Accepted Manuscript

A comparison of two different software packages for the analysis of body composition using computed tomography images

Katie E. Rollins MRCS, Amir Awwad FRCR, Ian A. Macdonald PhD, Dileep N. Lobo MS, DM, FRCS, FACS, FRCPE Professor

PII: S0899-9007(18)30592-6
DOI: 10.1016/j.nut.2018.06.003
Reference: NUT 10239

To appear in: The End-to-end Journal

Received date: 13 June 2017
Revised date: 16 May 2018
Accepted date: 19 June 2018

Please cite this article as: Katie E. Rollins MRCS, Amir Awwad FRCR, Ian A. Macdonald PhD, Dileep N. Lobo MS, DM, FRCS, FACS, FRCPE Professor, A comparison of two different software packages for the analysis of body composition using computed tomography images, The End-to-end Journal (2018), doi: 10.1016/j.nut.2018.06.003

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Highlights

- We clarify the equivalence of body composition analysis from computed tomography (CT) images using two different software packages.
- Analysis was performed using SliceOmatic and OsiriX packages on 50 patients who had undergone tri-phasic scans.
- Body composition measures were significantly different between the two software packages, but the clinical significance of these is doubtful.
- However, we recommend that for serial body composition analysis and for comparative purposes, the software package employed should be consistent.
A comparison of two different software packages for the analysis of body composition using computed tomography images

Katie E Rollins, MRCSa, Amir Awwad, FRCRb, Ian A Macdonald, PhDc,d, Dileep N Loboa,MS, DM, FRCS, FACS, FRCPEa,d

aGastrointestinal Surgery, Nottingham Digestive Diseases Centre, National Institute for Health (NIHR) Research Nottingham Biomedical Research Centre, Nottingham University Hospitals and University of Nottingham, Queen’s Medical Centre, Nottingham NG7 2UH, UK

bSir Peter Mansfield Imaging Centre (SPMIC), University of Nottingham, University Park, Nottingham, NG7 2RD, UK

cSchool of Life Sciences, University of Nottingham, Queen’s Medical Centre, Nottingham NG7 2UH, UK

dMRC/ARUK Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham, Queen’s Medical Centre, Nottingham NG7 2UH, UK

Address for correspondence:
Professor Dileep N Lobo
Gastrointestinal Surgery
Nottingham Digestive Diseases Centre
National Institute for Health Research Nottingham Biomedical Research Unit
E Floor, West Block
Queens Medical Centre
Nottingham NG7 2UH, UK
Tel: +44-115-8231149
Fax: +44-115-8231160
E-mail: Dileep.Lobo@nottingham.ac.uk

Funding: This work was supported by the Medical Research Council [grant number MR/K00414X/1], Arthritis Research UK [grant number 19891]. KER was funded by a
Research Fellowship from the European Society for Clinical Nutrition and Metabolism (ESPEN). The funders had no role in the design, execution and writing up of the study.

Running Head: Software Packages for Body Composition Analysis

Abbreviations used: CT = computed tomography; DICOM = Digital Imaging and Communications in Medicine; FFM = fat free mass; FM = fat mass; HU = Hounsfield units; SAT = subcutaneous adipose tissue; SMHU = skeletal muscle Hounsfield units; SMI = skeletal muscle index; VAT = visceral adipose tissue

Word Count: 1969 (excluding abstract, references, tables and figures)

This paper was presented to the Annual Congress of the European Society for Clinical Nutrition and Metabolism, Copenhagen, September 2016 and has been published in abstract form Clin Nutr 2016;35 (Suppl 1):S13-14.
Abstract

Objectives: Body composition analysis from computed tomography (CT) imaging has become widespread. However, the methodology used is far from established. Two main software packages are in common usage for body composition analysis, with results used interchangeably. However, the equivalence of these has not been well established. The aim of this study was to compare the results of body composition analysis performed using the two software packages to assess their equivalence.

