
Lookahead Policy and Genetic Algorithm for
Solving Nurse Rostering Problems

Peng Shi and Dario Landa-Silva

School of Computer Science, ASAP Research Group
The University of Nottingham, United Kingdom
{peng.shi,dario.landasilva}@nottingham.ac.uk

Abstract. Previous research has shown that value function approxima-
tion in dynamic programming does not perform too well when tackling
difficult combinatorial optimisation problem such as multi-stage nurse
rostering. This is because the large action space that need to be ex-
plored. This paper proposes to replace the value function approximation
by a genetic algorithm in order to generate solutions to the stages before
applying the lookahead policy to evaluate the future effect of decisions
made in previous stages. Then, the paper proposes a hybrid approach
that generates sets of weekly rosters through a genetic algorithm for con-
sideration by the looahead procedure that assembles a solution for the
whole planning horizon of several weeks. Results indicate that this hybrid
between an evolutionary algorithm and the lookahead policy mechanism
from dynamic programming performs more competitive than the value
function approximation dynamic programming investigated before. Re-
sults also show that the proposed algorithm is ranked well in respect of
several other algorithms applied to the same set of problem instances.
The intended contribution of this paper is towards a better understand-
ing of how to successfully apply dynamic programming mechanisms to
tackle difficult combinatorial optimisation problems.

Keywords: hybrid algorithm, genetic algorithm, lookahead policy eval-
uation, dynamic programming, nurse rostering problem

1 Introduction

Dynamic programming (DP) is a divide-and-conquer optimisation approach in
which a problem is solved by splitting it into a set of sub-problems. Solution
of each sub-problem is recorded and could be accessed directly if the same sub-
problem need to be evaluated in the future. However, a problem could be split
into a large amount of sub-problems as the input size increased. This means that
implementations of dynamic programming require a large memory to store the
value of solved sub-problems and long computation time to evaluate solutions.
This is the curse of dimensionality occurred in the dynamic programming al-
gorithms. To make the search efficiently, Approximate Dynamic Programming
(ADP) considers only a small part of the search space based on the use of ap-
proximation functions [1]. Solutions obtained by ADP are expected to be close
to optimality while using shorter computational time than DP.



Nurse rostering is a difficult combinatorial optimisation problem for which
many solution techniques have been proposed in the literature [2, 3]. In our pre-
vious research, the suitability of ADP to solve the Nurse Rostering Problem
(NRP) was investigated by approaching NRP as a Markov Decision Process
[4]. The approximation function focused on selecting actions that satisfy the
principle of optimality [5] but not all were covered. That approach was evalu-
ated using a subset of problem instances from the Nurse Scheduling Problem
Library (NSPLib) [6]. Experimental results indicated that the performance of
the implemented ADP was competitive with various heuristic algorithms from
the literature. However, the performance of that ADP algorithm was not very
good when tackling the multi-stage NRP proposed as part of the Second In-
ternational Nurse Rostering Competition (INRC-II). In the single-stage NRP a
schedule for the full planning horizon is produced, and all information about
the weekly staffing requirements is known. In the multi-stage NRP a schedule is
produced for one week at a time, and while the schedule for each week has an
effect on the future weeks, the requirements for the future weeks are unknown
when solving each week. Then, an ADP approach that incorporates a combined
policy function for solving the multi-stage NRP was proposed later [7]. Experi-
mental results showed an improved performance on tackling problem instances
with 4 or 8 weeks planning horizon. However the computational time for solving
each instance is longer than the other approaches (all of them heuristics) from
the competition.

It has been observed that more than 60% of the computational time spent
by our latest ADP implementation is used to produce the solutions in each
stage. This has been the motivation for developing an improved way to gener-
ate good solutions but in considerably shorter time. Then, in the present paper
a population-based optimisation technique, Genetic Algorithm (GA), is imple-
mented to replace the value function approximation used in our previous work. A
GA is a heuristic approach that evolves a population of solutions using crossover
and mutation operators. The resulting technique is a hybrid method that uses
the GA to produce a pool of solutions in each stage and the lookahead policy
selects the most promising candidate solution in each stage in order to construct
a schedule for the whole planning period.

