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Abstract. Many real-world applications require decision-makers to as-
sess the quality of solutions while considering multiple conflicting objec-
tives. Obtaining good approximation sets for highly constrained many-
objective problems is often a difficult task even for modern multiobjec-
tive algorithms. In some cases, multiple instances of the problem sce-
nario present similarities in their fitness landscapes. That is, there are
recurring features in the fitness landscapes when searching for solutions
to different problem instances. We propose a methodology to exploit
this characteristic by solving one instance of a given problem scenario
using computationally expensive multiobjective algorithms to obtain a
good approximation set and then using Goal Programming with efficient
single-objective algorithms to solve other instances of the same problem
scenario. We use three goal-based objective functions and show that on
benchmark instances of the multiobjective vehicle routing problem with
time windows, the methodology is able to produce good results in short
computation time. The methodology allows to combine the effectiveness
of state-of-the-art multiobjective algorithms with the efficiency of goal
programming to find good compromise solutions in problem scenarios
where instances have similar fitness landscapes.

Keywords: multi-criteria decision making, goal programming, Pareto
optimisation, multiobjective vehice routing

1 Introduction

Tackling highly-constrained optimisation problems with many objectives is diffi-
cult even with modern multiobjective algorithms (Giagkiozis and Fleming, 2012).
In real-world scenarios, decision-makers often benefit from having a set of so-
lutions representing a compromise between the multiple objectives so that they
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can choose the preferred solution(s). It is often useful to use problem domain
knowledge during the optimisation in order to obtain better sets of compromise
solutions. For example, in the context of continuous multiobjective optimisation
problems, Giagkiozis and Fleming (2014) estimated Pareto fronts to then obtain
values for the decision variables of interesting solutions. Their technique allows
to focus the search in sub-regions of the objective space. Another example is the
work by Feliot et al. (2016) using a Bayesian model to learn computationally
expensive objective functions to then use the estimation model to explore the
search space more quickly.

The multiobjective vehicle routing problem with time windows (MOVRPTW)
is a well-know difficult combinatorial optimisation problem that arises in many
real-world logistic scenarios (Toth and Vigo, 2002). This problem refers to creat-
ing a plan for a fleet of identical vehicles to take goods from a depot and deliver
them to customers at various locations. Each customer has certain demand level
that needs to be satisfied within a specified time window. Objectives usually con-
sidered in the MOVRPTW include among others, the minimisation of number
of vehicles and the minimisation of total travel distance by all vehicles.

Due to the high number of constraints and objectives in MOVRPTW sce-
narios, even state-of-the-art multiobjective algorithms struggle to find good ap-
proximations to the Pareto optimal front within reasonable computation time.
In logistic scenarios where problems like MOVRPTW arise, it is often the case
that problem instances corresponding to a different planning periods share parts
of the same data. For example, the same or very similar set of vehicles might
be available in each planning period. Also, there might be a set of recurring
customer orders that need to be satisfied in the different planning periods. This
results in the different problem instances presenting recurring features in their fit-
ness landscapes. Other problems like timetabling and personnel scheduling may
also have instances with recurring features resulting in similar fitness landscapes
(η-dimensional surface representing the Pareto front, where η is the number of
objectives).

Previous work proposed a technique to analyse and visualise complex objec-
tive relationships and fitness landscapes in multiobjective problems (Pinheiro
et al., 2015, 2017). Later, Pinheiro et al. (2018) introduced a methodology to
exploit the recurring similarity between instances of a multiobjective workforce
scheduling and routing optimisation problem, in order to solve instances of the
same problem scenario more efficiently. In this methodology, a pilot problem
instance is solved first using some effective (but not necessarily computationally
efficient) multiobjective algorithm to produce an approximation to the Pareto
optimal set. Such approximation set is given to the decision-maker so that target
solutions representing the desired trade-off between the multiple objectives are
identified. Then, goal programming is applied with a computationally efficient
single-objective solving method, in order to find solutions for other problem in-
stances. In this paper, this methodology is applied to tackle the MOVRPTW
in order to further investigate its performance for solving multiobjective prob-
lem instances with recurring features. The methodology can be very valuable
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to facilitate informed decision-making when searching solutions to multiobjec-
tive problems. Experiments in this paper are conducted on a set of benchmark
instances of the MOVRPTW provided by Castro-Gutierrez et al. (2011).