Methods: Tri-phasic abdominal CT scans from 50 patients were analysed for a range of body composition measures at the third vertebral level using OsiriX (v7.5.1, Pixmeo, Switzerland) and SliceOmatic (v5.0, TomoVision, Montreal, Canada) software packages. Measures analysed were skeletal muscle index (SMI), fat mass (FM), fat free mass (FFM) and mean skeletal muscle Hounsfield Units (SMHU).

Results: The overall mean SMI calculated using the two software packages was significantly different (SliceOmatic 51.33 vs. OsiriX 53.77, p<0.0001), and this difference remained significant for non-contrast and arterial scans. When FM and FFM were considered, again the results were significantly different (SliceOmatic 33.7kg vs. OsiriX 33.1kg, p<0.0001; SliceOmatic 52.1kg vs. OsiriX 54.2kg, p<0.0001, respectively), and this difference remained for all phases of CT. Finally, when mean SMHU was analysed, this was also significantly different (SliceOmatic 32.7 HU vs. OsiriX 33.1 HU, p=0.046).

Conclusions: All four body composition measures were statistically significantly different by the software package used for analysis, however the clinical significance of these differences...
is doubtful. Nevertheless, the same software package should be utilised if serial measurements are being performed.

Key words: computed tomography; body composition; sarcopenia; myosteatosis; OsiriX; SliceOMatic
Introduction

Computed tomography (CT) analysis of body composition to measure fat mass (FM) and fat free mass (FFM), calculate skeletal muscle index (SMI), and diagnose sarcopenia and myosteatosis has become increasingly common, with literature now linking sarcopenia and myosteatosis with reduced overall survival [1, 2], decreased tolerance to chemotherapy [3, 4] and increased complications [5, 6] following surgery in patients presenting with various types of malignancy.

However, the methodology for calculating body composition from CT images is variable between studies, from the nature of the CT scan used including the vertebral level, to the use of contrast medium, to the software used to perform the analysis. The impact of the use of contrast medium in CT scanning in body composition analysis has previously been recognised to have a significant effect upon results, especially the diagnosis of myosteatosis [7, 8]. Despite these inconsistencies in analysis, the results of these studies are used interchangeably, with the definition of neither sarcopenia or myosteatosis stipulating any conditions about how these derived values are calculated.

There are currently two software packages used commonly to analyse body composition from CT scans: SliceOmatic (TomoVision, Montreal, Canada) and OsiriX (Pixmeo, Switzerland), the results of which are also used interchangeably. One study in patients with rectal cancer [9] has suggested that SliceOmatic, ImageJ (National Institutes of Health, Bethesda, MD, USA), FatSeg [Biomedical Imaging Group Rotterdam of Erasmus MC, Rotterdam, The Netherlands, using MeVisLab (Mevis Medical Solutions, Bremen, Germany)] and OsiriX analysis provide excellent levels of agreement. However, this study [9] did not consider mean skeletal muscle Hounsfield Unit as a surrogate for myosteatosis. The aim of
the present study was to compare the SliceOmatic and OsiriX software packages and
determine if there was a difference in calculated measures of body composition, namely
SMI, FM, FFM and mean skeletal muscle Hounsfield units (SMHU), using CT scan images.
Methods

In a single centre retrospective study, CT scans from 50 patients who underwent triple phase abdominal scans (non-contrast, arterial and portovenous phases) between April 2014 and September 2015 were analysed using two different software packages; SliceOmatic v5.0 and OsiriX v7.5.1. The patients were initially identified retrospectively from the Computerised Radiology Information System (CRIS v 2.09, HSS, Healthcare Systems, Mansfield, UK). The underlying pathology necessitating the CT scan was variable, and included trauma, suspected intra-abdominal or gastrointestinal bleeding, pancreatic or hepatic pathology and renal lesions. Three axial slices were selected from each tri-phasic abdominal CT scan (total analysed slices in the study = 50 x 3 = 150 slices). Each slice was anatomically localised using coronal and sagittal multi-planar reformats (MPRs) to ensure it specifically lies at the third lumbar vertebra (L3). Slices were analysed as Digital Imaging and Communication in Medicine (DICOM) images obtained from the Picture Archiving and Communication System (PACS). Electronic patient data were collated for patient demographics, including height and weight data from within one month of the date of the CT scan.