The combination of dynamic programming and GAs has been investigated
before in the literature. Early works such as [8] proposed dynamic programming
to produce new solutions after the crossover operation in a GA. The rationale
of that methodology is the assumption that good solutions tend to have a lot
of common in their structure. Then, the common genes between two offspring
solutions after crossover were identified and dynamic programming was then
applied to produce a new solution based on this common structure. The solution
produced in this way was then passed to the next generation in the GA. In a
more recent work, dynamic programming was used to evaluate the fitness value
of chromosomes when solving a bi-objective cell formation problem [9].

Most hybrid algorithms combining dynamic programming and GAs in the
literature follow the design of a GA as the driving technique and then dynamic



programming is used to evaluate part of the procedure. The design proposed in
this paper is different because the whole methodology is driven by the dynamic
programming paradigm and the GA is used to tackle the sub-problems. That
is, the GA generates solutions for the weekly problem and the lookahead policy
evaluates the effect of those solutions on the future stages of the problem. The
best schedule generated by the GA for a given week is usually not the best
to guarantee the best overall solution. The power of the proposed approach
is precisely in the GA producing a set of solutions from which the lookahead
policy can choose the most suitable to construct a full schedule of the best
quality. Details of the proposed hybrid algorithm are given in section 2. Section
3 describes the experimental settings and results. Section 4 concludes the paper
and outlines future work.

2 Overview of the Hybrid Algorithm

2.1 Sketch of Algorithm Development

Function 1 presents the general procedure of dynamic programming on solving a
multi-stage optimisation problem M . In this function, T represents the number
of stages that M need to be solved. Requirements of stage problem, Mt, and the
pre-condition information, νt, are the input of F (.) to obtain stage solutions. νt
is a representation of all solutions explored before stage t. V is a fitness function
and st is an individual stage solution. Once Mt is solved, st will be transferred
into νt+1 as a new pre-condition information for the next stage. A solution of M
is a combination of one st at each stage and the objective is to obtain the one
with minimum cost.

V (M) = min

T∑
t=1

V (st|st ∈ F (Mt, νt)) (1)

Similar procedure is implemented to tackle the multi-stage nurse rostering
problem which this paper focused on. Stage T in this problem is the number of
weeks. The stage problem Mt could be treated as a single stage nurse rostering
problem and aim to produce a scheduling that satisfy weekly constraints. νt is a
solution summary from previous stages. st is a nurse scheduling and the fitness
value V (st) is to calculate the constraint violations of st.

However nurse rostering problem is a NP-hard combinatorial optimisation
problem so that dynamic programming algorithm is not applicable to this prob-
lem. To solve this issue, an approximation function is the applied and aim to
obtain a solution st by extracting from a subset of the search space. st is not only
a good solution to the stage problem but also lead a good effect to the future
solving procedures. With this consideration, a hybrid algorithm is proposed. The
solution st is obtained by genetic algorithm and the future effect is evaluated
through a lookahead procedure. The overall framework of this hybrid algorithm
is exhibited in Algorithm 1.



Algorithm 1 The Proposed Hybrid of Lookahead Policy and Genetic Algorithm

(Genetic Algorithm Phase)
Initialise C and V (C) as 0.
∀c ∈ C, calculate CV (c).
while stopping criteria is not achieved do

for every selected parents (c1, c2) do
ch1&ch2 = c1 ⊕ c2.
ch

′
1 = Mutation(ch1).

ch
′
2 = Mutation(ch2).

Calculate CV (ch
′
1) and CV (ch

′
2).

Replace(C, c1, c2, ch
′
1, ch

′
2).

