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Abstract

Arabica coffee (Coffea arabica) is a key crop in many tropical countries and globally

provides an export value of over US$13 billion per year. Wild Arabica coffee is of

fundamental importance for the global coffee sector and of direct importance within

Ethiopia, as a source of harvestable income and planting stock. Published studies

show that climate change is projected to have a substantial negative influence on

the current suitable growing areas for indigenous Arabica in Ethiopia and South

Sudan. Here we use all available future projections for the species based on multiple

general circulation models (GCMs), emission scenarios, and migration scenarios, to

predict changes in Extent of Occurrence (EOO), Area of Occupancy (AOO), and pop-

ulation numbers for wild Arabica coffee. Under climate change our results show that

population numbers could reduce by 50% or more (with a few models showing over

80%) by 2088. EOO and AOO are projected to decline by around 30% in many

cases. Furthermore, present‐day models compared to the near future (2038), show a

reduction for EOO of over 40% (with a few cases over 50%), although EOO should

be treated with caution due to its sensitivity to outlying occurrences. When applying

these metrics to extinction risk, we show that the determination of generation

length is critical. When applying the International Union for Conservation of Nat-

ure's Red list of Threatened Species (IUCN Red List) criteria, even with a very con-

servative generation length of 21 years, wild Arabica coffee is assessed as

Threatened with extinction (placed in the Endangered category) under a broad range

of climate change projections, if no interventions are made. Importantly, if we do

not include climate change in our assessment, Arabica coffee is assessed as Least

Concern (not threatened) when applying the IUCN Red List criteria.
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1 | INTRODUCTION

For the 2015/2016 coffee harvest period, c. 4.3 million tonnes

(71.93 million 60 kg bags) of Arabica coffee (Coffea arabica) were

exported globally, with an estimated export value of US$ 13.8 bil-

lion (based on a composite price of US$1.46 per lb) (International

Coffee Organization (ICO), 2017). The export value of Arabica cof-

fee is an important, and in some cases critical, component in the

economies of several tropical countries (International Coffee Orga-

nization (ICO), 2017). Global consumption of coffee (including

robusta coffee: C. canephora) has had an average annual growth
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rate of 1.3% since 2012/13 (International Coffee Organization

(ICO), 2017).

Despite being a globally distributed tropical crop, wild popula-

tions of Arabica are restricted to the humid forests of Ethiopia, and

a small area of neighbouring South Sudan (Figure 1) (Davis, Gole,

Baena, & Moat, 2012). These wild populations have considerable

value as the main storehouse of genetic resources for Arabica coffee

(Davis et al., 2012), and have provided fundamental resources for

Ethiopia and the global coffee sector (Hein & Gatzweiler, 2006). In

Ethiopia, these genetic resources continue to provide an important

source of new planting material for coffee‐farming, via seed and

seedlings, including disease resistant variants, and the intrinsic (ge-

netic) variation associated with the various flavour profiles found

across the coffee landscape. Historically, and in recent times, wild

Arabica coffee has provided germplasm for the development of the

Arabica coffee sector outside Ethiopia. Protection of wild popula-

tions of Arabica coffee is therefore viewed as a key part of the long‐
term sustainability strategy for Ethiopian coffee production and the

global coffee sector (Hein & Gatzweiler, 2006).

Despite the importance of wild Arabica populations in Ethiopia

and South Sudan, there are serious threats to the survival and

genetic integrity of this species. Amongst the most serious of these

threats are deforestation (Davis et al., 2012, 2018; Moat et al.,

2017a), climate change (Davis et al., 2012; Moat et al., 2017a,

2017b), and genetic erosion (Aerts et al., 2012). Recorded climate

data in Ethiopia from the 1960s onwards show an average increase

in the mean annual temperature of 0.28°C per decade (Jury & Funk,

2013), a shortening of the wet season, and an increase in the num-

ber of hot days (McSweeney, New, & Lizcano, 2010). Given the

scale, severity, and potential impact of these threats and other nega-

tive influences it is important that the extinction risk of wild Arabica

coffee is comprehensively assessed. Until now, no formal extinction

risk assessment has been made for Arabica coffee.

The International Union for Conservation of Nature's Red list of

Threatened Species (the IUCN Red List (IUCN, 2012)) is a global

repository of species and their associated risk of extinction (Rodri-

gues, Pilgrim, Lamoreux, Hoffmann, & Brooks, 2006). The IUCN Red

List is recognized as the most authoritative source on extinction risk;

it is widely used and cited, and conservation decisions and actions

are increasingly informed by the resulting species‐level risk assess-

ments. One of the IUCN Red Lists’ main roles is as an “early‐warn-

ing” system for species that have the most imminent risk of
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F IGURE 1 Map of potential wild
Arabica coffee in Ethiopia and South
Sudan. Green areas represent the coverage
of the humid forest types* where wild
Arabica coffee could occur (where there is
≥1% of forest cover in each km2). Map
generated from species distribution models
(SDMs) and remote sensing (Davis et al.,
2012 [one SDM]; Moat et al., 2017a
[SDMs and remote sensing]). *Humid
forest represented by Moist Evergreen
Afromontane Forest (MAF) and
Transitional Rain Forest (TRF) types (Friis
et al., 2010). Agroforestry systems in
Sidama (south of Hawassa) are no longer
wild habitats but may contain wild type
plants originating from this area. Other
forest areas may be highly modified
compared to primary forest areas
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extinction, therefore informing priorities for conservation action

(Keith et al., 2014; Vié, Hilton‐taylor, & Stuart, 2009).