Scan Acquisition

During the study period there were two CT scanners in use at Nottingham University Hospitals NHS Trust were the study was conducted; (1) Ingenuity 128; Phillips Healthcare, Best, The Netherlands and (2) Optima CT660, GE Healthcare, WI, USA and these were calibrated once per week to ensure that quality assurance testing was met for the Hounsfield Unit (HU) density of air (HU=-1000) and water (HU=zero). Arterial and portovenous phase scans were obtained using intravenous administration of contrast.
medium (100 ml fixed dose of Iopamidol, Niopam 300, Bracco, Buckinghamshire, UK). The timings of different phase scans were standardised, firstly with an unenhanced scan, then the arterial phase performed at 10-20 seconds and finally the portovenous scan at 65 seconds.

Body Composition Analysis

The three phases of CT scan slice on each individual patient were analysed by a single observer, our group having previously established high rates of inter-observer reliability ($SMI_r^2=0.975, p<0.0001$; mean $SMHU_r^2=0.965, p<0.0001$) in the analysis of body composition variables using the techniques adopted in this study [7]. The software packages, SliceOmatic and OsiriX were each used to calculate the cross-sectional area of skeletal muscle, visceral and subcutaneous/intramuscular adipose tissue. The different tissue types were identified by their differing radiodensities; skeletal muscle of -29 to +150 HU, visceral adipose of -150 to -50 HU and subcutaneous/intramuscular adipose of -190 to -30 HU. The mean SMHU density was also recorded for all scans analysed.

Previously described regression equations for the calculation of whole body FM and FFM from a single cross-sectional CT slice were used [10]:

- Total body fat mass (FM) (kg) = 0.042 × [total adipose tissue area at L3 (cm2)] + 11.2
- Total body fat free mass (kg) = 0.3 × [total skeletal muscle area at L3 (cm2)] + 6.06

The cross-sectional area of skeletal muscle was also transformed into the skeletal muscle index (SMI) by modifying it by patient height.
Statistical Analysis

Statistical analysis was performed using SPSS (v22.0, IBM, SMSS Statistics, Armonk, NY, USA) and GraphPad Prism v6.0 (GraphPad, La Jolla, CA, USA). FM, FFM, SMI and mean SMHU density values, with data checked for normality using the D’Agostino-Pearson normality test. Data were compared between different software packages using the Student t-paired test when normality was confirmed, and the Wilcoxon matched-pairs signed rank test when the data were not distributed normally. Pearson’s coefficient of correlation was used to compare the body composition values calculated from the two different software packages and Bland Altman plots utilised to reveal any systematic error between the analyses. All analyses were performed using two tailed testing with a significance level set at p<0.05.
Results

Of the 50 patients included during the study period of April 2014 to September 2015 there were 33 males and 17 females, with a mean body mass index (BMI) of 30.4 (SD 4.0) kg/m².

Skeletal Muscle Index (SMI)

Analysis of body composition by OsiriX gave a significantly greater value for SMI than scans analysed using SliceOmatic (53.8 cm²/m² vs. 51.3 cm²/m², p<0.0001) on Wilcoxon matched-pairs signed rank test, performed due the D’Agostino-Pearson test demonstrating a lack of normality in the data from OsiriX analysis (K²=7.831, p=0.012). This difference remained between scans analysed in non-contrast and arterial phase, however there was no difference in scans analysed in the portovenous phase (Table 1).