(Lookahead Phase)
Initialise LK(C) as 0.
for each c ∈ C do
{Sol1, · · · , Solpe} = Simulate(c).
LK(c) =

∑
CV (Sol1) + · · ·+ CV (Solpe).

V (c) = CV (c) + LK(c).

Return argminc∈CV (c).

2.2 Genetic Algorithm

Output of this genetic algorithm is a solution set based on the final population
C. A chromosome c is encoded indirectly and corresponds to a weekly schedule.
The length of c is the number of nurses and each gene is an index indicating
the valid shift pattern assigned to the corresponding nurse. A valid shift pattern
(vsp) is a pre-constructed nurse’s weekly roster that satisfy hard constraints.
Nurses may have separate requirements so that the number of vsp could be
different. As part of our approach, we build a set of valid shift patterns for each
nurse. This procedure is implemented directly from the previous work [7]. A full
weekly solution is extracted from the related chromosome based on this set. An
example of this encoding and decoding scheme is exhibited in figure 1 with 3
nurses and 2 shifts. In this example, E and L is an abbreviation of early and
late shift respectively, and empty blocks indicates a day-off.

The initial population is constructed randomly. Fitness value V (∗) is sum of
the corresponding constraint violations CV (∗) from GA phase and the future
estimation LK(∗) from lookahead phase. In this algorithm, the input of V (∗) is
mainly focused on individual chromosome. A population C is also accepted as
an input, as algorithm 1 showed, and in this circumstances the full population
is initialised as the same value.

After generating the initial population, a number of generations are exe-
cuted where the population is evolved towards hopefully better solutions. The
GA uses the three typical operators to generate new solutions or offspring: Selec-
tion, Crossover and Mutation. The Selection operator implemented here chooses
parents through an elitist-tournament selection procedure that works as follows.
All chromosomes are sorted in a non-increasing order of their fitness value. The



2 1 3

N1 N2 N3

N1 N2 N3

SP1 SP1 SP1

SP2 SP2 SP2

SP3 SP3 SP3

Chromosome

E E E E L

L L E E E

L L L L

N1

N2

N3

D1 D2 D3 D4 D5 D6 D7

Shift Pattern Set Solution

Fig. 1. Example of the indirect chromosome representation

best chromosome is saved for the next generation (this is the elitist mechanism).
Then, a double-elimination tournament as illustrated in figure 2 is used to select
two parents. Tournament selection is widely used in the implementation of GAs
because it applies selection pressure to keep the best individuals while also pro-
moting diversity in the chromosomes for the next generation. With this selection
approach half of the current population is selected for the following operations
in the GA.

C1

C2

C3

C4

C2

C3

C1

C4
C4

C1

C4

winner

winner

loser

loser

C2

winner

winner

winner

loser

(keep)

(keep)

Fig. 2. Selection by double-elimination tournament where each C represents an indi-
vidual chromosome.

Once the two parents are selected as described above, the offspring is pro-
duced by applying the crossover operator ⊕ to the parents resulting in children
that are the combination of genes from the parents. The widely used uniform



crossover operator is implemented here. In this operator each gene for the off-
spring is chosen at random from the two corresponding genes in the parents.

The mutation operator is then applied with some probability (mutation rate)
to the generated offspring. The aim of the mutation operator is to maintains the
diversity in the population. Different from the crossover operator, the mutation
operator only takes place in each chromosome gene by gene. A common mutation
operator is a swap. The mutation operator in this paper is implemented as the
neighbourhood-swap, which the current gene value bi is swapped by the one next
to it bi+1. The last gene will be swapped by the first one if mutation occurred.
For example an original offspring ch1 is {3, 7, 2, 11, 5, 1} and the new offspring
ch

′

1 could be {7, 3, 11, 5, 2, 1} after the swap operator. However the gene value is
a nurse vsp index but nurses could have different vsp size. Then the new offspring
has a chance to be infeasible after swapping. Back to the example, the third gene
value of ch

′

1 is changed from 2 to 11. This new offspring could be infeasible if the
third nurse only has 8 valid shift patterns. We introduce a check process to avoid
this issue. A gene will be reassigned to a random value if the swapped value is
higher than the max vsp. The full mutation procedure is exhibited in algorithm
2.