Section 2 outlines the multiobjective vehicle routing problem with time win-
dows considered here while Section 3 outlines goal programming. Section 4 de-
scribes the proposed methodology and Section 5 presents the experimental con-
figuration. Sections 6 and 7 present and discuss the results. Section 8 concludes
the paper and suggests related future research.

2 Multiobjective Vehicle Routing Problem with Time
Windows

A Multiobjective Vehicle Routing Problem with Time Windows (MOVRPTW)
is defined on a graph G = (V,E) where V is the set of vertices representing the
depot (vertex 0) and the customers (vertices 1 . . . n) where each customer has
a demand pi (i = 1, . . . , n). There are h identical vehicles available, each one
with capacity Q. In this MOVRPTW, h is considered large enough so that as
many vehicles as needed are available to create the routing plan. A set of routes
served by the set of vehicles should be created in order to satisfy all demands
from all customers. All routes must start and end in vertex 0. The edge set E
denotes all possible connections between all vertices. Each edge from vertex i to
vertex j has an associated cost, denoted by cij , that represents distance or time
for a vehicle to travel between vertices i and j. Each customer i must be served
during their corresponding time window [ai, bi]. A waiting time is incurred if a
vehicle arrives at time t < ai and hence it must wait until the start of the time
window to serve the customer. A delay time is incurred if a vehicle arrives at
time t > ai and hence it must start serving the customer immediately. Once the
vehicle starts serving the customer, it stays there for s time until the delivery is
completed, this is known as the service time.

Castro-Gutierrez et al. (2011) proposed a benchmark set of instances for
the MOVRPTW with five minimisation objectives: number of vehicles (Z1),
total travel distance by all vehicles (Z2), makespan or travel time of the longest
route (Z3), total waiting time for all vehicles (Z4), and total delay time for all
vehicles (Z5). They designed their instances based on different characteristics of
the problem and each instance is a combination of these features. The features
that constitute a problem instance in these benchmarks are:

– Number of customers: 50, 150 and 250 customers.
– Time window: five different profiles (tw0, tw1, tw2, tw3, tw4) of time win-

dows across a planning period of eight hours. These profiles are defined in
terms of minutes from the start of the planning period 0 = 8:00 am, 480 =
4:00 pm, etc.). These five time-window profiles are defined as follows:
• tw0: [0,480], all customers can be served at any time in the day.
• tw1: [0,160],[160,320],[320,480], refers to three types of customers (morn-

ing, midday and late).
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• tw2: [0,130],[175,305],[350,480], also refers to three types of customers as
in profile tw1 but with shorter time windows.

• tw3: [0,100],[190,290],[350,480], also refers to three types of customers as
in profile tw1 but with longer time windows.

• tw4: includes all time-windows from tw0, tw1, tw2 and tw3, each cus-
tomer has one of the 10 time window types in the previous profiles.

– Demand types: three types of demand (10, 20, 30) uniformly distributed.
– Vehicle capacity: the capacity of the vehicles is calculated according to a δ

parameter such that Q = D+δ/100(D−D) where D is the maximum single
demand among all customers and D is the sum of all customer demands.
The dataset considers three δ values (δ0 = 60, δ1 = 20, δ2 = 5).

– Service time: three values of service time (10, 20, 30) uniformly distributed.