There was a significant positive correlation in SMI between analysis conducted using OsiriX and SliceOmatic software (r=0.965, p<0.0001) and evidence of a positive systematic bias on Bland Altman testing (average bias = 2.432) (Figure 1).

Fat Mass (FM)

FM calculated by OsiriX was significantly lower than that calculated by SliceOmatic (33.1 kg vs. 33.7 kg, p<0.0001) as calculated by the student t-paired test as the data were demonstrated to be normally distributed, and this difference was seen when all individual phase data were analysed (Table 1).

The correlation between FM analysis using OsiriX and SliceOmatic was significant (r=0.997, p<0.0001) and Bland Altman testing revealed no evidence of a systematic bias (average bias = -0.680) (Figure 2).
Fat Free Mass (FFM)

Analysis of FFM using the two software packages demonstrated significantly greater values with OsiriX analysis versus SliceOmatic (54.2 kg vs. 52.1 kg, p<0.0001) as calculated by the student t-paired test as the data were demonstrated to be normally distributed. This finding remained consistent in slices analysed in non-contrast, arterial and portovenous phases (Table 1).

There was a significant positive correlation between analysis of FFM performed using OsiriX versus SliceOmatic software packages (r=0.977, p<0.0001) and there was evidence of a systematic bias on Bland Altman testing (average bias = 2.16) (Figure 3).

Mean Skeletal Muscle Hounsfield Units (SMHU)

The mean SMHU density was overall significantly higher when analysed using OsiriX versus SliceOmatic software (33.1 vs. 32.7 HU, p=0.046) as calculated by the student t-paired test as the data were demonstrated to be normally distributed. However, when the individual phases of CT scan were compared, there were no significant differences between OsiriX and SliceOmatic (Table 1).

There was a significant positive correlation in the mean SMHU between the two software packages (r=0.976, p<0.0001) and no evidence of any systematic bias (average bias = 0.360) (Figure 4).
Discussion

This study provides evidence of the relative clinical equivalence of analysis of body composition measures analysed by two different software packages, namely OsiriX and SliceOmatic. However, statistically significantly greater SMI, FFM and mean SMHU values and significantly lower FFM were demonstrated when the analyses were performed with OsiriX compared with SliceOmatic. There was significant positive correlation for all measures when the two software packages were compared, although Bland Altman testing revealed evidence of a significant systematic bias when analysing SMI and FFM. The results of the present study are similar to those of the previously published comparison of OsiriX, SliceOmatic, ImageJ and FatSeg [9] which found that body composition in terms of cross-sectional muscle area, visceral adipose tissue area and subcutaneous adipose tissue area had excellent levels of agreement, suggesting that the results of analysis using the different software packages could be used interchangeably. However, this study suggested evidence of a systematic bias in the analysis of SMI and FFM which should be considered when comparing results of body composition analysis performed using different software packages. That study [9], however, did not include myosteatosis, as calculated by the mean SMHU value, which is becoming increasingly utilised in body composition analysis. In addition, the present study considered the different phases of abdominal CT (non-contrast, arterial and portovenous) which was not considered by the previous literature; indeed no statement is made regarding the phase of CT scan considered by the previous study [9].

Whilst the results of the present study demonstrate statistically significant differences in body composition variables by software package used for analysis, the clinical significance of several of these outcomes is doubtful. The mean SMHU was different by just 0.4 HU, much
less than the difference in SMHU between different phases of CT scan (in OsiriX analysis a difference of 5.1 HU was seen between non-contrast and portovenous scans and 5.3 HU in SliceOmatic analysis). This discrepancy in radiodensity of skeletal muscle has been documented previously [7] and its clinical relevance questioned. Therefore, with such a small difference this is very unlikely to impact significantly upon the diagnosis of myosteatosis. Similarly, the difference between software packages was minimal in FM analysis, with an overall difference of 0.7 kg, which represents just 1.8% of the overall mass from OsiriX analysis. The difference was more pronounced in SMI and FFM analysis, with a difference of 2.5 cm²/m² (4.6%) and 2.1 kg (3.9%) respectively, which are more likely to represent a clinically relevant difference. This difference in body composition variables has not been demonstrated previously, and the results of body composition analysis using OsiriX and SliceOmatic software packages are used interchangeably within the literature.

