
Applied Intelligence
https://doi.org/10.1007/s10489-018-1250-y

A hyper-heuristic with two guidance indicators for bi-objective
mixed-shift vehicle routing problemwith time windows

Binhui Chen1 · Rong Qu1 · Ruibin Bai2 ·Wasakorn Laesanklang3,4

© The Author(s) 2018

Abstract
In this paper, a Mixed-Shift Vehicle Routing Problem is proposed based on a real-life container transportation problem. In a
long planning horizon of multiple shifts, transport tasks are completed satisfying the time constraints. Due to the different
travel distances and time of tasks, there are two types of shifts (long shift and short shift) in this problem. The unit driver
cost for long shifts is higher than that of short shifts. A mathematical model of this Mixed-Shift Vehicle Routing Problem
with Time Windows (MS-VRPTW) is established in this paper, with two objectives of minimizing the total driver payment
and the total travel distance. Due to the large scale and nonlinear constraints, the exact search showed is not suitable to MS-
VRPTW. An initial solution construction heuristic (EBIH) and a selective perturbation Hyper-Heuristic (GIHH) are thus
developed. In GIHH, five heuristics with different extents of perturbation at the low level are adaptively selected by a high
level selection scheme with the Hill Climbing acceptance criterion. Two guidance indicators are devised at the high level
to adaptively adjust the selection of the low level heuristics for this bi-objective problem. The two indicators estimate the
objective value improvement and the improvement direction over the Pareto Front, respectively. To evaluate the generality
of the proposed algorithms, a set of benchmark instances with various features is extracted from real-life historical datasets.
The experiment results show that GIHH significantly improves the quality of the final Pareto Solution Set, outperforming
the state-of-the-art algorithms for similar problems. Its application on VRPTW also obtains promising results.

Keywords Hyper-heuristic · Mixed-shift vehicle routing problem with time windows · Bi-objective · Container
transportation

1 Introduction

The early research of the Vehicle Routing Problem (VRP)
can be traced back to [1], shown as an essential issue
with tremendous effect to the economy and society. In
the classical Vehicle Routing Problem with Time Windows
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(VRPTW) [2], at the beginning of a planning horizon, a fleet
of identical vehicles leave a center depot to visit/service a
sequence of customers with certain demands, composing
a number of so-called routes. Every customer is visited
exactly once, satisfying the constraints (time window)
specified by the customers. The sum of customer demands
on each route cannot exceed the capacity of a vehicle,
and all vehicles have to return the depot before the end
of the planning horizon. The most common objectives in
VRPTW are minimization of the number of vehicles used
and minimization of the total travel distance.

1.1 Vehicle routing problem variants

Based on the VRPTW model, a large number of classic VRP
variants have been proposed with diverse side constraints
from practical scenarios. In this section, only the most
relevant variants to our study are reviewed. In Vehicle
Routing Problem with Pickups and Deliveries (VRPPD) [3],
a service demand consists of picking up shipments from a
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customer and the associated delivery to another customer.
Especially, if the depot is the only one pickup point and all
the customers are delivery destinations, or in another case,
all the customers are pickup points while only the depot
is the delivery location, the problem is called a One-to-
Many-to-One problem. If the customers are pickup points as
well as delivery points, the problem is Many-to-Many. Last
but not least, it is a One-to-One problem when the pickup
demand of a customer is the delivery demand of another
specific customer [4].

Furthermore, if the shipments can be consolidated, the
problem would be classified as Less-than Truckload Trans-
portation; otherwise, it is a Full Truckload Transportation
(FTT) problem [5]. Container transportation problem is a
specific variant of FTT, where one truck can carry only one
demand item (container). Zhang et al. [6] model the con-
tainer transportation problem with a node-based network,
which is commonly used in VRPTW. The model integrates all
activities of completing the transportation of a container into
a so-called load node. This method has been widely used in
the VRPPD with high loading and unloading time [7, 8].

In some cases of VRP, the scheduling horizon is very
long, e.g. in soft drink industry, grocery distribution and
waste collection. Their scheduling is usually performed
over multiple periods/shifts, and the associated problems
are categorized as Multi-Period Vehicle Routing Problem
(MPVRP) [9]. Especially, when there is a specific service
frequency to each customer over the scheduling horizon,
the problem is called a Periodic Vehicle Routing Problem
(PVRP) [10]. In this case, each customer may be visited
more than once. The solution of PVRP is a combination of
service shifts of customers, instead of the scheduled routes
of one single period.

Apart from the two objectives in VRPTW mentioned
above, there are various other objectives widely used in
VRPs, e.g. minimizing the travel time, the waiting time, and
other operational cost, maximizing the balance of workload,
and so on [11]. With the increasing concern to the environ-
ment in recent years, the carbon emission and petrol con-
sumption have also been considered in the VRP community,
leading to the Pollution-Routing Problem and Green Vehi-
cle Routing Problem [12]. From the cost perspective, labor
cost (driver salary) usually is the dominated component in
the overall cost [13]. This is one of the reasons why mini-
mizing the number of vehicles used is a primary objective in
VRPs, as fewer vehicles require fewer drivers being hired.
In addition, making use of fewer vehicles generally implies
a lower fuel consumption and a higher utilization rate of the
vehicle capacity. When more than one objective are consid-
ered in a VRP, it is called a Multi-Objective Vehicle Routing
Problem (MOVRP).

1.2 Existingmethods

After decades of study in VRP, both exact and approximate
methods have been extensively investigated. Exact methods
explore the solution space of a problem exclusively to
find the optimal solution. However, a critical issue of
such methods is the unrealistic computational time needed
searching the enormous size of the solution space in
real-world problems. On the other hand, approximate
methods (or heuristics) do not guarantee the optimality
of solutions produced, but generate a good approximation
of the optimal solution in an acceptable computation
time [14]. Metaheuristics and Hyper-Heuristics methods
guide the search with various strategies, showing powerful
performance in solving diverse large scale and complex
VRPs [15].

Population-based metaheuristics, such as Evolutionary
Algorithms, Scatter Search, and Ant Colony Optimization
Algorithms, evolve a population of solutions [14]. Using
population improves the diversification of searches, these
type of methods show powerful exploration ability while
achieve high quality solutions in multi-objective and highly
constrained problems. However, larger population is hard
to operate and may greatly affect algorithm performance.
For example, in Genetic Algorithm, which is a widely used
population-based metaheuristic in VRPs, it is hard to use
crossover to partition the periods and routes in the solution
representation (e.g. genotype/chromosome) for MPVRP.
Besides, in large size problems, the long chromosome
and the associated large solution population is hard to
manage as well. Population-based metaheuristics are not
suitable to large scale problems with complex structures
and constraints such as the MPVRP considered in this
paper.

Differently, in each iteration of single solution-based
metaheuristics, only one solution is updated by employing
neighbourhood operators at each move during the search.
In different algorithms, such as Tabu search [16], Simulated
Annealing [17], and Variable Neighbourhood Search [18],
different strategies are used in the Acceptance Criterion and
Neighbourhood Operator Selection.

Metaheuristic algorithms are often designed to address
specific problems by striking a balance between the
diversity and intensity of the search for the specific
problems. In the literature, a large number of problem
specific and knowledge intensive metaheuristics have
been developed for VRPs [19, 20]. Differently, Hyper-
Heuristics is a type of high level algorithms which aim to
develop generic approaches beyond the problem specific
metaheuristics [21, 22]. Hyper-Heuristics work at a higher
level to generate or select a set of Low-Level Heuristics
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(LLH) in a common framework, while the LLH execute
the operations on problem solutions. Hyper-Heuristics focus
on designing the high level framework, called High-Level
Heuristic (HLH), instead of searching the specific solutions
for the problem confronted. In a well-designed Hyper-
Heuristics algorithm, its HLH would adaptively adjust the
LLH used, creating proper algorithms for various searching
scenarios for the given instances.

Hyper-heuristics approaches can be categorized to two
classes: Heuristic Selection and Heuristic Generation
[23]. Heuristic Selection methodologies choose existing
heuristics from the LLH pool to tackle the problem
given, while the methodologies of Heuristic Generation
generate new heuristics using existing heuristics as the
components. What’s more, each above class can be
further divided into two subcategories, namely Construction
Heuristic and Perturbation Heuristic, according to the
constructive or perturbative low level heuristics used.
Construction Heuristics construct solutions using the given
LLH, while Perturbation Heuristics produce new solutions
by perturbing existing solutions. More details can be found
in [24, 25].

As a classic combinatorial optimization problem, VRP
is an essential application of hyper-heuristics. Garrido
and Riff [26] propose an evolutionary hyper-heuristic
for Dynamic Vehicle Routing Problem (DVRP). Each
genotype in this evolutionary algorithm consists of a
constructive heuristic, an improvement heuristic and an
ordering heuristic. This generative construction hyper-
heuristic adapts well to the dynamic scenario in DVRP. Both
hyper-heuristics of [27] and [28] obtain competitive results
in Capacitated Vehicle Routing Problem (CVRP). The
former generates LLH by searching the space of heuristic
component (i.e. neighbourhood structure, neighbourhood
combination, local search configuration and acceptance
criterion), while the latter adjusts the order of LLH to
perturb the current solution, incorporating an adaptive
ordering scheme in an Iterated Local Search framework.
In [29], besides the selection of LLH, a Gene Expression
Programming framework is also proposed to automatically
generate the acceptance criterion for different problem
instances. The proposed method shows promising results in
DVRP and CVRP.

Vidal et al. [30] propose an unified hybrid genetic
search framework (UHGS), which replaces the mutation
with a unified local search (ULS). In ULS, the route-
evaluation operators vary according to the change of
problem attributes, aiming to provide a general-purpose
solver for diverse VRP variants. UHGS produces results
better than or close to the state-of-the-art results on
benchmarks. However, the experiment results show that its
computation time increases significantly in MPVRPs again
due to the period and route partition problem as explained

above on genetic algorithms. The long computation time
impedes its application to large scale MPVRP.

