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Abstract

There is a need for non-industrial robots such as in homecare and eldercare. Light-
weight mobile robots preferred as compared to conventional fixed based robots as
the former is safe, portable, convenient and economical to implement. Sensor system

for light-weight mobile flexible manipulator is studied in this research.

A mobile flexible link manipulator (MFLM) contributes to high amount of vibrations
at the tip, giving rise to inaccurate position estimations. In a control system, there
inevitably exists a lag between the sensor feedback and the controller. Consequently,
it contributed to instable control of the MFLM. Hence, there it is a need to predict the
tip trajectory of the MFLM.

Fusion of low cost sensors is studied to enhance prediction accuracy at the MFLM’s
tip. A digital camera and an accelerometer are used predict tip of the MFLM. The
main disadvantage of camera is the delayed feedback due to the slow data rate and
long processing time, while accelerometer composes cumulative errors. Wheel
encoder and webcam are used for position estimation of the mobile platform. The

strengths and limitations of each sensor were compared.

To solve the above problem, model based predictive sensor systems have been
investigated for used on the mobile flexible link manipulator using the selected
sensors. Mathematical models were being developed for modeling the reaction of the
mobile platform and flexible manipulator when subjected to a series of input voltages

and loads.

The model-based Kalman filter fusion prediction algorithm was developed, which
gave reasonability good predictions of the vibrations of the tip of flexible
manipulator on the mobile platform. To facilitate evaluation of the novel predictive
system, a mobile platform was fabricated, where the flexible manipulator and the
sensors are mounted onto the platform. Straight path motions were performed for the

experimental tests.

The results showed that predictive algorithm with modelled input to the Extended

Kalman filter have best prediction to the tip vibration of the MFLM.
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1. Introduction

The tremendous success of robotics has had automating many industrial activities,
mainly based on articulated * robots. The first industrial robot was “Unimates”
(UNIversal AutoMATION) [1] developed by George Devol and Joseph Englberger
during early 60’s. Today’s robotics is emerged into achieving similar advancements in
non-conventional environments to change our way of life. As the technology advances,
there will be needs for domestic robots in the near future [2]. There are existing

applications that pose potential for lightweight alternatives:

1) The aerospace and outer space industries, such as driving lighter robots in satellites
using lesser energy, for example the space station remote manipulator system [3].
Weights of the robots have to be minimized while transporting into outer space.

2) These flexible manipulators can be seen in hospitals as well, especially in the
operation rooms. Ljungblad et al. [4] reported the need for the hospital robots. Current
robotic systems are bulky and high-cost, thus, these applications are open for future
development of light-weight robots.

3) As an example of using robots in offices and restaurants is the autonomous restaurant
service robot by Yu et al. [5]. These robots are mainly large and high-cost, which can be

replaced with light-weight robotic manipulators.

4) In homecare; there is a future trend having homecare robot for elderly. Yamazaki et
al. [6] the need for the homecare robots in aging society. This is still a very new
technology in domestic area, homecare robots for assisting handicapped or elderly hold
tremendous potentials for assisting aging populations. The size and cost of these robotic

systems needs to reduce considerably before it can gain acceptances.

In many developed countries, fertility rates are low, homecare robots is predicted to play
important role in providing assistance to the aging populations in the near future [6].

Domestic and service robots may one day be used to lower this burden of care and

! An articulated robot is a robot with rotary joints, which can range from simple two-joint arms to
multiple-joints arms.



enhance the quality of life for the worlds’ senior citizens. Naturally, this will lead to a

future need for domestic and homecare robots.

The problems are these robotic systems are mostly bulky and high power consumption,
and expensive. For these reasons, much works are still needed to develop lighter, faster,
lower energy and more economical robots. However, the very challenging problems of
the light-weight flexible link robotic manipulators are the lack of accuracy in trajectory

and positioning control.

There are many factors to be considered when designing non-industrial robots, whereas
safety being a fundamental. Other factors to consider are it has to be economical and
lower power consumption. Lightweight mobile flexible link manipulators can bring
success for these factors. One of the key enabling technologies (in the view of the
author) that can make such systems one step closer to reality is by having a low cost and
light-weight sensor system that can predict the end-effector’s position and vibration.
This is the main focus of this research.

1.1  Project motivation

Extensive use of flexible link manipulators (FLMSs) in various robotic applications has
brought research interests for many scholars over the world over the last few decades.
The study of FLMs began since the 1970’s [7] across many engineering disciplines,
while the 1980°s rise major research efforts. Earlier studies were mainly focused on the
dynamic modeling of these flexible manipulators. Those studies were documented very
well [8] and in some text books. The newer applications and latest technological
advancements brought attentions on the importance of end-effector trajectory tracking
and vibration reductions at the tip of FLMs. Recently, researchers have focused on the
controlling of the flexible manipulator as well as applying them onto different robotic
platforms. Both link and joint flexibility were considered, which can be either revolute

or prismatic manipulators.

Many research works have been focusing on single or two links flexible manipulators, or
manipulators with only joint flexibility, but most of the papers are still based on single
link types. Also there has not been many works that are based on flexible manipulators



with large elastic deflections. There is also lack in the study on mobile flexible
manipulators. Mobile robots has very much wider workspace with small footprint, hence
it become reasonable to employ mobile robot into home-based environments. It is thus
the motivation of this research to focus the study on tracking the tip vibration of the
mobile flexible link manipulator.

For position tracking of the manipulator, conventional robots are designed to have

maximum stiffness so as to achieve minimum vibration and good positioning accuracy

of the end-effector. Consequently, these types of robots suffered from bulky design that

requires high power drives. Besides, minimal vibrations at the end-effector still exist

when operating at high speed and at high payloads [9].

FLMs on the other hand enjoyed the advantages of smaller footprint, lighter, faster and

lower energy requirement. In addition, flexible manipulators offer wider and newer

robotics applications which are safer, economical and portable. The major problem of

the flexible manipulators is the constrained to the high amount of vibrations [10]. This

vibrations and flexing of the flexible manipulator contributed considerable

uncertainties for position estimation at the tip of the FLM due to the nonminimum

phase characteristic caused by the control problem of non-holonomic drive and

unbounded response at the tip. The cause is due to under-actuation feature happening at

the joint due to the lesser actuators as compared to the degrees-of-freedom [11].

For any applications, such as fetching a glass of water, the end-effector of the robot
needs to move along a desired trajectory at a specified speed [12]. The links of flexible
manipulators will deflect and vibrate during and after a maneuver. For the end effector
trajectory tracking, the actuators apply the control torque (or force) according to the end-
effector feedback, so as to have low the tracking errors. The velocity profile of the robot
has to be controlled, and to be more effectively plan the control of the end-effector, we

need to predict the trajectory at the tip of the FLM.

Many methods have been proposed to solve the trajectory tracking problems for flexible
manipulators by roboticists for decades. The important result from surveying the vast
body of literature on accurate position tracking of FLM is that to date there is no low
cost solution for the problem. Most highly accurate position measurement systems are
expensive, and often bulky. An example of one such system characterized with high



accuracy is an external measurement system [13] which uses laser tracker system. These
measurement systems consequently increase the cost of the robot, and at the same time
add on to the overall weight of the robot arm. Therefore, there is a shortage of the
research on the feedback system that can predict the vibration at the tip of the flexible

manipulator [14].

In the knowledge of this research, there has not been any works that based on the fusion
of data to predict future behaviour for the tip of mobile flexible link manipulator.
Therefore, accurate position tracking and prediction for light-weight mobile flexible
manipulator having large elastic deflection posed research motivation to explore. The
aim is to investigate the fusion technique for low-cost and light-weight sensors for

achieving accurate localization and vibration estimation.

1.2 Aim and Objectives

The aim of this research is to achieve one centimetre position prediction accuracy for the
mobile flexible link manipulator’s (MFLM’s) end-effector for the duration and end of

manoeuvres. The research objectives are as follows:

1. ldentify the sensors that are light-weight and small-size, suitable for implementing
on the MFLM that can be used for motion and vibration estimation, follow by
reviewing the sensor fusion techniques suitable for fusing the selected sensors. Then,

review past related works on tracking the vibration of FLMs and MFLMs.

2. Test all adopted sensors for their accuracy and their repeatability in displacement

measurement.
3. Develop the model for the mobile flexible manipulator.
4. Develop methods to determine the constants of the DC motor.

5. Fabricate a flexible link manipulator and mobile test rigs, and then test the behaviors
at tip of MFLM.

6. Develop of sensor fusion algorithms for fusing the sensors to predict the trajectory at
the tip of the FLM, and formulate algorithms that can predict vibration of FLM

based on the sensors’ outputs.



7. Perform validation tests on the mobile flexible link manipulator using the novel

algorithm to verify the prediction accuracies.

1.3 Research phases

The project is divided into 3 phases, in each phase some of the research objectives were

carried out:

Phase 1 involves identifying the sensors and the sensor fusion techniques that can be
used for motion and vibration tracking of the mobile platform and the flexible
manipulator. Then, a review of the literature on the various techniques that were being
worked on for tracking the vibrations of FLMs and MFLMs.

Phase 2 involves the characterization of the selected motion sensors and developing the
models for the mobile flexible link manipulator. The following tasks were set:

1. Define methodologies for testing the sensors, followed by carrying out the tests.

2. Developing the models for the motor, the flexible manipulator and the mobile
platform.

3. Define methodologies for identifying the various constants and friction
coefficients for the motors, followed by validating the motor model.

Phase 3 is development of the novel motion and vibration prediction algorithm for the
mobile flexible link manipulator using the chosen sensors. The following tasks were set:

1. Develop the sensor fusion and predictive algorithms for tracking the vibration at
the tip of the mobile flexible manipulator.

2. Build the flexible manipulator and mobile test rigs.

3. Define methodologies for validating the model of the flexible manipulator and
the mobile flexible manipulator, followed carrying out the simulations.

4. Define methodologies for testing the vibration tracking of the flexible
manipulator and mobile flexible manipulator using the chosen sensors, followed
by carrying out the tests.

5. Define methodologies for testing the novel sensor fusion and prediction

algorithms, followed by carrying the tests.



1.4

Research contributions

The thesis contributes to the following areas:

1.

Reviewed a list of sensors and sensor fusion techniques suitable for tracking and
predicting the vibration of the MFLM. Benchmarked a list of sensor tracking

methods and sensor fusion techniques. (Refer to chapter 2)

Methodologies were being defined for testing the selected sensors. The
comprehensive test results ascertained that the selected sensors are suitable for
use in the current research work on motion and vibration tracking of MFLM. On
the tests on accelerometer, a method was developed to remove walking bias
errors present in accelerometer. Other tests proved that each sensor have their
drawbacks which draw a conclusion that we could not depend on a single sensor
type for realtime motion measurement in the current research work. Sensor

fusion was thus recommended. (Refer to chapter 3 and 4)

Formulated the dynamic model for the motor, flexible link manipulator and
mobile flexible link manipulator. The model can be used to accurately predict the
movement of the MFLM in the absent of disturbances and at sufficient input
voltage. (Refer to section 3.4 of chapter 3)

Developed simple methods of determining the constants for the DC motor and its
friction coefficients. The accuracy of the motor model and acquired motor
constants parameters has been verified. (Refer to section 3.7 and 4.4.1, as well as
the validation results in section 4.4.2).

Fabricated separately a flexible beam for the flexible link manipulator and a
mobile platform. The flexible link manipulator and the mobile platform were
then assembled to form the whole mobile flexible link manipulator. The
behaviour of the flexible, the mobile platform and the MFLM were tested and
compared with the simulations of the model being developed. (Refer to sections

5.4t0 5.6, as well as the results in sections 6.1 and 6.2.



6. A novel local motion and vibration prediction algorithm has been developed for
predicting ahead the vibration at the tip of the manipulator on the mobile flexible

robotic manipulator. (Refer to sections 5.2 and 5.3).

7. Experimental verification and comparison of the developed algorithms were
carried out on the MFLM test rig. The results proved that the novel algorithm
yielded better tracking and prediction of the vibration compared to the
benchmarked methods. (Refer to sections 5.8 and 5.9, and the validation results

in sections 6.4 and 6.5)

1.5 OQutline of the thesis

Chapter 2 presents a review of the sensors and the sensor fusion techniques, followed by
the selection of sensors. It is then followed by a literature review of past works. Bench

marking of the fusion approaches were concluded.

Chapter 3 started with deriving the methodologies for testing the chosen sensors
(accelerometer, camera and encoder). Next, it is the development of the models for the
motor, flexible manipulator, and MFLM are developed. It then followed by deriving the
methodologies for identifying the motor’s constant and friction coefficients, as well as
deriving the methodologies to test the motor model. Chapter 4 presented the results for

the tests derived chapter 3.

Chapter 5 started with the development of the sensor fusion and prediction algorithms.
Next, it is the fabrications of the flexible manipulator and the mobile platform.
Following that is the deriving of the methodologies for comparing the simulated
vibration with actual vibration for the flexible manipulator and the MFLM. Finally, it
presents the deriving of the methodologies for testing the mobile MFLM with the
sensors individually; with fusion system; and with prediction algorithm. Chapter 6

presented the results for the tests derived in chapter 5.

Chapter 7 is final conclusion and outlines the proposals for future works.



2.  Review on past related works

This chapter covers the first research objective set in section 1.2, through a rigorous

review of the available literature on motion and position estimation techniques.

The feedback signals for FLMs are mostly taken from the displacement of the tip, via
the strain along the beam or the tip’s acceleration. Methods for acquiring displacement
of the tip includes: optical (e.g. vision cameras), range sensors, position sensitive
devices and electromagnetic sensors. Strain gauges are commonly used for the strain
measurement  for estimating link deflections. Inertia navigation systems
(accelerometers and/or gyroscopes) and odometers (encoder at the motor) are used to

obtain acceleration and position measurements.

The approach to motion and position estimation can be broadly classified as relative or
absolute methods, and their combinations. Absolute method estimates position using
active beacon fixed at known locations and a receiver fixed on the robot [15]. Although
this approach can provide accurate position estimation at fixed points, they suffer from
signal out of range problems and usually have low sampling rate.

Relative methods determine the position by incrementally integrating the motion
information over a period of time. These methods continuously provide motion
estimation at high frequency, but they suffer from systematic and random errors

integrated within the position measurements, and accumulated at an unbound rate.

In order to improve motion estimation of the FLM, two or more sensors are usually
fused together using sensor fusion algorithms. Common fusion algorithms are weighted

averaging, Kalman filter, Fuzzy inference system and neural network.

The control strategies for the trajectory of the FLM tip can be open-loop-schemes
(feed-forward control) or closed-loop-schemes (feedback control) [14]. The open-loop-
schemes require accurate model estimation where the controller controls the
manipulator trajectory. However, without feedback, accurate control of flexible-link
robotic systems having high level of vibrations is difficult. The closed-loop-systems
utilize some forms of feedback signals for the controller, and by applying appropriate

control strategies. There are several approaches utilising closed-loop control strategies



for flexible manipulators. The feedback controllers can be divided into collocated and
non-collocated controls. Recent years, motion prediction control strategies for
dynamical systems with time delay have been proposed in the attempt to find
successful control. The model predictor control offers a good tool for dealing with time
delay.

2.1  Sensors for Robotic Manipulators

The fundamental function of any sensor is the conversion of a physical phenomenon into
quantitative electrical signals, as depicted in Fig. 2.1. For localization of robotic
manipulator, the physical phenomenon is the movements of the manipulator and its
vibrations. The localization approaches for robots can be broadly classified as either
relative or absolute. Many partial solutions can be categorized into these two groups, or
their combinations. Fig. 2.2 listed the sensors [15, 16] that represent a simple
classification of the relevant sensors. The following sections provide a brief overview of

these two groups of sensors.

Physical Voltage or current
phenomenon Sensor outnut
Fig. 2.1 Fundamental function of a sensor [16]
Motion Sensors
[
[ |
Relative Absolute
| I | — Magnetometer
Translation Rotation L | camera
Accelerometer Linear B Rotary
Potentiometer Potentiometer
Gyroscope LVDT ||
Synchro/ —  Range finder
resolver
—  Encoders
| PSD
— Tachometer

Radar

Fig. 2.2 Types of motion estimation sensors (absolute method or relative method) [15, 16]



2.1.1 Absolute techniques for robot localization

Absolute localization techniques determine the position of the robot with respect to a
known reference. Localization via absolute methods is independent of time and the
initial position, and is capable of maintaining accurate position estimation and free from

cumulative errors or drifts.

Absolute approach for robot localizations provide constant accurate localization from
transmitters (such as fixed beacons) which are placed at designated locations, with a
sensor (known as receiver) fixed on board the vehicle to detect the position of the
vehicle. This arrangement receives signals at low frequency rate and is prone to signal

drop-out.

The main problems associated with absolute localization methods are:
I. initial cost for installing markers (or beacons) in the environment where the
robot operates;
Il.  higher computational costs for landmark mapping;
I1l.  signal outage; and

IV. low signal resolution.

Common absolute methods for robot localizations include active or passive beacon
systems, GPS (Global Positioning System), map matching and landmark recognition.

This research only considered landmark recognition method.

Landmark recognition involves recognizing distinctive features within the environment
and tracking the motion of the robot relative to the landmark via a machine vision or
camera [17, 18]. Landmarks have to be carefully chosen for easily identifiable objects in
fixed locations. Commonly, artificial landmarks are designed for easy and optimal
detectability in indoor environment, where natural landmarks are particularly difficult to
identify. This approach is computationally intensive because the robot has to store

numerous images for recognition, and not very accurate.

