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Abstract

We use phase-field techniques coupled with a Coleman-Noll type proce-

dure to derive a family of thermomechanically consistent models for predict-

ing the evolution of a non-volatile thin liquid film on a flat substrate starting

from mass conservation laws and the second law of thermodynamics, and

provide constraints which must be met when modeling the dependent vari-

ables within a constitutive class to ensure dissipation of the free energy. We

show that existing models derived using different techniques and starting

points fit within this family. We regularise a classical model derived using

asymptotic techniques to obtain a model which better handles film rupture,

and perform numerical simulations in 2 and 3 dimensions using linear finite

elements in space and a convex splitting method in time to investigate the

evolution of a flat thin film undergoing rupture and dewetting on a flat solid

substrate.
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1 Introduction

The ability to accurately predict the evolution of the morphology of a thin film has

a large range of applications, from the linings of mammalian lungs in biophysics

and lava flows in geology [11] to the fabrication of thin-film solar cells [6]. In

the last case, it is particularly key to know the final morphology of the film, as

dewetting of the film on the substrate, driven by a combination of evaporation and

interaction energies such as disjoining pressures can cause poor surface coverage,

resulting in low device efficiency [3].

There are two main methods for developing a model to describe thin film evolu-

tion. The first method is an asymptotic approach which assumes density, viscosity

and thermal conductivity are negligible in the vapour phase of the system, and

employs a long-wave approximation where it is assumed that the gradients of the

height and temperature functions are small in the area considered. This method-

ology is demonstrated in full complexity by Burelbach et al [1]. This method is

rigorous in its derivation in the sense that the resulting thin-film equations are

obtained from the bulk fluid equations. However, the resulting thin-film model

may have difficulty handling film rupture, when the height of the film becomes

zero at a point, and a hole forms.

The second method is an energy-gradient dynamics approach directly applied

to the film height, in which it is postulated that the energy of the system dissipates

according to gradient dynamics, and that the film grows towards an equilibrium

which is achieved at the minimal energy. Thiele [15] uses this method to build on

the work in [12] to describe phenomena such as dewetting and evaporation in thin

films. While this model is less rigorously derived, it is able to naturally cope with

film rupture.

In this paper, we introduce a general derivation for a family of thin-film flow

models based on the classical theory of thermomechanics and the Coleman-Noll

procedure [7, 2]. We derive the family of models using as a starting point the

fundamental axioms of conservation of mass and the second law of thermodynam-

ics. Following [5], we stipulate that the free energy of the film Ψ depends on the

film’s height and its gradient, Ψ = Ψ̂(h,∇h). We then derive constraints on the
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remaining constitutive variables, and allow these to additionally depend on the

variational derivative µ of the total free energy and its gradient, ∇µ. This ensures

energy dissipation for allowed choices made by the modeler. We show that the

above-mentioned models developed in [15] and [1] fit into our framework despite

having been derived from different starting points and with different techniques.

Finally, numerical simulations show how a small perturbation in a flat film evolves.

In order to enable the more rigorously derived asymptotic model to progress past

the point of film rupture, we use phase-field techniques to regularise this model

within our framework, and thereby guarantee consistency with the second law of

thermodynamics, i.e. free energy dissipation.

This paper is structured as follows. In Section 2 we derive a basic framework

for thin film models. We follow phase-field arguments to derive a family of simple

models to describe the evolution of thin films while ensuring energy dissipation in

Sections 3 and 4. In Section 5, we show that the model derived in [1] fits into this

family when evaporation is not taken into consideration. In Section 6, the model is

regularised and discretised using linear finite elements and numerical experiments

are carried out. Finally, concluding remarks are made in Section 7.

2 Axioms

There are two key principles behind our derivation of a model for describing the

dynamics of a thin film on a flat substrate. First, by considering the conservation

of mass of a thin liquid film on a horizontal substrate D ⊂ Rn−1 where n = 2 or 3,

we derive an equation for the height function of the film h(x, t) for x ∈ D, t ≥ 0.

We follow the standard argument of considering the horizontal flux j across

an arbitrary sub-domain of the thin film, Ω ⊂ D, such as presented in [8]. We

consider the film to have constant density ρ = 1, and that rate of mass lost across

the interface of the film (due to evaporation for example) is given by R. From this,

we obtain the conservation of mass equation

∂h

∂t
+∇ · j = −R. (1)

The constitutive classes of j and R are chosen below.

The second key principle is a mechanical version of the second law of ther-

modynamics. This states that the increase in free energy of an arbitrary control

volume Ω increases at a rate no greater than the work done on the region [7]. For

some energy functional F(Ω) =
∫

Ω
E dx, this can be written as

d

dt
F(Ω) =W (Ω)−D (Ω) , (2)
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where W (Ω) contains the work done on Ω and the free energy flux through the

boundary ∂Ω, and D (Ω) ≥ 0 is the dissipation of the free energy.