Benefiting from decades of intensive research in VRP, a
large number of excellent heuristics have been developed,
providing sufficient LLH for designing high performance
hyper-heuristics. Potvin and Rousseau [31] and Taillard
et al. [32] propose the 2-opt* and CROSS-exchange
heuristics, respectively, which show excellent performance
in routing problems with time windows. However, when
facing large-scale problems with complex structure, they
often converge prematurely due to their relatively small
change (low perturbation) to a solution in each iteration,
thus the search is often stuck to local optimum.

Shaw [33, 34] proposes the Large Neighbourhood Search
(LNS) heuristic which removes a number of nodes (e.g.
demands/customers) from the current solution and then
reinserts them to generate an updated new solution (Destroy
& Repair). This heuristic brings greater changes (higher
perturbation) to escape from local optimum and avoid
premature convergence. It obtains the best results in several
VRP variants, although a larger computation time is
required in each iteration [35]. A similar strategy called
Ruin & Recreate is proposed in [36].

Nagata and Bräysy [37] propose the Guided Ejection
Search (GES) heuristic combining the ideas of LNS and
Ejection Pool methods [38]. In each iteration of GES, one
route is removed and then the nodes of the removed route are
reinserted into the destroyed solution. Any infeasible partial
solutions are accepted with penalties. GES outperforms the
existing heuristics on minimizing the number of routes, but
longer computation time for each iteration is needed. For
more details, see [39, 40].

Much research on MOVRP have been done as well.
In some of them, a set of non-dominated solutions
based on Pareto Dominance [41] are generated, providing
the decision maker a pool of candidate solutions as a
reference (Pareto Methods). In the literature, the Pareto
Methods are mainly used in Evolutionary Algorithms [42–
45]. Differently, in the other research, one single optimal
solution is pursued. In this case, either the problem
objectives are projected into one single objective and the
problem is solved as a single-objective problem (Scalar
Techniques), or different priorities are assigned to objectives
which are considered separately (Non-Scalar and Non-
Pareto Algorithms). More methodologies for MOVRP can
be found in [46].

In real-life, the vehicle scheduling of different types
of shifts are usually considered separately as independent
problems. In this paper, a real-world Mixed-Shift Vehi-
cle Routing Problem with Time windows (MS-VRPTW) is
studied. A construction heuristic and a selection perturba-
tion hyper-heuristic, which combine the scheduling work of
two types of shifts, are proposed for the MS-VRPTW. The
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proposed algorithms integrate the independent resource for
the two types of shifts, aiming to increase the utility of vehi-
cles and reduce the scheduling stress for logistic companies.
The algorithms are tested on a set of benchmark instances
with different features.

The rest of this paper is organized as follows: Section 2
introduces the problem background and presents the
mathematical problem model. Section 3 introduces the
proposed solution methods. The benchmark instances
and computation experiments are presented in Section 4.
Section 5 shows the conclusions of this paper.

2 Problem definition &mathematical model

2.1 Problem description

The problem studied is a container transportation problem
faced by a logistic company at Ningbo Port, which is the
second largest port in China. Every day, the company has
to transship a number of commodities, each consists of
a number of containers. Every commodity has a specific
service time constraint. These commodities are transited
among 19 container terminals including harbors and dry
ports (see Fig. 1). There is a fleet of 250 trucks, whose depot
locates at the Ningbo coast. Every day, the trucks leave the
depot with a list of transport tasks and return to the depot
after completing all the tasks.

The management of transportation involves three levels
of planning, namely: strategic planning, tactical planning,
and operational planning [5]. Strategic level management
focuses on the decisions of the locations of facilities (e.g.
the locations of depots and fleets), while the key tactical
issues are terminal operation specification, service selection
and other mixed decision making. Strategic planning and
tactical planning are the preconditions to transportation
problems, and they are long-term and medium-term
planning. The operational planning focuses on the Vehicle
Routing and Scheduling Problem, which is the major issue
of the Ningbo Port problem.

As one truck in the Ningbo Port can carry only one
container at a time, one container represents one transport
task. Completing a transport task consists of loading the
container to the truck at the source terminal, transporting
the container from the source to the destination terminal
and then unloading the container over there. The well-
known Planning Domain Description Language (PDDL)
is a complex descriptive system providing a standard
and flexible formalism for various AI planning domains
including the VRPs [48]. It is supported by state-of-the-art
planning methodologies, producing high quality solutions
in various planning problems. However, those methods
have not shown to perform effectively or efficiently in
solving large size real-life problems [49]. To simplify the
problem model and make the prevailing neighbourhood
search heuristics applicable, the node-based method of [7],

Fig. 1 The locations of 19 container terminals of the logistic com-
pany (screenshot taken from Google Maps [47]). The balloon icons
represent dry ports and the ball stick icons represent harbors. The nine

harbors are located along the coast of Ningbo City, while the 10 dry
ports are either inland or far from the Ningbo coast
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instead of the PDDL, is employed for formulating the
problem of this paper. A task node integrates the three
activities to represent the service of a transport task. The
service time of a task is the total time of the three activities.

From Fig. 1, we can find that the tasks associated with
the dry ports are long-distance tasks (LDT), while those
transportation between harbors are short-distance tasks
(SDT). In the Ningbo Port, the service time of a SDT is less
than seven hours, and all the harbors can be reached in less
than 2 hours from the depot. On the other hand, because the
service time of LDT and the travel time between the dry port
and the depot is quite long, the average time of completing
a LDT is longer than 13 hours. In some studies, the exact
path between two points is also considered, i.e. the problem
of Path Planning [50]. Since the paths among the terminals
and the depot are fixed by the company in our problem, the
drivers cannot change the fixed path when completing a task
or going to the next task. Vehicle routing considering path
planning presents an interesting and different integrated
problem, thus is in the scope of our future research.

The Ningbo Port company sets up two types of working
shifts: short shift and long shift. A short shift is 12 hours,
meaning a day is divided into two short shifts (day shift and
night shift). In the day shift, drivers drive trucks away from
the depot, and drivers of the night shift return the trucks to
the depot after completing their tasks. The two drivers using
the same truck (called one-driver truck) have a shift-change
in the middle of a day at a terminal. Shift-change cannot
happen within a task node, so the shift-change terminal is
either the last destination terminal of the day shift or the
first source terminal of the night shift. Differently, a long
shift is 24 hours. In this case, two drivers are assigned to one
single truck (double-driver truck) at the same time. With
this arrangement, the two drivers can drive the truck in turn,
satisfying the associated regulations on continuous working
hours in Labor Law.

The two types of shifts are associated with two different
driver salary schemes, which lead to different overall
operational cost to the company. In a working day, two
drivers are required for one truck of either type. The
difference between the two types of trucks is that the two
drivers of a one-driver truck route work separately within
their own short shifts, while both drivers of a double-driver
truck route have to stay in the truck during the whole long
shift. Correspondingly, the unit payment to the drivers of
double-driver trucks is higher for their longer shift length.
SDT can be completed in a short shift using one-driver
trucks, while LDT must be completed with double-driver
trucks in long shifts due to the long service time. When
optimizing the assignment of LDT and SDT, considering
both types of trucks simultaneously can reduce the overall
number of trucks used, consequently minimizing the overall
total operational cost of driver payment.

The truck scheduling for both types of shifts are
combined in this study. Currently, the company handles
LDT and SDT with two separate scheduling systems,
resulting to inefficient use of trucks and lots of task lateness
in busy seasons. This low efficiency schedule is mainly
caused by the two separate scheduling systems which do
not share the limited truck resource. In our study, the two
scheduling systems are integrated to increase the efficiency
of the scheduling and the utility of trucks. Artificial task
which represents the driver shift-change between two short
shifts is thus proposed. The routes of a truck in two
consecutive short shifts are thus converted to one route in
a long shift. To the best of our knowledge, this is the first
time the Mixed-Shift Vehicle Routing Problem with Time
Windows (MS-VRPTW) is proposed in the literature. In
the Ningbo Port, the trucks in the fleet are identical and
can be appointed to be either one-driver or double-driver
according to the commodity situation.

An example schedule of a working day (with one long
shift or two short shifts) is presented in Fig. 2 to illustrate
our proposed model. There are in total eight routes, three
for one-driver trucks and five for double-driver trucks. We
can see that, LDT (represented by rectangles) only appear in
double-driver truck routes, while SDT (solid circles) exist in
both one-driver truck routes and double-driver truck routes.
The hollow circles in the top three routes are artificial tasks.

The fourth route in Fig. 2 explains why the LDT require
double-driver trucks. Considering the travel time leaving
and returning to the depot, completing a LDT takes more
than 12 hours (maximum length of a short shift). In addition,
if the distance between two LDT is small, more than one
LDT might be serviced in one double-driver route. For
instance, in the last route, as the destination of the first LDT
is the source of the second LDT, the travel distance and time
between the two tasks is zero. In this case, the two LDTs
can be completed by one double-driver truck, leading to a
more efficient use of vehicles.

Another special case of LDT is the rectangle in the
seventh route. It represents a type of task which require
short service time but can only be finished in double-driver
routes. Because their time windows are narrow (i.e. 3 hours
in this example) and across the middle of a working day,
the shift-change between short shifts cannot be done when
completing these type of tasks. Therefore, these type of
tasks can only be assigned to double-driver trucks.

In different real-life scenarios, the shift lengths, the
number of task types and the number of shift types might be
different from that of the Ningbo Port problem. However,
the method of using artificial tasks is still applicable,
which integrates the scheduling and routing with different
shift settings into one model. Therefore, the model of
MS-VRPTW can cover various practical cases from real
scenarios.
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Fig. 2 A schedule example of one long shift (two short shifts). Three one-driver trucks and five double-driver trucks are used in this schedule.
The right subgraph presents the first and sixth routes in the schedule

2.2 Mathematical model

To model the MS-VRPTW, a number of notations are
defined, see Table 1.