One method to improve landmark recognition is by placing predefined landmarks on the
ceiling. Zhang et al. [19], Shih and Ku [20] and Lan et al. [21] uses landmarks on the

ceiling. Artificial landmarks are placed on the ceiling to be used for mobile robot indoor
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guidance system, where camera is placed on board of the robot to capture the landmarks.
In this method there will not be obstruction or changes in the landmarks. Therefore, it
will not have image lost issue in this method. QR codes were introduced, where
information of the location are stored in QR codes which are strategically placed in the
environment where the robot operate. The mobile robot equipped with high speed
cameras focusing at the ceiling to read QR codes. The position of the robot is estimated
based on the positional relationship between the robot and QR codes. This method is

recognized as a benchmarking technique in this research..

2.1.2 Absolute measurement methods for flexible manipulator displacement

This method, the displacement tracking is measured from a known location. There are
three types of displacement measurement methods. One is where the sensor measures
distance from target to the sensor, for example, range sensor. Another is where
displacement measurement is based on the change in internal properties of the sensor.
An example is the measurement of strain in the strain gauges [22]. The third type is

based on displacement measurement from a point, such as using PSD or camera.

In this research, vision method is used for the displacement estimation of the flexible
manipulator, while range sensor is used for benchmark measurement. Thus, only camera

vision methods and range sensors are discussed as follows:

A. Camera vision methods

Vision systems are more reliable compared to sensors such as strain gauges [23], thus
can be a feasible means for measuring the vibration of the flexible manipulator. They are
not subjected expose to high level of noises. Therefore, vision devices have gained more
research attentions in the recent years. References [23 — 25] are some of the research
works that utilized cameras for control feedback to the FLM that brought promising
results in vibration estimations. For mobile robot localizations, vision methods have
been very extensively used [17, 18] for both in indoor and outdoor environments, where

landmark mapping are most frequently used.

However, the disadvantages of the camera vision approaches are that they require

stationary cameras and still background to assure good image quality, high resolution
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and high speed camera to track rapid motion which very expensive [15]. This method
requires large amount of traceable image features and sometimes rely on feature
correspondences in multiple cameras. Other problems include discriminative image
recognition due to silhouettes and other artifacts / objects, and inconsistency problems
due to different lightings. Problems of limited view range, obstructions and interference.
It also requires complicated image processing algorithms to analyze the data, detect and
track objects.

The next major problem of position sensing based on vision is the delay between image
capturing and image processing [15]. The resolution of CCD cameras could be
inadequate, or do not have fast frame rate, which caused long processing time for the
images resulting in significant low update rates and data lag. Additionally, optical
devices require a free line of sight between camera and object, and they suffer from

vision image drop-outs problem resulting in loss of information problem.

B. Range sensors

Range sensors, can give accurate and good sensing at high rate, but it is not convenient
to fix on moving robot arm as it is required to be fixed to a nearby reference object
[14]. This approach can only be used for validation or calibration purposes. Lu et al.
[26] used a renishaw laser interferometer for the tip position measurement of flexible

beam travelling on linear motor. A linear encoder measures displacement of the base.

2.1.3 Comparison of absolute methods

The important requirements for the sensors in this research are price, weight and power
requirement. Table 2.1 lists some of the common sensors used for absolute estimation
methods, and outlining their operating principles, common applications and estimation
method. Table 2.2 lists their advantages and disadvantages.
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Table 2.1 Principle of operation and applications of absolute sensors

Sensor Principle of operation, common applications and method Ref.
Laser or | Based on Doppler effect: Phase shift in frequency of reflected | 27, 28
infrared, range beam is proportional to velocity of moving object
finder (optical prop y g object.
energy source) | Commonly used for accuracy assessment of machine tools,

vibration measurement and other position critical motion
systems.
Displacement method.

Position Photodiodes detect the centre position of a light spot projected | 29

sensitive on a surface.

device
Position, displacement and vibration sensing.

Displacement method.

Magnetometer | Measure the direction on magnetic field in the vicinity of object. | 27

/ magnetic Measures the local earth’s magnetic field.

sensor
Commonly used in conjunction with IMU sensors for position
and orientation estimation.

Displacement method.

Camera Position estimation by image recognition. 17, 23,
Commonly used in motion estimations in people and mobile gg 31 25,
robots.

Map matching and landmark recognition methods.

Sonic sensor Position estimation are based on time of arrival of the acoustic | 27, 28
transient emitted from a source of interest or from sonic sensor
and listen for echoes.

Commonly used to detect distant objects or array of sensors
position detection of surface damages. Also used in position
estimation in an array of sonar sensors. Other uses include
object detection and collision avoidance.

Position measurement using beacons.
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Table 2.2 Advantages and disadvantages of absolute sensors

Sensor Advantages / Disadvantages Ref.
Laser or | Advantages 15, 27,
infrared range | 1. High precision and accuracy. 28
finder (optical | 2. High and stable measurement frequency.
energy source) | Disadvantages

1. Very expensive.
2. Complex equipment.
3. Air pressure, temperature and humidity can alter air’s
refractive index and change speed of light and wavelength.
Position Advantages 29
sensitive 1. High speed measurement.
device 2. Highly precise measurements.
Disadvantages
1. Limited to small displacement.
2. Expensive.
Magnetometer | Advantages 27
/ magnetic 1. Insensitive to vibrations.
sensor Disadvantages
1. Low resolution up to 0.1mm.
2. Susceptible to magnetic interferences.
3. Distortions due to metal objects.
Camera Advantages 15, 17,
1. Captures detailed information about overall motion. 23, 24,
2. Possible to add feature for obstacle detection and avoidance. 25, 30,
3. Accurate 31
Disadvantages
1. Complex algorithms.
2. Low data rate.
3. Data delay.
4. Line-of-sight problems.
5. High dependent on background and lighting.
6. Limited field of view.
Sonic sensor | Advantages 27, 28,
1. Superior signal-to-noise ratio. 32
2. Sensitivity at the ultraprecision scale.
3. Tends to propagate at frequencies (typically kHz and MHz
range) above the anticipated frequencies attributed to natural
structural modes or machining.
4. Propagation of the sound energy is not limited by obstacles
which obstruct the line of sight.
5. Passive, affordable, robust, and compact.
6. Low cost and light weight
Disadvantages
1. Easily effected by unreliable acoustic source.
2. Reflection of acoustic source from walls in environment.
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2.1.4 Relative methods

In relative position estimation, the position and orientation uses information provided by
sensors onboard the robot. The motion estimation is obtained by comparing current data
with previous data [15]. There are two methods of relative localizations [14]: odometry

and inertial navigation.

The errors of the sensors are contributed by systematic and non-systematic errors.
Systematic errors are errors internal to the sensor itself, such as bias drift and poor
sensitivities in low grade sensors or low sampling rates. Non-systematic errors are
external errors, such as wheel slippage, incorrect measurement of wheel diameters, and

flexural deformation along links.

2.1.4.1 Odometry

Odometry is usually the estimation of the position relative to a starting point of
estimation [15]. It is widely used method in robotic positioning estimations. Encoders
and potentiometers are common sensors used. The sensors are placed at the wheel shaft

of vehicle or joint of robot arm.

2.1.4.2 Inertial navigation

Inertial navigation is localizations where acceleration signals are integrated to obtain
velocity and position information [14]. Common examples are gyroscopes and
accelerometers, which measure the rate of rotation or acceleration. Inertial sensors offer
other advantages which includes non-radiating and non-jamming, so they can be used
in harsh environments. Main problem is that data from inertial sensors are that they are
filled with noises, resulting in unbounded accumulation of errors due to integrating of
the acceleration signal, thus poor accuracy for long period estimations.

The key benefit is that the inertial rate sensor continues to maintain a useful tracking of
relative position and do not have signal drop-outs issue [15]. Accelerometer provides
high frequency signals about the vibration of FLM with good short term accuracy.
Many researches utilize accelerometer signals as a benchmark to verify the sensor

system being developed. For instance, the tip position was sensed by an accelerometer
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and fed to the motor controller for a combined feedback and feed-forward control of a

single flexible link manipulator system, as reported by Li et al. [33].

2.1.5 Comparison of relative methods

Table 2.3 lists some of the common sensors used for relative estimations and outlines

their operating principles, common applications and measurement method. Table 2.4

lists their advantages and disadvantages.

Table 2.3 Principle of operation, common applications and method for relative sensors

Sensor Principle of operation, common applications, price range, Ref.
weight and power consumption
Linear/ rotary | Consist of resistance element provided with movable contact for | 27, 34
potentiometer | displacement measurement.
Commonly used as position transducer, such as joystick.
Odometry measurement method
Tachometer Measures the speed at which a mechanical device is rotating. 27
Commonly used to measure rotation speed of shaft and disk, as
in motor.
Odometry measurement method
Absolute/ Measure rotation speed of shaft and disk with directions. 27
Incremental Commonly used to measure rotation speed and/or position of
Encoder shaft and robotic arm.
Odometry measurement method
MEMS Sensing transducer provides output proportional to their | 16, 34 35,
Accelerometer | acceleration. 36, 37
Commonly used in vehicle for speed and displacement
measurement, especially crash measurement.
Inertial navigation method
MEMS Angular rate measurement based on Coriolis effect. 16, 34,
Gyroscope Commonly used for angular velocity. 35, 36, 37
Inertial navigation method
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Table 2.4 Advantages and disadvantages for relative sensors

Sensor Advantages / Disadvantages Ref.
Linear/ rotary | Advantages 27,34
potentiometer | 1. High accuracy at short displacements.

2. High resolution.
3. Low cost
Disadvantages
1. Movable contacts are prone to wear and tear.
2. Can only measure short displacement.
Tachometer Advantages 27
1. Can measure high speed.
2. Low cost.
3. Simple and easy to install.
Disadvantages
1. Bulkier.
2. Only measure one direction.
3. Possible of missed count.
Absolute/ Advantages 27
Incremental 1. Can measure high speed.
Encoder 2. Low cost.
3. Simple and easy to install.
4. Incremental encoder able to rotate through many revolutions.
Disadvantages
1. Possible to missed count.
2. Bulkier.
MEMS Advantages 16, 34,
Accelerometer | 1. Low cost, compact, light, robust, small, low power. 35, 36,
2. Can measure vibration, acceleration and tilt. 37
3. Rapid data acquisition at high frequencies.
4. Relatively accurate at short distance.
5. Self-contained.
6. Signals not affected by external noises.
Disadvantages
1. High bias noise density.
2. Lower resolution.
3. Require high enough frequencies (>0.2Hz) for accurate
acceleration measurement.
4. Output influenced by gravity.
MEMS Advantages 16, 34,
Gyroscope Low cost, compact, light, robust, small, low power. 35, 36,
Rapid data acquisition at high frequencies. 37

Relatively accurate.

Not influence by gravity.

High signal to noise ratio.

Dlsadvantages

1. Lower resolution.

2. Cross-coupling between drive and sense mode oscillations.

) VAW

3. Noisy output.
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2.2

Sensor selections

This section explains how the sensors were being selected for this research. The mobile

manipulator investigated in this research consists of two physical components: a flexible

beam and a mobile base. Table 2.5 proposes the possible absolute and relative methods

for the motion estimations.

Table 2.5 Appropriate absolute and relative estimation methods for motion sensing

Component Motion path Absolute method Relative method
1. Beacons
Beam 1. Linear or angular 2. Landmark . N
. . . - Inertial navigation
displacement displacement at tip. recognition
3. Map matching
Vibrating 1. Shortreciprocating | 1. Displacement . N
. Inertial navigation
beam displacement. measurement
1. Beacons
Vehicle 1. Linear or angular 2. Landmark Inertial navigation
displacement displacement. recognition g
3. Map matching
Rotating 1. Continuous rotation | Nil L Odo’_“e”y .
wheel 2. Inertial navigation

To select the right sensors for the manipulator system for use in the domestic

environments, the important requirements for the sensors are outlined as follows:

l.
Il.
1.
V.
V.
VI.

VIL.

The sensor has to be light-weight.

The sensor needs to be low cost.

Output from the sensor should be able to be converted in displacement.

The sensor should be safe for use in domestic environments.

The power requirement of the sensor should be low.

Measurement range: The sensor needs to be able to measure the upper and lower
limit required for the application.

The sampling rate of the signal should meet the maximum sampling period of 50

msec or 20 Hz minimum sampling rate.
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2.2.1 Selecting sensors in absolute methods

Beacon, landmark recognition and map matching can only be used for position
estimation of the mobile platform. Displacement method can be used for vibration
measurement of the flexible beam. As only landmark recognition is adopted, this section
outlines only the landmark recognition method and the displacement method for

vibration measurement.

A. Landmark recognition

For the landmark recognition, the obvious choice of sensor system is vision-based via
camera. Depending on the required resolution of the image captures, camera ranges from
15 frames per sec (fps) to 60 fps. A low cost choice is webcam, which provides 30 fps
frame rate. The main drawback of webcams is that they offer lower quality images and
relatively low frame rate. There is a large amount of memory usage and is computing
intensive for this method. The strongest problem is its high sensitivity to the changes in
pattern aspect (illumination, size and perspective). When capturing moving images, it is
notorious that the images be blurred, making object detection difficult. Camera and
webcam are chosen for localization of the robotic manipulator. Refer to section 2.3.1 for

information about cameras and webcames.

B. Displacement measurement sensors for sensing vibrating displacement

For small vibrational displacements at the tip of flexible beam, range finder, position

sensitive devices (PSD), strain gauges and cameras can be used.

Range-finders (or range sensors) are devices that use a laser beam to measure the
distance to targets [28]. Laser pulse is sent towards the target and measuring how long it
takes for the pulse to return to the device. Range sensors can give very accurate and high
output rate for position measurements. The sample period is about 50 ms or 20 pulses
per second sampling frequency (refer to Appendix B.3 for datasheet of IR distance
sensor used in this research). However, range sensors can only give short distance
measurements (less than 10 meters) and it is inappropriate to mount a range sensor at the

tip of a manipulator. Due to the accurate measurement, it is usually only used for bench-
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marking the vibration measurements, and is used in this research for benchmarking

vibration of flexible manipulator and movement of mobile platform.

PSDs are capable of high speed measurements and high accuracy [29]. It has measuring
rates of up to over 100 kHz. However, PSD may be too bulky to be mounted at the tip of

a flexible beam.

Strain gauges are nearly weightless and have a small form factor, and it can provide
measurement frequency up to a few hundred kHz [16]. However, they require amplifier
circuitry and they are not sensitive to small deflections along the long and slender beam.
To measure the deflection at the tip, often several strain gauges are needed to be placed
at several locations along the beam to take measurements at each segment, but still may

tend to be inaccurate.

2.2.2 Selecting sensor in relative methods

Odometry and inertia sensors selections are outlined in this section.

A. Odometry

Odometry sensors are commonly used on joints and wheel shafts in conventional robots,
giving accurate localization in the absence of slippage or vibration [38]. To meet the
criteria of low power requirement, low cost, light-weight and high measurement rate;
potentiometer, tachometer and encoder are good choices for measurement at the joints of

the manipulator, as well as at the wheels.

However, odometry is notoriously unreliable, and it was not expected to be perfect.
Potentiometer has limited number turns, thus not suitable to long distance measurement
for wheels angular displacement. Tachometer can only measure wheel rotation and
speed; it cannot provide direction of motion. Encoder can provide position, speed and
direction of the angular displacement of the wheel, thus is best amount the three.
Therefore, encoder is choice. There are two types of encoders; absolute and incremental.
Incremental encoders are cheaper and are good for speed and acceleration
measurements, but are not able to retain position information during start-up. See

Appendix A for reviews on encoders.
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B. Inertial navigation

For the measurement of displacement at the manipulator tip, as well as motion of mobile
base, accelerometers and gyroscopes offer low power consumption, low cost and light-
weight solutions with relatively good speed and position estimations [39] over short
distances. Accelerometers and gyroscopes offer very high sampling rate, thus are very
useful for vibration measurement for the flexible link manipulator. The main problems
of IMU sensors are that they are susceptible to noises which contribute significantly to
uncertainty. Many research papers apply the combination of both gyroscope and
accelerometer for robotic localizations or robot arm displacements. Gyroscopes can only
offer angular estimations, while accelerometer is usually sufficient to offer both angular

and translational estimations.

There are several types of MEMS accelerometers, while the most popular classes are
piezoelectric and capacitive types [36]. The former has better accuracy at small sensing
range, while the latter has larger sensing ranges with lower accuracies. A 3-axis
piezoelectric accelerometer can provide up to 1.6 kHz output rate, thus is chosen. See

section 2.3.2 for information on accelerometers.

2.3 Sensors introductions

Camera and accelerometer are used in this research work for flexible beam vibration

measurement, thus a brief introduction of these sensors are presented this section.

2.3.1 Camera and webcam

Robot localization using cameras can either be fixing the camera at a stationary position
to capture the moving robot or by fixing the camera on the robot to capture the features
(or marker) in its environment [18 — 21]. By using high speed camera, camera can also
capture vibration of a beam. By computing the pixels from the reference point in image,

the robot position can be estimated.

A. Review of cameras

In recent years, digital cameras have become very cheap and they have opened up new

possibilities as a sensor for robot perception. Computer vision concerns with artificial
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systems that extract information from images taken using the camera [40]. a 3
dimensional scene is projected onto a 2 dimensional plane when an image is recorded
through a camera. Cameras capture a video stream as a sequence to images or frames. In
a computer vision system, a software program extracts individual frames and performs
position or motion estimations. The process for estimating motion or position is the
determination of motion vectors that describe the transformation from a 2D image to

another image extracted from adjacent frames of a video sequence.