For more details of the MOVRPTW described above and a comprehen-
sive study on the multiobjective nature of the problem, please refer to Castro-
Gutierrez et al. (2015). There are 45 problem instances and a generator avail-
able from https://github.com/psxjpc/MOVRPTW-Generator. The technique to
analyse objective relationships described in Pinheiro et al. (2017) was applied to
these problem instances and results indicate that indeed they have similar fitness
landscapes. This is the case even for instances that have different time window
profiles, vehicle capacity and the number of customers. However, in this work,
we split the 45 problem instances into three datasets according to the number of
customers. This decision was taken because even though the fitness landscapes
are similar, the scale of the objective values vary considerably according to the
number of customers. Therefore, we have 3 datasets each with 15 problem in-
stances, the set VRP-50 with 50 customers, the set VRP-150 with 150 customers
and the set of VRP-250 with 25 customers.

3 Goal Programming

Without loss of generality, a multiobjective optimisation problem can be written
as minimise F (x) = (f1(x), f2(x), ..., fn(x)) subject to x ∈ S, where x is a
solution, S is the set of feasible solutions, n is the number of objectives in the
problem, F (x) is the image of x in the k-objective space and each fi(x) is the
value of objective i in solution x. For two solutions x and y, it is said that x
dominates y, if ∀i : fi(x) ≤ fi(y) and ∃j : fj(x) < fj(y). Moreover, x is said to be
Pareto Optimal if it is not dominated by any other feasible solution. Then, the
aim is to find the set of Pareto Optimal solutions usually called Pareto Set. This
set contains a number of non-dominated points in the objective space creating
the Pareto Front.

Goal programming is one of the earliest proposed approaches to tackle optimi-
sation problems with multiple objective (Charnes and Cooper, 1977). Basically,
goal programming consists of establishing a specific numeric goal for each of the
objectives considered in the problem. Then, search is conducted for a solution
in which the weighted sum of deviations in the objective values with respect to
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the goals is minimised. In order words, goal programming is about establishing
a target for each objective and then searching for a solution with objective val-
ues as close as possible to those targets. There are three types of goals in goal
programming (Kornbluth, 1973):

– Lower bound: defines a lower value for an objective such that solutions that
fall below the lower value are penalised.

– Upper bound: defines an upper value for an objective such that solutions that
present higher values than the upper value are penalised.This is the type of
goals in the optimisation problem considered here, due to the minimisation
nature of all objectives.

– Strict bound: defines a specific target value such that solutions that present
values above or below are penalised. This is applicable when obtaining a
solution with a specific target value for a given objective is essential. For
example, in the case that solutions using exactly h number of vehicles were
required in the MOVRPTW.

Once the goals for each objective are set, goal programming techniques derive
problem models (LP, MIP, etc.) to find solutions that reach (or are close enough
to) the target goals. Several strategies, or goal programming variants, have been
presented in the literature. We briefly review the three most widely employed
variants (Jones and Tamiz, 2016):

– Weighted GP (Romero, 1991): used when the decision maker is able to
assign an importance weight to each goal. The objective function for the
problem is then a weighted sum of the deviations from the goals.

– Lexicographic GP: when weighting the goals is difficult, but the decision
maker is able to prioritise them, the lexicographic GP technique is commonly
applied (Tamiz et al., 1995). The deviations to the target goals are minimised
according to defined priority levels such that deviations from a higher level
goal are considered infinitely more important that deviations from a lower
level goal.

– Chebyshev GP (Flavell, 1976): consists of minimising the maximum weighted
normalised deviation from all the goals, hence promoting solutions that are
well-balanced regarding the achievement of the target values.

The weighting and lexicographic methods are considered ‘a priory’ approaches
in the sense that the decision maker should set a ranking between the objectives
before conducting the search for solutions. This is not the case in the Chebyshev
method which is an ‘a posteriori’ method because it seeks solutions that are
well-balanced in the attainment of all goals so that the decision maker can chose
afterwards. In this paper, it is assumed that the decision maker is able to choose
a preferred solution from a set of trade-off solutions, instead of being able to
establish weights or ranking between the multiple objectives. Hence, only the
Chebyshev technique is used later in this work.

A potential issue with goal programming is that it may produce solutions
that are not Pareto efficient (Jones and Tamiz, 2010). This is especially true
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when the goals are ‘pessimistic’ and the objectives can be easily achieved. Sev-
eral methods are proposed to address the issue. Most methods rely on extra
information from the decision maker in order to promote the further improve-
ment of certain objectives (Tamiz et al., 1999). Other methods involve extending
the search after the solution is found by the goal programming in order to find
dominating solutions (Hannan, 1980).