The MS-OPVRPTW can be formally defined as follows.
Objective:

Minimize DP =
∑

s∈S

(
Po · Ks

O + Pd · Ks
D

)
(1)

Minimize T D =
∑

p∈P

∑

s∈S

∑

i∈N∪W

∑

j∈N∪W

cij · x
sp
ij

(2)

Subject to:
∑

p∈P

∑

s∈S

∑

i∈W∪N\{0}
x

sp
ij = 1, ∀j ∈ N\{0} (3)

∑

p∈P

∑

s∈S

∑

j∈W∪N\{0}
x

sp
ij = 1, ∀i ∈ N\{0} (4)

∑

i∈W∪N\{0}
x

sp
ij =

∑

f ∈W∪N\{0}
x

sp
jf , ∀j ∈ W ∪ N\{0},

s ∈ S, p ∈ P (5)

Ks
O + Ks

D ≤ K, ∀s ∈ S (6)

∑

j∈N∪W

x
sp

0j =
{

Ks
O ∀s ∈ S, p = O

Ks
D ∀s ∈ S, p = D

(7)

∑

i∈N∪W

x
sp

i0 =
{

Ks
O ∀s ∈ S, p = O

Ks
D ∀s ∈ S, p = D

(8)

∑

p∈P

∑

j∈N

x
sp
wj = Ks

O ∀w ∈ W, s ∈ S (9)

∑

p∈P

∑

i∈N

x
sp
iw = Ks

O ∀w ∈ W, s ∈ S (10)

∑

j∈N

xsO
wj = Ks

O ∀w ∈ W, s ∈ S (11)

∑

i∈N

xsO
iw = Ks

O ∀w ∈ W, s ∈ S (12)

xsp
wv = 0, ∀w, v ∈ W, s ∈ S, p ∈ P

(13)
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Table 1 Definition of Notations

Input Parameters:

S The set of time-continuous working shifts. Here one shift is 24 hours (long shift).

P = {O, D} The set of truck types. O represents that the truck used is a one-driver truck, while D means it is a double-driver truck.

Po, Pd The operating cost of using a one-driver truck (Po) and that of a double-driver truck (Pd ). They are mainly

determined by the payments to the drivers.

K The fleet size, which is the number of available trucks.

[Ys, Zs ] Time window of shift s ∈ S.

N = {0, 1, 2, ..., n} Set of n + 1 nodes. Each node represents a task except node 0, which is the depot.

[ai , bi ] The time window for node i ∈ N . The time window for the depot is zero at the boundary of a shift. If a truck

arrives at the source of i early, it has to wait until ai .

A Set of arcs. Each arc(i, j ) represents node j being immediately serviced/visited after node i.

cij The cost of traveling from node i to node j . If both nodes are tasks, it is the travel distance from the destination

of i to the source of j . Otherwise, it is the distance from the depot to the first source or from the last destination

to the depot. These travels are empty-load with no container carried.

tij The travel time from node i to node j . When both nodes are tasks, tij is the travel time from the destination of i

to the source of j . Otherwise, it is the travel time from the depot to the first source or from the last destination

to the depot.

li The time for servicing node i, which includes the loading time, transportation time (from pick-up source to

delivery destination) and unloading time. The service time of the depot is zero.

W Artificial task set. Artificial tasks (w ∈ W ) can only be found in one-driver routes, representing the shift-change

(e.g. the hollow circles in Fig. 2). Artificial task’s service time (lw) and loaded travel distance are zero (i.e. its

source and destination are the same terminal). The source and destination of an artificial task must be either the last

destination of the day shift or the first source of the night shift in that route. The time window of w is the mid-line

of workday, i.e. [aw, bw] = [8pm,8pm].

Variables:

Ti The time of arrival at node i.

Bi The time to begin the service of node i.

x
sp
ij A binary decision variable for nodes i, j ∈ N ∪ W , s ∈ S, p ∈ P . Its value is 1 when arc(i, j ) is included in the

solution in shift s by a truck type p, otherwise its value is 0.

Ks
O ∈ {0, 1, ..., K} An integer variable of the number of one-driver trucks used in shift s ∈ S.

Ks
D ∈ {0, 1, ..., K} An integer variable of the number of double-driver trucks used in shift s ∈ S.

Tj =
∑

p∈P

∑

s∈S

((Bi + li + tij ) · x
sp
ij + (Ys + t0j ) · x

sp

0j ),

∀i ∈ N\{0} (14)

Bj = Tj + max{aj − Tj , 0}, ∀j ∈ N\{0}
(15)

xs0
ij · (Bi + li + ti0) ≤ x

sp

i0 · Zs, ∀i ∈ N ∪ W,

s ∈S, p ∈P (16)

ai ≤ Bi ≤ bi − li , ∀i ∈ N\{0} (17)

x
sp
ij ∈ {0, 1} ∀i, j ∈ N ∪ W, s ∈ S, p ∈ P

(18)

Ks
O ∈ {0, 1, ..., K} ∀s ∈ S (19)

Ks
D ∈ {0, 1, ..., K} ∀s ∈ S (20)

MS-VRPTW is a bi-objective problem. The first
objective is minimizing the total driver payment (DP), see
Eq. 1, which depends on the number and types of trucks
used. It is notable that, the cost of a driver for double-driver
truck is 1.5 times of a driver of one-driver truck in our study
(i.e. Po = 1, Pd = 1.5). Minimizing the total travel distance
(TD) (2) is the other objective. Actually, the target of TD
is to minimize the empty-load travel distance as the total
loaded travel distance in an instance is fixed. DP focuses on
the operational cost, and TD concentrates on the utility of
trucks which actually pursues a higher heavy-loaded travel
distance rate in total travel distance.
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Constraints (3) and (4) denote that every task node
can be visited exactly once and all the tasks must be
visited. Constraint (5) specifies that a task may only be
serviced after the previous task is completed. Constraints
(3)–(5) together make sure arcs over more than one shift
are unacceptable. Constraint (6) guarantees the number of
trucks used is not larger than the fleet size.

Constraints (7) and (8) place the limits on one-driver
truck (p = O) and double-driver truck (p = D).
Constraints (9)–(12) guarantee that there must be Ks

O

artificial tasks completed on the routes of one-driver trucks,
while there is no artificial task on the routes of double-driver
trucks. In addition, constraint (13) guarantees each route of
one-driver truck has only one artificial task.

Equation (14) defines the arrival time at a task node.
Equation (15) defines the beginning time of servicing a
task node. This time is calculated by the arrival time plus
the waiting time at the source of a task. Equations (14)
and (15) enforce the correct successive relationship between
consecutive nodes. Constraints (14)–(16) together define
the time windows of shifts. Constraint (17) represents the
time constraint on each task. The domains of the decision
variables are presented in (18)–(20).

From this mixed integer programming (MIP) model, we
can find that the MS-VRPTW is a large-scale and tightly
constrained non-linear problem. In MS-VRPTW, the size
of solution space is decided by the number of tasks (n),
the number of shifts (|S|) and the size of the fleet (K).
Since there are |S| · K possible routes in a solution, which
are either one-driver or double-driver, and each route has
n! permutations of tasks, the size of the search space is
2|S|·K ·n!. In real-life, a logistic company may face hundreds
to thousands of containers to be transited, leading to a highly
complex problem with huge solution space.

3 Solutionmethodologies for bi-objective
mixed-shift vehicle routing problem
with time windows

3.1 Exact search

In our study, exact search method is first implemented
to address MS-VRPTW using a successful and widely
used optimization solver, CPLEX. To address this bi-
objective MIP problem with CPLEX, the objectives of
the mathematical model has to be slightly modified since
CPLEX is not a tool for multi-objective models. To this
end, three different configurations are employed to linearly
combine the two objectives into one (called decomposition
in some research, see formula (21)). The configurations
represent three scenarios in the modified objective: 1) DP
has the same weight as TD, 2) DP dominates TD and 3)

TD dominates DP. Considering the different ranges of DP
and TD, the three configurations are {a = 200, b = 1},
{a = 10000, b = 1} and {a = 4, b = 1}, respectively.

Minimize a · DP + b · TD (21)

The CPLEX script of exact search has been run on a
high performance computer system. Considering the scale
of this problem, a large number of computation resources
have been assigned, which were 16 cores (2.6 GHz),
100 GB memory and 24 hours runtime limit for each
experiment instance. However, the output of CPLEX shows
that even with large amounts of computation resources, it
is still very hard to obtain satisfying solutions for MS-
VRPTW with exact search methods. CPLEX was out of
memory within 10 minutes in all the three configurations.
This observation indicates that exact search is not realistic
for solving this large-scale tightly constrained nonlinear
problem due to massive computation resources required for
computation time and memory. It is no doubt that there may
exist exact methods which can work better than CPLEX
in this problem, however, the requirement of extensive
computation resource still remains. Therefore our studies
focus on developing efficient approximate approaches for
MS-VRPTW.

3.2 Initial solution construction heuristic

Solomon [2] develops four classic construction heuristics
for VRPTW, among which the Insertion Heuristic in general
shows the best performance. Given a set of candidates to
be assigned (e.g. customers, demands), in each iteration,
a candidate is inserted to an insertion position in the
existing routes using Insertion Selection Schemes. During
the construction, if all existing routes are full, a new empty
route will be created. The Insertion Selection Schemes used
in existing routes and the newly created empty routes can be
different. These steps are repeated until all candidates are
assigned, obtaining a complete solution.