The motion vectors may relate to the whole image (global motion estimation) or specific
parts, such as a specific shape of an object. Translational models or many other models
that can approximate the motions and represent the motion vectors. Pixel based methods
("direct™) and feature based methods (“indirect™) are methods for finding motion vectors
[40].

B. Type of cameras

Cameras can be categorized into CCD (charge-coupled device) cameras and CMOS
(complementary metal oxide semiconductor) cameras [40]. Both types contain image
sensors that convert light into electric charges and process this into electrical signals.
After the light is converts into electrons, the sensor reads the value (accumulated charge)
of each cell in the image. The differences between the two sensors are:

1. A CCD is an analog device [41, 42]. In a CCD sensor, the charge on every pixel
is transferred through a very limited number of output nodes (often just one) and
converted to a voltage. Small electrical charges in each photo sensor are
generated when the light strikes the chip. The charges are read from the chip and
converted to voltage value one pixel at a time. Each of the pixel's value are then
converted into digital value via analog-to-digital converter by measuring the
amount of charge at each photosite and converting this measurement to binary
form.

« A CMOS chip is a type of active pixel sensor made using the CMOS
semiconductor [41, 42]. In a CMOS sensor, each pixel has its own circuitry next
to each photo sensor which performs a charge-to-voltage conversion. The sensor

may include additional circuitry such as amplifiers, noise-correction and
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digitization circuits, to convert the voltage to digital data. These functions caused
higher design complexity and minimise the area available for light capture.

C. Comparison of the sensors

The advantages and disadvantages of the CCD and CMOS devices are outlined below
[41, 42]:

1.

In a CCD device, all of the pixels can be allocated to light capture, and has high
output uniformity, thus CCD sensors create low-noise, high-quality images. In a
CMOS device, the design complexity reduces the area available for light capture.
Each pixel is doing its own conversion, resulting in lower uniformity. Hence, CMOS
sensors are more susceptible to noise.

CMOS sensors consume lower power, while CCD sensors consume high power,
which can be as high as 100 times more power than the CMQOS sensor. CMOS
sensors are therefore ideal for portable devices.

CCD sensors are more mature and tend to have higher quality and more pixels due to
mass production for a longer period of time.

CMOS sensors offer smaller system size than CCD sensors due to more integration
which offer more functions on the chip. CCD cameras are usually relatively heavy
and large.

CMOS chips tend to be lower cost than CCDs because they are fabricated on

standard silicon production lines.

CMOS contain less than 70% active sensors, while the CCD contains 100% active
sensors. Therefore, CMOS is less sensitive than CCD due to CMOS contain very
much lesser fill factor the CCD chips.

CCD is better for low contrast images, but the pixel resolution is high ranging from
1.4 megapixels to 16 megapixels. The frame rate can be from 0.1 fps (frames per
second) to 2300 fps [40]. CMOS is much more flexible than CCD. CMOS sensors
can be windowed to read out less data at a higher frame rate. For instance, a readout
rate of 15 frames per second can be achieved with sensor having a resolution of 1280
x 1024. Nearly 70 frames per second could be achieved by windowing the sensor

and only reading out a 640 x 480 portion of the image.
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8. CMOS can provide faster readout than CCDs by having fewer components.

9. When the sensor is overloaded, CCD sensors are more susceptible to vertical smear
from bright light sources. CCDs which do not suffer from this problem due to high-

end frame transfer.

As such, CCDs tend to provide high-quality images with lots of pixels and excellent
light sensitivity. CMOS sensors have lower resolution, lower sensitivity and lower
quality. CMOS designers are making higher image quality CMOS sensors [40], while
CCD designers are lowering the power requirements and pixel sizes for CCD sensors.
Therefore, neither technology has a clear advantage over each other and selection must

be determined for each specific application.

D. Thelens

Another important component for the camera is the lens. There are three types of lens
[41]: Manual-focus lens, auto-focus lens and fixed-focus lens. Manual-focus lens require
human operator for adjusting the focus point. Auto-focus lens require expensive

mechanical parts, more power and are heavier.

A photographic lens for which the focus is not adjustable is called a fixed-focus lens
[41]. Fixed-focus lens do not require expensive electronics, moving parts or consume
power. The focus is set at the time of manufacture and remains fixed. A fixed-focus lens
relies on sufficient depth of field (portion of the image that appears sharp) to produce
acceptably sharp images, thus does not required to determine the correct focusing
distance and setting the lens to that focal point. It is acceptable for cameras used for
capturing images of objects further away than a meter by setting the hyperfocal distance,
so that the depth of field ranges all the way down from half the hyperfocal distance to
infinity. This system is automatic and it can also be more predictable than the auto-focus

lens.

The disadvantages of fixed-focus lens include the unable to produce sharp images
compared to lens that has been set to the match the focal point for a scene [41]. For
close-up objects (within 2.4 - 3.7 meters) it is not possible to achieve a completely sharp

image.
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To increase the depth of field, most cameras without fixed-focus lenses also have a small
aperture. However, small apertures reduce the amount of light incident on the chips, this
presents severe limitations for imaging of fast-moving objects which require short

exposure times.

E. Webcams

Webcams, surveillance cameras and camera phones usually use fixed-focus lenses with
low resolution CCD cameras [43]. The low resolution of the detector allows a loose
focusing on the CCD without noticeable loss of image quality. As such, the circle of
confusion (an optical spot caused by a cone of light rays from a lens not coming to a
perfect focus when imaging a point source) gets bigger and hyperfocal distance (a

distance beyond which all objects can be brought into an "acceptable” focus) smaller.

There are various lenses available for webcams, while most webcams use plastic lens
that can be screwed in and out to set the camera's focus. The image sensors are either
CMOS or CCD, with CMOS being cheaper [42]. Most commercially available webcams
can provide VGA (Video Graphics Array)-resolution video at frame rates up to 30
frames per second [43]. Current newer devices can have video in multi-megapixel
resolutions, running at frame rates as high as 120 frames per second, producing a
320x%240 video.

2.3.2 Accelerometer

MEMS accelerometers are low cost, low power consumption, small and light [36]. They
are non-radiating, self-contained, dead-reckoning and non-jamming. They can provide
direct measurements of dynamic information [44]. However, MEMS accelerometers are
typically limited in accuracy and measurement ranges, as well as being susceptible to
noise and uncertainties. One example is Johnson noise [45] which is associated with the
device’s mechanical resistance due to their small size. These uncertainties lead to
substantially large amounts of measurement drift during double integration to yield
position information. Based on these factors, accelerometers alone are not suitable for

Iong range measurements.
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A. Principle of operation of accelerometers

Accelerometers are sensors that provide an output proportional to gravitational
acceleration [27]. The measurement of acceleration relies upon the Newton’s second law
of motion for mass acceleration and Hooke’s law for spring action [36]. Fig. 2.3 outlines

the principle of operation for the sensing element of an accelerometer [36].

Relaxed Extended

Acceleration

S - 1o o Il
Bass | Bass |
Xo Xo [M Ax 1

(@) (b)

Fig. 2.3 Principle of basic mass spring system of an accelerometers sensing element, a) No

acceleration applied, b) Acceleration applied [36]

Newton’s law states that with a constant mass, the force is equal to the product of the
mass of the body and its acceleration, F = ma. Hooke’s law states the amount by which a
spring with constant k is deformed from its equilibrium position x is linearly related to

the force acting on the spring, and is given by [36]:

Combining Newton’s law and Hooke’s law, the acceleration can be obtained as [36]:
a = Kkspx/m (2.2)

where

m = mass of object, (kg)

x = distance that the spring has been stretched or compressed, (m)
F = applied force or acting force, (kgm/s?)

ksp = force constant (or spring constant)

a = acceleration of the object

Micromachined accelerometers are light and very stiff [29]. Therefore they have small
sensitivity and damping ratio, but have a high natural frequency. Fig. 2.4b [36] depicts a

micro-machined capacitive silicon accelerometer.
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Fig. 2.4 A mass-spring system of second-order, underdamped sensors. a) The proof mass
displaced by the acceleration applied to the housing. b) Micro-machined capacitive silicon

accelerometer [36]

As illustrated in Fig. 2.4a, the accelerometer is a second-order system which contains
one energy dissipating element and two energy-storing elements. The input x, and output

yk are related by a second-order linear differential equation of the form [36]:
d
Gt % + apyr = X (2.3)
The corresponding transfer function is [36]:

Y(s) _ kw;
X(s) s®+24w s+w

(2.4)

where £ is damping ratio, k is static sensitivity, and w, (2xf,) is the natural undamped
angular frequency of the sensor. The frequency response of the accelerometer is
determined by the resonant frequency (w), which can be estimated by: w, = Vk/m [45].
Combining equation (2.1) and w,, the sensitivity and displacement per g of acceleration

can then be determined as [36]:
mg_ g
Y T )
where:

Xg = displacement of seismic mass
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m = seismic mass (or prove mass, see Fig. 2.4a)
ksp = spring constant of the device
g = acceleration, 9.81 m/s?

W, = angular resonant frequency

In the capacitive silicon accelerometer, the force exerted by the proof mass due to the
applied acceleration cause flexes of the cantilevers. This changes the capacitance

between that mass surface and the fixed electrodes [36].

A photodetector (with an ancillary light source and a shutter), an inductive, a capacitive
sensor or a potentiometer can measure the displacement x, (see Fig. 2.4a) of the proof
mass (M) with respect to the armature fixed to the element undergoing an acceleration X;
[36]. Alternatively, the stress of a flexing element holding the mass can be sensed, such
as strain gages or a piezoelectric element. By Newton’s second law, the force on the
mass is communicated through the spring deflection (by Hooke’s law) and the internal

viscous friction. The force equation of the system is [36]:
M(X - %) = Kxo + BX (2.6)

where K is the spring constant or stiffness and B is the viscous frictional coefficient.

Performing Laplace transform of X = s2X;(s), yields:

M $°Xi(s) = Xo(S)[K + Bs + Ms?] (2.7)
The transfer function is [36]
Xo(s) _ Xo(s) _ M K/M
X s®X;  Ks? 52+S(%)+K/M (2.8)

We need to consider also the gravitational acceleration, where the accelerometer’s axis
is affected by an angle with respect to the horizontal plane, with the term Mg sin 6. The

output yx would then be defined as x, + (Mgsing)/K.

For measurement of acceleration, the response is low-pass and w, need to be higher than
the maximal frequency variation of the acceleration to be measured. For measurement of
vibrational displacement—high-pass response—w, must be lower than the frequency of
the displacement and there is no dc response [36].
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B. Types of accelerometers

The types of MEMS accelerometers include capacitive, piezoresistive, electromagnetic,
piezoelectric [35] and strain gage [45]. Three of the common types of MEMS
accelerometers are piezoresistive, piezoelectric and capacitive accelerometers. The most
popular class of MEMS accelerometers is the piezoelectric accelerometer, due to the
simplicity of the sensor element more successful types are based on capacitive
transduction, i.e. no requirement for exotic materials, have low power consumption, and
good thermal stability. The output can be analogue, digital, or ratiometric; supplying

voltage or any of various types of pulse modulation.

C. Comparison of piezoresistive, piezoelectric and capacitive accelerometers

Capacitive-based MEMS accelerometers have achieved more commercial success than
piezoresistive and piezoelectric designs [36], and are suitable for measuring low-
frequency motion and steady-state acceleration. The piezoelectric types of
accelerometers are widely used for vibration and shock measurements. Piezoresistive
accelerometers are desirable for shock measurement but less useful for vibration due to

their low sensitivity.

Compared to the capacitive accelerometer, the piezoresistive accelerometer has low
sensitivity, and thus requires an amplifier circuit, interfacing the piezoresistive
accelerometer to a DAQ system [36]. The piezoresistive accelerometers have noise
levels 25 times lower than the capacitive accelerometers, due to the higher resolution of
capacitive changes. Accelerometers’ noise sources are attributable to Hooge noise
(inversely proportional to the frequency) and Johnson noise (constant over all

frequencies).

Capacitive accelerometers [37] rely on the changing separation of capacitor plates. The
seismic element in the form of a disk with spiral elements attached, as shown in Fig. 2.5.
The disk is sandwiched between the capacitor plates. The movement of air through holes
in the disk provides the damping, the spiral elements provides the spring force. The
movement of the proof mass disrupt the balance of the differential capacitor for the

capacitive accelerometers.
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Fig. 2.5 Schematic of capacitive accelerometer [37]

For Piezoresistive accelerometers, the mass movement is identified by relying on strain
induced within a flexural element that attaches the proof mass to the sensor housing, as
shown in Fig. 2.6 [36]. A micro-machined silicon mass suspended by multiple beams
from a silicon frame is the sensing element. The motion of the suspended mass changes
the strain in the beams cause the change in resistance for the piezoresistors located in the

beams.

Top encapsulation
4+— Mechanical spring—,

Seismic mass

Bottom encapsulation

Fig. 2.6 Schematic of piezoresistive accelerometer [36]

Piezoelectric accelerometers rely on disk compression of the piezoceramic material
sandwiched between two electrodes, as shown in Fig. 2.7 [36]. When the accelerometer
is subject to acceleration, a force is generated which acts on the piezoelectric element,

producing a charge proportional to the applied force. There are two types of
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piezoelectric sensor: low impedance and high impedance types. Low-impedance types
use the piezoelectric sensing element and also incorporates a miniaturized built-in
charge-to-voltage converter. High-impedance also have piezoelectric sensing element
that need a charge amplifier or external impedance converter for charge-to-voltage

conversion. External power supply is required to energize the electronics.

Seismic

Mass Vo

Piezoceramic

Acceleration

Fig. 2.7 Principle of piezoelectric accelerometer [36]

2.4  Sensor fusion techniques

To the knowledge of the author, at present there is no single sensor that is sufficiently
accurate to determine displacement information over a long period. Various sensor
fusion techniques that were applied by researchers in the past are reviewed here. The

following fusion techniques are briefly discussed:

Weighted averaging
Kalman filter
Complimentary filter
Particle filter

Fuzzy inference system

N o w0 D

Neural network

2.4.1 Sensor fusion techniques — Weighted averaging

Weighted averaging [46] method is an approach for homogeneous sensors where various
sensor data values or their interpretations are put together and taking the weighted
average to arrive at a composite fused signal. Here, given N sensor readings Xi,....,X,

parameters wj,....,wy Where > w; = 1 are used to find a fused sensor reading > wixi/2w;.
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Judicious choice of w; can compensate for sensors with different accuracy and reliability.
Letting X« to be the latest position measurement, the fusion algorithm for weighted
averaging is [47]:

X, = ZWLV'Ci Q)

Weighted averaging is simple and efficient for sensor fusion. This method provides a
quick solution to fuse multiple sensors. It is not computationally demanding and thus is
suitable for real-time position estimation. Unfortunately, it ignores the noise factors
involved and does not compensate for sensor failures. Furthermore, the input signals
need to be of similar type. The technique also fails to provide any measure of the
accuracy of the value obtained, and it does not give good accuracy [48].

2.4.2 Sensor fusion techniques — Kalman filter

Kalman filter (KF) is a well known method used in the theory of stochastic dynamic
systems [49, 50 51], widely used for multi-sensor fusion in motion tracking. KF is an
optimal linear estimator based on an iterative and recursive process, which can be used
to improve the quality of estimates of unknown quantities. It recursively evaluates an
optimal estimate of the state of a linear system. This estimation algorithm resembles that

of a predictor-corrector algorithm.

KF is an improvement compared to the weighted average approach, but it is more
sophisticated. Like Weiner filter theory [52], KF requires the characteristics of each
signal to be completely specified. The difference being, Weiner filters use constant
gains, while KFs contain time varying gains which are derived using the Kalman gain
matrix [49]. A physical process model is required for the KF for the estimation process.
The input is related to the output through a differential or difference equation. KF can be
applied to a vast class of problems having multiple inputs and outputs including complex
process and measurement relationships due to its matrix formulation. Due to their
recursive nature, KFs are applicable to implementation on a computer. Only the most

recent data and measurements are needed for a new estimation of the state of the system.

However, as Kalman filter is based on a linear process model and measurement

equation, a nonlinear process will be no longer optimal. So, KF is only suitable if sensor
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data is linear. For nonlinear process, a linearized or extended Kalman filter (EKF) can be
used [49]. EKF can estimate the states of nonlinear systems using a linearized
approximation, which is linearised around the most recent estimate. Jacobian matrix is

requires to compute the state vector.

However, EKF gives poor performance if it has a significant amount of nonlinearities, or
if the noise is non-Gaussian [50]. The bad estimates could potentially become worse and
lead to an eventual divergence of the filter. This situation may be more significant when
the measurement errors and initial uncertainty are large. Therefore, the measurement for
sensors, such as those from inertial sensors, contains noises which are usually non-

Gaussian [49], making this type of linearized models less promising.

KF and EKF are therefore optimal only for fusion of multiple sensors if the dynamic
motions are linear and the sensor noises are Gaussian, otherwise it will produce
unacceptable results due to its linearization process. It is computationally more
demanding due to the complexity of these types of filters [49]. The complexities of the
nonlinear models involved may delay updated state estimates. Furthermore, bad data due
to sensor failure or outliers in the data will not be detected [53]. The only difference

between KF and EKF is that the latter require linearizing the non-linear function.