Works in the literature usually describe the application of goal program-
ming using exact methods (Jones and Tamiz, 2010, 2016). However, many works
exist where metaheuristics are employed to solve goal programming models.
Baykasoglu (2005) presents a simulated annealing approach to tackle several
test problems of preemptive goal programming. Mishra et al. (2006) employ a
fast converging simulated annealing algorithm to solve a machine-tool selection
and operation allocations problem with fuzzy variables. Ghoseiri and Ghannad-
pour (2010) propose a genetic algorithm to tackle a goal programming model
for the vehicle routing problem with time windows and Leung (2007) presents
a genetic algorithm to tackle a goal programming model for a transportation
planning problem with three objectives. Goal programming is a sound approach
to tackle the MOVRPTW considered here becasue this technique has been suc-
cessfully applied to related scheduling and routing problems. For example, it has
been applied to nurse scheduling (Azaiez and Al Sharif, 2005) (Musa and Saxena,
1984) and to a version of the vehicle routing problem with soft time-windows
(Calvete et al., 2007).

4 The Efficient GP Methodology

Figure 1 shows the overall concept of the methodology which was originally
proposed in Pinheiro et al. (2018). Each of the steps is explained below in ref-
erence to the MOVRPTW tackled in this paper. The overall idea is to find a
set of compromise solutions for a representative instance of the multiobjective
problem in hand. The decision maker then selects from this set a solution that
exhibits the desirable qualities in respect of the various objectives, without the
need to set weights or priorities for the objectives. The objective values in the
selected solutions are set as the targets for goal programming when searching
for solutions to the other problem instances (e.g. routing plans for other days in
the same problem scenario).

1. A pilot instance from the dataset with recurring fitness landscape is selected
by the decision-maker and solved using multiobjective algorithms to obtain
the best possible non-dominated approximation set.

2. The decision-maker chooses a preferred solution t from the obtained non-
dominated set. This chosen solution is known as the target solution and its
objective-vector is denoted by

Zt = (Zt
1, Z

t
2, Z

t
3, Z

t
4, Z

t
5)
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Fig. 1. Overview of the methodology as in Pinheiro et al. (2018). The numbered steps
are explained in the main text.

3. Each other instance in the dataset can now be solved with a faster single-
objective algorithm using a modified objective function (goal programming
variant) aiming to reach the target objective vector.

4. The final solution obtained in Step 3 is presented to the decision maker.
The overall advantage of this approach is that Step 1, which is typically
computationally expensive, needs to be executed only once for a given rep-
resentative instance in the problem scenario. Then, other problem instances
can be solved faster after the target solution is chosen.

The modified objective function of Step 3 has an important role in the
methodology as it establishes the way in which the search will aim to attain
the goals. Three approaches are used here for determining the objective func-
tion. The first one is the well known Chebyshev approach. The second one is
to derive a weight-vector from the target solution and the approximation set of
the pilot instance. The third approach minimises the Euclidean distances to the
target objective-vector.

4.1 Chebyshev Goal Programming

Chebyshev goal programming aims to obtain a balanced solution by minimising
the gap to the target of the objective that presents the highest gap, i.e. it seeks to
minimise the largest gap to the goals (Flavell, 1976). Hence, if the target goals
for the objectives are similarly difficult to attain, this technique can obtain a
balanced solution. However, if at least one target objective value is more difficult
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to achieve (i.e. the target goal is too optimistic), the quality of that objective
can be a bottleneck for the other objectives because the search will solely focus
on improving that objective. We define the Chebyshev objective function for the
MOVRPTW as follows:

Minimise λ (1)

Subject to

Z1

Zt
1

≤ λ (2)

Z2

Zt
2

≤ λ (3)

Z3

Zt
3

≤ λ (4)

Z4

Zt
4

≤ λ (5)

Z5

Zt
5

≤ λ (6)

The Chebyshev objective function given by Eq. (1) is used as the objective
function for the MOVRPTW. The main objective is now to minimise λ, thus
finding a well-balanced solution regarding reaching the target values. If all targets
are reached, λ can assume fractional values and a solution that shows balanced
improvements on all objectives may be obtained.