Insertion Heuristic is widely applied to diverse VRP
variants using various Insertion Selection Schemes. Chen
et al. [51] propose an emergency-based construction
heuristic for the Open Periodic Vehicle Routing Problem
with Time Windows. In that heuristic, tasks with higher
emergency are dealt with a higher priority. Based on the
emergency-based construction heuristic, we propose an
Emergency Level-Based Insertion Construction Heuristic
(EBIH) for MS-VRPTW.

In EBIH, all the tasks are classified into LDT or SDT
following the definitions given in Section 2.1. Then they
are further categorized according to their emergency levels.
When a task i can be completed in shift s according to its
time window, the task is either optional or mandatory. To
be precise, if i can be completed in s and later shift(s), i
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is an optional task in shift s; otherwise, i is a mandatory
task to s. So, to each shift, four sets of available tasks
would be assigned, which are mandatory LDT, optional
LDT, mandatory SDT, and optional SDT.

The four sets of tasks are considered in order in EBIH.
It is easy to understand that we should assign mandatory
tasks first. Because the delay of tasks may cause the
containers missing the vessel appointed and greatly increase
the operational cost of the company. Besides, SDT can be
completed with both one-driver trucks and double-driver
trucks while LDT can only use double-driver trucks, which
means SDT have more insertion options than LDT when
constructing a solution. Therefore, LDT is relatively harder
to assign than SDT and should be assigned earlier.

In practice, logistic companies usually complete tasks
as early as possible to avoid leaving many tasks to the
following shifts and increasing later scheduling pressure. In
real-life, extra commodities might be added in real time.
Reducing the remainder tasks and leaving more available
trucks for later shifts can also enhance the stability of the
scheduling system. In EBIH, after arranging all mandatory
tasks, if there still are available trucks in the fleet, optional
tasks will be inserted to the current shift until all trucks are
ran out. The order of task sets being assigned shift by shift
is: mandatory LDT → mandatory SDT → optional LDT →
optional SDT.

Faced with a set of tasks to be inserted and a large
number of potential insertion positions, the Insertion
Selection Scheme used determines the performance of an
Insertion Heuristic. The scheme of Greedy Strategy always
executes the insertion bringing the least cost increase
among all candidate insertions. The routes constructed with
this scheme are relatively tighter. Less trucks would be
employed with this strategy, but requiring more computation
time to evaluate all possible candidates. Differently, First
Feasible Strategy adopts the first feasible insertion to a task
given. It takes less evaluation time but more trucks would be
used in the solution generated.

When choosing the Insertion Selection Schemes, a trade-
off between efficiency and effectiveness should be made.
The key issue in the scheduling is that all tasks must be
completed with the limited trucks. Thus, in EBIH, Greedy
Strategy is adopted for mandatory tasks. This setting aims
to guarantee the urgent tasks’ assignment first. On the
other hand, to avoid long computation time, First Feasible
Strategy is applied to the insertion of optional tasks. In
addition, because the tasks with long service time are often
too big to be inserted into the routes with existing tasks, the
task with the longest service time will be selected as the first
task in the newly created new route.

The performance of EBIH is tested on instances with
diverse sizes and features. The test results are presented in
Section 4.2.1.

3.3 A selective perturbation hyper-heuristic
with two guidance indicators

To further reduce the operational cost of the company, based
on the initial solution generated by EBIH, an improvement
Hyper-Heuristic with Two Guidance Indicators (GIHH)
is developed. GIHH is a Selection Perturbation Hyper-
Heuristic, which selects perturbative low level heuristics
(LLH) adaptively based on the changes of a problem
scenario. Two guidance indicators are proposed to guide
the selection of LLH. Considering the large scale and
complex multi-level solution structure in MS-VRPTW, only
one solution is updated in each algorithm iteration (single
solution-based).

3.3.1 High-level heuristic

Algorithm 1 The GIHH framework

Input: An initial feasible solution ( ) produced by EBIH,

a set of LLH ( ), Stopping Criterion ( ).

Step 1. Set up the initial parameters and ARCH.

1 1

0 0

0 0

Step 2.
while Stopping Criterion is not met do

Step 2.1: Solution Selection

Randomly select a solution from as the

current solution .

Step 2.2: Low Level Heuristic Selection and

Execution.

Select a LLH ( ) from according to

with Roulette Wheel Rule, see

on the current solution,

solution:

obtaining a new

Step 2.3: Accept or Reject (Hill Climbing).

if is non-dominated in then

Add into and remove all domi-

nated solutions.

else

Reject .

end if

Update and , recording the

contribution of to the solution improvement.

More  details  are  presented  in  Section  3.3.2.

Step 2.4: Weight Adjustment.

After a predefined number ( ) of iterations,

of is updated according to

, see Section 3.3.2.

end while

Output: A solution set .

Eq. 22; Execute

and
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Pri = weighti∑
j∈H

weightj
∀i ∈ H (22)

Algorithm 1 introduces the high level framework of
GIHH. The input contains an initial feasible solution, a
set of given LLH (H , introduced in Section 3.3.3) and the
stopping criterion. To this bi-objective problem, GIHH is a
Pareto Method whose output is a solution archive (ARCH)
consisting of non-dominated solutions. The small range of
DP reduces the diversity of DP, leading to a relatively
small number of non-dominated solutions. Thus, no limit is
set to the size of ARCH, which means all non-dominated
solutions found will be stored. In addition, to increase the
diversification of the search, different solutions with the
same objective values are stored in ARCH.

In each iteration, one LLH is chosen and applied to
a chosen solution (Sc), generating an updated solution.
During the loop, to diversify the search, Sc is randomly
selected from ARCH in Step 2.1. The stopping criterion
is set as when ARCH is not being updated in a predefined
number (NONIMP ) of iterations.

In GIHH, three scalars (Weight, ScoreA and ScoreB)
are defined to guide the selection of LLH, generating
better problem solutions. The LLH executed in an iteration
is chosen with the Roulette Wheel Rule (Step 2.2). To
avoid the probabilities of LLH converging to zero and the
corresponding LLH never being called at all, a minimal
probability limit of 5% is applied to every LLH. ScoreA

and ScoreB are two guidance indicators, which record the
performance of LLH in previous search history from two
different aspects respectively. Weight is updated based on
ScoreA and ScoreB. All these three scalars are adjusted
adaptively during search (in Steps 2.3 and 2.4), details in
Section 3.3.2.

Because the ranges of the two objectives in MS-VRPTW
are significantly different, that is, the range of DP is
remarkably smaller than that of TD, a small change on DP
is usually accompanied by a great fluctuation on TD in
a solution. To further investigate this issue, in addition to
the Hill Climbing acceptance criteria, a Record-to-Record
Travel (RRT) [52] acceptance criterion is also implemented
in our study. RRT accepts the worst solutions (S′) of
deteriorated quality from the current solution (Sc) in a
predefined range. The comparison of experiment results are
presented in Section 4.2.3.

3.3.2 Guidance indicators and weight adjustment scheme

ScoreAi stores the accumulated rewards to hi according to
the change of objective values from Sc to S′, recording the
performance of hi on improving solution quality. In each
iteration, if S′ is acceptable, reward 1 is added to ScoreAi ,
otherwise no reward is added. Therefore, a larger ScoreAi

represents a greater contribution of hi to generating new
non-dominated solutions. This indicator emphasizes LLH’s
contribution on solution quality improvement.

ScoreBi is a specially designed indicator for this bi-
objective problem, which indicates which objective hi

inclines to improve (improvement direction). In MS-
VRPTW, a Pareto Solution Set with uniform distribution
and good convergence on the Pareto Front is expected,
instead of the solutions within local regions. During the
search, the improvement on both of the two objectives is
pursued. When updating ScoreBi , the objective values of Sc

and S′ are compared. If S′ is better than Sc on DP, ScoreBi

is increased by one; If S′ is better than Sc on TD, ScoreBi

is decreased by one. A positive ScoreBi , thus, means the
inclination of improving DP (generated more improved
solutions on DP) to hi , while a negative one indicates that
of improving TD.

Weighti is updated once in every SEG iterations (called a
Segment) to avoid over-fitting. It is adjusted according to the
feedback from the search history (ScoreAi and ScoreBi).
The update is a two-phase procedure. The first phase is
guided by ScoreAi , see Eq. 23.

weightti = α ·weightt−1
i +β · ScoreAi

Applied T imes of hi

(23)

In the second update phase, to find the improvement
DEVIATION by Eq. (24) between the two objectives, the
newly generated non-dominated solutions are compared
with the first Sc in the last Segment, obtaining the number of
the non-dominated solutions with improved DP (DP IMP )
and that of improved TD (TD IMP ). If DP was improved
more times in the last Segment (DEVIATION > 0),
then the weighti of those LLH with TD inclination
should be increased by using Eq. 25, obtaining a higher
probability being selected in the current Segment. The
similar operations are made when DEVIATION < 0. This
procedure aims to balance the improvement direction.

DEV IAT ION = DP IMP − TD IMP

(DP IMP + TD IMP) · 0.5
(24)

weightti + = γ · ScoreBi

Applied Times of hi

· DEVIATION
when (DEVIATION < 0 And ScoreBi < 0)

Or (DEVIATION > 0 And ScoreBi > 0) (25)

The three coefficients (α, β, γ ) in Eqs. 23 and 25
determine the response speed to the search feedback and
the influence of each guidance component on updating
weighti , subject to α + β + γ = 1.
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3.3.3 Low-level heuristics

Five LLH are adopted in GIHH. Each LLH changes the
current solution to a certain extent, obtaining updated
solutions. Heuristics with large changes perturb the
operated solution dramatically. They increase the search
diversity and avoid trapping to local optimum, but longer
computation time is needed usually to produce a new
feasible solution. Heuristics with small changes use
relatively less computation time in each iteration, however,
their common deficits are easily to stuck to local optimum
and premature search. Previous research shows that properly
combining heuristics can improve the performance of search
[53].