2.4.3 Sensor fusion techniques — Complementary filters

Weiner and KF are based upon the assumption of knowing the spectral characteristics,
which is often difficult to satisfy in most practical applications. KFs rely heavily on
measurement statistics and accurate process model, while complementary filters does
not require complete statistical data regarding the signals and therfore more robust [54].

Compared to KF, the formulation of a complementary filter is more straightforward.
With a lower computational overhead, complementary filter can produce estimates with
accuracy comparable to that of KF, at shorter development time [55]. Complementary
filters are commonly designed to combine multiple measurements of the same signal in a

complementary fashion. The goal is to minimize the square of the expected error.

A complementary filter for attitude estimation performs low-pass filtering on low-

frequency attitude estimates and high-pass filtering on a biased high-frequency attitude
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estimate, and fuses these estimates together to obtain an all-pass estimates of attitude
[56].

Vasconcelos et al. [54] used discrete-time complementary filter for attitude and position
estimation of autonomous surface craft based on the sensor data from rate gyros,
accelerometers and GPS. It was able to achieve the good performance. However,
complementary is usually used for pitch and roll angle estimation.

2.4.4 Sensor fusion techniques — Particle filter

Particle filters (PF), are sophisticated model estimation techniques based on simulation
[57]. It is also known as sequential Monte Carlo. PF is an alternative to the EKF or
Unscented Kalman filter (UKF). The advantage of PF is when there are sufficient
samples, PF can be used to estimate the nonlinear problems, and PF can be made more

accurate at the price of additional computational effort.

Linearized models are usually not good solution for problems with nonlinearities and
non-Gaussian characteristics, while PF [58] can provide a general solution to these
problems. PFs do not require a fixed computation time. With the available of
computational resources, their accuracy increases. PF can be quite easy to implement.
Non-linear models can be implemented without linearizing the model. Also, problems
with state variables having hard constraints can be incorporated in the estimation
without any difficulties [58]. So this method can handle improvements of non-linear data
using models developed by system identification methods. But, the computational load
for the PF increases with the complexity of the problem, e.g. the number of states [57].
Exponentially many particles in d are required to populatie a d-dimensional space.

There are two categories of PFs: those that require resampling on re-used particles to
prevent divergence, and those that do not require no resampling because no re-use of
particles [58]. Resampling it may lead to a loss of diversity and contain many repeated
particles, causing large estimation errors [57]. A small process noise can cause all
particles collapse to a single particle within a short period of time ty. Due to the Monte
Carlo method, PF contributes to large computational cost [58]. Therefore, PFs are not

suitable for complicated applications.
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2.4.5 Sensor fusion techniques — Fuzzy inference system

Fuzzy logic introduces the notion of a partial set membership [59]. An associated value
is assigned to every member of a fuzzy set. It uses set membership values that range

between 0 and 1, and in its linguistic form.

A complex nonlinear input-output relation can be realized in the fuzzy inference system
(FIS) as a synthesis of multiple simple input-output relations [60]. It uses a series of if—
then rules to approximate closely any nonlinear input—output mapping, where each rule

describes the simple input-output relation.

FIS can be used in conjunction with KF/EKF for solving non-random uncertainty
problems, where fuzzy subsets detect faulty sensor data, improving the reliability of
KF/EKF for sensor fusion [61]. FIS is often used with neutral network as Adaptive

neuro-fuzzy inference systems.

However, FIS derived for one application may not be applicable for use on similar
applications but having different condition, because under different operating conditions
the set of rules will be different [60]. So, the rules may need to be changed from one
condition to another. Therefore, the designer has to understand the behaviour of system

before he can design the rules for the FIS.

2.4.6 Sensor fusion techniques — Neutral network

In neural networks, artificial neurons are used connect and store information in weights
[62]. Each individual neuron takes weighted inputs, and then performs a simple function
which produces an output. The advantage of neural networks is that the knowledge of
the uncertain source is not required. The network indirectly obtains the output using

training data [63]. The input data can processed directly from sensor signals quickly.

Neutral Networks are often used together with fuzzy logic, forming adaptive neuro-
fuzzy inference systems (ANFIS), using the mathematical properties of ANN (Artificial
Neural Network) to tune the rules based fuzzy system that estimate the complex
unknown information [64]. During the training period when the sensors signals are
received, the consequent linear parameters, determined by the fuzzy systems, are
determined using means of least squares methods. ANFIS models will tune the
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parameters describing the membership functions for each input parameters if the
predicted mean square error does not meet the required error, until the training target is

achieved.

When comparing the ANN and ANFIS algorithm with KF (kalman filter) [65, 66], ANN
and ANFIS showed to have higher precision and robustness. KF produces error readings
when noise and change of sensor state were introduced into the simulations. ANN and
ANFIS were able to maintain reliable accuracies, and can adjust the system to adapt to
changes contextual information. The fusion of sensors can be made practical and

effective enough to be autonomous and adaptive to the uncertainties.

However, if the incoming data is not within the boundary of the trained data set or not
within the inference rule, and if there is too much non-linearities and uncertainties, the
training sets could become overloaded resulting in over-fitting of the network [67].
Consequently, the network does not correctly generalize the input-output relationship,
but only recognizes those instances that were being trained the network. The trained data
sets do not represent the overall population of data accurately, which can results in faulty

networks producing false output.

2.4.7 Comparison of sensor fusion techniques

For the purpose of this research, it is mandatory that the fusion algorithms be suitable for
integrating motion sensors. Table 2.6 depicts the advantages and disadvantages of fusion

algorithms that could be applicable for the sensors used in the current research.
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Table 2.6 Advantages and advantages of fusion algorithms

Fusion Advantages / Disadvantages Ref.
algorithm
Fuzzy Advantages 59, 60
inference = Interpretation capability, which mimic human decision making.
system = Rapid computation due to intrinsic parallel processing nature.
= Can handle imprecise and imperfect information.
= Ease of encoding a priori knowledge
= Robust as uncertainties are used in formulating the system.
= Simplicity and flexibility.
= Can model nonlinear functions of arbitrary complexity.
Disadvantages
= Lack of learning capabilities.
= Imprecision and incomplete data approximation.
= Cannot solve problems with no known answer.
= Extensive verification and validation are required.
= Highly abstract and heuristic.
= Lack of self-tuning and self-organizing mechanisms.
Neural Advantages 62, 63,
network = Not sequential or necessarily deterministic. 65, 68
= Data relationship not required to know.
= Able to self-tune.
= Can handle relationships with dynamic or non-linear problems.
= Applicable to model various systems which is difficult or
impossible to explain.
Disadvantages
= "Black box" nature, rely on trail-and error to find hidden layers and
nodes.
= Greater computational burden, the back-propagational networks
also tend to be slower to train.
= Cannot to handle linguistic information.
= Imprecise or vague information cannot be managed.
= Cannot resolve conflicts.
= Cannot combine numeric data with logical or linguistic data.
Neuro- Advantages 64, 66
Fuzzy = Contradictory requirements in fuzzy modeling: interpretability

Versus accuracy.

= All kind of information is possible.

= Can manage imperfect, imprecise, partial or vague information.

= Capabilities self-learn and self-tune.

= No prior knowledge of relationships of data needed.

= Fuzzy number operations yield fast computation.

= Possible to promoting implicit and explicit knowledge integration.

= Fuzzy rules can be used to extract knowledge.

Disadvantages

= Number of inputs allowed and/or to the limited form to create their
own structure and rules.
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Table 2.6 Advantages and advantages of fusion algorithms (continued...)

Fusion Advantages / Disadvantages Ref.
algorithm

Complementary | Advantages 54,55
filter » Not computational complex.

= Has no singularity problem.

Disadvantages

= Nonlinear characteristic result in large steady state errors when
moved rapidly through large orientation angles.

Weighted Advantages 46, 47
average = Simple and efficient
= Proportional to accuracy of sensors or to credibility of sensor
information

Disadvantages

= All the input data type need to be similar

= |gnore noise factors involved and does not compensate for
module failures.

Kalman filter Advantages 49, 50,

= Useful when state vector can be identified and related to its | 51
previous value through state transition matrix.

= Simple if small system matrix.

= Good result if no sensor fault.

Disadvantages

= Can be problematic if noise is not Gaussian.

= Sensor failure is not tolerated.

= Sensitive to outliers.

= QOverload computation if more than 3 states

= Gives optimal solution for Gaussian noises

Particle filter | Advantages 57

= Can handle non-Gaussian and non-linearities noises.

= Handles heavily skewed probability density functions (pdfs).

= Handles bimodal/ multimodal pdfs.

Disadvantages

= The computational load increases with the complexity of the
problem, e.g. the number of states.

2.5 Literature review of past works

This section reviews past works related in measurement and prediction of mobile robot
localizations and flexible manipulator displacements. Due to their extended workspace
and better kinetic flexibility as compared to fixed based manipulators, mobile robotic
manipulators have been extensively discussed in the recent literature with wide range of
applications. The main challenge is the instability and inaccuracy of the robotic system

to control the tip of the mobile flexible manipulator owing to complex dynamics and
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singularity of the mobile platform and the robotic arm. A number of research
publications have made effort to guarantee the stability and robustness in controlling the
end-effector of the flexible manipulators. Following are some literature literature of past

works:
I. Meta-heuristic optimization method

Esfandiar et al. [69] presented a mobile manipulator with flexible links and joints that
moves from point to point via planned optimal path. Meta-heuristic optimization
methods were applied to plan the optimal path. The mobile manipulators having large
deformation in links were considered. They considered maximum load carried by
manipulator and minimum transmission time for the optimization. However, the time
cost of the calculation will rapidly increase when using the aforementioned methods if
the number of the path points increases. Furthermore, some heuristic algorithms rely on
finding configuration settings through trial and error, resulting in complexity and the

result may be only locally optimal.
ii. Finite-time tracking control

Wei and Wu [70] presented a finite-time tracking control for a mobile manipulator with
affine and holonomic constraints. The finite-time controller was designed to ensure
output tracking errors of closed-loop system converge to zero in finite time. However,
this algorithm assumes that the platform velocity remains constant or known. If the
platform velocity and the vibration at the end-effector are unknown, the error will not
converge to zero at finite time. The prediction error is sensitive to the prediction horizon
and the accuracy of modeling the system.

iii. MPC method

Predictive controllers were developed in many research studies. Examples are MPC
(model-predictive control) and FE (finite element) MPC. Abdolvand and Fatehi [71]
presented a model-based prediction for vibration suppression of a flexible manipulator.
Dubay et al. [22] utilized finite element based prediction to evaluate the behaviour of the
flexible beam. Boscariol and Zanotto [72] proposed a model predictive control strategy
applied to five flexible-link mechanisms trajectory tracking for compliant mechanisms

with effective vibration suppression. Avanzini et al. [73] exploited MPC approach to
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compute an online suitable trajectory for both the base and the arm of a mobile
manipulator. Model predictive control is used to find the most appropriate path towards
desired pose of the manipulator. Generic MPC used to find the sequence of the future

control variables.

The issue is that in order to guarantee convergence the weight matrices of the MPC
problem have to be thoroughly analyzed. A good knowledge of the system is required to
design the model, otherwise it will result in unstable control. Bakhti [74] developed an
Extended Kalman filter observer to synthesize using the linear model of the flexible
beam to predict the response of a beam. Wei and Liu [75] made use of the previous
feedback trajectory and the feedback lag to calculate the corrected reference trajectory
for flexible link manipulators. Combination of [74] and [75] can be the benchmark for

used in this research.
iv. New displacement approach

Heidari et al. [76] presented a new displacement approach to determine the optimal
trajectory of a large deflection flexible manipulator on the point-to-point motion.
Nonlinear finite element model for the dynamic analysis was employed to describe the
nonlinear model of the flexible manipulator. The Pontryagin’s minimum principle was
used to obtain the optimality conditions. However, the strategy is a feed-forward control
for trajectory planning. Open loop control was used for the vibration modes of the
flexible manipulator. Therefore, there would still be large residual vibrations that need to

be controlled.
v. Kalman filter approach

To suppress the effect of noise that corrupt either the process dynamic model or output
measurements, Bakhti [74] proposed Kalman filter on a multivariable model-based
predictive controller to damp out the mechanical vibration of a flexible one-link
manipulator using state variables feedback. Lagrange equations were used to model the
flexible manipulator. Feedback measurements were taken from the joint angular
position and vibration velocity of the tip. The simulation results demonstrate the
efficiency of the Kalman filter to suppress the effect of noise that corrupt either the

process dynamic model or the outputs measurements.
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Reddy and Jacob [77] employed Kalman filter as state estimator to estimate the flexural
state of a flexible link manipulator when applying state-dependent Riccati equation
technique in the vibration control. Using Kalman filter minimizes the effect of noises
that may corrupt the state measurements. The results from the simulation showed the
SDRE control based on Kalman filter was quite accurate in positioning and vibration

suppression of the FLM.

Ding and Xiao [78] employed Kalman filter for system states estimation for speed
control and resonance suppression of a flexible joint manipulator based on singular
perturbation method. The system was divided into a slow system and a fast system for
control, where slow system controls the joint motor speed and the fast system suppress
the resonance due to the flexibility of the joint. The effectiveness was verified by

simulation and experimental results.

Kalman filter shown to be an optimal state observer for systems which cannot be
modelled accurately using deterministic model. This method is good when the
prediction horizon is short. For long prediction horizon, there will be over prediction
during an unknown disturbance input resulting in increased errors at trajectory changes.
As stated in section 2.4.2, Kalman filter is useful only when the model and sensor data

is linear. For nonlinear process or sensor data, an extended Kalman filter can be used.
vi. Extended Kalman filter approach

Based on extended Kalman filter, Ahmad and Namerikawa [79] studied localization of
a mobile robot bounded by measurement data intermittently unavailable and existence
of uncertainties. Their results focussed on minimizing the measurement innovation
instead of Kalman gain. The experiment conducted demonstrated that when
measurement data was missing at intermittently for a short period of time, the robot
was still able to estimate its location, and its errors were statistically bounded. It shows
that measurement innovation is very helpful in deciding and pursuing the whole system
uncertainties when measurement data are not entirely lost. But it requires that the initial
state covariance, process and measurement noises are sufficiently small. Moreover, the

linearization error must be reduced to maintain good estimation.
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Suarez et al. [25] proposed the application of a stereo vision system for estimating the
controlling a Cartesian and joint deflection in an anthropomorphic, compliant and ultra-
lightweight dual arm. A colour marker was attached at the end effector of the arm for
the stereo vision system to visually track its position. Extended Kalman filter was used

to estimate the Cartesian position and velocity of the markers.

Like Kalman filter, extended Kalman filter shown to be an optimal state observer for
systems which cannot be modelled accurately using deterministic model and with the
present of nonlinear process and sensor data. But, this method is good when the
prediction horizon is short. For long prediction horizon, there will be over prediction
during an unknown disturbance input resulting in increased errors at trajectory changes.
Full state measurements might be difficult to be implemented in the practical

engineering environments.
vii. Neural Network approach

Tang and Wan [80] developed a robust adaptive dynamic surface control method using
neural networks for mobile manipulators. They reported the reduced amount of
calculation of the algorithm, and that the simulation results showed that the algorithm
can be applied in the mobile manipulator system with nonholonomic constraints,
uncertainties and disturbances. Naijian et al [81] designed a robust neural network
control system is designed for the mobile manipulator, and reported to has achieved
position tracking control successfully. They have reported that this robust neural
network controller can ensure high accurate position tracking error and incomplete

constraint force in different conditions

However, these works were based on rigid manipulator, and were only based on
simulation. The prediction capability of the manipulator trajectory has not been studied.
It is difficult to train sufficient amount of data when applied for the prediction of

flexible manipulator.

Sun et al. [68] employed adaptive neural networks to suppress vibration of a flexible
robotic manipulator. The system was modelled with lumped spring-mass approach to
improve the accuracy in describing the elastic deflection of the flexible manipulator.

The feasibility of the proposed neural network controllers was tested on the Quanser
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platform. Potentiometer sensor was used to measure the servo angle and strain gage
measure the tip deflection of the flexible beam. Compared to the PD (proportional-
derivative) control, it was observed that neural network is quicker in converging tip
tracking errors to around zero, thus achieved fast setting time for the trajectory. The
control performance was not influenced by the high number of node in the lumped
spring-mass flexible manipulator system.

Neural network approach requires relatively less information about the dynamic of the
system. This approach has also been effectively addressed control problems in
nonlinear systems with unknown dynamics. The problem is that if insufficient learning
Is provided, neural network could run into errors in the position estimation. Thus, large
amount of learning data is required in order to ensure accuracy of this approach. They

did not consider input nonlinearities in the control design.
viii. Fuzzy logic approach

Li et al. [33] proposed an adaptive fuzzy output feedback approach to control a single-
link robotic manipulator coupled to a brushed direct current motor with a flexible joint.
The fuzzy logic system was designed as an adaptive fuzzy filter observer to estimate
the immeasurable states of the unknown nonlinear dynamic associated with the
mechanical and electrical subsystems with the use of only the measurement of the link
position. The adaptive fuzzy output feedback control approach was developed by
combining the adaptive backstepping and dynamic surface control techniques. Only the
measurement of the link position is required for feedback and the fuzzy can estimate
the velocity signal, thus does not require velocity measurement.

The advantage of such approach is that it does not require all the states of the system be
measured directly. It can solve the control problem of robotic manipulators with
unknown nonlinear uncertainties. However, this fuzzy logic approaches still not robust
enough. It is difficult to develop the rules that can cover all unknown dynamics, the

rules have to be carefully tuned to achieve maximum performance.
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2.6 Benchmarking Conclusion

This chapter reviewed the sensors, sensor fusion techniques, and followed by literature

review of past works for prediction of robotic manipulators.