4.2 Derived Weight Vector

One problem with the Chebyshev approach is that it does not guarantee Pareto
efficiency. However, the optimal solution for a weighted sum objective function
(where weights are not simultaneously null) is always Pareto efficient. To derive
a weight vector from the target solution, we first convert the approximation
set of the pilot instance into a system of linear inequalities. Considering that
the approximation set is composed of k objective-vectors (Z1, Z2, . . . , Z5), the
linear inequalities system can be defined as follows where the aim is to determine
the values of w = (w1, w2, w3, w4, w5):


wZt ≤ wZ1

wZt ≤ wZ2

...

wZt ≤ wZk

(7)
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There is no guarantee that the system of linear inequalities has a solution if
the fitness landscape is non-convex, i.e. if no set of weights can be set to achieve
some points in the Pareto optimal front. Therefore, instead of finding a solution
for the system, we aim to find a weight vector w that satisfies the largest number
of inequalities. Hence, we define the problem of finding the best weight vector
as the following MIP (mixed-integer programming) minimisation problem.

Minimise

k∑
j=1

xj (8)

Subject to

wZt −wZj ≤Mxj j = 1, . . . , k (9)

wi ∈ (0, 1], xj binary

{
i = 1, . . . , 5

j = 1, . . . , k
(10)

The objective function in Eq. (8) aims to find a weight vector w that min-
imises the number of linear inequalities in (7) which do not fulfill the condition
wZt ≤ wZi expressed by constraint (9), M is a large constant. Constraint (10)
guarantees that zero cannot be chosen as a weight-value (to avoid criteria being
removed).

Finally, the weight vector w obtained from the MIP model is used in the
objective function for the MOVRPTW as given by Eq. (11).

Minimise

5∑
i=1

wiZi (11)

4.3 Euclidean Distances

We propose an alternative based on the Euclidean distances to the target vector.
In essence, this is a method that considers all objectives as equally important.
Hence, minimising the Euclidean distances alone does not guarantee Pareto effi-
ciency. In order to mitigate this issue, the proposed method consists of minimis-
ing the distances to the target vector for the objectives that are worse than the
target. If the current distance for the objectives that are worse than the target
vector is small (< ε), then the aim is to maximise the distances of the objectives
that are better than the target vector.
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Henceforth, the objective function in Eq. (12) becomes the objective function
for the optimisation problem in hand.

Minimize

{
z if z > ε

−z′ otherwise
(12)

where

z =

√√√√ 5∑
i=1

zi (13)

z′ =

√√√√ 5∑
i=1

z′i (14)

zi =

{
(Zi − Zt

i )2 if Zi > Zt
i

0 otherwise
(15)

z′i =

{
(Zi − Zt

i )2 if Zi ≤ Zt
i

0 otherwise
(16)

In summary, when the Euclidean distances of the objectives that are worse
than the target vector are larger than the given parameter ε, the objective func-
tion consists of minimising the Euclidean distances (z). Otherwise, when z ≤ ε,
the objective consists of maximising the distances for the objectives that are
better than the target solution (z′). Thus, if the solution has not reached the
target, the objective function attempts to close the gap to the target. If the
solution is close or better than the target, the objective function attempts to
further improve it.

5 Experimental Configuration

We applied the proposed methodology to the MOVRPTW datasets. The in-
stances with δ0 and tw4 (50-δ0-tw4, 150-δ0-tw4, 250-δ0-tw4 were arbitrarily
selected as pilot instances (Step 1 of methodology). Once the Pareto approxima-
tion sets were obtained, k = 15 target vectors were randomly selected (uniformly
distributed) from each approximation set and the same target vectors were used
for the Derived Weight Vector (WV) objective function, the Euclidean Distances
(ED) objective function, and the Chebyshev (CV) objective function.