Algorithm 2 Neighbourhood-Swap Operator

for every bi in chromosome c do
if mutation occurred then

Swap(bi, bi+1), i < length(c).
OR Swap(bi, b1), otherwise.
if bi < vspimax then

bi = Random(vspimax)

The population size in this genetic algorithm is stable. However half of the
population from the previous generation is eliminated during the selection pro-
cedure. The purpose of the replace function is save the new offspring into the
population for the next generation.

Two stopping criteria are used here and the GA terminates once any of them
is satisfied. One stopping criterion is the maximum number of generations and
the other one is that the best chromosome so far has not changed after a number
of generations.

2.3 Lookahead Policy Evaluation

In the multi-stage NRP, the best solution Solbest produced by the GA in a stage
is not guaranteed to be the best weekly schedule for the complete overall roster,
once the future week staffing requirements are considered. This is because some
constraints can only be checked until the last stage. But since the GA produces
a population of solutions, some of those solutions other than Solbest might be a



better choice for the full schedule. The lookahead policy from approximate dy-
namic programming is used to evaluate each solution in the population through
a lookahead period in the future.

In the initialisation, the future requirements for each stage in the lookahead
period pe are prepared. Each chromosome c in the final population produced
by the GA will be evaluated through this lookahead procedure and using the
same requirements prepared in the initialisation. The future estimation value
LK(c) is initialised as 0. The purpose of the simulation function is to build a
full roster {Sol1, · · · , Solpe} among pe assessing each chromosome in respect of
the constraints that were not considered when solving the weekly problem.

A full simulation solution set {Sol1, · · · , Solpe} of c is built when the proce-
dure terminates in the last stage of the lookahead period. The constraint viola-
tion of each single solution in this set will be calculated and updated to LK(c).
The fitness value V (c) is then the sum of LK(c) and CV (c). The chromosome c
with lowest fitness value will be the final output of the whole algorithm and the
decoded solution will be recorded for the next solving stage.

3 Experimental Design and Results Analysis

In this section we present experiments to validate performance of the proposed
hybrid approach. The selected problem instance are described in subsection 3.1.
Experiment settings of generating results in the rest of this section are given
in subsection 3.2. The subsection 3.3 compares the performance of proposed
approach and previous work on test set. Full experiment results are discussed in
subsection 3.4. The proposed algorithm described in section 2 was implemented
in Java (JDK 1.7) and all computations were performed on an Intel (R) Core
(TM) i7 CPU with 3.2 GHz and 6 GB of RAM.

3.1 Problem Instances

The problem instances for evaluating performance of the proposed approach are
selected from the Second International Nurse Rostering Competition [10]. Three
types of instances are available defined by a set of files, scenario file, week data
files and initial history files. The scenario file provides scenario information and
requirements for the whole planning horizon. There are 10 week data files that
define the specific requirement of each week. There are 4 initial history files that
define the constraints for the rostering of the first week. With these files, a variety
of problem instances with different planning horizons and conditions could be
produced. For the aforementioned competition, a set of instances was provided
to compare the various proposed approaches. Even after the competition, that
set of problem instances continues to be used by researchers as a benchmark
to test algorithms for the NRP. In the set of instances used here, the planning
horizon is either 4 or 8 weeks with the number of nurses ranging from 5 up to
100. Details about these set of problem instances are available at [11].



3.2 Experimental Settings

The parameter settings used for the genetic algorithm (GA) are listed in table
1. These values were obtained through preliminary experimentation and no so-
phisticated mechanism to set parameter values was explored given that the aim
of the GA is not to generate the best possible solution for a given stage of the
problem, but instead to generated a population of good quality solutions for the
lookahead policy evaluation. Experimental results in the rest of this section use
the same set of parameter values.