For indoor robot localization, the commonly employed sensors are odometer (usually
encoders) and IMU such as accelerometer. Webcams (and cameras) can be implemented
using low cost landmark recognition method, where artificial landmark can be placed on
the ceiling, such as QR codes. This way, not only that it can reduce the number of

landmark need to be memorized, but also easier for the camera to capture the image.

Range sensor, position sensitive device and strain gauges can be used for sensing tip
deformation and vibration of flexible beam. IMU and high speed camera are other
commonly used sensors for vibration estimation of flexible link manipulators. Range
sensors were often used only for validation purposes for vibration estimation of FLMs.
Strain gauges provide cheap and easy implementation for flexible link deflection
sensing, but prone to noises and interferences, and do not provide accurate measurement
for long and slender beams. Accelerometers are often fused with strain gauges and/or
cameras to overcome the deficiency to enhance signal accuracy and reliability. The
problem of vision based data is the delay in signal output.

Because of the inaccuracies of low cost sensors, it is difficult to rely on a single sensor
type to provide accurate displacement measurement. Often, fusions of different sensor
types are implemented to improve the robustness and accuracy. The fusion algorithm
should work in such that the sensors complement each other to achieve desirable results.
Weighted averaging, Kalman filter, complementary filter, particle filter, fuzzy inference
system and neural network are some fusion algorithms commonly used for sensor
fusion. Among these, Kalman filter is the most appropriate sensor fusion algorithm for
use in this research due to its readily available prediction stage and its recursive nature
which made it suitable for vibration prediction. However, Kalman filter relies on the
trustworthy data from the sensor, a situation which is not always possible and especially

for low cost robotics.

Prediction methods are often used to overcome the delayed signal from camera, where

past and present outputs are extrapolated to predict future outputs. The reviewed
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algorithms used in the prediction and control of robotic manipulators and mobile robots
includes meta-heuristic optimization, finite-time tracking, MPC, new displacement

approach, Kalman filter, extended Kalman filter, Neural network and fuzzy logic.

Meta-heuristic optimization provides a good method for planning the path of the mobile
manipulator. But, the methods require good understanding of the system motions and
offline pre-planning to generate desired paths.

The finite-time controller converges tracking errors to zero at finite time, which requires
knowledge of the system and the feedback of the current state of the system. Accurate
knowledge of the platform velocity and motion trajectory of the system is required. The
prediction errors will increase when applying input, and any unknown disturbance input

would cause high tracking errors and would not converge to zero at finite time.

Model predictive control (MPC) provides a good prediction for future control variables.
In this method, the controller can constantly plan for the motion trajectory based on the
model created for the system. The accuracy of the model is important for stability and
accurate control of the robotic manipulator. However, the accurate models of real
robotic system are not available or extremely hard to formulate for complex systems.

Any singularity not being mathematically model will result in high error.

The new displacement approach that make used of nonlinear finite element model and
provides an open loop control for vibration modes of the flexible manipulator. Any
unknown disturbance is still cannot be modelled, and without a feedback the control

becomes unstable when encountering disturbance in the motion input.

The Kalman filter approach is good for prediction approach for the flexible manipulator,
when delay compensator is used to extrapolate past and present output to predict the
future output. However, it is restricted to trajectory that linear or short horizon
prediction. Consequently, it resulted in high error due to overestimation to the change in
direction of the trajectory or disturbance. Extended Kalman filter which linearize the
nonlinearity of the flexible manipulator can be used to improve the error. However, for a
highly nonlinear system, linearization may introduce errors leading to divergence. The
non-geometric error sources for the flexible manipulator are either difficult or

impossible to model correctly and completely.
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When Extended Kalman filter is applied with sinusoidal regression algorithm, the
prediction can be extended to longer horizon. Furthermore, this method can cope with
trajectory with changing direction and unknown disturbance. The cross-correlation that
computes the time-delay between the accelerometer and camera made the signal more

robust with minimal errors.

Neural networks shows ability to predict and suppress vibration of a flexible robotic
manipulator, and quick in converging tip tracking errors to around zero. However, as
neural networks are data driven, their performance depends on the quantity and quality
of the trained data. Provided that these data can sufficiently represent the flexible
manipulator’s trajectory, otherwise it will run into extreme error in the prediction
process. Huge amount of training data will be required to accurately predict the vibration

of the flexible manipulator, which will lead to over-fitting problem.

Fuzzy logic approach is based on a set of rules to mimic the trajectory of the flexible
manipulator. Due to the dynamic singularity of the flexible manipulator, it is impossible
for to develop the set of reasoning that can accurately predict the behaviour of the tip
vibration of the manipulator. This approach is thus not robust enough to cover the

unknown dynamic and predict the trajectory of the flexible manipulator.

In conclusion, MPC and KF/EKF methods are most appropriate benchmark for the
vibration prediction of the flexible manipulator. The prediction horizon can be extended

with the implementation of the sinusoidal regression.
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3  Sensor Characterizations and Modelling of Mobile

Flexible Link Manipulator

There are two parts in this chapter. First part is the characterization of the accelerometer,
camera and encoder, which covers sections 3.1 to 3.3. Second part is the modelling of

the mobile flexible link manipulator, which covers section 3.4 to 3.7.

3.1 Characterizations of Accelerometer

Displacement information of a moving vehicle or a vibrating beam can be obtained
through double integration on the acceleration signal from an accelerometer. To double
integrate an acceleration signal to get the displacement, the initial position and initial

velocity must be known. These initial conditions are usually zero or from rest position.

3.1.1 Mathematical equations for computing accelerometer signal

The output from accelerometer is actually gravitational output, in terms of voltage. To

convert to the acceleration output, the following equation can be used [34]:
aj = (Vi - kvi)/gsi x 9.81 (3.1)

where
a = acceleration,
V = output voltage from the sensor,
ky = offset voltage, and
gs = sensor gain

I = represented as X, y or z axis of the accelerometer.

The first integration of the acceleration a obtains the velocity v as in the following

equation [34]:

v(t)= v(t0)+ja(t)dt (3.2)

where

to = initial time,
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V(tp) = initial velocity.

To get the displacement output from velocity, a similar formula as above is used [34]:
t
X(t) = x(t, )+ [ v(t)dt (3.3)
to

where

X(t) = the initial position.

The next stage is the integration of the acceleration signal into displacement data. There
are a number of numerical integration algorithms. The rectangular integration method is
the simplest way for performing a numerical integration. An accumulator is used to sum
all past sampled inputs and the current input sample, divided by the sampling rate.
Rectangular integration is represented by the following difference equation [82]:

1 1
Yn = 7527{1:0 Xn-k = Yn-1 T ]Tsxn (3-4)

where
X = past inputs,
fs = the sampling frequency,
y = the integrator’s output,
n = the number of data points to integrate.

Another numerical integration method is based on trapezoidal rule. This method is more
commonly used as it is more accurate. The trapezoidal integration can be represented as
[82]:

1
Yn =Yn-1t Z_fS(xn—l + xn)'n >0 (3-5)

Simpson’s rule is another method of integration, which can be computed by the

following difference equation [82]:

1 xn_1+4'xn+xn+1
fs 6

Yn =Yn-17t (36)

Unlike the other two methods, this method requires a future input data, X,+1 in order to
get the output, y. This requires the system to be able to predict the future input. We
decided to use the trapezoidal method of integration to perform the numerical analysis.
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Simpson’s rule resulted in high integration errors; possibly because of a large difference

in successive future sample inputs.

3.1.2 Methodology for testing and conditioning the accelerometer

The plan is to setup the accelerometer test bed to carry out static and dynamic tests on
the accelerometer while acquiring the signals. The objective is to certify that
accelerometer can be used for measuring the motion of the mobile platform and the
vibration at the tip of the flexible manipulator. The raw signals are first treated with
signal processing algorithm to attenuate the errors and noises. Validation tests are then
carried out to test the results. The phases of the methodology for the tests are as follows:

I. Preparation: In the preparation step, setup the selected accelerometer with
appropriate voltage input and data acquisition instrument. Then, prepare the test
bed for the accelerometer to be tested on. Refer to section 3.1.3 for detail
descriptions of the setup.

Il. Static and dynamic tests for filter selection: At this phase, perform attenuation of
errors and noises for the accelerometer as follows:

a) Static test- compare smoothing filters: the raw accelerometer’s signal is filled
with noises, thus has to condition the raw signal to remove the noises.
b) Dynamic test- compare smoothing filters: select the optimal smoothing filter.
Refer to section 3.1.4 for the detail descriptions of the test procedures.

I11. Static test— calibration: The purpose of this phase is to find the constant offset
bias and acceleration gain errors, and then to determine the offset and gain values
for the signal. Refer to section 3.1.5 for the detail descriptions of calibrating the
accelerometer.

IV. Dynamic test— treating bias error: The purpose of this phase is to remove the
effect of walking bias. Test for dynamic errors and to reduce the errors. This is
dealing with walking bias errors. Refer to section 3.1.6 for detail description of
testing and dealing with walking bias.

V. Accuracy tests— At this phase, convert the signal into acceleration, velocity and

displacement outputs, and then measure accuracy and its errors:
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a. Accuracy tests: Test the accuracy of the acquired signals with a set of

motions. Verify the accuracy of the accelerometer through dynamic tests.

The purpose is the find the range of speeds that the accelerometer is capable

to detect and how accurate can it measure.

Dynamic errors: Test for the cross-axis affects that contribute to the

measurement errors. This error cannot be treated or attenuated standard

approach.

Refer to section 3.1.7 and 3.1.8 for the detail descriptions of tests.

Preparation

Material preparation

Test bed preparation
Instrument

v

Treating noises

e  Static tests
e Dynamic tests

\4

Signal acquisition

Voltage

Voltage output from
accelerometer

v

Calibration

Calibration <

Remove walking bias

e  Static tests

Filter selection

A

e Remove bias error
e Remove noise

Treating bias

A

Accuracy tests

Tables and plots for analysis

e Dynamic tests

A

Methodology

Accuracy tests

Error tests

e Dynamic tests

A 4

Plots for analysis

Fig. 3.1 Flow chart of methodology for testing the accelerometer
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The flow chart of the methodology for testing the accelerometer is illustrated in Fig. 3.1
below. Mathematical formula was developed for converting the acquired data into

acceptable acceleration output. The test results are presented in section 4.1 in chapter 4.

3.1.3 Preparation of the accelerometer

An off-the-shelf accelerometer to be evaluated is MMA7260Q, a low cost capacitive
micromachined triaxial accelerometer, available at less than US$20. It has selectable
sensitivities of +1.59, £2g and +6g. The bandwidth response is 350 Hz for X- and Y-
axes, and 150 Hz for Z- axis. According to the data sheet in Appendix B.1, the operating
voltages are between 2.2 V to 3.6 V. For maximum accuracy, the accelerometer was
powered by the DC voltage of 3.6 V via NI 9263 analog output module. The
acceleration signal was acquired via National Instruments NI 9201 acquisition module
on NI cDAQ 9172 chassis. According to the data sheet of Appendix B.1, the
recommended sampling frequency is 11 kHz, and thus 11 kHz data acquisition rate was

set. The physical setup of the data acquisition hardware is depicted in Fig 3.2.

AR 3
[ NI 9263

NI 9201

| NI19411

= | N1 9219

ot 7
NI cDAQ 9172

DC power supply

Fig. 3.2 Hardware setup for the data acquisition modules

(For acquiring signal from accelerometer)
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To test the accelerometer, the test bed needs to have accurate and stable movement, and
has good repeatability. The KUKA robot available at the Mechanical lab of University
of Nottingham, Malaysia campus had been select for preparing the test bed. This KUKA
industrial robot, as shown in Fig. 3.3, is fenced in order to isolate it from the human user
for safety purpose. The robot controller is situated outside the fence for robot
programming and control. The robot was initially setup for robot welding demonstration

class for the Engineering students in the Mechanical Engineering Faculty.

This KUKA robot is a highly accurate robot with 6-DOF movements; and it has a
repeatability of less than £0.05 mm and a maximum reach of 2.033m. The accelerometer
is to be used for sensing the tip movement of the robotic manipulator; thus the KUKA
robot is an appropriate platform. To carry out the tests, the accelerometer was fixed at
the tip of the robot arm.

L -
. g
A\
—F /
g > — - v ‘//\,’ "

- .-

— 3 = =4
il Pppees L —
e G 1
o |
: 1 Accelerometer =1
| B | fixed at the tip of H
— the robot arm
- - ,"\~\ i\ L2
\ \
., ‘ > Kuka robot —)

Fig. 3.3 Kuka robot and accelerometer fixed to the tip

(This is the robot used in University of Nottingham, Malaysia campus)
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Fig. 3.4 illustrates the schematics for the whole test setup for testing the accelerometer.
The robot controller controls the arm movement at the end-effector. The signals to and
from accelerometer are provided through National Instrument’s NI modules. The
Labview software controls the signal acquisition and voltage output to the NI cDAQ
9172 chassis.

Labtop with Labview software [ = ][ — ][ = ] Signal wire

A

NI 9201and NI 9263
modules on NI

g cDAQ9172 chassis

usB

Accelerometer
fixed here

Robot controller I_j'i
Kuka robot

Fig. 3.4 Schematics of the test setup for the accelerometer

3.1.4 Filter selection

Static and dynamic tests were carried out to choose suitable filter to attenuate noises.
The specific objectives of these tests are to determine the bias errors and noises through
static and dynamic tests. The purpose is to determine the noises in the signal, and then to

find the filter to attenuate the noise.

In the static tests, a single axis (z-axis) was placed facing gravity, while the other two
axes (x- and y-axis) facing horizontally. The acquired signals were then tested with four
types of filters. The selection criteria are effectiveness of smoothing the noise,

processing speed and preservation of the signal.

The dynamic tests are to characterize the dynamic performances and aid selection of the
most appropriate filter. The dynamic tests are carried out setting the accelerometer to

vibrate by placing it at the tip of a cantilever beam, and acquire the signals.
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The results for the above tests are depicted in section 4.1.1 for static tests and 4.1.2 for
dynamic tests. When the signal content is contained in a certain bandwidth, the signal
must be sampled at a frequency to prevent aliasing problem. Therefore, for maximum
acquisition without aliasing and best signal reconstruction, it is recommended for 11

KHz sampling rate (refer to Appendix B.1) for signal acquisition.

3.1.5 Calibrating the accelerometer

Static calibration is used to compensate for systematic errors, such as offset bias and
drift. Thus, the purpose of calibrating the accelerometer is to find the constant offset bias
and acceleration gain error. We first determine the maximal and minimal for 1g and -1g.
This is achieved by aligning the measuring axis (z-axis) with direction of gravity by
placing the measuring axis facing statically downwards and then opposite direction
upwards. The results for the maximum and minimum acceleration values are shown in
Table 4.2 in section 4.1.3 of chapter 4.

The zero acceleration voltage value is assumed to be the centre of the maximum and
minimum output ranges. This zero acceleration voltage value is the constant offset bias,

which can be calculated as [83]:

max + min

Constant offset bias, offset = (3.7)

The acceleration gain can then be obtained by deducting constant offset by maximum

value as follows [83]:
Acceleration gain, gain = offset - max (3.8)

Using equation (3.1), we can then verify the actual zero and gravitational accelerations
by placing the measuring axis parallel to the gravity. The results are shown in Table 4.3

in section 4.1.3 of chapter 4.

3.1.6 Effect of walking bias errors

Accelerometers possess unwanted drifts called walking bias associated with the
acceleration signal caused by a small DC bias [45]. Ideally, the accelerometer should not
contain any DC bias. The presence of drift due to walking bias can lead to large

integration errors. If the acceleration signal from an accelerometer is integrated without
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processing, the problem of walking bias can cause unbounded propagated error when
acceleration measurements from the accelerometer are integrated into velocity and
displacement.

Tests were carried out to test for the walking bias. The results for the walking bias are
illustrated in Fig. 4.6 and 4.7 in section 4.1.4 of chapter 4. Standard deviation is used to
measure the deviation of the data. From an arbitrary selection of 300 data points, it was
found that a standard deviation of less than 0.1 m/s® can be considered as constant
acceleration. Thus, an algorithm was developed so that for every 300 points that if the
standard deviation is less than 0.1 then it is considered to be a zero or a constant
acceleration, else it is a changing acceleration. Fig. 3.5 illustrates the flow diagram for
this algorithm to compute the standard deviation for every 300 points, and differentiates

between a zero, a constant acceleration or a ramping acceleration.

Start
I

Get next 300 points of data

Calculate standard deviation

- No Yes ) ;
Zero or constant acceleration Ramping acceleration

Fig. 3.5 Algorithm to compute standard deviation of 300 points to determine acceleration type

Fig. 4.8 and 4.9 in section 4.1.4 (chapter 4) illustrated the outcomes after the algorithm

IS implemented.