The central process of assessing extinction risk for a species is

the assignment to one of nine categories, which are based on five

criteria associated with extinction risk: population decline; geo-

graphic distribution; small population size; restricted populations and

quantitative analysis of extinction risk (IUCN, 2012).

Within this study we review and address the first four criteria,

using: past, present‐day, and future projections (based on the projec-

tion of accurate present‐day occurrence generated from species dis-

tribution models (SDMs), using precise ground‐point data, and

remote sensing of suitable forest type) under various climate change

scenarios (Davis et al., 2012; Moat et al., 2017a); combined with

demographic and generation length information. We apply three

metrics for the present‐day and future occurrence (under climate

change): (a) Extent of Occurrence (EOO), a measure of risk spread

(Gaston, 1991, 1994a, 1994b), using a minimum convex polygon

enclosing all known localities, as recommend by Joppa et al. (2016).

(b) Area of Occupancy (AOO), a measure of geographic range size

(Gaston, 1991, 1994a; Gaston & Fuller, 2009), which uses a simple

calculation of the number of 2 × 2 km cells a species occupies

(Moat, Bachman, Fields, & Boyd, 2018). (c) Population size, which is

estimated from the SDMs, forest cover (from remote sensing), popu-

lation demographics and the quality of the niche.

The analyses we present here are focused primarily on exposure

(i.e., to climatic suitability), based on climate scenario projections

from general circulation models (GCMs). Other aspects of climate

change vulnerability, viz., sensitivity and adaptive capacity (Dawson,

Jackson, House, Prentice, & Mace, 2011; Foden & Young, 2016), are

not directly addressed, although Arabica coffee is identified as a cli-

mate‐sensitive species with a low adaptive capacity (Davis et al.,

2012).

Species distribution models have been widely used in conjunc-

tion with other modelling methods to make projections for the

potential impact of climate on species ranges (Elith & Leathwick,

2009; Franklin, 2010). As well as giving a prediction for a species

range, SDMs can also provide key information on the fundamental

biology and ecology of a species. SDM techniques have matured

considerably over the last 15 years or more, particularly with the

introduction of ensemble modelling approaches (Araujo & New,

2007; Thuiller, Georges, & Engler, 2014; Thuiller, Lafourcade, Engler,

& Araújo, 2009). Predicting climate change with certainty is impossi-

ble, but we can use multiple models and scenarios to project future

trends for species: by comparing the results from these models, we

can start to understand the vulnerability of species to climate change

and overall trends, at least in terms of exposure. If all models point

to a similar (or the same) outcome we can be increasingly confident

in our projections. Within this study, we calculate EOO, AOO, and

population estimates for Arabica coffee using multiple scenarios and

models for climate and migration (Table 1), and then quantify these

for the past, present and future.

2 | METHODS AND MATERIALS

2.1 | Overview

Three major spatial datasets were used in our analyses; observational

(geo‐located) ground‐point data, SDMs (which cover present‐day to

TABLE 1 Models and scenarios used within this study

Model/scenario
Used in this
study Definitions

Emission scenarios A2 A very heterogenous world with an emphasis on family values and local traditions, A2

reaching 29.1 giga tonnes of carbon (GtC)

A1B Rapid economic growth followed by rapid introductions of new and more efficient

technologies. A1B represents a balance across all energy sources. Reaching 13.5 (GtC)

by 2099.

General Circulation modelsa csiro_mk3_5 Centre for Australian Weather and Climate Research Mark, 3.5

gfdl_cm2_1 Geophysical Fluid Dynamics Laboratory, Coupled Climate Model 2.1

bccr_bcm2_0 Bjerknes Centre for Climate Research, Bergen Climate Model, Version 2

Migration scenarios (Moat et al., 2017a) C Plants can only grow within suitable forest cover, within any suitable niche (i.e., can

move within suitable forest).

D No Migration. Plants can only grow within suitable forest cover and only in known

suitable niche (restricted to present‐day forest cover and suitable niche).

F Plants can only grow within suitable forest cover and suitable niche, but only if the

niche does not drop outside of suitability during any 30‐year time‐period.

Population size reduction (IUCN Standards

& Petitions Subcommittee, 2016)

A3 Population reduction projected, inferred or suspected to be met in the future (up to a

maximum of 100 years).

A4 An observed, estimated, inferred, projected or suspected population reduction where

the time‐period must include both the past and the future (up to a max. of 100 years

in future), and where the causes of reduction may not have ceased OR may not be

understood OR may not be reversible.

aNote. Three out of the 23 GCMs reviewed by Moat et al. (2017a).
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future, under various climate change scenarios and multiple GCMs),

and forest cover (from remote sensing (Moat et al., 2017a; Davis

et al., 2012). The SDMs were combined with forest cover and inte-

grated into a 1 km2 grid for further analysis. Generation lengths

were calculated (see below) and used to predict future and past

changes in EOO, AOO, and population size.

2.2 | Data cleaning and preparation

2.2.1 | Point data and ground‐truthing

Data for this study are derived from Davis et al. (2012) and Moat

et al. (2017a). The data from Davis et al. (2012) were taken and then

ground‐truthed in Ethiopia during 15 dedicated field missions (2013–
2016); four inaccurate records were removed via this process.

Ground‐point data collected and/or verified as wild Arabica coffee

were queried from a database and used for the analyses. In total,

this gave 310 unique ground‐points for wild Arabica coffee (285

from Ethiopia, and 25 from South Sudan).