Multiobjective algorithms often struggle to find good approximation sets for
combinatorial problems with many objectives (more than three) (Giagkiozis and
Fleming, 2012). Hence, we resort to a tailored procedure to obtain an improved
approximation set. Giagkiozis and Fleming (2014) state that most multiobjec-
tive algorithms can be classified as either Pareto-based or decomposition-based.
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This study utilises NSGA-II (Deb et al., 2002) as the Pareto-based algorithm and
MOEA/D (Zhang and Li, 2007) as the decomposition-based one. Thus, for each
problem instance the approximation set was obtained (Step 1 of methodol-
ogy) as described below. The number of solution vectors obtained for each pilot
instance was 168 for 50-δ0-tw4, 215 for 50-δ0-tw4 and 206 for 250-δ0-tw4.

1. run both the NSGA-II and MOEA/D for one million objective evaluations
on each possible bi-objective vector (Z1, Z2), (Z1, Z3), . . . (Z4, Z5);

2. run both the NSGA-II and MOEA/D for one million objective evaluations
on each possible three-objective vector (Z1, Z2, Z3), (Z1, Z2, Z4), . . . (Z3,
Z4, Z5);

3. run both the NSGA-II and MOEA/D for one million objective evaluations
on each possible four-objective vector (Z1, Z2, Z3, Z4), (Z1, Z2, Z3, Z5), . . .
(Z2, Z3, Z4, Z5);

4. create an archive composed of the non-dominated solutions found in the
previous three steps;

5. generate a population of individuals where half of the elements are randomly
generated and the other half are randomly drawn from the archive built in
the previous step;

6. run both the NSGA-II and MOEA/D four times each, for two million objec-
tive evaluations, using the initial population generated in the previous step
and the five-objective vector; and

7. compile an approximation set with all non-dominated solutions found in all
steps.

Bräysy and Gendreau (2005) survey the literature on vehicle routing prob-
lem with time windows and show that genetic algorithms are well suited for
that problem. Also, our early experiments showed that these algorithms present
good enough solutions on these datasets and are simple enough to allow easy
replication by other researchers. Hence, for Step 3 of the methodology, the other
instances of the MOVRPTW are tackled with a straightforward genetic algo-
rithm (GA) using a direct integer encoding of solutions, uniform crossover, 500
individuals population with a 5% elite being kept across generations and a tour-
nament of two individuals employed for the selection mechanism.

6 Experimental Results

First, we show the effectiveness of the derived weight vector obtained from the
MIP model in Eqs. (8)–(10). The effectiveness of a weight vector w is given by
the percentage of solutions (in the approximation set for the pilot instance) in
which wZt ≤ wZi, i = 1, . . . , 5. Hence, if the effectiveness is 100%, it means
that the MIP model found a solution for the inequalities system in Eq. (7).

Figure 2 presents the results of the effectiveness analysis. As it was the case
in Pinheiro et al. (2018) for another problem, the overall effectiveness of the
obtained weight vectors here surpassed 90%. Pilot instance 50-δ0-tw4 presented
the best average value of 96% and 250-δ0-tw4 presented the worst with 91.3%.
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50-δ0-tw4 150-δ0-tw4 250-δ0-tw4
90%
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Fig. 2. Average percentage of the solutions in the approximation set of each pilot
instance in the MOVRPTW datasets such that wZt ≤ wZi.

Hence, in all cases, the MIP model provided good weight vectors to be used by
the WV objective function.

Next, we show the results for each group of instances (for 50, 150 and 250
customers) in three charts. The target achievement chart displays the percentage
of solutions, in the given dataset, that achieved the target value in each objective.
The gap to target chart contains the average gap to the target solutions for the
solutions that did not reach the target. Finally, the overall comparison chart
displays the average quality of solutions where positive values indicate that, on
average, the solutions found are better than the target solution and negative
values indicate that the solutions are worse than the target solution.