3.1.7 Dynamic verifying the accuracy of the accelerometer

In order to test the dynamic working range and error mode of the accelerometer, we put
the accelerometer into dynamic tests. The tests were carried out on the Kuka robot by
traversing the accelerometer with various travelling speeds to determine its working

ranges. Only one axis (y-axis) of the accelerometer was tested.
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The purpose of the tests is to determine the dynamic errors when the accelerometer
moves at various speeds, and to determine the speeds that the accelerometer can perform

well for motion estimation. We define the test factors and test responses as follows:

a. Define the factors for moving the accelerometer:
In this test, there are three factors:
I.  The speed of the travel: specifying the speed of moving the accelerometer.
To maximize the information with minimum number of test points, a
prescribed numbers of robot speeds were selected. It was found that the speed
lower than 5 cm/s is too low for the accelerometer to detect the motion, while
the maximum speed that can be set for the robot is 2m/s. Thus, the speed of
travel were tested at 5 cm/s, 15 cm/s, 25 cm/s, 50 cm/s, 1 m/s and 2 m/s robot
speeds for straight traversal.
Il.  The distance to travel: specifying the distance to move accelerometer.
The robot arm is constraint to stretch at a maximum distance of 0.8m
horizontally and 0.6m vertically. We only test 0.8 m for horizontal traversal.
I1l.  The type of motion: specifying the travelling motion of which to move the
accelerometer.
In this research, we only performed the experiment on straight horizontal
path. Only Y-axis is facing the direction of travel, with the Z-axis facing

towards gravity and X-axis facing lateral direction.

b. Define the responses from the accelerometer:
In this test, the responses are:
I.  The acceleration: the acceleration output converted from the signals of the
accelerometer.
Il.  The velocity: the velocity output after first integration of the acceleration
output.
I1l.  The displacement: the displacement output after second integration of the

acceleration output.

c. Repeatability tests
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25 sets of experimental samples were taken for each speed set-points of the robot tip
extending, retracting, or turning. The tests results are exhibited in section 4.1.5 and 4.1.6

in chapter 4.

3.1.8 Cross-axis affects

Rotating the accelerometer 180° to determine the cross-axis errors. It is also to examine
how much can the cross-axis error contribute to the measurement error. According to the
datasheet for MMA7260Q (referring to Table 2 in Appendix B.1), this accelerometer has
a cross-axis sensitivity of 0 to 5% (max). To test for this cross-axis affect two tests were

carried out:
I. Rotating the accelerometer 180°. This is to test for the cross-axis errors.
Il. Traverse test on the accelerometer. This is to examine how much can the
cross-axis error contribute to the measurement error. Onhy-one-axis
I. Rotating the accelerometer 180° to test cross-axis errors.

With the accelerometer mounted at the tip of the Kuka robot, the tip was programmed to
rotate 180°, with the initial orientations: X-axis facing horizontal, Y-axis facing towards
gravity, and Z-axis as centre of rotation. The final orientation being Y-axis facing
upwards; as illustrated in Fig. 3.6. The true acceleration values were calculated based on
the following equation [36]:

F = ga*cos(f) (3.9)
where

F = the true value of the acceleration vector at various tilt angles,

0a = the gravity vector, and
6 = the angle of tilted.

The test result is presented in part | of section 4.1.7 in chapter 4 (result chapter).
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Fig. 3.6 Accelerometer sensitive axis and its tilted angle (This diagram illustrates the
accelerometer mounted at the tip of the robot)

Il. Traverse the accelerometer at the speed to 2 m/s.

We now analyse the cross-axis error when we traverse the accelerometer at maximum
speed of 2 m/s. Considering the 5 % cross-axis sensitivity (refer to Table 2 in Appendix
B.1), running the robot at 2 m/s speed would contribute to maximum error of 0.1 m/s’,
The results illustrating the effect of this affect when the accelerometer traverses in a

straight line are shown in Fig. 4 19 and 4.20 at part 11 of section 4.1.7 in chapter 4.

3.2 Characterization of camera

The localization of the mobile platform can be measured by using camera or webcam,
while webcam is cheaper method. As for vibration tracking of the flexible beam, only
camera can be used. Webcam will result in poor image as the vibrating beam moves in
very speed, but webcam can be used for tracking mobile robot. Therefore, this section
discusses the tests for localization of mobile platform using webcam, while vibration of

flexible beam is measured by using high speed camera.

3.2.1 Algorithm for computing camera data

In the domestic environment, such as the living room, the feature that usually remains
unchanged is the ceiling. As discussed in section 2.1.1 landmark recognition method for
indoor mobile robots localization can be by fixing the artificial landmark on the ceiling
[20, 21], while a camera is fixed on the robot to read the landmark. In this work, we

58



place a marker on the ceiling, where the webcam mounted on the mobile platform facing
vertically upwards to capture the marker at the ceiling. Webcam is a cheaper method as

compared to camera.

Scan <
No
Colour match?
Yes
Find centre position
No
Shape match?
No
Area match?
Find centre position
No
Last pixel?
Yes
Stop

Fig. 3.7 Flow chart for recognising marker position

Fig. 3.7 above shows the flow diagram for the marker recognising process. To detect the
marker, the coordinates of the marker on the image plane are evaluated via an operation
of blob detection. Next, the colour, shape and area matching method is used to recognise
the marker. The program first filter off the background by matching the colour value of

marker, anything not matching the colour threshold value will turn black while the rest
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turns into white. A morphological structuring element method then finds the marker by
fitting its shape with the marker. Next, the objects that match the area size of the marker

will be identified. Finally, the centre point of the identified object is determined.

With the data obtained we compute the gain by dividing the actual displacement by the

mean of the pixel counts between two adjacent marker’s images [31]:

Yaisp = Cear (3.10)

mean{(xz—=x1)+(Xn—Xn-1)}

where
Quisp = gain for computing the marker’s displacement using pixel count between
adjacent image,
dcam = the displacement from previous camera position, and

X =the pixel position of the marker.

The displacement calculation des: using webcam/camera, is then calculated using pixel
count pene multiply by gain geam [31]:

Gest = Geam % Pent (3.11)
where

dest = displacement in mm

Ocam = pixel gain

Pent = pixel count

3.2.2 Methodology for testing camera

In this research, webcam is used as an absolute method for tracking the position of the
mobile platform, while the camera is used to sense the displacement at the tip of the
flexible manipulator. The phases of the methodology for the tests are as follows:

I.  Preparation: In the preparation phase, the selected camera was setup, and the target
object set to the position required to be captured. Then, the camera was adjusted to
focus to the target object. Two setups were prepared; one is for webcam mounted on
mobile platform, and the other one is for CMOS camera mounted at fixed end of a
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flexible beam. Refer to section 3.2.3 for the details of preparation and setup of the
webcam and CMOS camera.

Il. Static test- calibration: The purpose of this phase is to apply mathematical algorithm
with appropriate settings for converting image pixel into displacement information.

Refer to section 3.2.4 for the details of calibration of the camera.

I11. Test for mobile robot localization with webcam: The purpose of this test is to check
the accuracy of the webcam in locating the mobile robot position at different
locations. The tests are conducted as follows:

a. Static test— Move the mobile robot to different location. Capture the image of
the marker at the ceiling. Convert the marker’s position in the image into robot’s
position.

b. Dynamic localization test— Set to move the robot at various speeds. Capture the
marker at the ceiling while the robot moves. Convert the marker’s position in the
image into robot’s position.

Refer to section 3.2.5 for the details on the tests for robot localization using

webcam.

IV. Test for vibration tracking of flexible beam using camera: The purpose the tests the
ability of the CMOS camera in capturing and measure the vibration at the tip of the
flexible manipulator. The tests are carried out as follows:

a. Vibrate the flexible beam. Capture the oscillating LED using the CMOS camera.
b. Vibrate the flexible beam. Convert LED image into vibration result for the tip of
the flexible beam.

Refer to section 3.2.6 for the details on the tests for vibration tracking using camera.

The flow chart of the methodology for testing the cameras is illustrated in Fig. 3.8

above. The test results are presented in section 4.2 in chapter 4.
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3.2.3 Preparation and setup for testing web cam and CMOS camera

In this research, an Ultra-HD PC Video webcam and a Firefly series FMVU-03MTC-CS
USB CMOS camera are proposed. This section evaluates the possibility of using
proposed webcam for vehicle position estimation and the proposed CMOS camera for
vibration estimation of the flexible beam. The webcam is available at less thanUS$20
and 5g in weight. It is a 12 megapixel camera with a frame rate of 30 fps (frames per
second). The CMOS camera cost at US$295, weighing 37g. It has a resolution of 0.3
megapixels with a frame rate of 60 fps.

a. Setup for mobile platform localization

The Ultra-HD PC Video webcam is used for tracking the localization of the mobile
platform. In order to capture relatively good image for moving object, the webcam is
configured to the resolution of 640x480 for frame rate of 10 fps. The height from the
lens of webcam to the ceiling is 2.4 m, and 11.7 cm above the ground. With this viewing

distance, it has a wider viewing range, thus lesser markers are required on the ceiling.

In order to acquire the image that can be processed, the marker needs to be of reasonable
dimension, and the shape of the marker need to be distinguishable. We use a black
48mm by 48mm square marker. As the marker is mounted to the ceiling its surface need
to be anti-reflective so that it will not reflect light. The marker is placed at a position

where the lighting condition is adequately lit.

The image of the marker is shown is Fig. 3.9 below. It can be seen that one problem is
the uneven illumination. The left top edge in the picture is very bright due to lighting,
while the bottom right appeared darker. Thus, the choice of marker’s colour and shape

has to be chosen so as to distinguish it with the surrounding.
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Fig. 3.9 Image of marker on the ceiling

The webcam on mobile platform is depicted in Fig. 3.10 below. It consists of the mobile
platform with motion driven by motorized front wheel controlled by the Arduino
microcontroller to the motor amplifier. To measure the actual position of the mobile
platform, a long range Sharp (GP2Y0A710F) IR distance sensor is mounted at the front
of the mobile platform to track the position the mobile platform with respect to the wall.
The signal of the distance sensor is acquired via the National Instrument NI 9201
module. The webcam is connected to the labtop and the image of the ceiling marker

capturing using Matlab’s image acquisition toolbox.

Fig. 3.11 illustrates the schematics for the test setup for testing the webcam on mobile
platform.
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IR distance sensor (directed towards wall)

Fig. 3.10 Setup for webcam and IR distance sensor on mobile platform

Wall
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Laft:top Wf'th _matlab NI 9201 module on
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capturing .
IR distance sensor
USB Motorized Arduino
wheel Microcontroller
= USB g5
Mobile
a platform
UsB
Webcam
(focus to ceiling)

Fig. 3.11 Schematics of the test setup for webcam to measure mobile platform position
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b. Setup for vibration tracking of flexible beam

The approach used here is by fixing the CMOS camera at the fixed end of the beam and
an LED at the free end, so as to capture the image of oscillating LED. The LED is
enclosed inside a black light-weight cardboard box with a small hole so that the light can
only be seen from a one angle only. The distance from the lens of camera to the LED is
50 cm. To measure the actual vibration of the flexible beam, a short range
(GP2Y0A21YK) IR distance sensor is mounted proximity to the tip of the flexible beam.
Fig 3.12 depicts the physical set up, while Fig. 3.13 illustrates the schematics for the test
setup for testing the CMOS camera on flexible beam.

Rigid pole

Fixed base

T

~-~ . . :‘o“\‘QZk
Flexible beam

=

Fig. 3.12 Physical setup for camera and distance sensor on flexible beam.

IR distance sensor Black box
'-afk:t"p Wf'th matlab NI 9201 module on LED
sottware for Image NI cDAQ9172 chassis
capturing Power

supply
to LED
Flexible

e \
gﬁi— beam CMOS Camera
1 cﬁﬂ/ (focus to LED)
USB

Fig. 3.13 Schematics of the test setup for CMOS camera to measure flexible beam vibration
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3.2.4 Calibration of camera for measuring vibration of flexible beam

The Firefly series FMVU-03MTC-CS USB CMOS camera is used for measuring the
vibration of the flexible beam (refer to appendix B.2 for the datasheet about the camera).
To calibrate the camera, a ruler was placed 50 cm from the lens of the camera. The
camera is set to 750 x 480 for maximum resolution. The image was then captured. Fig.
3.14 exhibits the number of pixels for 1 cm wide measurement. The measurement shows
that 26 pixels equals 1 cm, which means 1 mm equals 2.6 pixels. The camera is thus has
around 0.5 mm accuracy at static condition for maximum resolution. The maximum

displacement that is within the view of the image is 576 cm.

1 cm (26 pixels)

Close up view at 1 cm of a ruler w

O-26.02
Fig. 3.14 Image displaying that there are 26 pixels for 1 cm wide measurement

3.2.5 Tests for mobile robot localization with webcam

The objective is to determine the accuracy of the webcam in computing the position of
the robot. In considering the factors to be studied, the lighting condition, marker’s
surface and the high of the marker is assumed to be fixed, and thus the variables are

resolution of the measurement and the speed of the robot.

Two modes of tests were carried out to characterize the sensor:
I.  Static tests: To determine the accuracy and to find a method to improve the
accuracy. The images were taken at fixed distance intervals apart.
II.  Dynamic tests: To determine the maximum moving speed of the robot that the
webcam is capable of capturing. The robot is made to move at various speeds

while at the same time the camera records the images as it moves.

I. Static tests with webcam for localization of mobile platform

The images were captured at fixed distance interval apart as follows:

1. Starting from an origin, the camera advances 1 mm distance to the next point.
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2. Starting from the origin, the camera advances 5 mm distance to the next point.

3. Starting from the origin, the camera advances 5 cm distance to the next point.

20 samples were taken for tests 1 and 2, and 30 samples were taken for test 3. The

results are shown in section 4.2.1 in chapter 4.

The results showed that it has high error of up to 28 mm for the displacement
measurement. To improve the accuracy, interpolation method is proposed, whereby the
marker positions in the image are predetermined at fixed interval of the camera position.
This means image teaching is required to store the marker’s position into memory. We

choose a 50 mm interval teaching. The results are shown in section 4.2.2 in Chapter 4.

Il. Dynamic tests with webcam for localization of mobile platform

In the dynamic experiments, the mobile platform is set to move in a straight path with
the camera capturing the marker on the ceiling. An infrared range sensor is mounted in
front of the robot to acquire robot’s position. The results are shown in section 4.2.3 in
Chapter 4.

3.2.6 Tests for vibration tracking of the flexible beam with camera

As in the survey in section 2.2.2, there are numerous approaches that made use of
camera for vibration estimation of flexible manipulators. In this section, we validate and

compare the use of camera for estimating the beam vibration.

As explained in second part of the preparation phase, the setup is by fixing the Firefly
series FMVVU-03MTC-CS USB CMOS camera at the fixed end of the beam and an LED
at the free end, so as to capture the image of oscillating LED. The distance from the lens

of camera to the LED is 50 cm.

As for the webcam, the images of the LED light is very blur and there are frames drop
issues, thus webcam is not suitable for vibration estimation of the flexible beam. Out of
3000 frames, more than half the frames were dropped. This caused position tracking of
the oscillating LED light difficult for webcam. Therefore, webcam cannot be used for
measuring vibration of flexible beam and thus only discussed the tests for vibration

using camera only.

68



I. Test capturing of oscillating LED using camera

The tests were carried by exciting the flexible beam to a deflection of 10 cm and then
release. It was carried out in a dark room so that there is no surrounding light to effect
the recognising of the LED position. Section 4.2.4 (chapter 4) illustrated the results for
the tests.

Il. Vibration tracking of the flexible beam using camera

The vibration tracking tests were carried out by deflecting the tip of the beam by 4 cm
and then release. For image processing operation, the coordinates of the LED light on
the image plane are evaluated through the blob detection operation. An algorithm has
been implemented to predict the next LED position, so that only a 100 x 20 rectangular
portion of the image is analyzed each cycle, which is the distance from the current LED
position to the next LED position for highest image processing speed. This saves
computational burden and image processing time. The algorithm is based on current
position minus the previous position to obtain the velocity. And then use the velocity
and current position to predict the next position. This method also solved the problem of
distorted image due to high displacement speed as illustrated in Fig. 4.34 (section 4.2.4
in chapter 4). By knowing the heading direction of the LED, we can determine the
current LED position from the distorted image. For example, by knowing the direction
of motion we know that the current pixel position is for the middle LED position X: 427
and Y:211. The reference point is taken from the left top edge of the image, which is X:
0and Y:0.

The results for the tests are depicted in section 4.2.5 in chapter 4.

3.3 Characterization of encoder

As encoders and tachometers are well known devices for rotational displacement
measurement, and the method for displacement measurement is relatively standard, thus
only simple verifications were carried out here. Encoder data are accessed by computing

the pulses count when the motor shaft turns.
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3.3.1 Equation for computing encoder signal

For the wheel, the linear displacement of its circumference can be calculated through the

encoder data using the following equation [27]:

denc = 27T7'penc/nenc
(3.12)

where

denc = the linear displacement,
r = the wheel radius,
Nenc = the number of pulses per revolution, and

Penc = the number of pulses.

3.3.2 Methodology for testing encoder

In this research, encoder is used as a relative method for measuring the displacement of

the mobile platform. The phases of the methodology for the tests are as follows:

Preparation: In the preparation phase, a motor that comes with encoder was prepared.

Setup the motor with encoder with appropriate voltage input and data acquisition
instrument. Then, prepare the test bed for the encoder to be tested on. Refer to

section 3.3.3 for the details of preparing the encoder.

. Calibration: Calibrate the encoder by accessing the number of pulse counts for the

360° turn of the shaft. Refer to section 3.3.4 for the details of calibrating the

encoder.

Static test: To test the accuracy of the conversion equation for the encoder pulse
counts. Mount a wheel onto the motor shaft to test the accuracy of the encoder in
computing the wheel’s rotational displacements. Refer to part | of section 3.3.5 for

details of the static tests.