– Inter-Route 2-opt*. Lin [54] proposes the λ-opt route
improvement heuristic which removes and reconnects λ

edges in a route. This classic heuristic brings relatively
small changes to a solution, obtaining good results in
various VRPs. Potvin and Rousseau [31] develop an
improved 2-opt heuristic (2-Opt*) which keeps the direc-
tion of each route segment during reconnection. This
heuristic is devised for Traveling Salesman Problem at
first, but shows excellent performance in various rout-
ing problems with time windows. In GIHH, Inter-Route
2-Opt* removes two edges from different routes and
reconnects them while keeping the directions of associ-
ated route segments. Notice that the edges modified can
be the starting or ending points of routes, which means
two routes being connected into one route is possible.

– Inter-Route CROSS-exchange. Taillard et al. [32]
propose CROSS-exchange which swaps two route
segments from two different routes while keeping
their directions. This heuristic brings relatively small
perturbation as well. The length of a route segment
can be zero, e.g. when one of the two operated
route segments is empty, the execution of Inter-Route
CROSS-exchange actually relocates a route segment
from one route to another route.

– Intra-Route CROSS-exchange. In this heuristic, the
swapping strategy of CROSS-exchange is applied to one
single route.

– Large Neighbourhood Search (LNS). In GIHH,
Random Selection is used in the Destroy heuristic of
LNS to remove q randomly chosen tasks. Then the
removed tasks are reinserted into the destroyed solution
using a greedy Repair heuristic. This heuristic always
executes the insertion causing the least increase on
the travel distance. Obviously, comparing all possible
insertion positions for all the q tasks is time-consuming.
To balance the solution quality and the computation
time, the value of q is defined as min{5%·n, 10}, where
n is the total number of tasks.

– Guided Ejection Search (GES). To further reduce the
number of trucks used and optimizeDP, GES is employed
in GIHH. The main ideas of GES have been summa-
rized in Section 1.2. Using LNS and GES obtains larger
change to solutions and greater perturbation in search,
at the cost of longer execution time.

4 Experiments & analysis

4.1 Benchmark dateset

To evaluate the proposed algorithms in different scenarios,
a benchmark of 24 instances with various features are
generated (available at http://www.cs.nott.ac.uk/∼pszrq/
benchmarks.htm). The instances are extracted from the
company’s historical dataset. In these instances, each item
represents a commodity, which consists of its commodity
ID, source terminal, destination terminal, available time to
transport, deadline of completing the tasks, and the number
of containers in this commodity. Notice that the number
of containers in a commodity can be larger than one,
meaning finishing one commodity transportation may need
to complete multiple transport tasks.

A categorization scheme similar to [55] is adopted to
define the features of the instances. Firstly, to a LDT, if its
time window is smaller than 20 hours, it will be classified
as an emergent task. The time window for SDT is smaller
than 10 hours. These two values are suggested by the port
company’s coordinator. In addition, index B (26) is used to
measure the total throughput balance at terminals in each
instance.

B = 1

|V |
∑

i∈V

|Ii − Oi | (26)

Here, V is the set of terminals, is composed of the harbors
and dry ports. Ii and Oi respectively represent the number
of incoming and outgoing tasks at terminal i. A smaller
B represents a more balanced throughput in the instance.
Based on these, four types of features are used to create the
benchmark instances.

– Tight instance: 70%-80% tasks in the instance are
emergent.

– Loose instance: less than 30% tasks in the instance are
emergent.

– Balanced instance: the value of B in the instance is
smaller than 30.

– Unbalanced instance: the value of B in the instance is
larger than or equal to 30.

According to the time of receiving transhipment requests
before their deadlines in practice, two types of scheduling

http://www.cs.nott.ac.uk/~pszrq/benchmarks.htm
http://www.cs.nott.ac.uk/~pszrq/benchmarks.htm
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horizons (two and four days) are set for the instances.
Based on this setting, we created in total eight combinations
of features. They represent a comprehensive dataset
of instances with various commodity emergencies and
workload balance. For each combination, three instances are
generated in sizes of small, medium and large, respectively.
The details of instances are presented in Table 2. The last
column provides the total loaded travel distances which
are fixed in instances. These instances are generated based
on the problem characteristics at Ningbo Port, e.g. the
geographical distribution of the terminals and the lengths of
shifts, and can be used as a set of benchmark instances with
diverse features for testing the solution methods of other
MS-VRPTWs.

4.2 Comparison experiments

4.2.1 Initial solutions

Table 3 presents the initial solutions produced by EBIH,
obtained on a PC with i7-3820 3.60GHz CPU and 16.0
GB memory. Feasible solutions can be obtained within an
acceptable time for all instances. The computation time of

generating a solution grows rapidly along with the number
of tasks in the instance. The highest requirement of truck
happens on instance TU2-3, where 71 one-driver trucks and
171 double-driver trucks are used.

4.2.2 Parameter setting and complexity discussion

GIHH adaptively employs LLH according to the search,
with relatively few parameters to set. The parameters are
tuned one by one, while the others are fixed.

In Eqs. 23 and 25, a large α means a low response
speed to the change in the search space, often leading
to slow convergence. However, high-quality solutions may
be skipped over when the response speed is too high.
On the other hand, high response speed usually leads to
premature convergence. Our preliminary experiments show
that, the setting of α = 0.5 makes a good trade-off
between convergence speed and solution quality. The
values of β and γ determine the influence of the two
guidance indicators to update weighti . The setting of β =
0.4, γ = 0.1 is adopted based on preliminary experiments,
indicating that ScoreA has a greater influence than ScoreB
in GIHH.

Table 2 Features of the
benchmark instances Instance Configuration No. of Shifts No. of Commodities No. of Tasks Loaded TD

LB2-1 Loose Balanced 2 50 145 27,474

LB2-2 Loose Balanced 2 100 566 122,878

LB2-3 Loose Balanced 2 200 697 179,802

LU2-1 Loose Unbalanced 2 50 390 78,891

LU2-2 Loose Unbalanced 2 100 551 132,220.5

LU2-3 Loose Unbalanced 2 200 768 196,460

TB2-1 Tight Balanced 2 50 245 44,674

TB2-2 Tight Balanced 2 100 446 98,062.5

TB2-3 Tight Balanced 2 200 779 163,255

TU2-1 Tight Unbalanced 2 50 364 55,854

TU2-2 Tight Unbalanced 2 100 529 97,656.5

TU2-3 Tight Unbalanced 2 200 895 190,897.5

LB4-1 Loose Balanced 4 50 156 39,471

LB4-2 Loose Balanced 4 100 578 121,575.5

LB4-3 Loose Balanced 4 200 976 175,464

LU4-1 Loose Unbalanced 4 50 395 97,047

LU4-2 Loose Unbalanced 4 100 670 150,680.5

LU4-3 Loose Unbalanced 4 200 1077 283,463

TB4-1 Tight Balanced 4 50 321 69,536

TB4-2 Tight Balanced 4 100 536 118,923

TB4-3 Tight Balanced 4 200 914 185,164.5

TU4-1 Tight Unbalanced 4 50 389 92,008

TU4-2 Tight Unbalanced 4 100 606 127,203

TU4-3 Tight Unbalanced 4 200 886 185,556.5

The shifts adopted are long shifts
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Table 3 Initial solutions
produced by EBIH LB2-1 LB2-2 LB2-3 LU2-1 LU2-2 LU2-3

DP 83.5 393 456.5 221 341.5 520.5
TD 22955.5 144926 140842.5 69096 93044 174560.5
time (s) 6 369 869 125 464 1176

TB2-1 TB2-2 TB2-3 TU2-1 TU2-2 TU2-3

DP 147.5 315.5 484.5 252.5 374.5 554.5
TD 46032 98749 153719.5 71517.5 109143.5 145165
time (s) 29 215 1017 87 284 1407

LB4-1 LB4-2 LB4-3 LU4-1 LU4-2 LU4-3

DP 131.5 382 547.5 294.5 475.5 671.5
TD 47028 113011 169075.5 101569 149.47 234230.5
time (s) 5 220 841 130 374 1711

TB4-1 TB4-2 TB4-3 TU4-1 TU4-2 TU4-3

DP 289 411 579 349.5 533 569
TD 76690 125146.5 150932 105797.5 144385 188010.5

time (s) 52 229 1063 92 198 799

When updating weighti , a smaller SEG would change
weighti more frequently, when SEG is too large, the
feedbacks cannot change in time. SEG is set to 80 in
GIHH empirically. In addition, NONIMP = 150 is used
as the stopping criterion to strike a balance between the
computation time and the quality of results.

When assessing the computational complexity of meta-
heuristics and hyper-heuristics, time complexity cannot be
determined since these approximate algorithms do not guar-
antee finding the global optimal solution within a given time
limit. Whether or not the algorithm procedure would termi-
nate depends on the applied problem and specific definition
of its stopping criterion (e.g. the definition of NONIMP

in GIHH). Therefore, the CPU time and objective func-
tion evaluations on benchmark are often used to compare
the computational complexity of approximate methods in
research. In this study, the algorithms with the above param-
eter setting are compared from the aspects of computational
time and iterations at high level, and the results and asso-
ciated analysis are presented in the next subsection. As
only one solution is updated in each iteration, with the task
node-based solution representation, the space complexity of
GIHH is O(K · |S| · n), where K is the fleet size, |S| is the
length of the planning horizon and n is the number of tasks
to be assigned.

4.2.3 Comparison experiment results and analysis

Impacts of the guidance indicators To evaluate the influ-
ence of the two proposed guidance indicators in GIHH,
two variants (GIHH-A and RHH) of GIHH with different
guidance indicator settings are developed for comparison.