2.2.2 | SDM production and preparation

For the present‐day modelled distribution of Arabica coffee in Ethio-

pia (South Sudan was treated separately) we used the final SDM

produced by Moat et al. (2017a), which was based on an ensemble

SDM approach, with nine selected bioclimatic variables and six mod-

elling methods (Generalized Linear Models, Generalized Boosted

Regression Models, Generalized Additive Models, Multiple Adaptive

Regression Splines (MARS), Random Forest and Maximum Entropy

[Maxent]), processed using the Biomod2 R package, version 3.1–64
(Thuiller et al., 2014). All 19 BIOCLIM variables (Hijmans, Cameron,

Parra, Jones, & Jarvis, 2005) were examined and reduced to nine;

the nine remaining variables were significant to the model fit, not

highly correlated, and represented the ecological requirements of

Arabica coffee (Moat et al., 2017a). The nine BIOCLIM variables

used were: Annual Mean Temperature, Isothermality, Temperature

Seasonality, Annual Temperature Range, Annual Precipitation, Precip-

itation of the Wettest Month, Precipitation Seasonality, Precipitation

of the Driest Quarter and Precipitation of the Warmest Quarter.

For the future projections we used two climate scenarios, A1B

and A2, three GCMs (based on 23 GCMs examined and reviewed by

Moat et al. (2017a), see Table 1), four date intervals (1960–1990,
2010–2039, 2040–2069, and 2070–2099), and three of the six

migration scenarios devised by Moat et al. (2017a). These future

projections were downloaded from CGIAR Research Program on Cli-

mate Change, Agriculture and Food Security (CCAFS) (https://ccafs-

climate.org/data_spatial_downscaling/ and https://www.ccafs-clima

te.org/data/). Both the original SDM and future models were at a

resolution of 1 km2; the future models had been downscaled using

the delta method (Ramirez‐Villegas & Jarvis, 2010).

The three migration scenarios, C, D, and F (Table 1) are restricted

to humid forest (of the Moist Evergreen Afromontane Forest (MAF)

and Transitional Rain Forest (TRF) types; classification according to

Friis, Demissew, & Breugel, 2010), which was originally derived from

Landsat data (United States Geological Survey, 2015) at a resolution

of 30 × 30 m, with some manual editing to remove plantations (e.g.,

tea, mangoes, and forestry) and other non humid forest vegetation

(Moat et al., 2017a). The forest cover mask was resampled in R using

the aggregate function in the package Raster (Hijmans, 2016) to give

the total forest cover per 1 km2. A typical example of these scenar-

ios (emission, GCM, and migration) is given in Figure 2.

These procedures produced a huge amount of data to process.

To make this manageable, and easier to manipulate, we combined all

the SDM data into one matrix, with centroids of the cells (x and y

position). The raster SDMs were converted to point data using the R

package “Raster” (Hijmans, 2016). This matrix is at a resolution of

1 km2 (using UTM zone 37 Projection) and was stored in R (R Core

Team, 2016) as a data frame.

The above dataset only covered Ethiopia, but the wild species

extends into a small area close to the Ethiopian border on the Boma

Plateau in South Sudan (Davis et al., 2012; Davis, Govaerts, Bridson,

& Stoffelen, 2006; Thomas, 1942). The specimen and ground‐point
data already gathered included the Boma Plateau, but the SDM

matrix lacked these data. To resolve this, we imported the South

Sudan SDM from Davis et al. (2012), into the 1960–1990 column of

the matrix. Davis et al. (2012) show that this location is rapidly lost

under climate change projections (by 2020, i.e., representing the

time period 2010–2029). This projection was considered realistic on

the basis of field survey (Davis et al., 2012): wild Arabica populations

on the Boma Plateau are in poor condition, sparsely populated, some

of the major canopy trees appear to have been lost through drought,

and there is almost no potential for upslope migration. We also

reviewed the Boma Plateau area on global forest watch (World

Resources Institute, 2014) to determine the area of remaining humid

forest (16.8 km2), and this was added to the forest cover column in

the matrix. The locality on Mt. Marsabit in Northern Kenya, which

has been suggested as part of the wild distribution of the species is

likely to be an area where Arabica has been introduced and culti-

vated (see review in Davis et al., 2012). Mt. Marsabit is a consider-

able distance (500 km) from the main populations of Arabica (Davis

et al., 2012) and molecular data indicates that the plants growing at

this locality are associated with cultivars of Arabica coffee rather

than part of the natural genetic range of the wild species (Lasher-

mes, Trouslot, Anthony, Combes, & Charrier, 1996).

2.2.3 | Calculation of EOO and AOO

Using the R software package (R Core Team, 2016), the matrix

described above was queried for each of the four time periods

(1960–1990, 2010–2039, 2040–2069, and 2070–2099), the three

GCMs, the three migration scenarios, and two emission scenarios.

We removed any ground‐points with very low forest cover (less than

1 hectare), as these would not be viable populations, and many

would be due to noise within the satellite imagery.

EOO and AOO were calculated (from cell centroids) using the R

package, rCAT (Moat, 2017). In addition, we calculated EOO using
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1960 – 1990 2010 – 2039

2040 – 2069 2070 – 2099

EOO: 283,817 km
AOO: 49,984 km
Pop linear: 19.5 bn
Pop normal: 13.5 bn

EOO: 204,585 km
AOO: 49,684 km
Pop linear: 19.0 bn
Pop normal: 16.6 bn

EOO: 124,025 km
AOO: 34,324 km
Pop linear: 15.5 bn
Pop normal: 12.8 bn

EOO: 121,728 km
AOO: 29,052 km
Pop linear: 10.0 bn
Pop normal: 5.8 bn

Legend
Excellent

EOO

Good

Fair

F IGURE 2 Maps and metrics for one example future projection; emission scenario A1b, GCM gfdl_cm2_1 and migration scenario D (see
Table 1) showing SDMs and figures for AOO, EOO, and population numbers, for 1960–1990, 2010–2039, 2040–2069, and 2070–2099. The
record from Bahir Dar (in the far north, for the time periods 1960–1990 and 2010–2039) is included here, although it is uncertain whether this
represents an indigenous population (Davis et al., 2018)
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just the ground‐point data, and the range of possible AOO values

and therefore the minimum AOO using a moving origin and rotating

grid as suggested in Moat et al. (2018), with 1,152 iterations.