The total energy density is given by E = Ψ + Ξ, where Ψ is the Helmholtz

free energy density of the system, and Ξ is a function encapsulating energies from

other sources, including kinetic energy, energy from magnetic fields and thermal

energy [16]. The constitutive class of Ψ, and the composition of Ξ are a choice to

be made by the modeler. In this work, we take Ξ ≡ 0, since non-zero Ξ requires

independent study.

3 Constitutive Dependence

Phase-field type models are driven by the variational derivative of the free energy

functional. We follow arguments made in [5] and consider the Helmholtz free

energy density Ψ to depend on h and its gradient, that is to say

Ψ = Ψ̂ (h,∇h) , (3)

and the total energy functional is given by

F(Ω)[h] :=

∫
Ω

Ψ̂ (h,∇h) dx. (4)

The variational derivative µ of F is defined as

µ =
δF
δh

= ∂hΨ̂−∇ ·
(
∂∇hΨ̂

)
. (5)

An example of a classical choice for this energy which applies here is

Ψ̂(h,∇h) = W (h) +
σ2

2
|∇h|2 , (6)

with corresponding variational derivative

µ = W ′(h)− σ2∆h, (7)

where W (h) is a free energy function depending only on the height h, and the

second term is a surface energy contribution.

We now define a constitutive class for j and R in equation (1) by postulating

that these variables are dependent on h, the variational derivative µ, and the

gradients of these variables, that is to say

j = ĵ (h,∇h, µ,∇µ) , (8)

R = R̂ (h,∇h, µ,∇µ) . (9)

Having set up the constituent classes for the dependent variables in the model,

we now derive constraints such that the second law of thermodynamics (2) holds.
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4 Deriving Constraints

We follow the procedure outlined in [5]. Using that Ψ = Ψ̂(h,∇h) the left hand

side of (2) equals:

d

dt

(∫
Ω

Ψ̂ (h,∇h) dx

)
=

∫
Ω

(
∂hΨ̂∂th+ ∂∇hΨ̂ · ∂t (∇h)

)
dx, (10)

where ∂x is the partial derivative with respect to x. Switching the time and space

derivatives in the last term of (10), integrating by parts, and using (5) we obtain

d

dt

(∫
Ω

Ψ̂(h,∇h)dx

)
=

∫
Ω

µ∂th dx+

∫
∂Ω

∂th∂∇hΨ̂ · n ds. (11)

We can now substitute (1) into (11), and integrating by parts the term involving

µ∇ · j gives

d

dt

∫
Ω

Ψ dx = −
∫

Ω

(µR− j.∇µ) dx+

∫
∂Ω

(
−µj + ∂th∂∇hΨ̂

)
· n ds. (12)

Comparing (12) to (2), we identify the domain integral to be the dissipation D(Ω)

and the boundary integral to be W(Ω), which are natural identifications, similar

as in earlier work [7].

Thus, a family of models that suitably describes the evolution of a thin film on

a solid substrate while ensuring energy dissipation is given by

∂h

∂t
+∇ · ĵ = −R̂, (13)

where ĵ and R̂ are chosen to be as in (8) and (9) and

µR̂− ĵ · ∇µ ≥ 0, (14)

with µ = ∂hΨ̂−∇ ·
(
∂∇hΨ̂

)
.

5 Choices and Connections

In this section, we show that the family of models described above is consistent

with existing models for thin film evolution when the modeler makes particular

choices for the constitutive relations.

Thiele’s model [15] for a non-volatile case is given by

∂h

∂t
= ∇ ·

[
Mc(h)∇δF

δh

]
, (15)
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where Mc(h) ≥ 0 is the mobility function for the thin film and δF/δh is given

in (5), with F given in (4). It is clear that this model fits into the framework

(13) with R̂(h,∇h, µ,∇µ) = 0 and ĵ(h,∇h, µ,∇µ) = −Mc(h)∇µ, and with these

choices it is also clear that constraint (14) is satisfied, implying the dissipation

D(Ω) =
∫

Ω
Mc(h)|∇µ|2 ≥ 0.

We now show that the model derived using asymptotic approaches by Burel-

bach et al [1] also satisfies these requirements. The equation for a non-volatile case

(R = 0) given in [1] is

∂h

∂t
+ S∇ ·

(
h3∇∆h

)
+∇ ·

([
Ah−1

]
∇h
)

= 0, (16)

where A ≥ 0 is a non-dimensionalised version of the Hamaker constant, S ≥ 0 is

the non-dimensionalised surface tension, and ∆ = ∇ · ∇.