This study was conducted retrospectively. However, all scans were performed on individual patients at the same time, so whilst the hydration status was not known, it would be consistent for all scans and, therefore, would not impact upon these results. Height and weight data were not always available from the date of the scan which may render the calculation of body composition measures less accurate.

Further work on body composition analysis is necessary in order to standardise the methodology used to calculate clinical body composition outcomes including the presence of sarcopenia and myosteatosis. This should include muscle biopsy samples of the rectus abdominis at the L3 vertebral level to correlate radiological and histological analysis of skeletal muscle.
This is the first study to investigate the analysis of body composition variables including myosteatosis by software package of analysis, and has demonstrated statistically significant differences in values in all outcomes. Although some statistically significant differences were demonstrated between the two software packages, these are unlikely to be clinically relevant. However, given the demonstrable differences in body composition measures, it is suggested that the two packages should not be used interchangeably for clinical or research purposes.
Conflict of Interest:

None of the authors has any direct conflicts of interest to declare. IAM has received research funding from Mars Inc. and serves on the advisory board of IKEA for unrelated work. DNL has received unrestricted research funding and speaker’s honoraria from Fresenius Kabi, BBraun and Baxter Healthcare for unrelated work. He has also served on advisory boards for Baxter Healthcare and AbbVie in the past.

Author Contributions:

All authors contributed to the
- conception and design of the study
- collection, analysis or interpretation of data
- drafting the article or revising it critically for important intellectual content
- and final approval of the version to be published.

Funding

This work was supported by the Medical Research Council [grant number MR/K00414X/1], Arthritis Research UK [grant number 19891]. KER was funded by a Research Fellowship from the European Society for Clinical Nutrition and Metabolism (ESPEN). The funders had no role in the design, execution and writing up of the study.
References

Legends for figures

1. OsiriX Calculated SMI (cm²/m²) vs. SliceOmatic Calculated SMI (cm²/m²)
 - Correlation coefficient: r = 0.931
 - P-value: p < 0.0001

2. OsiriX - SliceOmatic Calculated SMI (cm²/m²)
 - Range: -5 to 20
 - Mean: 0
 - +2SD: 5
 - -2SD: -5

Average bias = 2.432
Figure 1 – Correlation between mean skeletal muscle index (SMI) calculated using OsiriX and SliceOmatic software packages and Bland Altman plots to assess for systematic bias.
The figure shows the correlation between OsiriX and SliceOmatic calculated FM (kg). The top graph is a scatter plot with a linear regression line, indicating a strong positive correlation with an r-value of 0.997 and p-value less than 0.0001. The bottom graph is a Bland-Altman plot, showing the difference between OsiriX and SliceOmatic calculated FM (kg) against the average of the two. The average bias is -0.680 kg.
Figure 2 – Correlation between fat mass (FM) calculated using OsiriX and SliceOmatic software packages and Bland Altman plots to assess for systematic bias.
The upper graph shows a strong positive correlation between OsiriX Calculated FFM (kg) and SliceOmatic Calculated FFM (kg) with a correlation coefficient of $r=0.977$, and $p<0.0001$. The lower graph illustrates the distribution of the difference between OsiriX and SliceOmatic FFM calculations around the mean, with an average bias of 2.16 kg.
Figure 3 – Correlation between fat free mass (FFM) calculated using OsiriX and SliceOmatic software packages and Bland Altman plots to assess for systematic bias.
Graph 1: Scatter plot showing the relationship between OsiriX calculated mean SMHU (HU) and SliceOmatic calculated mean SMHU (HU).