. Dynamic test: As a set objective in point 2 of section 1.2, we are required to the test

the accuracy and repeatability of the sensors. To test the accuracy and repeatability
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of the encoder in measuring the linear displacement of the mobile platform. Attach
the motor with encoder onto the mobile platform. Carry out tests by applying
voltage to drive the motor and measure the linear displacement of the platform that
computed from the encoder output. This is to determine the accuracy of the encoder
in computing the displacement of the mobile platform. Refer to part Il of section
3.3.5 for details of dynamic tests.

Preparation

Correlation
Pulse count

l Methodology

Displacement output

Material preparation

Test bed preparation

v

Static calibration

e Determine pulse count

Input for mathematical formula

\ 4

Encoder pulse count for
full revolution of shaft

v Date collection
Static tests || Setshaft to rotate
e Wheel rotation tests at various speeds
Pulse output from the
L encoder
Dynamic tests $
e  Mobile platform displacement tests Conversion
Mathematical
formula
Results Converting
< pulse count into
e Plots and analysis displacement

Fig. 3.15 Flow chart of methodology for testing the encoder
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The flow chart of the methodology for testing the encoder is illustrated in Fig. 3.15
above.

3.3.3 Preparation for testing the encoder

To test the encoder, a low cost brushed DC motor that comes with encoder was used.
The motor is a geared motor, with gear ratio 46.85:1. The encoder is a rotary encoder
with 2248.8 pulses per revolution. The motor comes with that sense the magnetic disk
rotation of the motor shaft. The encoder’s signal was acquired using NI 9411 via NI
eDAQ 9172. A wheel is attached to the shaft of the motor where its angular
displacement can be calculated with the encoder. The diameter of the wheel is 65 mm.
The motor with the wheel is then attached to the mobile platform that has two follower

rear wheels. A variable DC power of up to 5 V is used to drive the motor.

Fig. 3.16 illustrates the schematics for the test setup for testing the encoder on mobile
platform. Fig. 3.17 depicts the setup for testing the encoder.

E CICIC )k el
% NI 9411and NI 9201
modules on NI
cDAQ9172 chassis Motor with
encoder

USB

Range sensor

Wheel

Arduino

Mobile
platform with / Microcontroller

two rear wheels

Fig. 3.16 Schematics of setup for testing encoder
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Fig. 3.17 Setup for encoder test

3.3.4 Calibrate the encoder

The motor shaft was set to rotate 360°, while the pulse counts were collected. The pulse
count is to verify the actual pulse per revolution, use for computing wheel displacement.
Mathematical equation 3.12 is used to compute the linear displacement using the signal

from the encoder.

3.3.5 Testing the encoder

To verify the encoder accuracy for use in robot localization, experiments were carried
out. The static and dynamic tests for the encoder are as follows:

I. Static tests for the encoder — wheel angular displacement test

With a wheel attached to the motor shaft. The angular displacement of the wheel was
computed from the encoder output. The wheel was allowed to turn freely without load,
and tested with various input voltages to the motor. It was found that to prevent aliasing
at higher motor speeds, the acquisition rate needs to be set to 1kHz.

The tests were carried out with the input voltages of 0.67V to 6V at increment of 0.67V.

The results are illustrated in section 4.3.1 of chapter 4.
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1. Dynamic tests for the encoder

For the dynamic test, the motor with the wheel was affixed to a mobile platform. The
objective is to determine the repeatability of the encoder in measuring the distance
travelled by the platform. In the tests, the platform was programmed to move at various
speeds (by applying various step input voltages) to move a fixed distance for each speed.
It was tested with wheel rotating 370 mm linear displacement. The tests were carried out
with 32 mm/s, 100 mm/s, 146 mm/s and 266 mm/s wheel’s linear speeds. The results are

illustrated in section 4.3.2 of chapter 4.

3.4 Modelling for Mobile Flexible Link Manipulator

There are two parts for the mobile FLM: the mobile base and the flexible manipulator.
The main task of the localization system is to provide accurate position estimation of the
mobile platform, and accurately predict the vibrations of the flexible manipulator.

This and the next two sections covers the objective set in point 3 of section 1.2 in
chapter 1, which is to model the mobile flexible link manipulator (MFLM) so that the
selected sensors can be evaluated for vibration and motion trajectory prediction of the
MFLM. First, the dynamic models of the mobile platform will be formulated, followed

by the dynamic equation for the flexible beam.

3.4.1 Dynamic Model of Mobile platform

The mobile base used for the investigation is a three wheeled vehicle, as modelled in
Fig. 3.16. The front wheel is the driver wheel (which is driven by a DC geared motor)
that has tire. It composed of normal force, traction/braking force, rolling resistance force
and lateral force. The rear follower wheels are two caster wheels, which are free rolling,

thus the traction/braking and lateral forces are assumed be to negligible.
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Fig. 3.16 Free body diagram of a three wheels mobile platform (Note that this is the model of
the mobile platform used in this research)

a. Model of DC motor

Assume that the load and input voltage to the brushed DC motor for the front wheel is
equivalent to the DC motor circuit as shown in Fig. 3.17 below, where I is current, V is
the input voltage, L is the armature inductance, R is the armature resistance and zoyp IS

the coupling torque from the wheel [84].

T

Wheel

Fig. 3.17 DC motor equivalent circuit [85]

Theoretically, a DC motor can be approximated as a circuit with back- EMF voltage, a
inductance and a resistor. The resistor models the resistance of the motor windings. The
back- EMF is the voltage generated by the moving electric current in the magnetic field.
The back-EMF voltage is proportional to the speed of the motor. There is no back EMF
at stall. At no-load free rotation, the back-EMF can be assume equal to the source input
voltage. Therefore, we can assume that the back-EMF voltage e is proportional to the

shaft angular velocity wp, expressed as [84]:
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e= keC()m (3 13)

where
ke = the back-EMF constant of the motor,
e = back-EMF of the motor,

om = shaft angular velocity.
The motor torque is proportional to the armature current, expressed as [84]:
Tm — kila (314)

where
ki = the torque constant of the motor (Nm/A),
mm = the torque generated by the motor,

I, = input the current to the motor.

Based on Kirchhoff’s voltage law for the electrical characteristics of Fig. 3.17, yielded
the equation [84]:

V=LZ+RI,+e=L% 4RI+ kewn (3.15)

where
V = input voltage,
L = armature inductance,

R = armature resistance.

For the mechanical characteristics of Fig. 3.17, Newton’s second law can be applied,
which yields the equation [85]:
T = i o+ Tpy + Teoup = kil (3.16)
where
Jm = moment of inertia of the motor,
Teoup = coupling torque where the motor torque must exceed to begin the wheel
movement,

T = friction which act against the movement.
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Tt can be a static or kinetic friction [85]. It is dependent on the mass of the manipulator
by the normal force N. Static friction is realized at zero velocity as a force threshold Fs,
which must be overcome to set the mobile manipulator moving. This is a phenomenon
concerning friction where the rotational system will only start to move when the driving
torque is high enough to break the static frictional torque [85, 86]. Such characteristics
of friction form a dead zone nonlinearity output with respect to the input voltage. The

static friction can be represented by a coefficient x5 and normal force Ng as [87]:
FS = ILls.NF (3.17)

where
F = static frictional force,
us = coefficient of friction,

Nk = normal force acting on the wheels.

Upon overcoming the static friction, the friction force becomes kinetic friction. The
kinetic friction consists of stribeck friction, Coulomb friction and viscous friction. The

frictional torque of T¢ in equation (3.16) can thus be written as [87]:

Tfr = Istatic T+ Tstribeck + VW, + Tcoul (3-18)

where
Ty = friction torque
V¢ = viscous friction coefficient,
Teou = coulomb friction which affects the motor dynamics,
Tstatic = Static friction,

Tetribeck = Stribeck friction.

Fig. 3.18 illustrates the combination of static friction, stribeck friction, viscous friction
and coulomb friction [85]. In ideal case, the solid line of sufficient to represent the

nonlinear friction which consists on coulomb friction.
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Fig. 3.18 Viscous friction, Coulomb friction and static friction [85]

Fig. 3.19 depicts the ideal dead zone nonlinearity, where the electro-mechanical system
exhibits a nonlinear characteristic [87] when the input voltage to the motor undergoes
zero volts, the vehicle stays still for some time until it achieved the breakthrough
voltage. This means that at zero velocity, the striction (due to static friction) will oppose
all motions until the torque is higher in magnitude than the striction torque. This is due
to the fact that the electro-mechanical system cannot respond immediately to the input

voltage from rest.

Fa(u) ‘

Fig. 3.19 Dead zone characteristic [87]

The Coulomb friction causes the vehicle to be resistant to move, which is not dependent
on shaft velocity of the motor [87]. Coulomb friction torque is a nonlinear friction, and
is considered as a perturbation, depending only on the sign of the motor angular velocity
(or direction of velocity). The following equation can be assumed for the Coulomb

friction torque model [87]:

Tc.sign(ém), |ém| >0 .
Tcoul = Tm — Tcoup' |6m| = 0and |Tm - Tcoupl < |Tc| (319)
Tc.sign(rm — Tcoup), |9m| = 0 and |rm - Tcoup| > |T,|
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where
T = an unknown constant value which is different for each motor, which is also
dependent on mass of the manipulator,

6,, = angular displacement rate of motor shaft.

Thus, Teou = tcoutN, Where ucoyr is coulomb friction coefficient. The first case of equation
(3.19) shows that Coulomb friction torque when the motor is turning, and the other two
cases show the same torque when the motor is stopped. The Coulomb friction causes the

vehicle to be resistant to the direction of motion [87].

The viscous friction is dependent and is a linear function of the rotational velocity of the
motor shaft, which is represented as vy, in equation (3.18). It is also dependent on the
mass of the mobile manipulator, thus v = «N, which is the viscous coefficient multiply
by normal force N. The stribeck friction occurs only at low velocity, and it is the
apparent drop in the friction force as the velocity increases [85]. Stribeck friction is
usually expressed by the following equation [86]:

Tfr = (Tcoul + (Tstatic - Tcoul)e-IWm sl )Sign(Wm)+ WV (320)
where

Teou = torgues for coulomb friction,
Tstatic = Static friction,
vs = stribeck velocity,
WVp, = viscous friction

I = an exponent.

/— :’ Om, Tm

S
. o Motor
Gear [

A

Fig. 3.20 Model of front motor and its :Nheel [78]
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With a geared DC motor, it is common to visualize that the transmission from the motor
to the driving wheel can be approximated with a model of a two-mass resonant system
connected by a spring and damping system [78], coupling the motor and wheel, having
the constants of K for the spring and D for the damper, as represented in Fig. 3.20.
Equating the coupling torque of the motor Tcoyp in terms of K and D, equation (3.16)
becomes:

. K D . o
Tm = Kilg = JmOm + Tfr + r]_z(gm — nby) + r]_z(gm — ndy) (3.21)

where
K = constant for the spring,
D = constant for the damper,
n = the gear ratio,
@y = the wheel angle,
6n = the shaft angle,

Jm = motor’s moment of inertia.

Teoup iN equation (3.16) is qﬁz (6,, — n6,,) + %(ém — 16,,). Let J,, be the wheel inertia,

the dynamic equation for the shaft of driving wheel is [85]:

Jwb = K (%2~ 6,) +D ("Tm - 'W) =r (3.22)

where

r = coupling torque measured in the shaft connecting to the wheel,

Jw = wheel’s moment of inertia.

Thus, substituting equation (3.22) into (3.21), leads to:

tm = Kily = Jynm + Tpyr + % (3.23)

b. Model of wheels

The possible contributions to motion inaccuracy for a vehicle are wheel slippages and
backlashes due to reduction gears. Here, we investigate the wheel dynamics with the

ground, as illustrated in Fig. 3.21.
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Fig. 3.21 Mobile platform side view illustrating centre of gravity

(Note that this diagram illustrates the model of the mobile platform used in this research)

As we limit our study to the robot moving only longitudinally, thus the steering
dynamics of the wheel are not considered. Only the rolling dynamics of the wheel are
considered. Referring to Fig. 3.21, summing forces in the vertical direction, leads to
[88]:
where

N,r = normal force acting on rear wheel,

Nyt = normal force acting on front wheel

m = mass of the mobile platform

g = gravity
Summing forces in the horizontal direction leads to [88]:

Fi+ Fw=ma (3.25)
Summing moments about the centre of gravity CG, leads to [50]:

Nur X1 — Nyf X2 — Fy -h — Fyrh = 0 (3.26)

where
F¢ = traction force acting on front wheel due to rolling,
F. = friction force for rear wheel,

Ny = normal force from the ground,
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f = subscript represent front wheel,

r = subscripts represent rear wheel,

X1 = distance from centre of gravity to rear wheel,
X2 = distance from centre of gravity to front wheel,

h = height from ground to centre of gravity.
Rearranging equation (3.24) leads to:

Nyr=mg — Nyt (3.27)
Rearranging equation (3.26) leads to:

Ny X2 = Nyr X1 — Ft -h = Fy-h (3.28)

Substituting equation (3.27) to (3.28), and simplifying for the normal force on the front

wheel, leads to:

I (3.29)

Where

| = length measured from front wheel to rear wheel.

Substituting equation (3.28) to (3.27) to solve for normal force Ny, on the rear wheel,

and simplifying leads to:

er — mg-x, + Flth + Fy'h (3.30)

Accordingly, the normal forces for each of the two rear wheels are [50]:

mg-x, + (Ft + Fy)-h
21

Nypr =

Ny = 22222 G2 )R (3.31)

where
rr = subscripts represent rear right wheel,

rl = subscripts represent left wheel.

The friction for the front wheel (Fig. 3.22) with respect to ground is expressed as [89]:
Fy = pa(D)Nys (3.32)
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where
A = the wheel slip value,

g = the adhesion coefficient.

»

—> A . L
Vehicle direction of motion Nt -~ \Wheel rotation direction

\

\d

Ground v Mg

Fig. 3.22 Driving wheel dynamic with the ground [89]

With Ry, as the radius of front wheel, the torque at the front wheel to move the vehicle
will be [89]:

7y = FRy = .ud(/l)Nvaw (3.33)

For the rear wheels, the torque needs to break the force that acts with a moment equal to
the radius of the wheel. As illustrated in Fig. 3.23, for the vehicle to move we need to
overcome the frictions acting at the caster wheel. F,, is the friction force between the
wheel and the ground, while F; is the friction force between the wheel and the axle.
Consequently, we can determine the torque between the wheel and ground as Ty, and the
torque between the wheel and axle as Ta. ua and u,, are the coefficient of friction for the
axle and ground, respectively. u, needs to be smaller then x, so that the wheel will not
slide across the ground, and to roll. Therefore, we need only F, to compute the required
torque at the caster wheels. In order to relate the axle force F; to required wheel torque
to rotate the caster wheel without sliding along the ground, virtual radius R, of the
wheel/axle combination is used to compute as follows [90]:
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Ry = Ry — Ra (3.34)

where,

R\ = the wheel radius,
R, = the axle radius,

R, = the fictitious radius which Fa would act to rotate the wheel about the

tangent point in contact with the ground.
The equation for the torque at the caster wheels z is [89]:

.= FaRy = I:a(Rw - Ra) = err,ua(}\‘)(Rw - Ra) (335)

Fig. 3.23 Caster wheel with respect to ground [88]

If there is no wheel slip, the motor torque must be less than the maximum torque that
can be supplied by the friction with the ground [88], then the rewrite equation (3.22) for

dynamic equation of motion for the driving (front) wheel with respective to ground as:
J,6, =t — R,F, — R.F, (3.36)

where
Ry = the front wheel radius,
R. = the rear wheel radius

I = the shaft torque at the wheel.

c. Vehicle dynamics

As we only consider the robot moving longitudinally; hence the Coriolis and centrifugal

forces acting on the vehicle can be ignored. The platform travels in slow speed at indoor
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environment, thus the aerodynamic effect on the mobile platform can be ignored. The
lateral forces for rear wheels can also be neglected because they spin without friction
and thus usually align with their velocity vectors. Only the normal forces acting on the
wheel are considered. For the front wheel, the tire forces are composed of a normal
resultant force, traction/braking torque, rolling resistance and lateral force. We only
consider the vehicle travelling in flat ground, thus rolling resistance is negligible.
Accordingly, the gravitational force is also not considered. The transverse movement is
negligible, so the lateral force can also be ignored. A flexible link manipulator is
mounted on the platform, thus there could be a disturbance force (Fgiswrn) due to
vibration of the manipulator. The vehicle dynamics equation is [90]:

Vgym = NwFtoq — Faisturp (3.37)

where
Vel = velocity of the mobile platform,
m = mass of the mobile platform,

Ny = the number of driving wheels during acceleration or braking.

By referring to Newton’s second law for the motion of a particle, we can state that the
resultant force is the external forces (Fy, Fy and F;) on the system of mass equals the
total mass of the system multiplies the acceleration of the centre of mass. The governing
equations of the vehicle for longitudinal, lateral, and vertical, motions can be expressed
as [50, 88]:

Ftoq= [

The terms XF;, YF; and ZF;, which is ]“}Veﬂ (where J,,8,, is from equation (3.36)), are the

m|Y + wZX — wa = YFf +YF +YE, (3.38)
Z'_I_wxl}_wyx ZFs + ZF + ZF,,

SRR

a, X+w,Z—w, Y| [XF;+ XFy + XE.,
=m [ay] =
aZ

wheel forces in the x, y and z directions respectively. Subscript i represent f, rl or rr,
denote front, rear left and rear right. In this equation, we ignored the roll, pitch and yaw
moments of the vehicle since it will be travelling on levelled ground and assuming no
turning movements. Therefore, equation (3.38) can be used to determine the acceleration

and velocity of the mobile platform.
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The total required torque at the three wheels to move the mobile platform is the
summation of torque at the front wheel (equation (3.33)) and the torque at the rear
wheels (equation (3.35)), which yields:

5= 5+2% (3.39)

where
7 = total torque acting on the three wheels of the mobile platform,
% = torque action on front wheel,

7. = torque action on rear wheel.