2.2.4 | Estimating population numbers per unit area

We estimated population numbers using two models of population

demographics: (a) that the population is either linearly distributed or

(b) normally distributed over elevation, from high to low numbers of

plants per unit area (Figure 3). We equated population numbers to

the SDM suitability categories used in Moat et al. (2017a); Excellent,

Good, Fair, Marginal, and Unsuitable. These categories were derived

by examining the present‐day SDM values to our ground observa-

tions (ground control, absence, and pseudo absences data), by com-

paring True Skill Statistic, Kappa, specificity versus sensitivity and

the cumulative percentage of points to give us thresholds. For the

major threshold between Fair and Marginal we used a model value

of 353 as a conservative balance between all the thresholds (Kappa:

504, specificity vs. sensitivity: 424, cumulative frequency 99%: 353

and TSS: 324 points). The upper categories (Excellent, Good, Fair),

were chosen at equal intervals (see Figure 3 for details). Within our

analysis we equate the niche classes to population demographics,

that is, under the IUCN criteria A subcriteria b) “an index of abun-

dance appropriate to the taxon” (IUCN Standards & Petitions Sub-

committee, 2014).

It should be noted that AOO will be proportional to a constant

(i.e., flat) population value. While population numbers for the culti-

vated species are reported here, there are only a few citations for

the demography of wild Arabica. According to Senbeta, Schmitt,

Woldemariam, Boehmer, and Denich (2014) the demographic rela-

tionship for wild Arabica is a maximum of 800 coffee plants per 400

m2 in the best areas, reducing to 40 plants per 400 m2 in the low-

est/least suitable (Figure 4). We applied a simple linear relationship,

from the Excellent suitability class to zero at the edge of limits of

the Fair/Marginal class boundary (Figure 2). This linear relationship is

simplistic. Senbeta et al. (2014; Figure 2) and Moat et al. (2017a)

show that the population follows a normal distribution. Therefore,

we also mapped the niche class to this normal distribution using the

mean populations from the elevation classes (Figure 4). We have

used both normal and linear demographics within our analysis, where

the linear represents a conservative estimate and the normal distri-

bution closer to the actual population distribution of Arabica coffee.

The numbers presented here are similar to: farmed Arabica cof-

fee, where plants are generally spaced around 1 m apart (Wrigley,

1988); spacing distances for Ethiopian coffee cultivation (1.5–2 m

between plants, and 2.5–3 m between rows (Davis et al., 2018)); and

plot data (16 in situ plots, measured by us), which show densities

ranging from 0.04 to 1.2 per m2.

2.2.5 | Generation length

As with calculations for AOO and EOO, determination of generation

length is critical when reviewing any future or past changes in popu-

lation numbers, and can greatly complicate extinction risk assess-

ments (Fung & Waples, 2017; Willis, Moat, & Paton, 2003).

Estimation of generation length is difficult without full population

information (Fung & Waples, 2017), which even for a well‐studied
species is lacking, including Arabica coffee (DaMatta, Ronchi, Maes-

tri, & Barros, 2007). Coffee plants are often referred to as short‐lived
trees (Davis et al., 2018). Some population information does exist for

cultivated Arabica coffee in Ethiopia (see below), but for the wild

species the information is poor. For this study we reviewed the gen-

eration length for farmed Arabica coffee, for the minimum genera-

tion length, and then extrapolated to achieve generation lengths for

the wild species. Our generation estimates were reviewed against

available observations for wild Arabica coffee, and then used to

refine our estimates (see below).

We used three methods to estimate generation length:
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1. Vitality rates: defined as age of species survival and fecundity.

We used the IUCN MS Excel sheet (IUCN, 2017) to calculate

generation lengths, with estimates of survival rates and fecundity

from expert opinion based on field survey (Davis and Moat pers.

observ.).

2. Adult mortality rate: Td ¼ αþ 1d (Fung & Waples, 2017; IUCN

Standards & Petitions Subcommittee, 2016).

3. Reproductive life span model: Tz ¼ αþ z � RL (Fung & Waples,

2017; IUCN Standards & Petitions Subcommittee,

2016).whereTd= Generation length (years).

α = Age of first reproduction (years).

d = Adult mortality rate (years).

z = is a constant “that depend[s] on survivorship and the relative

fecundity of young versus old individuals in the population” (IUCN

Standards & Petitions Subcommittee, 2016). We derived z values by

comparison with other woody plant species from (Fung & Waples,

2017)

RL = length of reproductive period (years).