In GIHH-A, only ScoreA is adopted, while in RHH, LLH
are randomly chosen without any guidance. Our prelimi-
nary experiments show that increasing the computation time
does not improve the results significantly, so all the three
algorithms use the same stopping criterion.

Table 4 presents the comparison of GIHH, GIHH-A
and RHH. All the results are obtained in 20 runs. In the
literature, to compare the performance of Pareto Methods,
various quality indicators are proposed. Most of them focus
on the comparison on the Pareto Set approximation [56].
One of the most widely used indicators is Hyper-Volume,
which considers the convergence, uniformity and spread
over the Pareto Front produced. Previous studies have
shown that a Pareto Set with a larger hyper-volume is likely
to have a better trade-off among multiple objectives [57]. To
compare the three algorithm variants, the hyper-volumes of
the ARCHs obtained are calculated and presented in Table 4.
In our study, the reference points used in calculating hyper-
volume are the initial feasible solutions generated by EBIH.
It can be found that, comparing the three algorithms from mul-
tiple aspects, most of the best results are produced by GIHH.

Among the three variants, RHH produced the worst
hyper-volumes with the most iterations, while its standard
deviation obtained is the largest. This shows that, when the
High-Level Heuristic is random selection with no guidance,
the algorithm would take more iterations to converge with
a lower stability. However, it may have a higher probability
of finding better solutions against objective (2), i.e. with the
best DP.

It can be found that from Table 4, GIHH-A and GIHH
obtained remarkably better solutions (higher HV) than RHH.
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Table 4 Results comparison among algorithms with different indicator configurations

LB2-1 LB2-2 LB2-3 LU2-1 LU2-2 LU2-3 TB2-1 TB2-2

RHH Iteration 1479 4831 5557 4096 5782 9012 2459 4919
Ave HV 0.8176 1.0964 0.6745 0.6652 0.4826 0.8086 0.2598 0.4856
Best HV 0.8966 1.1303 0.6936 0.6924 0.5472 0.8504 0.2941 0.5132
Best DP 53 247 336 166 256.5 369.5 131 224.5
Best TD 11685 53531.5 73506 34004 57693 76342.5 30498 68167.5
S.D. 4.32% 2.63% 1.03% 2.14% 2.90% 2.20% 1.65% 1.98%

GIHH-A Iteration 1322 4911 3701 3121 5441 9320 2973 4945

Ave HV 0.8456 1.1277 0.6943 0.6842 0.5299 0.8632 0.2754 0.4950
Best HV 0.8933 1.1424 0.7201 0.7093 0.5575 0.8837 0.3044 0.5259
Best DP 53.5 250 339 166.5 259 371 130.5 226
Best TD 11491.5 50565 68909 32365 54509 71227 29811 66195
S.D. 3.08% 1.21% 1.70% 2.80% 1.73% 1.39% 1.66% 2.11%

GIHH Iteration 1538 4586 5125 3486 4732 7958 2837 6516

Ave HV 0.8578 1.1321 0.6967 0.6914 0.5134 0.8539 0.2792 0.5036
Best HV 0.9203 1.1624 0.7182 0.7234 0.5516 0.8771 0.3000 0.5275
Best DP 53 248.5 339 166 261 372 131 227.5
Best TD 11332 50382.5 67728 32409 55549 71609.5 29961 66208.5
S.D. 3.00% 0.85% 1.51% 1.30% 1.86% 1.34% 1.31% 1.42%

TB2-3 TU2-1 TU2-2 TU2-3 LB4-1 LB4-2 LB4-3 LU4-1

RHH Iteration 6763 2821 5170 7334 1648 4827 8474 2880
Ave HV 0.5908 0.4493 0.6217 0.4574 0.6443 0.7181 0.8271 0.3262
Best HV 0.6146 0.4710 0.6385 0.4888 0.6823 0.7507 0.8560 0.3574
Best DP 357.5 183 268 430.5 91 268 374.5 237.5
Best TD 88763.5 51263.5 64919 92812 27610.5 58122 80004.5 74178
S.D. 2.02% 1.42% 1.60% 2.09% 2.08% 1.66% 2.20% 1.34%

GIHH-A Iteration 6228 2800 4933 9713 1389 4199 6691 2257
Ave HV 0.6005 0.4649 0.6463 0.5357 0.6429 0.7429 0.8360 0.3407
Best HV 0.6305 0.4824 0.6531 0.5396 0.6665 0.7629 0.8784 0.3625
Best DP 364.5 181 268 432.5 93 269 374 236
Best TD 84585 50878 62694 85413.5 27465 57612 75555 73566
S.D. 1.66% 1.29% 0.52% 0.40% 1.57% 1.87% 3.01% 1.70%

GIHH Iteration 5360 2592 4975 8695 1371 3883 6009 3071
Ave HV 0.5972 0.4622 0.6480 0.5176 0.6517 0.7495 0.8362 0.3423
Best HV 0.6203 0.4863 0.6700 0.5333 0.6728 0.7747 0.8692 0.3838
Best DP 364 181 267 431 92 268 380 233.5
Best TD 85127 50544 62691 85813.5 27409 57437 75285 73073
S.D. 1.67% 1.21% 1.10% 1.16% 1.72% 2.16% 2.25% 2.05%

LU4-2 LU4-3 TB4-1 TB4-2 TB4-3 TU4-1 TU4-2 TU4-3

RHH Iteration 5032 8915 1180 3807 7649 2349 3508 7349

Ave HV 0.7547 0.9387 0.3778 0.3634 0.6021 0.2371 0.3648 0.6134
Best HV 0.7824 0.9765 0.3885 0.3831 0.6357 0.2454 0.3800 0.6334
Best DP 321.5 476.5 226 323.5 409 287 397 405.5
Best TD 80535.5 75804 55991 90690.5 92126 88214 111090 112465
S.D. 1.52% 2.57% 0.78% 1.06% 1.95% 0.50% 1.22% 1.71%

GIHH-A Iteration 3029 6789 921 2817 5487 2229 2386 4919

Ave HV 0.7659 0.9759 0.3770 0.3761 0.6247 0.2577 0.3743 0.6239
Best HV 0.7962 0.9891 0.3909 0.3871 0.6643 0.2620 0.3888 0.6470
Best DP 327.5 484.5 225 325.5 409 284.5 398 412
Best TD 76664 71859 55920 89808.5 88744 86548 110743 106921
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Table 4 (continued)

S.D. 2.18% 1.00% 0.78% 0.54% 1.97% 0.32% 0.85% 1.80%

GIHH Iteration 3701 5341 1131 3098 5745 2122 2871 5055

Ave HV 0.7774 0.9768 0.3865 0.3795 0.6343 0.2554 0.3756 0.6246

Best HV 0.8050 0.9997 0.3974 0.3981 0.6674 0.2613 0.3938 0.6480

Best DP 322.5 480 224.5 323.5 412 285.5 393.5 407

Best TD 75138 70811.5 55606 89397 86690 86482 110926 107892

S.D. 1.50% 1.38% 0.73% 0.57% 1.82% 0.37% 0.74% 1.34%

Ave HV and Best HV are the average and best hyper-volumes, respectively. Best DP and Best TD are the best found objective values, while S.D.
is standard deviations. Iteration is the average iterations in the 20 runs. Best results are in bold

Using ScoreA significantly improves the quality of the
produced solution set. Generally, GIHH-A and GIHH used
less iterations but longer computation time to obtain the
output. This can be observed in Fig. 3. GIHH-A and GIHH
may have less average iterations than RHH (blue columns),
but their computation time (red crosses) are longer on all
the eight sample instances. Because the unit computation
time of LNS and GES are significantly longer than the other
LLH, this observation indicates that, compared to RHH,
GIHH-A and GIHH employed these two LLH with greater
perturbation more frequently during the search.

Between GIHH-A and GIHH, the latter obtained a higher
average and the best hyper-volume on most instances with
the guidance of ScoreB, while no obvious increase on
iteration time and computation time is found. This can also
be observed from Fig. 3. GIHH promotes the overall search
performance and stability with the help of the two proposed
guidance indicators.

With regard to the features of instances, Loose instances
have broader time windows than Tight instances, which
means more scheduling options and larger solution space.
Thus, when the sizes of instances are similar, the Loose
instances require more iterations and computation time to
converge in all the three algorithms. In addition, comparing
the iteration time, GIHH-A and GIHH work better on Loose
instances, see Fig. 4. It can be found that, compared to RHH,
the reduction of iterations is higher on Loose instances than
on Tight instances, except GIHH on the LB4 instances.
When the feature of throughput imbalance at terminals
changes, no obvious difference is found.

Note that, in the ARCH generated by GIHH, each non-
dominated point on the Pareto Front may have 20-40
different solutions on average. The number of different
solutions with the same objectives stored does not affect the
value of hyper-volume. Experiment results show that storing
different solutions with the same objective values does
not significantly increase the hyper-volume of a solution
archive, but it boosts the diversification of the solution set.

Those solutions provide the logistic company coordinator
more reference solutions.

Impacts of solution selection and acceptance criterion In
each iteration of GIHH, the solution to be operated (Sc)
is randomly selected from ARCH, aiming to increase the
diversity in search. To justify the function of the random
selection scheme, an algorithm with deterministic selection
of Sc (named GIHH-D) is also implemented in our research.
With this deterministic scheme, in ARCH, the solution
farthest from the reference point will be selected as Sc.
Because all solutions are derived from the initial solution
(reference point), this deterministic scheme means that the
solution with the highest improvement on both objectives
will be selected. T-test is conducted on the output of GIHH
and GIHH-D. The results are presented in Table 5.