Using the chain rule ∇f (h) = f ′ (h)∇h, with f(h) = h−3, (16) can be re-

written as
∂h

∂t
+∇ ·

[
−Sh

3

σ2
∇
(
Aσ2

3S
h−3 − σ2∆h

)]
= 0. (17)

By considering Ψ̂(h,∇h) as in (6), and choosing

W (h) = −Aσ
2

6S
h−2, (18)

we observe that (17) can be rewritten in terms of the variational derivative µ given

in (7), as
∂h

∂t
+∇ ·

[
−Sh

3

σ2
∇µ
]

= 0. (19)

Hence, by choosing R̂(h,∇h, µ,∇µ) = 0 and ĵ(h,∇h, µ,∇µ) = −Sh3σ−2∇µ we

see that the model fits the family defined in (13), with dissipation

D(Ω) =

∫
Ω

Sh3

σ2
|∇µ|2 dx ≥ 0, (20)

for h ≥ 0.

A point of interest here is that the so-called disjoining pressure Π(h) chosen in

the derivation of the model (16) is given by Π(h) = −kW ′(h) = Ah−3 for constant

k = 3S
σ2 , and so is directly proportional to −W ′(h), see also [14].

6 Regularisation of the Asymptotic Model

A characteristic of model (16) is that it breaks down as the film ruptures since

h−1 → ∞. In typical numerical simulations this breakdown is observed by h
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becoming negative. To enable simulations to continue past the point of rupture one

can regularise the bulk free energy W (h) and the mobility function m(h) = Sh3σ−2

as follows.

The dotted lines in Figure 1 show the non-regularised m(h) and W (h). To

regularise the mobility, we force m(h) = 0 for h ≤ 0 (Figure 1, left). To handle

W (h), we choose a small ε > 0 and construct W (h) to be quadratic for h < ε,

and remain as given in (18) for h ≥ ε. We require the minimum of W (h) to be

at h = 0 and for the function to be continuous with a continuous derivative. The

regularised function is given by

W (h) =


1

6ε4
h2 − 1

3ε2
if h < ε,

−1

6
h−2 if h ≥ ε.

(21)

and is shown in Figure 1, right. This regularization leads to a potential W (h)

that is similar to those used in thin-film models with so-called pre-cursor films

(although in our case the minimum of W (h) is located at h = 0 instead of the

pre-cursor film thickness); see for more details, e.g., [13].

Figure 1: Graphs of the original mobility m(h) (left) and free energy W (h) (right),

along with the regularised versions of these functions.

To perform numerical simulations we use a linear finite element discretisation

in space for h and µ in (19) and (7), employing homogeneous Neumann boundary

conditions and triangular elements for the case of n = 3. For the time discretisation

we use a convex splitting method in which the non-linear term is split as W (h) =

W+(h) +W−(h) with W+(h) being convex and W−(h) being concave. It is shown

in [5] that if W+(h) is treated implicitly and W−(h) explicitly then the method is

energy stable. In addition, if ∃ LW > 0 such that |W ′′(h)| ≤ LW ∀h then there

exists a convex split with W+(h) = LWh
2/2. This is a useful property as it results
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in the implicit terms being linear, removing the need to use a non-linear solver.

Also, we use a semi-implicit treatment of the mobility term m(h).

Figure 2: Left: Simulation with n = 2 of the regularised asymptotic model showing

film rupture in the domain D = [−π
√

2, π
√

2]. Right: Simulation with n = 3 showing

how a small perturbation in a flat thin film can result in a hole forming. Only half the

domain D = [−π
√

2, π
√

2] × [0, π
√

2] is shown to visualise the dewetted area and the

final time of T=6.25.

Figure 2 shows examples of numerical solutions for n = 2 (left) and n = 3

(right). σ, S and A are taken to be 1. For n = 2, ε = 0.1 and ∆t = 0.00032, with

an initial condition of h(x, 0) = 1− 0.1 cos(x/
√

2). For n = 3, ε = 0.5, ∆t = 0.025

and h(x, y, 0) = 1 − 0.05(cos(x/
√

2) + cos(y/
√

2)). The chosen initial conditions

represent a small perturbation in a flat film.

It is clear that the small perturbation in the film grows until the film ruptures,

at which point a hole forms and grows via dewetting.

7 Conclusion

In this work a family of thermomechanically consistent models for predicting the

evolution of a non-volatile thin liquid film on a flat substrate was derived from

mass conservation laws and the second law of thermodynamics, and it was shown

that existing models fit within this family. In particular, this allows for regulari-

sations that can be applied to modeling choices to better handle film rupture and

dewetting.

In [15, 14, 13] more complex thin-film processes are described that require

a change in the energy functional W (h), but the general form of the equation

remains unchanged. Similarly, Lyushnin et al [10] postulate a different choice

of W (h) to simulate fingering instabilities. Further, it can be shown that other

existing models, such as those developed in [4, 9] fit the framework, covering a
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wide range of applications from introducing a regime to account for slip to the

growth of dry regions.

Current work being undertaken is directed at investigating volatile thin films,

where R 6≡ 0 in (1), as well as multiphase extensions, which can be used to simulate

the evolution of a substance mixed with a volatile solvent, as in the fabrication of

thin-film solar cells.
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