Z1 Z2 Z3 Z4 Z5

60%

80%

100%

WV ED CV

Fig. 3. Dataset VRP-50 – target achievement.
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Figures 3–5 display the results of applying the implemented GA with all
three objective functions (WV, ED and CV) to the other instances of dataset
VRP-50. Results comprise the average values of eight runs for each target vector
of each problem instance for each objective function.

Z1 Z2 Z3 Z4 Z5

0%

2%

4%

6%

WV ED CV

Fig. 4. Dataset VRP-50 – gap to the target.

Figure 3 shows that for Z1 and Z2 the target achievement is close to 100%
on all three objective functions. On Z3 the WV objective function noticeably
presents the worst results, with only 63% achievement while the ED and CV
objective functions both present similar results with near 80% achievement. Fi-
nally, on Z4 and Z5 the ED objective function presents a small advantage and
the CV objective function is clearly the worst for Z5.

Figure 4 reflects the findings of the previous figure where Z3 shown the lowest
overall target achievement. Still, on that objective, the overall gap is below 6%
for the three objective functions, hence when the target was not met, the gap
still was small. Noticeably, the ED objective function presents the lowest gaps.
Moreover, Figure 5 shows that except for WV on Z3, all objective functions on
all objectives present improvements over the target solution, noticeably on Z1,
Z2 and Z4 where the solutions found are up to 58% better than the target.

Figures 6–8 present the results for the larger set VRP-150. On figure 6, we
see that while on dataset VRP-50 the objective Z3 presents the worst results,
in this dataset the worst results appear on Z4 with an average of roughly 75%
achievement and, again, the WV objective function presents the worst results.
On the other objectives, all objective functions present competitive results.

Figure 7 shows that the gap to the target on solutions that have not met the
target is very small – only on Z2 the gap is larger than 2% and only for the CV
objective function.

Figure 8 displays the overall quality of solutions. On average, the quality is
better on this dataset than on the previous one. With one or more objective
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Z1 Z2 Z3 Z4 Z5

0%

20%

40%

60%

WV ED CV

Fig. 5. Dataset VRP-50 – overall comparison.

Z1 Z2 Z3 Z4 Z5

70%

80%

90%

100%

WV ED CV

Fig. 6. Dataset VRP-150 – target achievement.

functions, on every objective, the overall quality is more than 20% better than
the target. This number increases to nearly 40% for the WV objective function
on Z1 and Z2.

Finally, figures 9–11 present the results for the largest dataset VRP-250.
Figure 9 presents the target achievement. It can be seen that there is a trend,
as the size of the datasets increases, the target achievement of Z1 decreases.
In this dataset, the objectives Z1 and Z4 presents the worst results. Regarding
the objective functions, WV presents the best results for Z1. On the remaining
objectives, the ED objective function presents the most competitive results.

Figure 10 shows the overall gaps to the target solutions. Clearly, the WV
approach gets the worst results, even though the gaps were always below 4.2%.
Noticeably, the CV objective function presents gaps always smaller than 1%.
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Z1 Z2 Z3 Z4 Z5

0%

1%

2%

WV ED CV

Fig. 7. Dataset VRP-150 – gap to the target.

Z1 Z2 Z3 Z4 Z5

10%

20%

30%

40%

WV ED CV

Fig. 8. Dataset VRP-150 – overall comparison.

Lastly, figure 11 shows the overall comparison of solutions with their targets.
Again, the results show that all objective functions achieved improved results,
with the ED edging Z3, Z4 and Z5 and the WV edging Z1 and Z2.

7 Discussion

While the WSRP datasets tackled in (Pinheiro et al., 2018) arise from real-
world scenarios, the MOVRPTW datasets considered here were fabricated for
benchmarking purposes. Also, even the largest MOVRPTW scenario is con-
siderably smaller than a medium-sized WSRP. The target achievement for the
MOVRPTW here was larger than in the WSRP overall. The best results ob-
tained here were for the smaller MOVRPTW scenarios, while for the WSRP
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Fig. 9. Dataset VRP-250 – target achievement.
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Fig. 10. Dataset VRP-250 – gap to the target.

this happened in the larger instances. We speculate that a reason for this is that
the largest MOVRPTW datasets are not large enough for the multiobjective
algorithms to struggle in finding good approximation sets (as it happened in
the larger WSRP datasets). Therefore, as the performance gap between single-
objective algorithms and multiobjective algorithms is considerably smaller in
the MOVRPTW problem instances, the difficulties of reaching the target vector
becomes more evident.