Population Size 250

Crossover Rate 55%

Mutation Rate 10%

Maximum number of generations 50000

Maximum number of idle generations with no change in best chromosome 5000

Number of runs per instance 50
Table 1. Genetic Algorithm Parameter Settings

As described above, solutions produced by the GA are evaluated through the
lookahead procedure. In respect of the length of the lookahead period (T ), there
is a trade-off between the quality of solutions and the computation required for
the lookahead policy evaluation. Following our previous work in [7] the length is
set as T = 3 for 4-week scenarios and T = 4 for 8-week scenarios.

3.3 Algorithm Performance Comparison among Test Set

Each instance is solved by 50 times for both algorithms and the results are sum-
marised in table 2. The key component of the proposed algorithm that different
from the previous research is the weekly problem solving procedure. In the conse-
quence we directly use the name of Genetic Algorithm (GA) and Value Function
Approximation (VFA) in this table to represent each approach. Columns of Min.
presents the minimum (best) objective values explored by both algorithms. The
average value and standard deviation is summarised in columns of Avg. and Std.
Dev. separately. Column time is the average computational time.

The results for the value function approximation are reproduced from our
previous paper [7]. As can be seen from column Min., the best objective value
obtained by the two approaches are relatively close to each other. The genetic
algorithm obtained slightly better results than the value function approximation
on the instances with larger number of nurses.

It is far enough to summarise that the proposed approach is improved from
the previous research only based the minimum obtained value. As genetic algo-
rithm and value function approximation are both following the idea of heuristics,
solutions could be changed by running multiple times. The performance of both
algorithms will be compared through two more categories, the average value



Genetic Algorithm Value Function Approximation

Instance Min. Avg. Std. Dev Time Min. Avg. Std. Dev Time

n005w4 1 455 458.8 19.712 0.210 450 455.5 23.573 7.46

n005w4 2 435 439.3 25.137 0.213 435 439.6 31.578 7.19

n005w4 3 530 536.6 30.861 0.220 530 537.8 33.584 7.85

n012w8 1 1230 1241.8 117.862 1.456 1235 1251.2 185.683 18.545

n012w8 2 1540 1553.6 185.407 1.471 1540 1555.0 254.673 19.643

n012w8 3 1515 1525.1 127.593 1.509 1515 1528.3 186.460 18.730

n021w4 1 1725 1739.4 187.683 0.916 1815 1833.6 235.256 11.235

n021w4 2 2150 2162.8 168.974 0.976 2150 2166.2 205.574 12.085

n021w4 3 1940 1955.0 265.053 0.954 2035 2052.7 385.678 11.586
Table 2. The result summary of Genetic Algorithm and Value Function Approximation
on solving test instances from the Second International Nurse Rostering Competition.

Avg. of multiple independent runs and related standard deviation Std. Dev. The
average value is to estimate the overall performance of both algorithms. While
the standard deviation indicates the spread range of solution values. As can be
seen from the table, the average value of genetic algorithm is slight smaller than
the one of value function approximation. This indicates that the overall solu-
tions obtained by GA of the test instances are improved from VFA. While the
standard deviation of GA is much smaller than VFA. This shows that solutions
of GA is tend to be close to the mean among the experiments running while
the results of value function approximation are spread out over a wide range.
We could summarised that replacing the value function approximation by the
genetic algorithm is an improvement in the hybrid approach.

Comparing the computational time among different approaches is not a good
evaluation strategy. However both algorithms are implemented in the same pro-
gramming environment, we treated time is another indicator when discussion
the performance of two algorithms. Time is recorded in minutes. As can be seen
from the table, the computational time of genetic algorithm is much shorter
than the value function approximation. Together with the summary from pre-
vious paragraph, the genetic algorithm achieved as good or better solutions as
value function approximation but in considerably short time. In summary, exper-
iments of test instance indicates that the performance of the proposed algorithm
is improved from previous research.