- Correlation coefficient: $r = 0.976$
- Statistical significance: $p < 0.0001$

Graph 2: Bland-Altman plot comparing OsiriX and SliceOmatic calculated mean SMHU (HU).

- Mean bias: 0.360
- Upper limit of agreement: +2SD
- Lower limit of agreement: -2SD
Figure 4 – Correlation between mean skeletal muscle Hounsfield Units (SMHU) calculated
using OsiriX and SliceOmatic software packages and Bland Altman plots to assess for
systematic bias.
Table 1 – Comparison of body composition measures calculated by OsiriX versus SliceOmatic software packages in non-contrast, arterial and portovenous phase scans.

<table>
<thead>
<tr>
<th></th>
<th>Non-Contrast Phase Scan</th>
<th>Arterial Phase Scan</th>
<th>Portovenous Phase Scan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skeletal Muscle Index (cm²/m²) ± standard deviation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SliceOmatic</td>
<td>51.0 ± 10.1</td>
<td>51.4 ± 10.1</td>
<td>51.6 ± 9.9</td>
</tr>
<tr>
<td>OsiriX</td>
<td>53.3 ± 10.4</td>
<td>53.6 ± 11.1</td>
<td>54.4 ± 10.7</td>
</tr>
<tr>
<td>Mean difference between modalities</td>
<td>-2.3 ± 2.2</td>
<td>-2.2 ± 3.3</td>
<td>-2.7 ± 3.0</td>
</tr>
<tr>
<td>P Value</td>
<td><0.0001</td>
<td><0.0001</td>
<td>0.189</td>
</tr>
<tr>
<td>Fat Mass (kg)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SliceOmatic</td>
<td>34.1 ± 9.1</td>
<td>33.7 ± 8.9</td>
<td>33.5 ± 9.0</td>
</tr>
<tr>
<td>OsiriX</td>
<td>33.4 ± 9.0</td>
<td>33.0 ± 8.7</td>
<td>32.8 ± 9.0</td>
</tr>
<tr>
<td>Mean difference between modalities</td>
<td>0.7 ± 0.6</td>
<td>0.7 ± 0.8</td>
<td>0.7 ± 0.5</td>
</tr>
<tr>
<td>P value</td>
<td><0.0001</td>
<td><0.0001</td>
<td><0.0001</td>
</tr>
<tr>
<td>Fat Free Mass (kg)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SliceOmatic</td>
<td>51.8 ± 11.3</td>
<td>52.1 ± 11.3</td>
<td>52.3 ± 11.3</td>
</tr>
<tr>
<td>OsiriX</td>
<td>53.9 ± 11.7</td>
<td>54.1 ± 12.1</td>
<td>54.8 ± 11.9</td>
</tr>
<tr>
<td>Mean difference between modalities</td>
<td>-2.1 ± 2.0</td>
<td>-2.0 ± 2.9</td>
<td>-2.4 ± 2.7</td>
</tr>
<tr>
<td>P value</td>
<td><0.0001</td>
<td><0.0001</td>
<td><0.0001</td>
</tr>
<tr>
<td>Mean Skeletal Muscle Hounsfield Units (HU)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SliceOmatic</td>
<td>30.1 ± 9.3</td>
<td>33.0 ± 9.9</td>
<td>35.4 ± 10.2</td>
</tr>
<tr>
<td>OsiriX</td>
<td>30.6 ± 8.6</td>
<td>32.7 ± 9.4</td>
<td>35.7 ± 10.0</td>
</tr>
<tr>
<td>Mean difference between modalities</td>
<td>-0.5 ± 2.2</td>
<td>0.3 ± 2.1</td>
<td>-0.2 ± 2.4</td>
</tr>
<tr>
<td>P value</td>
<td>0.120</td>
<td>0.213</td>
<td>0.450</td>
</tr>
</tbody>
</table>