HAWAIIAN SKIRT, and F-box gene from Arabidopsis, is a new player in the microRNA pathway

Xuebin Zhang (Brookhaven National Laboratory, USA), Dasuni Jayaweera (The University of Nottingham, UK), Janny L. Peters, (Radboud University Nijmegen, The Netherlands), Judit Szecsi, (ENS de Lyon, France), Mohammed Bendahmane (ENS de Lyon, France), Jeremy A. Roberts (University of Plymouth, UK), Zinnia H. González-Carranza (The University of Nottingham, UK).

F-box proteins belong to a multi-protein E3 ubiquitin ligase complex (SCF) that target proteins for degradation via the proteasome. We demonstrated that **HAWAIIAN SKIRT** (**HWS**), an Arabidopsis ubiquitin protein ligase (SCF**HWS**), regulates organ growth, flower development and timing of abscission. Mutants of this gene (**hws-1**) are pleiotropic and the most obvious phenotype is the fusion of its floral organs, a phenotype shared with the **cuc1/cuc2** double mutants and over-expressing lines of **MIR164B**. To understand the molecular mechanisms of **HWS** during plant development, an ethylmethylsulphonate mutagenized population of **hws-1** seeds was generated and screened for mutations suppressing the **hws-1** sepal fusion. We isolated **shs-1/hws-1**, **shs-2/hws-1**, and **shs-3/hws-1**, (suppressor of **hws-1**) mutants. Mapping analyses shown that **shs1** is mutated in the **miRNA164** binding site of **CUP-SHAPED COTYLEDON1** (**CUC1**) mRNA; while **shs-2** and **shs-3** are novel alleles of the plant homolog of Exporting-5 **HASTY** (**HST**), known to be important in miRNA biogenesis, function and transport. Consequently, we renamed them **cuc1-1D**, **hst23** and **hst24**, respectively. We demonstrated that transcript levels of **CUC1** and **CUP-SHAPED COTYLEDON 2** (**CUC2**), and **MIR164** change in **cuc1-1D** and in **hws-1** mutants; analyses revealed a role for **HWS** in cell proliferation and control of floral organ number. Additional genetic crosses between **hws-1** and mutant lines for genes in the miRNA pathway were performed and double mutants obtained shown restoration of the **hws-1** sepal fusion phenotype. Our data propose **HWS** as a new regulator in miRNA pathway and reveal a role for **HWS** to control floral organ number and cell proliferation.