In addition, as mentioned in Section 3.3.1, another
variant adopting the Record-to-Record Travel acceptance
criterion (GIHH-RRT) is also compared with GIHH. In
GIHH-RRT, comparing to Sc, a worse solution would be
accepted as long as the deterioration of objective value
is less than 0.01 · T D(Sc) on TD and less than 1.5 on
DP. Acceptance criterion in a perturbative algorithm should
balance the diversification and intensification of search,
while RRT can increase the diversification of search greatly.
Its output is compared with that of Hill Climbing criterion
presented in Table 5.

From Table 5, it can be found that GIHH outperforms
the other two algorithms. On the one hand, using the
deterministic scheme to select the solution to be updated
(GIHH-D) decreases the diversity of search, leading to
significantly worse output than GIHH on most instances
(19/24). On the other hand, accepting worse solutions
(GIHH-RRT) does not improve the final search result
on all instances. As the two objectives have remarkably
different ranges, accepting worse solutions would bring
great fluctuation and deterioration to Sc in the search. This
observation indicates that, in MOVRP, when the difference
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Fig. 3 The iteration times and computation time of the three algorithms on eight sample instances
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Fig. 4 Comparison of the iteration time reduction. The bars indicate the number of reduction of iterations. Longer bars represent greater reduction,
while the negative values indicate more iterations than RHH

Table 5 T-test results with GIHH. Y means GIHH generates significantly better solutions, while N represents it does not

LB2-1 LB2-2 LB2-3 LU2-1 LU2-2 LU2-3 TB2-1 TB2-2 TB2-3 TU2-1 TU2-2 TU2-3

GIHH-D

vs Y Y Y Y Y N N Y Y Y Y Y

GIHH

GIHH-RRT

vs Y Y Y Y Y Y Y Y Y Y Y Y

GIHH

LB4-1 LB4-2 LB4-3 LU4-1 LU4-2 LU4-3 TB4-1 TB4-2 TB4-3 TU4-1 TU4-2 TU4-3

GIHH-D

vs N Y Y N Y Y N Y Y Y Y Y

GIHH

GIHH-RRT

vs Y Y Y Y Y Y Y Y Y Y Y Y

GIHH
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in the ranges of objectives is big, accepting solutions of
lower quality does not improve the search. Besides, our
experiments also show that GIHH is more stable than the
other two algorithms with smaller standard deviations.

Comparison with the state-of-the-art algorithms MS-
VRPTW is a newly introduced model in the literature,
there is thus no existing algorithm applied to it yet. Three
state-of-the-art algorithms (RVNS [58], FVNS [59] and
ALNS [60, 61]) are adopted and applied to MS-VRPTW in
our study. Both RVNS and FVNS use the Variable Neigh-
bourhood Search framework and produce the best solutions
in PVRP. Apart from the neighbourhood structures used, a
main difference between them is that the order of shaking
operators employed is fixed in FVNS, while they are ran-
domly selected in RVNS. ALNS produces the best results
for VRPPD with Adaptive Large Neighbourhood Search.
The experiments show that GIHH outperforms the three
algorithms on both solution quality and computation time
in MS-VPRTW, especially on larger instances. Their result
deterioration is presented in Table 6.

Possible causes for these results include the following.
Firstly, the neighbourhood structure employed in GIHH
are highly effective. FVNS and RVNS only use the small

perturbation neighbourhood operators (e.g. λ-opt, CROSS,
relocation). With these smaller neighborhood structures, it
is hard or needs a long time to escape from the local
optimum in this nonlinear constrained problem. On average,
65% more computation time is required by FVNS and
RVNS comparing to GIHH. Large perturbation operators
are used in ALNS but are lacking of intensive exploitation.
Secondly, without the guidance of specific indicators, e.g.
ScoreB, the solutions generated are more likely to cluster,
leading to a low hyper-volume. In addition, the three
algorithms compared are problem specific metaheuristics.
Different from hyper-heuristics, their performance may
decline drastically for different instances even in the same
problem. For example, both FVNS and ALNS obtain better
results than GIHH on LU2 instances.

An observation from the results of FVNS and RVNS
is that, they both produce many more solutions with the
same objective values than GIHH. The small perturbation
operators tend to generate a large number of solutions
with small differences but of the same objective values
in the solution archive. Comparing VNS and RVNS, the
former performs better in MS-VRPTW with a fixed order
of the neighbourhood operators of low perturbation to high
perturbation. ALNS outperforms VNS and RVNS on the

Table 6 Solution deterioration
comparing with the results of
GIHH

Average HV Best HV Best DP Best TD S.D.

FVNS LB2 –4.86% –4.76% –3.19% –0.88% –0.54%
LU2 2.44% 1.80% –0.27% 1.13% 0.34%
TB2 –15.13% –15.90% –3.39% –0.40% 0.31%
TU2 –9.25% –9.75% –2.76% –2.01% 0.04%
LB4 –5.70% –5.82% –2.29% –1.04% 0.16%
LU4 –1.30% –2.59% –1.19% –1.22% –0.67%
TB4 –9.85% –7.51% –1.14% –2.42% –0.63%
TU4 –13.85% –12.14% –3.50% –0.72% –0.30%

RVNS LB2 –13.14% –16.50% –5.76% –12.41% –4.17%
LU2 –10.27% –12.93% –2.31% –8.50% –9.05%
TB2 –19.36% –24.08% –4.90% –5.67% –1.03%
TU2 –14.92% –18.46% –5.63% –6.04% –2.52%
LB4 –22.80% –15.06% –5.09% –8.64% –3.73%
LU4 –29.90% –23.98% –4.49% –11.38% –4.40%
TB4 –30.88% –19.17% –2.67% –7.42% –2.29%
TU4 –27.02% –21.87% –3.99% –4.61% –1.04%

ALNS LB2 –5.48% –5.33% –0.07% –7.97% 0.22%
LU2 –8.82% –6.97% 1.17% –9.59% –0.48%
TB2 –6.72% –7.31% 0.57% –3.77% 0.33%

TU2 –8.47% –7.69% –1.03% –4.68% –0.19%

LB4 –5.70% –5.03% –1.28% –3.38% 0.59%

LU4 –7.09% –10.43% –1.05% –5.22% 0.39%

TB4 –4.64% –4.59% –0.11% –2.29% 0.08%

TU4 –18.55% –17.37% –2.28% –4.20% –0.23%

The values in table are the objective differences divided by the GIHH objective values
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objective DP with the help of large perturbation, while has
a higher stability than GIHH.

Results on VRPTW benchmarks To evaluate its performance
in other problems, GIHH is applied to classic VRPTW on
the Solomon Benchmarks [2]. The VRPTW is the basis of
many other complex VRPs, while the Solomon Benchmarks
have been extended and adopted in the research of many
other VRP variants as well. An equal priority is given to
the two objectives, the number of vehicles used (NV) and
the total travel distance (TD), in the VPRTW model of
our study. The results obtained are compared with the best
known solutions to date, see Table 7 in Appendix. It can
be found that, GIHH obtains solutions the same as or close
to the best known solutions (which are optimal actually) on
the instances with clustered customers (C1 and C2). On the
randomly and mixed distributed instances (R1, R2 and RC1,
RC2), GIHH produces solutions close to the best known
ones, and nine new non-dominated solutions are found.
Considering that most of those best known solutions are
generated by customized problem-specific algorithms with
sufficient computation resources, the results of GIHH are
satisfying.

5 Conclusions

This study defines a new bi-objective Mixed-Shift Vehi-
cle Routing Problem with Time Windows (MS-VRPTW),
which arises from a real-life container transportation prob-
lem between short-distance and long-distance terminals.
Due to the big difference between the completion time of
the transportation tasks, two types of shifts (long-shift and
short-shift) with different operational costs are defined in
this problem. The two objectives of this problem are min-
imizing the total driver payment and minimizing the total
travel distance. A mathematical model of MS-VRPTW is
proposed in this paper.

Using the proposed artificial node, the scheduling of two
types of shifts is combined into one model. To the best of
our knowledge, this is the first mixed-shift VRP model in
the literature. Our investigation shows that it is unrealistic
to tackle MS-VRPTW with exact search approaches even
if a huge amount of computation resources is given. A
hyper-heuristic is thus developed for MS-VRPTW. The
proposed method showed to increase the utilization rate
of trucks and reduce the operational cost of the logistic
company.

In the proposed method, firstly, an initial feasible solution
is generated using an Emergency Level-Based Insertion
Construction Heuristic (EBIH). Then, a Hyper-Heuristic
with two Guidance Indicators (GIHH) is proposed to
improve the solutions. GIHH is a selection perturbation

hyper-heuristic, adapting a set of Low-Level Heuristics
(LLH) with different extents of perturbation to the
problem solution. Two indicators are proposed to guide the
LLH selection adaptively along with changes during the
search, which evaluate LLH’s contribution to the solution
quality improvement and the improvement direction,
respectively.

To test the generality and performance of the proposed
algorithms, a set of diverse benchmark problem instances is
created based on a dataset derived from the real-world prob-
lem, considering the features of commodity emergency and
workload balance. On all the benchmark instances, EBIH
produced feasible solutions within an acceptable time. The
experiment results show that, in different environments, the
two proposed guidance indicators significantly improve the
performance and stability of search for this bi-objective
problem, producing solutions with higher hyper-volumes.
In terms of the acceptance criterion and the selection
scheme of solution, it is shown that, when the ranges
of objectives are vastly different in the Multi-Objective
Vehicle Routing Problem, the Hill Climbing acceptance
criterion outperforms the acceptance criterion of accept-
ing worse solutions (Record-to-Record Travel). Research
also finds that randomly selecting the next current solu-
tion can increase the diversity of search, bringing better
results than deterministic selection in MS-VRPTW. GIHH
outperforms three state-of-the-art algorithms for PVRP and
VRPPD on both the computation time and the quality of
solutions generated. Comparing to the best known solutions
to date, GIHH also produces promising results in the classic
VRPTW.