2.3 | Generation length of cultivated Arabica coffee

Cultivated Arabica coffee plants take 3–4 years to reach fruiting

stage and 5–8 years to reach maximum reproductive potential (Wrig-

ley, 1988). There are on average 3,000–4,000 fruits per tree (Davis

et al., 2018), although productivity drops off significantly as the cof-

fee plant ages (e.g., to 1,000 fruits). To rejuvenate cultivated Arabica

coffee, plants are often stumped (coppiced) at an interval of 8–
15 years, which usually brings them back to full productivity. Thus,

elucidating the age of coffee trees can be difficult, without the culti-

vation history and dendrochronology. It has been estimated that: at

between 7–20 years Arabica coffee trees are at their most produc-

tive, senescence is reached at around 25 years, and that 40 years is

the average life expectancy (Davis pers. observ.). An Arabica coffee

tree will fruit for around 50–60 years, but only if stumped or careful

pruned. Cultivated Arabica coffee trees of considerable age are

reported, for example up to 140 years old (Tadesse, 2017) but

these have not been verified and are likely to have been stumped

(coppiced).

Applying this to the three generation length algorithms, gives:

1. Vitality rates model ~ 17 years.

2. Adult mortality model 10–24 years (d values of 0.15 to 0.5 from

plants in (Fung & Waples, 2017)).

3. Reproductive life span model ~ 10–16 years (z values for plants

of 0.16, 0.21, and 0.33 from plants in (Fung & Waples, 2017)).

2.4 | Generation length of wild Arabica coffee

We extrapolated ages from cultivated plants, but with the following

modifications. It is reported that wild Arabica plants in Ethiopia

(Meyer, 1965) can be 20 ft (6 m) high and have a trunk diameter of 8

in. (20.3 cm) at ground level; and in South Sudan (Thomas, 1942) 18

ft (5.5 m) high and 6 in. (20.3 cm) at ground level. From these records

it is possible to estimate an age of 60–80 years, where 1 in. is roughly

equivalent to 10 years growth. It has also been widely reported (e.g.,

on the Internet and pers. comm.) that wild Arabica coffee plants can

for live up to 100 years, but this is not backed up by specific citations.

In the wild, Arabica coffee matures (i.e., starts to bear fruit) much later

than in cultivation, and we estimate that it will take 8–12 years for

wild plants to fruit. Finally, the maximum productivity will be markedly

less, probably at a maximum of around 400 fruits per tree (Davis pers.

observ.), although this figure could be higher or lower depending on

specific environmental conditions (especially light levels) and the

amount of competition from surrounding vegetation.

Applying this to the three generation length algorithms, gives:

1. Vitality rates model ~ 21 years.

2. Adult mortality model 16–30 years (d values of 0.15 and 0.5 from

plants in (Fung & Waples, 2017)).

3. Reproductive life span model ~ 18–22 years (z values for plants

of 0.16, 0.21 and 0.33 from plants in (Fung & Waples, 2017)).
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The wild and cultivated models give a generation length of

between 10–30 years, with a mean generation length of approxi-

mately 16 years for cultivated Arabica, and 21 years for wild Ara-

bica. Estimates for generation length in other perennial plant species

have been determined Fung & Waples, (2017) and includes

15.6 years for Limonium delicatulum (Plumbaginaceae; a pin‐cushion
plant), 82 years for Grias peruviana (Lecythidaceae; sachamangua, a

small tropical tree), 169 years for a coniferous species (Araucaria cun-

ninghamii; a large, temperate tree). At 21 years this is very much at

the lower‐end of the generation length for trees. Erring on the con-

servative side we have used 21 years as our generation length for

reporting the metrics in this study, but we also assessed generation

lengths of 16, 26, and 30 years, to see how the variation in genera-

tion length would influence the assessment of extinction risk under

the IUCN Red List assessment criteria.

2.5 | Future and past and future population
reduction (A3 and A4)

Future populations (A3) were calculated using three generation

lengths as specified by the IUCN (IUCN Standards and Petitions

Subcommittee, 2016). For a generation length of 21 years and

future reductions (A3), we compared 2010–2039 (2024.5) to 2010–
2039 (2087.5); 2010–2039 is where we see coffee suitability peak

in Ethiopia (Moat et al., 2017a). For all generation lengths we

either extrapolated from the last two periods, if the three genera-

tion lengths were beyond the latest models (2070–2099), or inter-

polated, if between model periods. For the population analysis,

each niche class area was either extrapolated or interpolated and

the total population recalculated using either the linear or normal

population demographics (see above). If any extrapolation gave a

negative number (i.e., inferring that the niche would have died out),

we defaulted this value to zero. These calculations were performed

in R (R Core Team, 2016) using the “approx” and “lm” function,

using linear fits. Future and past population reduction (A4) was cal-

culated in a similar way, but with a baseline date of 1975 (1960–
1990).

2.5.1 | Application to the Red List criteria and
ratings

We calculated all of the metrics in the statistics package R (R Core

Team, 2016), using the IUCN thresholds as set out in the IUCN

guidelines and criteria (Mace et al., 2008; IUCN Standards and Peti-

tions Subcommittee, 2014; Moat, 2017).

3 | RESULTS

3.1 | Present‐day geographic ranges (IUCN Criteria
B)

Under IUCN criterion B, the geographic range of variables are rela-

tively simple to measure and calculate.

3.1.1 | B1. EOO

Using the current niche and querying only areas with forest cover of

over 1 hectare, we achieved an EOO of 283,817 km2. Additionally

we calculated the EOO from the ground‐point data only, in both

rCAT (Moat, 2017) and GeoCAT (Bachman, Moat, Hill, Torre, &

Scott, 2011), to check that our results were comparable. The EOO

value was 107,251 km2 in rCAT, and 107,785 km2 in GeoCAT. This

metric would fall within the Least Concern extinction risk category.