Next, we determine the acceleration force necessary to accelerate the vehicle from the
stop to maximum speed. As the force is driven at the wheel, we multiple the acceleration
force (equation (3.37)) by the front wheel radius Ry, we get the acceleration torque for
the mobile platform [89]:

Tace = VeymR,, (3.40)

Where

Tacc = acceleration torque for the mobile platform.

Adding equation (3.39) and (3.40) and substitute to r in equation (3.23) for the front

wheel torque, we get the final motor torque equation as:

T = kilg = ]mém + Tpr + (Tt+:l-aw) (3.41)

d. Motor speed calculation
Taking Laplace transform [91] for equation (3.15), gives:
V(S) = Lsla(S) + Rla(S) + kesA(S) (3.42)

The frictional torque Ts contains viscous friction which is dependent on angular velocity
of motor shaft, which will affect the motor speed calculation. Thus, we split equation
(3.18) into constant friction and varying friction, where constant friction is T = Tgtatic +

Tstribeck + Tcou, leading to:

Ter = Tpre + Ve (3.43)
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Substituting equation (3.43) into (3.41), leads to:

hhl=]m954—ﬂ76+1me—Fgﬂ%£Q (3.44)

Let T = Tpre + (Tt:a“), then taking Laplace transform of Equation (3.44), yields:

kil(s) = JnS”A(S) + veS&S) + T (3.45)

where

= load torque from the mobile platform.

Substituting equation (3.42) into (3.45), and rearrenging leads to:

V(s)—kesO(s)

]msze(s)+vcse(s)=k[ e ] T,.(s) (3.46)

For the DC motor alone, we can assume that T, = 0. Thus, rearranging equation (3.46)
to with input voltage, V(s), to the output angle 6. With W as angular velocity of 6, we

obtains the transfer function for the motor as:

6(s) _ W(s) _ ki
V() V() Ums+ve)(R+Ls)+Kek;

(3.47)

When the motor is attached to the robotic system for driving the front wheel, then T, #

0. Consequently, the transfer function for the entire robotic system is:

W(s) ki —(R+Ls) ]
V(s ) UmS+Ve)(R+LS)+Keki  (JmS+V)(R+Ls)+Kek;

G(s) = (3.48)

where
GI(s) = Laplace transforms of output at),

V(s) = Laplace transforms of voltage inputs v(t).

The inputs are V(s) and Ty(s) for voltage input and load torque from the mobile
platfrom, respectively. The output is the motor angular velocity, w(s). The moment of
inertia Jm due to the entire robotic system will then be the moment of inertia of motor
plus the moment of inertia due to the weight of the entire system. We've assumed that
the mass of the spokes is negligible compared to the mass acting on the wheel, therefore

the moment of inertia of the front wheel can be written as [88]:

In = I’ + MeotaiRu? (3.49)
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where
Jn’ = moment of inertia for the motor,
Miota = total mass of the entire robot,

R\ = radius of the front wheel.

The speed of the mobile platform can be calculated by using equation (3.47) for w(s),
multiplying with the front wheel radius leads to [88]:

Vel = 0(s)Ru (3.50)

3.5 Model of flexible link manipulator

In this work, the dynamic models for the mobile FLM are derived. The flexible
manipulator is a nonlinear system that can be described using partial differential
equations. It has infinite number of degrees-of-freedom. However, it is not realistic to
use infinite dimensional models for real-time applications, thus finite dimensional
models having minimum number of parameters is preferred. Detail discussion of the
available models is beyond the scope of this work, but can be found in Kiang. et al. [14].

Instead, only the three important elastic models are briefly introduced as follows:

1) Finite Element Models [22]: These models are the most accurate, but due to their
complexity it is usually only used for simulation purpose. Finite element method is a

general numerical technique for solving differential equations.

2) Assumed Modes Models [92]: These models are derived from the partial differential
equation by model truncation. In assumed mode method (AMM), by selecting a few low
order modes can establish a lower dimensional system dynamics model. AMM are
useful for simulation and control design and thus are used in this work for designing the

model of the system.

3) Lumped Parameter models [93]: The discrete, localized springs is used to model the
elasticity of the FLM. Non-actuated joints link together a number of rigid bodies to form

a flexible link. Lumped parameter model is not used in this work.

88



yO mp

w(x, t)

> Xo
Fig. 3.24 Schematic representation of the flexible manipulator [94]

In this section, a mathematical model is derived for the flexible link manipulator (FLM)
using the AMM. The FLM is a flexible beam as shown in Fig. 3.24, with one end fixed
and a payload of m, at the free end [94]. When acted by a force at the free end of the

flexible beam, the beam deflection can be determined using the following equation [95]:

pL3
Wmax = 351 (351)

where
Wmax = maximum deflection of the beam,
P = force acting at the free end of the beam,
E = Young’s modulus,

| = area moment of inertia.

The gravity effect can be neglected because is placed horizontally so that the flexible
beam can only vibrate freely horizontally. The area along the beam is constant, and the
beam is thin and long, so the deformation due to the rotary inertia, shear and the effects
of axial forces are assumed negligible, so can be neglected as well. Therefore, the Euler-
Bernoulli beam theory (which applies for thin beam theory, where the rotary inertia and
shear deformation are neglected) can be used to model the elastic behaviour of the beam.
One end is fixed, and the displacement at the tip of the flexible link is designated as w(x,
t). Based on Euler-Bernoulli beam model, the governing equation of motion is given by
[96, 97]:

=f(x,t) (3.52)

*w a*w
mo= + EI Tz

where
w = transverse deflection of flexible beam,

m = mass of beam,
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E = Young modulus of elasticity,
I = second moment of area of the cross-section of the beam,
f(x, t) = load at the tip.

In the case of free vibration of the beam, f(x, t) = 0, and the equation (3.52) reduces to:

*w
ot2

4
m>g+ E125 =0 (3.53)

Equation (3.53) is a classical undamped Euler-Bernoulli beam theory [96]. Using the
assumed model solution [95] for separating the variables, we assume that the
displacement can be separated into two parts; one depends on time and another on

position. Thus, the equation for the beam deflection [96, 98],

w(x, t) = &x)Q(t) (3.54)

where
w(x, t) = deflection of beam,
&(x) = a function which depends only on space,

Q(t) = a function which depends only on time.

For a cantilever beam subjected to free vibration, and for a prismatic homogeneous

beam, the equation of motion can be written as [98],

L{EI ) = wZm(x)#(x) (3.55)

Substituting equation (3.54) into equation (3.53), and together with equation (3.55) and

rearranging, leads to:

CI);”’(X) _ QL_(t) _ 2 _ E
¢ o) Q) W ¢= (3.56)

Next, we define [96]:

pi = (357)

C2
This leads to two ODEs (ordinary differential equations) [95]:

d2Q
dt?

+ w2Q =0 (3.58)
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a*e .
== Bro=0 (3.59)
The general solutions to the above equations are given as [99]:

Hx) = C;sin(bx) + C, cos(bx) + C5sinh(bx) + C,cosh (Gx) (3.60)

and
Q(t) = Cs sin(wgyt) + C4cos(wgyt) = Csin(wgt + @) (3.61)
where
wq = wy/1— & is damped natural frequency,
¢ = phase shift.

For the equation of motion for the flexible beam given by equation (3.53), the boundary

conditions can be written as [99]:

82(Lpt)

_ Jy _n 9y _ Py _
y(O, t) - 01 E(O’ t) - O, ﬁ(l'b; t) - O' Elﬁ(l‘b't) =m St2

(3.62)

Substituting equation (3.54) into equation (3.53) and (3.62), the boundary-value problem

can be obtained as follows [99]:

aD(0)

OZCD(Lb) _
dx =0

dx2 ox3

83d(Lp) _  mwg 5?4_CD _ mwp®
= Mg, 22 —0, (363)

® =0,
El

0,

where

L, = length of the beam.

Applying equation (3.63) into equation (3.60), and performing mathematical
manipulations, yields [95, 99]:

&(x) = sin(x) — sinh(sx) — C (cos(&x) — cosh (&) (3.64)
where

A sin(4Lp)+ sinh (ALp)

C= cos(ALp)+ cosh (ALp) (365)

This is an undamped system. Next, we show that the dynamic behaviour of the
cantilever beam can be modelled as a second order system, governed by the second-
order ODE as [98, 100]:
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2
a5+ ay 5+ agw = F(t) (3.66)
where w is the response of the system (which is the beam deflection) subjected to an
input force F, and ap, a; and a, are the system parameters. We rewrite equation (3.66) as
[98, 100]:

W+ 2{w,W + wpw = kywiF (3.67)
where

Wy, = Z—j undamped natural frequency (3.68)

&= Z— damping ratio (3.69)

kg = ai gain (3.70)

Considering the case where F(t) = 0, equation (3.67) becomes
W+ 24w, W + wiw =0 (3.71)

Comparing equation (3.71) with equation (3.58), we can see that the vibrating deflection
of equation (3.58) is a second-order system with an undamped natural frequency

without damping included in the model. Equation (3.71) has solutions of the form [95]:
w = Ae't (3.72)

Equation (3.71) has two roots in the following form [98, 100]

A =—Jw, + o, /;2— 1 (3.73)

Our system is an under-damped system with 0 < ¢ < 1 [98, 100]. Substituting equation

(3.73) into equation (3.72), leads to [95]:
(- - onfit=1)s (3.74)

<—{wn+ wn\/grl>t + A

where A; and A; can be determined from the initial conditions. Equation (3.74) can be

w=A4Ae ,€

expressed as [95]:

w = Ae “nlsin (wyt + @) (3.75)
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where

4= Jwo+ (wnwoz)2+(yowd)2 (3.74)
Wg

¢ = tan™ (=200 ) 577

wy= w, |1— Z2 (3.78)

w, = % (3.79)
D (3.80)

¢= 2Vkm .

3EI
koeiss = e (3.81)

where
Vo = initial velocity at tip of beam,
W, = initial displacement at tip of beam,
wn = natural frequency at tip of beam,
wy = damped natural frequency,
m = mass of beam,
Kstitt = beam stiffness,
D = damping coefficient,
E = Young’s modulus,

| = area moment of inertia of the beam.
Finally, by substituting equation (3.64) and (3.75) into equation (3.54), leads to:
w(x,t) = Ae @t sin(wyt + ¢) X (sin(Gx) — sinh(&x) — C (cos(&x) —
coshi»i(6x)) (3.82)

The Rayleigh’s method [95] is used to find the natural frequency, which can be can be
summarized as [96]

(KE)max = (PE)max = total energy of the system (3.83)

where,
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KE = kinetic energy
PE = potential energy.

For the case of a beam, potential energy is also referred to as strain energy. Equation
(3.83) can only be satisfied if the system is vibrating at its natural frequency. First, we
propose a quarter cosine wave solution [101] (see Fig. 3.25) for equation (3.53), yielding
[98, 100]:

w(x) =w, [1 — cos (Z—f)] (3.84)
Z—Z =w, (i) sin (:—Z) (3.85)
2= () eos () 59
‘::Tf = —-w, (%)3 sin (%) (3.87)
4y L Mp

Zh .

z ]

-~ —— > X

/ T= S

2

7

Fig. 3.25 Quarter cosine wave was a Rayleigh shape for a cantilever

The manipulator system considered in the current work have the payload deforming only
in horizontally, thus the gravity effect can be neglected. The total potential energy PE in
the beam is [98, 100, 101]

pE = & L(dz—w)zdx (3.88)

270 \dx?

Substituting equation (3.84) into equation (3.86), leads to

PE = %fOL [WO (%)2 cos (g)]z dx (3.89)

After performing mathematic simplification, yields
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1

EI
PE = Zm* |5 (w,)? (3.90)
This expression states the elastic deformation forms the internal energy of the link as it
bends. Because only motion in the plane perpendicular to the gravitational field is
considered, the potential energy due to gravity is not accounted. Considering tip payload
and mobile base movement, the total kinetic energy KE is [98, 100, 101]
KE = - pAw? [)(w)?dx (3.91)
Substituting equation (3.84) into equation (3.91), yields
1 L
KE = EpAw% Jy wo [1 — cos (Z—f)])zdx (3.92)
Again, performing mathematic simplification, yields
1 8
KE = 2pAwiL(3 — 2| (w,)? (3.93)
Applying equation (3.83), we equate the PE and KE

1

EI
—m* [S] wo)? = 2pAwIL[3 - 2| (w,)? (3.94)
Solving for natural frequency, yields

o= [

} (3.95)

ISP | S 3.96
N oom 16pAL[3- (2)] (3.96)
Performing mathematical simplification, leads to [95]:

fo = — {Lf_l)} (3.97)

_ 3664 |[El (3.98)

N 2mL2 A pA

where

f, = natural frequency
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We need to determine the effective mass of the beam in order to compute the beam
vibration with varying payload at the tip, where a discrete, end-mass represent the

distributed mass of the beam. Solving equation (3.79) for effective mass me, yields

£ =k (3.99)

w? (2mf,)?

me =

Substituting equations (3.81) and (3.98) into equation (3.99), and performing

mathematical simplification yields
m, = 0.2235m,, (3.100)

where
mp = mass of the beam,

m. = effective mass of the beam.

To include the payload at the tip of the beam, we sum the effective mass plus the

payload to form total mass at the tip, leading to
m = 0.2235m;, + m,, (3.101)

where
mj is the payload.
To compute the natural frequency of the beam we substituting equation (3.81) into

(3.99), this yields the following equation:

f, = = 3H (3.102)

21 4/ (0.2235mp+ mp)L3

3.6  Model of mobile flexible link manipulator

This section derives the model of entire system consists of the flexible link mounted on
top of the mobile platform. Newton's method that is directly related to Newton's 2nd law
and Lagrange's method that has its root in the classical work of d'Alembert and Lagrange
on analytical mechanics are generally two major methods that can be used to derive the
dynamic equations of mechanical systems. Lagrange's method provides systematic
procedures for eliminating the constraints from the dynamic equations, and come out
with simpler system equations. Majority of the models that we found in the literature
survey were developed using Lagrange's as a method of choice. Thus, to derive the
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dynamic equations of the system, the Euler-Lagrange’s equations are used. The

Lagrange’s function is [102]:
L =Ex-Ep (3.103)

where
£. = Euler-Lagrange’s equation,
Ex = Kinetic energy,

E, = Potential energy.

Thus, we need to determine the Kinetic energy and the potential energy. The total kinetic

energy of the system is given by [102]:
Ek=Ew + Exs + Exp (3.104)

where
Ex. = Kinetic energy for flexible link,
Exs = Kinetic energy for mobile base,
Exe = Kinetic energy for the payload.

The kinetic energy of the flexible link Ex_ can be found by substituting equation (3.84)
into (3.91). The total displacement of a point on the link is y = d + w, where d is the
displacement of the mobile platform and w is the deflection at the tip of the manipulator.
The speed of total displacement at the tip of the manipuator is y = d + w,. After

performing mathematical manipulation of the equation (3.93), leads to:

ALP(—8Wo (V+Wo)+T(202 +41W o +3Wo2))

Exy =5pA[y?dx = (3.105)

4m
The kinetic energy of mobile base Exg and the kinetic energy of tip payload Exp are
[101]:

Exp = 3mpvh + > Ipw} (3.106)

Epp = —mpw? (3.107)

2
where w is displacement vector of the flexible link, w, is the natural frequency of the

beam vibration, my is the weight of the mobile base, vz the velocity of the mobile base

which can be calculated by equation (3.50), while Iz and wg are respectively the
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moment of inertial and angular velocity of the base. m is the mass of the payload and
pp is the position vector of the payload. Next, the potential energy of the flexible link
caused by the internal bending strain energy of the beam can be found by substituting
equations (3.86) into (3.90) leads to

2\ 2 1 EI
By, =3B [ (53) dx = Zn* |5 wo)? (3.108)

Applying equations (3.104) and (3.108) to the Lagrange’s equation (3.103) leads to

1 . 1 1 1 . 1 a?w)?
L= EpAfyz dx + Evaé + 5130)123 + Empw2 — EEIf(de;) dx  (3.109)

or

= ALP(—8W,o (V+Wo)+T(2V2 +4vWo+3Wo %)) N 1
- 4T 2

1 1.
mpvi + EIBwé + Empdz —

EI
=7 [ 5] wo)? (3.110)

There are two generalized coordinates, the deflection for the flexible manipulator J, and
the linear displacement d of the mobile platform, respectively. Using Euler-Lagrange

equation, we have the equations of motion [102]:

a%—ﬁ =0 (3111)
d ot oL

where Fg is the input force to the mobile base. Differentiating the Lagrangian, the

following equations are obtained:

ot —8Wo—8(Wo+v)+m(6W,+47v)

2 = ALp( ) ) + mpib (3.113)
o = AL (Z57) iy + mpi (3.114)
L (3.115)
:TZ = mpvp (3.116)
L0, (3.117)
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Putting together the equation of motion (3.110), (3.111) and (3.112), leads to

—16+6m

Y[

ElT*w,
32L3

0= AL ( )pWo + i 