In our future work, the MS-VRPTW model could be
extended to other mixed-shift problems. The proposed
algorithms can be applied to more practical complicated
multi-objective optimization problems. Hybrid methodolo-
gies combining GIHH and exact methods can be another
promising research direction.
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Appendix

Table 7 Results of GIHH on the Solomon’s instances

Best Known GIHH

Instance NV TD Ref. Best Found

NV TD

C101 10 828.94 [62] 10 828.94

C102 10 828.94 [62] 10 828.94

C103 10 828.06 [62] 10 828.94

C104 10 824.78 [62] 10 825.65

C105 10 828.94 [62] 10 828.94

C106 10 828.94 [62] 10 828.94

C107 10 828.94 [62] 10 828.94

C108 10 828.94 [62] 10 828.94

C109 10 828.94 [62] 10 828.94

C201 3 591.56 [62] 3 591.56

C202 3 591.56 [62] 3 591.56

C203 3 591.17 [62] 3 591.17

C204 3 590.6 [62] 3 590.6

C205 3 588.88 [62] 3 588.88

C206 3 588.49 [62] 3 588.49

C207 3 588.29 [62] 3 588.29

C208 3 588.32 [62] 3 588.32

R101 19 1650.80 [62] 19 1650.80

20 1642.87 [63] 20 1643.34

R102 17 1486.12 [62] 17 1489.33

18 1476.06 [53] 18 1490.72

R103 13 1292.67 [62] 13 1367.27

14 1219.89

R104 9 1007.31 [62]

10 974.24 [64] 10 1007.27

11 971.5 [65] 11 994.85

R105 14 1377.11 [62] 14 1381.88

15 1346.12 [66] 15 1360.78

R106 12 1252.03 [62] 12 1270.45

13 1234.6 [67] 13 1243.72

R107 10 1104.66 [62]

11 1051.84 [66] 11 1077.24

12 1050.06

R108 9 960.88 [62]

10 932.1 [68] 10 956.22

R109 11 1194.73 [62]

12 1013.2 [69] 12 1168.18

13 1151.84 [63] 13 1157.61

R110 10 1118.84 [62]

11 1112.21 [68] 11 1153.83

12 1068 [67] 12 1081.88

R111 10 1096.72 [62] 11 1087.5

12 1048.7 [67] 12 1062.58

Table 7 (continued)

Best Known GIHH

Instance NV TD Ref. Best Found

NV TD

R112 9 982.14 [62]

10 953.63 [70] 10 958.7

R201 4 1252.37 [62] 4 1282.75

5 1190.52 [53]

R202 3 1191.7 [62] 3 1239.82

4 1091.21 [64] 4 1098.06

R203 3 939.503 [62] 3 968.67

4 905.72 [53] 4 935.55

R204 2 825.52 [62]

3 766.91 [53] 3 767.52

R205 3 994.42 [62] 3 1059.91

5 954.16 [63] 4 964.02

R206 3 906.142 [62] 3 930.80

R207 2 890.61 [62]

3 814.78 [70] 3 843.88

R208 2 726.82 [62] 2 741.75

4 698.88 [71] 3 708.9

R209 3 909.16 [62] 3 962.08

5 860.11 [63] 4 871.63

R210 3 939.37 [62] 3 978.11

4 935.01 [53] 4 948.95

R211 2 885.71 [62]

3 794.04 [53] 3 804.16

4 761.1 [68]

RC101 14 1696.94 [62]

15 1619.8 [71] 15 1633.10

RC102 12 1554.75 [62]

13 1470.26 [64] 13 1497.43

14 1466.84 [63] 14 1467.25

RC103 11 1261.67 [62] 11 1265.86

RC104 10 1135.48 [62] 10 1136.49

RC105 13 1629.44 [62]

14 1589.91 [64] 14 1623.54

15 1513.7 [63] 15 1524.14

RC106 11 1424.73 [62] 12 1396.59

13 1371.69 [64] 13 1376.99

RC107 11 1230.48 [62] 11 1254.68

12 1212.83 [63] 12 1233.58

RC108 10 1139.82 [62] 10 1200.69

11 1117.53 [63] 11 1131.23

RC201 4 1406.94 [62] 4 1457.87

6 1134.91 [64] 5 1310.44

RC202 3 1365.64 [62] 3 1546.3

4 1181.99 [68] 4 1192.54

RC203 3 1049.62 [62] 3 1097.32

4 957.10 [53]
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Table 7 (continued)

Best Known GIHH

Instance NV TD Ref. Best Found

NV TD

RC204 3 798.46 [62] 3 829.13

RC205 4 1297.65 [62] 4 1298.90

5 1233.46 [53] 5 1240.45

RC206 3 1146.32 [62] 3 1156.06

4 1107.40 [53] 4 1107.19

RC207 3 1061.14 [62] 3 1135.61

4 1032.78 [53] 4 1033.78

RC208 3 828.14 [62] 3 830.06

The solutions equal to best known results and the newly found
non-dominated solutions are shown in bold
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32. Taillard É, Badeau P, Gendreau M, Guertin F, Potvin J-Y (1997)
A tabu search heuristic for the vehicle routing problem with soft
time windows. Transp Sci 31(2):170–186

33. Shaw P (1997) A new local search algorithm providing high
quality solutions to vehicle routing problems. APES Group,
Dept of Computer Science, University of Strathclyde, Glasgow,
Scotland, UK

34. (1998). Using constraint programming and local search methods
to solve vehicle routing problems. In: International Conference on
Principles and Practice of Constraint Programming. Springer, pp.
417–431

35. Pisinger D, Ropke S (2007) A general heuristic for vehicle routing
problems. Comput Oper Res 34(8):2403–2435



B. Chen et al.

36. Schrimpf G, Schneider J, Stamm-Wilbrandt H, Dueck G (2000)
Record breaking optimization results using the ruin and recreate
principle. J Comput Phys 159(2):139–171
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70. Rochat Y, Taillard ÉD (1995) Probabilistic diversification and
intensification in local search for vehicle routing. J Heuristics
1(1):147–167

71. Ursani Z, Essam D, Cornforth D, Stocker R (2011) Localized
genetic algorithm for vehicle routing problem with time windows.
Appl Soft Comput 11(8):5375–5390

Binhui Chen holds BSc and
MSc degrees from Fuzhou
University, China. Currently,
he is a PhD student in the
School of Computer Science,
University of Nottingham, UK.
His research interests include
combinatorial optimization
problem model and algorithm,
data mining and transporatation
problems.

https://www.google.com/maps/d/u/0/edit?hl =en&mid=1F7Ap9EO3MyzFudUQ4_Mu48ZlhSY&ll=30.08120233597248 %2C117.0881652999999&z=7
https://www.google.com/maps/d/u/0/edit?hl =en&mid=1F7Ap9EO3MyzFudUQ4_Mu48ZlhSY&ll=30.08120233597248 %2C117.0881652999999&z=7
https://www.google.com/maps/d/u/0/edit?hl =en&mid=1F7Ap9EO3MyzFudUQ4_Mu48ZlhSY&ll=30.08120233597248 %2C117.0881652999999&z=7
http://www.sintef.no/Projectweb/TOP/VRPTW/Solomon-benchmark/100-customers/
http://www.sintef.no/Projectweb/TOP/VRPTW/Solomon-benchmark/100-customers/


A hyper-heuristic with two guidances...

Dr. Rong Qu is an Associated
Professor at the University of
Nottingham. She is a mem-
ber of the Automated Schedul-
ing, Optimsation And Plan-
ning (ASAP) Research Group.
She received her PhD in Com-
puter Science from the Uni-
versity of Nottingham in 2002,
and BSc in Computer Sci-
ence and Its Applications from
XiDian University in 1996.
Dr. Qu’s main research inter-
ests include the modelling
and optimisation algorithms
for scheduling and optimisa-

tion algorithms in transport scheduling in logistics, personnel schedul-
ing, telecommunication network routing, portfolio optimisation, and
timetabling problems, etc. by using evolutionary algorithms, mathe-
matical programming, constraint programming in operational research
and artificial intelligence, and hybridisations of these techniques.

Prof. Ruibin Bai holds BSc
and MSc degrees from North-
western Polytechnic Univer-
sity, China and a PhD from
University of Nottingham UK.
He is now a professor in the
School of Computer Science
and leads the Artificial Intelli-
gence and Optimisation (AIOP)
group. He is an IEEE senior
member and Associate Editor
for Networks, an ISI indexed
journal. His current research
interests include computa-
tional intelligence, machine
learning, operations research,

modelling, scheduling and optimisation with a special focus on
transportation systems and digital healthcare.

Wasakorn Laesanklang
received his PhD in Computer
Science from the University of
Nottingham, UK. Currently,
he is a faculty member of the
Department of Mathematics,
Faculty of Science, Mahidol
University, Thailand. He also
works as a researcher for the
Centre of Excellence in Math-
ematics, CHE, Thailand. His
research interests are mixed
integer programming model,
transportation problems and
optimization techniques.


	A hyper-heuristic with two guidances...
	Abstract
	Abstract
	Introduction
	Vehicle routing problem variants
	Existing methods

	Problem definition & mathematical model
	Problem description
	Mathematical model

	Solution methodologies for bi-objective mixed-shift vehicle routing problem with time windows
	Exact search
	Initial solution construction heuristic
	A selective perturbation hyper-heuristic with two guidance indicators
	High-level heuristic
	Guidance indicators and weight adjustment scheme
	Low-level heuristics


	Experiments & analysis
	Benchmark dateset
	Comparison experiments
	Initial solutions
	Parameter setting and complexity discussion
	Comparison experiment results and analysis
	Impacts of the guidance indicators
	Impacts of solution selection and acceptance criterion
	Comparison with the state-of-the-art algorithms
	Results on VRPTW benchmarks



	Conclusions
	Acknowledgements
	Open Access
	Appendix 1 
	References