3.1.2 | B2. AOO

Using the current niche and querying only areas with forest cover of

over 1 hectare we achieved a minimum AOO of 49,440 km2, with a

mode of 49,908 km2, maximum of 50,204 km2 and mean of

49,874 km2 (Figure 1). This metric would fall within the Least Con-

cern extinction risk category. We also calculated the AOO from just

the ground‐point data in both rCAT (Moat, 2017) and GeoCAT

(Bachman et al., 2011): the EOO was 512 km2 in rCAT and 508 km2

in GeoCAT. We would not expect these AOO values to be accurate

as the ground‐point data for Arabica coffee is hugely under‐repre-
sentative of population size and extent.

3.1.3 | Present‐day population size range (C, D)

Using linear demographic distribution estimates, we arrive at approx-

imately 19.5 billion mature plants for wild Arabica over its indige-

nous distribution. Using the normalized demographics distribution

method, the estimate is 13.5 billion mature plants. This metric would

fall within the Least Concern extinction risk category.

3.1.4 | Number of locations

For the number of locations we used the IUCN definition of loca-

tion: “a geographically or ecologically distinct area in which a single

event will affect all individuals” (IUCN, 2012). For wild and cultivated

Arabica coffee, climate is the main driver for the distribution of the

species (Moat et al., 2017a). The locations covered by the natural

distribution of wild Arabica represent different climate regimes

(Davis et al., 2018; Moat et al., 2017a), which will affect the species

differently under a changing climate. Within Ethiopia there is a major

climatic division, east and west of the Great Rift Valley, as discussed

in Moat et al. (2017a), giving two locations for wild Arabica coffee.

A third would be the Boma Plateau in South Sudan, although this

location is projected to fall out of climatic suitability by 2020, repre-

senting the time period 2010–2029 (Davis et al., 2012). There is a

fourth locality in the north, on the Zege Peninsula (Bahir Dar),

located at the southern edge of Lake Tana. Niche models indicate

that the Zege Peninsula is potentially part of the wild distribution of

Arabica coffee, and forest coffee is cultivated here, but it is uncer-

tain if these are true wild Arabica coffee populations, as the resi-

dents of the area say the forest and its coffee was planted around

two hundred years ago. This gives three to four locations, but to
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invoke the number of locations criteria (based on the threshold of

less than five locations (IUCN, 2012) this species would need to be

pushed to Critically Endangered or Extinct in a very short period,

and there is no evidence for this.

3.2 | Population size reduction (IUCN Criteria A)

On analyzing future population reductions (IUCN sub criterion A3)

and past to future reductions (IUCN sub criterion A4), we assessed

the reductions in EOO, AOO, and estimated population numbers,

using both the linear and normal demographic distributions (with

generation lengths of 16, 21, 26, and 30 years. The IUCN extinction

risk category under Criteria A for future projection scenarios are

given in Figures 5 & 6.

4 | DISCUSSION

Reviewing the species using present‐day metrics (Criteria B: for

AOO, EOO, population size, and number of locations), that is,

excluding climate change projections, wild Arabica coffee would be

assessed as Least Concern when applying IUCN Red List criteria. It

is only when applying climate change to the past to future, and

future to future changes, (under IUCN criteria A) that we see the

species fall within the higher‐level IUCN extinction threat categories.

The difference between these two sets of analyses is profound.

We limit most of our discussion below using a generation length

of 21 years (Figure 5, see table in top right of figure) but will also

comment on the influence of different generation length estimates

on the final extinction assessment.

4.1 | Migration scenarios

Our three migration scenarios (Table 1) are taken from Moat et al.

(2017a). Migration scenario C allows the species to move anywhere

within the present‐day forest cover, and we have preserved this sce-

nario for the analysis. However, we think it is unrealistic, due to the

following points. (a) The assumption is that the new niche space will

have no competition (i.e., that Arabica coffee can readily occupy the

new niche), which is unrealistic. (b) If wild Arabica could move into

these new niches, in some cases it will need to move hundreds of

kilometres from the main population; the probability of the species

moving to this space in a short period of time is unrealistic (Davis

et al., 2012). (c) The time periods given here for the three generation

lengths, would only allow a very short period for: random distribu-

tions to a new site, establishment, and breeding. (d) The new niches

are often on the lowest part of the niche suitability for Arabica cof-

fee, and so the species will not have optimal conditions to establish

and reproduce. (e) That the niche would have the correct soils and

microclimate (i.e., humid forest of the correct type and structure).

Nonetheless, migration scenario C does serve some purpose, and

particularly what could be achieved with intervention (i.e., assisted

migration for conservation purposes, including the movement of

propagules and establishment of suitable growing conditions, i.e.,

humid forest). Even with migration scenario C (which represents a

best‐case scenario) we can see than the species would receive an

IUCN risk category of Endangered, using the normally distributed

population demographic model and future reductions (IUCN sub cri-

terion A3). This is due to the dramatic reduction (and in some cases

loss) of the most suitable niches for Arabica coffee (the “Excellent”
niche (Moat et al., 2017a)) for areas by the end of the century (Moat

et al., 2017a).

The other two migration scenarios (D and F), either restrict wild

Arabica coffee to its current (1960–1990) niche (migration scenario

D) or restrict the species to all previous niches (migration scenario

F), that is, the niche cannot drop below the threshold during any

previous period. For the D and F migration scenarios the IUCN risk

categories would be (for 21 years): D = CR (2 metrics), EN (9 met-

rics), and VU (13 metrics); and for F = CR (3 metrics), EN (9 metrics),

and VU (17 metrics). Details are given in Figure 5. There is little dif-

ference (on average 2%) between the results for these two migration

scenarios; with migration scenario F showing the highest reductions.

