sampling time-step ∆t = 0.01s here. The linear model’s estimate of the contraction rate695

is exp(a/∆t), which we express as a percentage.696

Tracking changes in periodicity over a program We tracked changes in the oscil-697

lation period by first averaging the recurrence time of all recurrent points in a 5s sliding698

window. We then correlated the mean time with the time-point of the window to look699

for sustained changes in the mean period over time, considering only windows between700

coalescence and the final window with 90% recurrent points. We used a weighted version701

of Spearman’s rank to weight the correlation in favour of time windows in which the tra-702

jectory was most clearly on the periodic orbit, namely those with a high proportion of703

recurrent points and low variation in recurrence time. The weighted rank correlation is:704

given vectors x and y of data rankings, and a vector of weights w, compute the weighted705

mean m =
∑

iwixi/
∑

iwi and standard deviation σxy =
∑

iwi(xi−mx)(yi−my)/
∑

iwi,706

and then the correlation ρ = σxy/
√
σxxσyy. We used the weight vector: wi = s−1i Qi, where707

si is the standard deviation of recurrence times in window i, and Qi is the proportion of708

recurrent points in window i. P-values were obtained using a permutation test with 10000709

permutations.710

Decoding motor output We decoded P10 activity from the low-dimensional trajec-711

tory of population activity using a generalised linear model. We first ruled out that any712

simultaneously recorded neuron was a motorneuron with an axon in nerve P10, by check-713

ing if any neurons had a high ratio of locking between their emitted spikes and spikes714

occurring at short latency in the P10 recording. Figure 6 - figure supplement 1 shows that715

no neuron had a consistent, high ratio locking of its spikes with the P10 activity.716

We convolved the spikes of the P10 recording with a Gaussian of the same width as717

the spike-density functions of the simultaneously recorded program, to estimate its con-718

tinuous firing rate f10. We fitted the model f10(t) = exp
(
β0 +

∑d
i=1

∑m
h=1 βi,hPi(t− h)

)
719

to determine the P10 firing rate as a function of the past history of the population activity720

trajectory. Using a generalised linear model here allows us to transform the arbitrary co-721

ordinates of the d-dimensional projection P (t) into a strictly positive firing rate. Fitting722

used glmfit in MATLAB R2014. To cross-validate the model, we found the coefficients β723

using a 40s window of data, then forecast the P10 firing rate f∗10 using the next 10 seconds724

of population recording data as input to the model. Forecast error was measured as both725

the median absolute error and the correlation coefficient R between the actual and forecast726

P10 activity in the 10s window. The fitting and forecasting were repeated using a 1s step727

of the windows, until the final 40s+10s pair of windows available in the recording.728

We tested activity histories between 50 and 200ms duration, with time-steps of 10ms,729

so that the largest model for a given program had d×20 coefficients. These short windows730

were chosen to rule out the contributions of other potential motorneurons in the population731

recording that would be phase offset from neck contraction (as 200 ms is 2% of the typical732
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period). All results were robust to the choice of history duration, so we plot results733

using history durations that had the smallest median absolute error in forecasting for that734

program.735

Single neuron participation We quantified each neuron’s participation in the low-736

dimensional projection as the L1-norm: the absolute sum of its weights on the principal737

axes (eigenvectors) for program m: ρmi =
∑d

j=1 |λmj Wm
j (i)|, where the sum is over the d738

principal axes, Wm
j (i) is the neuron’s weight on the jth axis, and λmj is the axis’ corre-739

sponding eigenvalue. Within a program, participation for each neuron was normalised to740

the maximum participation in that program. To fit a noise model for the variability in741

participation between programs, we first computed the change in participation for each742

neuron between all pairs of programs in the same preparation. We then fit a Gaussian743

model for the noise, using an iterative maximum likelihood approach to identify the likely744

outliers; here the outliers are the participation changes that are inconsistent with stochas-745

tic noise. In this approach, we compute the mean and variance of the Gaussian from the746

data, eliminate the data-point furthest from the estimate of the mean, re-estimate the747

mean and variance, and compute the new log likelihood of the Gaussian model without748

that data-point. We iterate elimination, re-estimation, and likelihood computation until749

the likelihood decreases. The final model (mean and variance) found before the decrease750

is then the best-fit Gaussian model to the bulk of the data. Neurons whose maximum751

change in participation exceeded a threshold of the mean ±3SD of that best-fit model752

were then considered “strongly variable” neurons.753

We asked whether the variation in low-dimensional dynamics of sequentially-evoked754

programs was a consequence of the degree of variation in single neuron participation.755

Between a pair of consecutively evoked programs, we quantified the variation in their756

low dimensional dynamics as the Hausdorff distance between them, normalised by the757

mean distance between their random projections. This normalisation allowed us to put758

all programs on a single scale measuring the closeness relative to random projections,759

such that 1 indicates equivalence to a random projection, < 1 indicates closer than ran-760

dom projections, and > 1 indicates further apart then random projections. For a given761

pair of programs, we quantified the variability of individual neurons’ participation in two762

ways: by summing the change in participation of each neuron between the programs; and763

by computing the Hellinger distance between the two distributions of participation (one764

distribution per program).765

Participation maps Each neuron’s (x,y) location on the plane of the photodiode array766

could be estimated from the weight matrix from the independent component analysis of767

the original 464 photodiode time-series; see (Bruno et al., 2015) for full details. We were768

able to reconstruct locations for all neurons in 8 of the 10 recorded preparations; for769

the other two preparations, partial corruption of the original spike-sorting analysis data770

prevented reconstructions of some neuron locations in one; for the other, we could not771

determine on what side it was recorded. We merged all left or right ganglion recordings772

on to a common template of the photodiode array. The marker sizes and colour codes for773

each neuron were proportional to the normalised maximum participation of that neuron774

(Figure 8A,C) and to the range of normalised maximum participation across the three775

programs (Figure 8B,D).776
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