Modulated model predictive control with optimized overmodulation

Garcia, Cristian F. and Silva, Cesar A. and Rodriguez, Jose R. and Zanchetta, Pericle and Odhano, Shafiq A. (2018) Modulated model predictive control with optimized overmodulation. IEEE Journal of Emerging and Selected Topics in Power Electronics . p. 1. ISSN 2168-6777

[img]
Preview
PDF - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
Download (21MB) | Preview

Abstract

Finite Set Model Predictive Control (FS-MPC) has many advantages, such as a fast dynamic response and an intuitive implementation. For these reasons, it has been thoroughly researched during the last decade. However, the wave form produced by FS-MPC has a switching component whose spread spectrum remains a major disadvantage of the strategy. This paper discusses a modulated model predictive control that guarantees a spectrum switching frequency in the linear modulation range and extends its optimized response to the overmodulation region. Due to the equivalent high gain of the predictive control, and to the limit on the voltage actuation of the power converter, it is expected that the actuation voltage will enter the overmodulation region during large reference changes or in response to load impacts. An optimized overmodulation strategy that converges towards FS-MPC’s response for large tracking errors is proposed for this situation. This technique seamlessly combines PWM’s good steadystate switching performance with FS-MPC’s high dynamic response during large transients. The constant switching frequency is achieved by incorporating modulation of the predicted current vectors in the model predictive control of the currents in a similar fashion as conventional Space-Vector Pulse Width Modulation (SV-PWM) is used to synthesize an arbitrary voltage reference. Experimental results showing the proposed strategy’s good steady-state switching performance, its FS-MPC-like transient response and the seamless transition between modes of operation are presented for a permanent magnet synchronous machine drive.

Item Type: Article
Additional Information: © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
Schools/Departments: University of Nottingham, UK > Faculty of Engineering > Department of Electrical and Electronic Engineering
Identification Number: https://doi.org/10.1109/jestpe.2018.2828198
Depositing User: Eprints, Support
Date Deposited: 23 Aug 2018 08:39
Last Modified: 23 Aug 2018 08:46
URI: http://eprints.nottingham.ac.uk/id/eprint/53425

Actions (Archive Staff Only)

Edit View Edit View