4.2 | Emission scenarios

There was considerable variability for the two emission scenarios A2

and A1B, with a −30% to + 30% difference in reduction/increase in

the niche, between the two. Much of this variation was in EOO,

which is not surprising as the EOO metric can be highly variable and

sensitive to outlying occurrences (Hartley & Kunin, 2003; Keith,

Akçakaya, & Murray, 2018; Keith, Auld, Ooi, & Mackenzie, 2000).

The future projections (IUCN sub criterion A3), with emission sce-

nario A2, consistently reports higher loses in AOO and the two pop-

ulation metrics, as expected.

4.3 | General circulation models (GCMs)

We used three GCMs for the future projections under climate

change, which provided representative coverage of the variability in

climate modelling, without having to process all available (23 or

more) GCMs (Moat et al., 2017a). The variability between GCM

reductions was not large, and generally below 10%.

4.4 | Past to future versus future reductions (sub
criteria A3 and A4)

Predictably, there is a considerable difference between these two

metrics, mainly due to the coffee niche coming into its best condi-

tion in 2010–2039 (Moat et al., 2017a). This is because A4 (past and

future) is always reporting less reduction than A3 (future).

4.5 | Reduction metrics

The AOO metrics, and population numbers with linear demographics

and normal demographics, behave consistently. Due to its geometric

characteristics, EOO can change dramatically, with substantial

changes in the area it reports, due to the loss and gains of outlying
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areas (Hartley & Kunin, 2003; Keith et al., 2000, 2018). The inclusion

(and its loss under future projections) of the uncertain population

from the Zege Peninsula (near Bahir Dar, the most northly popula-

tion in Figure 2), will be driving much of the change in the EOO. On

this basis we would advise caution with interpretation of the EOO

changes (Figure 5), and we do not use it in our final extinction risk

assessment. Nonetheless, the two models for population demograph-

ics show the greatest change, with the results from the normal distri-

bution population model showing the most dramatic reductions,

which is due to the rapid loss of the Excellent niche category (Moat
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caution with the interpation of changes in EOO due to the inclusion of an outlining occurrence in the north (Zege Peninsula, near Bahir Dar)
(Figure 2).
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et al., 2017a) as this century progresses (towards 2099). The linear

population model shows the same trend, but with less dramatic

changes as the century progresses. Regardless, both show an IUCN

extinction risk assessment of Endangered for a generation length of

21 years.

4.6 | Generation length

Based on field observations and published information we estimated

a generation length for wild coffee of 16–30 years, with 21 years

probably representing a conservative value for the generation length

of wild Arabica coffee. A summary of the percentage reductions for

different generation lengths is shown in Figure 6. The results for

30 years should be viewed tentatively, as we are projecting far

beyond our last time‐period (2070–2099 vs. 2,115, which is over

30 years of extrapolation). Even at 16 years, six of the metrics point

to Endangered. With our conservative generation length estimate of

21 years, 23 of our metrics point to Endangered and a few (four)

point towards the higher category of Critically Endangered. Overall,

there is a skew towards higher IUCN extinction risk categories as

the generation length increases (Figure 6).

4.7 | In the context of deforestation

Up until this point we have not considered deforestation for the

IUCN extinction risk assessment and have assumed forest cover to

be static. However, historical deforestation levels in Ethiopia have

been dramatically high and are ongoing (Reusing, 2000; World

Resources Institute, 2014), as detailed below. Comparing different

deforestation studies is difficult, as they use various definitions and

classifications for forest types. The original/potential (i.e., without or

before the intervention of humankind) extent of forest cover has

been given by EFAP (1994) and Friis et al. (2010), as 340,000 and

280,470 km2, respectively. Although these studies use different clas-

sifications and scales, they do give an indication that the original for-

est cover of Ethiopia is in the region of 25%–31% of Ethiopia's total

land surface area. There is no universal agreement on the remaining

forest cover (Wakjira, Gole, & Senbeta, 2008), but the majority of

studies agree that present‐day forest cover is around 4% of the total

land surface area of Ethiopia (Reusing, 1998, 2000; Wakjira et al.,

2008).

On reviewing studies from (Reusing, 1998, 2000; Wakjira et al.,

2008; World Resources Institute, 2014), we can report that the rates

of forest loss (Reusing, 1998, 2000) shows reductions of 54% and

61% over 23 and 25 years (from 1971–1975 to 1996–1997 and

1973–1999), respectively, for natural, humid (Afromontane) forest.

These values are backed up by Wakjira et al. (2008), who looked in

detail at a smaller area of humid coffee forest in south western

Ethiopia, and showed that between 1973 and 2005, 32% of the for-

est cover had been lost, and in some areas there has been a 50%

loss in a 32 year period alone. The majority (70%) of the reduction

was due to smallholder expansion and forest conversion to agro-

forestry systems (Wakjira et al., 2008). Finally, forest reduction is still

continuing to the present day: between 2001 and 2013 there was a

reduction in tree cover of 2,260 km2, with some (630 km2)

afforestation (Hansen et al., 2013; World Resources Institute, 2014).
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It should, however, be noted that all the above metrics cover many

forest types in Ethiopia and that the main deforested areas are in

the South East and South West (Moat et al., 2017b). It would be

very difficult to simply equate and extrapolate these tree‐cover loss
figures to just the humid forests where wild Arabica coffee occurs;

additionally, we would also need to either extrapolate into the future

or the past to cover the 63 years (three times generation length)

needed. Nonetheless, we would suspect that the reduction figures

will be high and possibly comparable to the figures for future reduc-

tions from climate change. We have not used the deforestation fig-

ures given above in an Arabica extinction risk assessment, due to

the uncertainty in forest definitions amongst the various studies and

the lack of data over the time period needed, but we suggest that

this could be rectified with a dedicated study of the temporal

changes in suitable humid forest (Moist Evergreen Afromontane For-

est (MAF) and Transitional Forest (TRF) types; Friis et al., 2010)

across the region, using remote sensing.