However, the gaps to the targets of objectives that did not meet their tar-
gets were considerably lower here than on the WSRP. Also, the CV objective
function, while clearly producing the worst results on the WSRP, it achieves
competitive results on the MOVRPTW. This could be a consequence of the
quality of the target solutions. The multiobjective algorithms were able to ob-
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tain approximation sets with fitness landscape closer the fitness landscape of the
optimal Pareto front. Also, there is a higher uniformity of the fitness landscapes
across instances for these datasets (Pinheiro et al., 2017). All this means that
the identified target solutions were realistic, so they could be achieved on every
instance. Hence, the CV objective function, which benefits from that, presented
good results.

On the MOVRPTW datasets, except for a few exceptions, all objective func-
tions were able to not only reach the target but also to substantially improve all
objectives – also a reflection of the quality of the approximation set obtained by
the multiobjective algorithms.

Nonetheless, it is clear that estimating the Pareto front for problem instances
that have similar fitness landscape to the pilot instance, is an effective way to
tackle the problem. While the multiobjective algorithms required up to four
hours to obtain the approximation set for the pilot instance of a dataset, the
GA managed to find competitive solutions in minutes. For the majority of the
experiments, targets were achieved and the overall quality of results was high.

8 Conclusion

In this work, we applied a methodology based on goal programming to use effi-
cient single-objective algorithms to solve a multiobjective vehicle routing prob-
lem with time windows. The methodology was first presented in (Pinheiro et al.,
2018) and it consists of: 1) solving a pilot instance of the problem using multiob-
jective algorithms (which are typically computationally expensive) to obtain a
good approximation set, 2) having the decision-maker to choose preferred target
compromise solutions, and then 3) employing goal programming to solve other
instances of the same dataset using the selected solutions in 2) as the target.
Three different objective functions were used to guide the search for the target
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solutions with goal programming. One is the Chebychev approach that seeks to
achieve a solution balanced on all the objective targets. Another one is minimis-
ing a weighted function derived from the target solution. The third approach is
to use the Euclidean distance to drive the search guided by the target solution.

This methodology was first applied by Pinheiro et al. (2018) to real-world
instances of a Workforce Scheduling and Routing Problem (WSRP) in the home
healthcare sector. In the present paper, the methodology has been further tested
by applying it to a different multiobjective problem arising in logistic operational
scenarios, the Multiobjective Vehicle Routring Problem with Time Windows
(MOVRPTW). In both of these problem scenarios, instances usally arise from
different planning periods and hence they present similarities in the fitness land-
scapes. This is because usually in this type of real-world problems, instances
have the same partial data (e.g. same fleet of vehicles or same set of workers).
This paper has shown that the proposed technique is an effective and efficient
approach to tackle real-world multiobjective highly-constrained combinatorial
optimisation problems, by combining the effectiveness (but often computation-
ally expensive) of state-of-the-art multiobjective algorithms with the efficiency
of well-targeted single-objective optimisation through goal programming. For
this, the multiobjective analysis technique proposed by (Pinheiro et al., 2015,
2017) offers an effective tool to analyse the relationships between objectives in
multiobjective optimisation problems and determine the degree of similarity in
the fitness landscape of different problem instances.

For future research, it would be interesting to investigate if other approaches
besides the Chebychev, derived weighted function and Euclidean distance ap-
proaches, would be more effective across different multiobjective problems. Per-
haps an even more interesting but also more challenging future research would
be to develop adaptive objective functions that change the search direction as
the search progresses and in reaction to the fitness landscape features.
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