3.4 Full Experiment Discussion

Table 3 presents the full results of the proposed hybrid approach on tackling
the competition instances of INRC-II. The values in column Gap correspond
to the difference in objective value between the given approach (GA-Lookahead
or ADP-CP) and the Best result from the competition. A mark ‘+’ next to
a Gap value indicates that the obtained solution cost value is above the best
known. The values in column Rank indicate the ranking achieved by the proposed
algorithm among all the algorithms participating in the competition. Comparing
the hybrid GA-Lookahead method proposed in this paper to our previous



approach ADP-CP, it is clear that the proposed approach performs significantly
better except in the first two problem instances.

There is no full papers of the approaches presented in the INRC-II com-
petition published before producing this paper. So it is really hard to have a
reasonable comparison between our approach and the participants. Meanwhile
if check the competition website, all the final verified results of committee are
different from the submitted version of participants. We are not sure how our
results will be updated through the committee validation package. So in this
paper we just compare the results that participants submitted results.

The right part of table 3 seeks to validate our GA-Lookahead approach by
comparing the quality of the solutions obtained to the Best and Worst reported
for the competition. The gap achieved by the GA-Lookahead has decreased
significantly with respect to the gap achieved by the previous approach. Even
though these values of the gap to the best known solutions are still considerable,
it can be seen that the ranking of the proposed hybrid has improved by about
10 positions.

4 Conclusion

In this paper we proposed a hybrid algorithm by combining a genetic algorithm
with lookahead policy from dynamic programming to tackle the multi-stage nurse
rostering problem. In this problem, a stage is defined as a week and the roster
of each week is constructed while assuming that the staff requirements for the
future weeks is not known. Also, when constructing the roster for a week, the
historical information from the previous weeks need to be considered. Previ-
ous research investigated approximate dynamic programming with a combined
policy function to solve this problem. In the hybrid algorithm proposed here,
a genetic algorithm is applied to tackle the weekly problem. The genetic algo-
rithm produces a set of rosters for the week while not considering the global
constraints. The lookahead policy then evaluates each of the rosters in respect
of the future demand. That is, the lookahead procedure tries to select the roster
that performs the best considering the future weeks and the history from the pre-
vious weeks among population. The lookahead policy then assembles a roster for
the whole planning horizon. The algorithm is tested on solving a set of problem
instances from the Second International Nurse Rostering Competition. Results
produced by the proposed approach are compared to a previous method based
on approximate dynamic programming with combined policy function and to all
the results submitted to the competition. The improvement achieved with the
proposed GA-Lookahead algorithm in considerable when compared to the pre-
vious approximate dynamic programming method. The intended contribution of
this paper is to progress the understanding of how dynamic programming mech-
anisms can be successfully used to tackle difficult combinatorial optimisation
problems.



References

1. Warren B Powell. Approximate Dynamic Programming: Solving the curses of di-
mensionality, volume 703. John Wiley & Sons, 2007.

2. Jorne Van den Bergh, Jeroen Beliën, Philippe De Bruecker, Erik Demeulemeester,
and Liesje De Boeck. Personnel scheduling: A literature review. European Journal
of Operational Research, 226(3):367–385, 2013.

3. Edmund K Burke, Patrick De Causmaecker, Greet Vanden Berghe, and Hendrik
Van Landeghem. The state of the art of nurse rostering. Journal of scheduling,
7(6):441–499, 2004.

4. Peng Shi and Dario Landa-Silva. Dynamic programming with approximation func-
tion for nurse scheduling. In International Workshop on Machine Learning, Opti-
mization and Big Data, pages 269–280. Springer, 2016.

5. Samuel G Davis and Edward T Reutzel. A dynamic programming approach to work
force scheduling with time-dependent performance measures. Journal of Operations
Management, 1(3):165–171, 1981.

6. Broos Maenhout and Mario Vanhoucke. Nsplib – a nurse scheduling problem
library: a tool to evaluate (meta-)heuristic procedures. In O.R. in health, pages
151–165. Elsevier, 2005.