4.8 | CMIP3 versus CMIP5

The projections used here are based on the WCRP CMIP3 (Meehl

et al., 2007) multimodel datasets (Moat et al., 2017a). The newer

and more developed WCRP CMIP5 multimodel ensemble (Taylor,

Stouffer, & Meehl, 2012) has become available as downscaled data-

sets (at 1 km2 resolution). Knutti and Sedláček (2012) compared

CMIP5 and CMIP3 and stated: “The spatial patterns of temperature

and precipitation change are also very consistent. Interestingly, the

local model spread has not changed much despite substantial model

development and a massive increase in computational capacity.” A

direct comparison between CMIP3 and CMIP5 is not straightfor-

ward, as CMIP3 uses emission scenarios, whereas CMIP5 uses Rep-

resentative Concentration Pathways (RCPs) (Knutti & Sedláček,

2012). However, Moat et al. (2017a) and Knutti and Sedláček (2012)

have compared RCP8.5 with the A2 emission scenario, and report

that within Ethiopia the only substantial difference observed was a

0.9°C increase in temperature, but with an increase in the derivation

between GCMs, and a small increase in rainfall (in the North and

Eastern areas), but again with increasing displacement between

GCMs. The increase in temperature observed for RCP8.5 (i.e., 0.9°C)

would indicate that both the A2 and A1B scenarios could be more

conservative, compared to RCP8.5; the small increase in rainfall (up

to 130 mm per annum, but with very high variability between

GCMs) would not be enough to negate the change in temperature

(Moat et al., 2017a). If temperature change were to follow RCP8.5

(CMIP5), we would see an intensification of the negative changes

shown here using CMIP3.

4.9 | Closing remarks

We have shown that climate change could alter the climatic suitabil-

ity of wild Arabica coffee populations in Ethiopia and South Sudan,

resulting in a projected decline in EOO, AOO, and more substantial

reductions in population numbers (more than 50% reduction). If we

were to apply the precautionary rule (the worst case scenario) this

would give coffee the extinction risk value of Critically Endangered

(10% of the results, for a generation length of 21 years, IUCN crite-

ria A3 and migration scenarios D and F; Figure 5), but we feel that

the assessment of Endangered is more justifiable (50% of the results,

for a generation length of 21 years, IUCN criteria A3 and migration

scenarios D and F; Figure 5). An IUCN extinction risk assessment for

Wild Arabica coffee lacking the inclusion of climate change projec-

tions would result in the extinction risk category of Least Concern;

applying climate change projections as part of the IUCN Red List cri-

teria methodology results in an assessment of Endangered, under

IUCN Criterion A (sub‐criteria A3b), which is three categories above

Least Concern. The full IUCN extinction risk assessment for Arabica

coffee is: Endangered, with population reductions projected to be

greater than 70% within a 63‐year window (2025–2088), based on a

generation length of 21 years and using an index of population

abundance (EN A3b).

Generation length is critical when applying the IUCN criteria.

Here we have erred here on the side of caution using a generation

length of 21 years, but if it can be demonstrated that Arabica coffee

has a longer generation length (and 26 years would be sufficient)

there is a possibility that the species will be pushed into the extinc-

tion risk category of Critically Endangered. We have assumed that

forest levels are static, but it is clear that there is a backdrop of rapid

and continuing deforestation in Ethiopia and South Sudan. If defor-

estation metrics were included into the IUCN extinction risk assess-

ment, the outcomes are likely to be even more negative (i.e., climate

change plus deforestation), and if deforestation were to remain high

and consistent it could impose a stronger driver of extinction risk

than climate change alone, at least in short‐term. Some locations,

such as the Boma Plateau (South Sudan) and wild arabica coffee

locations on the eastern side of the Great Rift Valley in Ethiopia

(and especially the Bale (Harenna) forest area) are rapidly lost

according to climate change projections, a result that receives unani-

mous agreement across a range of GCMs (Davis et al., 2012; Moat

et al., 2017a, 2017b). In Ethiopia and South Sudan both of these

areas coincide with high and ongoing rates of deforestation, indicat-

ing that there would be a substantial negative compounding influ-

ence (i.e., deforestation and climate change). Germplasm from the

Boma Plateau (South Sudan) and Bale (Harenna) forest area is thus a

high priority for ex situ conservation, and possibly (in situ) assisted

migration. The area of coffee forest presently contained within pro-

tected areas is small (1,681 km2; about 4% of the existing wild cof-

fee forest area) and in the future some of these protected areas will

need to incorporate higher elevation to ensure the species continued

protection at these sites (Davis et al., 2012; Moat et al., 2017a).

The results reported in this paper, shows that intervention could

make a substantial difference to the future of wild Arabica coffee. If

specific activities are undertaken (particularly assisted migration, for-

est preservation, and regeneration; see Figure 5 migration scenario

C) the chances of the species becoming highly threatened (i.e., Criti-

cally Endangered) could be greatly reduced. Focused intervention

actions, and especially forest preservation and reestablishment, could

MOAT ET AL. | 401



have a positive outcome for the species, humid forest cover, and

ecosystem services, and the long‐term sustainability of the Ethiopia

coffee economy.
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