7. Peng Shi and Dario Landa-Silva. Approximate dynamic programming with com-
bined policy functions for solving multi-stage nurse rostering problem. In Machine
Learning, Optimization and Big Data, pages 349–361. Springer, 2017.

8. Mutsunori Yagiura and Toshihide Ibaraki. The use of dynamic programming in
genetic algorithms for permutation problems. European Journal of Operational
Research, 92(2):387–401, 1996.

9. Mohammad Mohammadi and Kamran Forghani. A hybrid method based on ge-
netic algorithm and dynamic programming for solving a bi-objective cell formation
problem considering alternative process routings and machine duplication. Applied
Soft Computing, 53:97–110, 2017.

10. Sara Ceschia, Nguyen Thi Thanh Dang, Patrick De Causmaecker, Stefaan Haspes-
lagh, and Andrea Schaerf. Second international nurse rostering competition (inrc-
ii)—problem description and rules—. arXiv preprint arXiv:1501.04177, 2015.

11. INRC-II the second nurse rostering competition. http://mobiz.vives.be/inrc2/.
Accessed: 2016-05-23.



Instance GA-Lookahead Gap Rank ADP-CP Gap Rank Best Worst

n030w4 1 2000 +255 5 1980 +235 4 1745 9850

n030w4 2 2130 +195 5 2110 +175 4 1935 10605

n030w8 1 2940 +645 5 4830 +2535 14 2295 21185

n030w8 2 2380 +480 5 4855 +2955 14 1900 21145

n040w4 1 2075 +350 7 3270 +1545 14 1765 14680

n040w4 2 2235 +325 6 3735 +1825 14 1910 14460

n040w8 1 3755 +650 4 9305 +6200 15 3105 35010

n040w8 2 3735 +760 6 8975 +6000 15 2975 33000

n050w4 1 1890 +365 6 3535 +2010 14 1525 17745

n050w4 2 1955 +475 6 3030 +1550 12 1480 15380

n050w8 1 6630 +1070 5 8965 +3405 12 5560 43040

n050w8 2 6630 +1155 5 8420 +2945 11 5475 42765

n060w4 1 3455 +625 9 12282 +9452 15 2830 19230

n060w4 2 3540 +590 6 15019 +12004 16 2950 20400

n060w8 1 4010 +1170 6 9720 +6880 15 2840 44130

n060w8 2 4505 +1305 6 10160 +6960 15 3200 44430

n080w4 1 4130 +655 6 18350 +14875 15 3474 26935

n080w4 2 4130 +595 6 16885 +13350 15 3535 27210

n080w8 1 6735 +1890 6 35975 +31130 15 4845 64915

n080w8 2 6765 +1660 6 38800 +33695 16 5105 66515

n100w4 1 2350 +905 6 16045 +14600 16 1445 33740

n100w4 2 2915 +845 6 17885 +15815 16 2070 33465

n100w8 1 5115 +2020 8 35690 +32595 16 3095 85260

n100w8 2 5505 +2370 7 35440 +32305 16 3135 87445

n120w4 1 3385 +915 7 22960 +20490 16 2470 36235

n120w4 2 3435 +905 6 22065 +19535 15 2530 36320

n120w8 1 6145 +2590 7 39170 +35615 15 3555 83590

n120w8 2 6315 +2880 7 41350 +37915 15 3435 82145
Table 3. Quality of solutions produced by the proposed hybrid approach combining a
Genetic Algorithm with a Lookahead Policy (GA-Lookahead) and the previous Com-
bined Policy Adaptive Dynamic Programming (ADP-CP). The Best and Worst values
from the competition are also reported for comparison. The best values produced by
our approaches are indicated in bold. The Gap value is reported as the difference in the
objective value to the Best from the competition results. The Rank value indicates the
position of the approach with respect to all the results submitted for the competition.


