Title:

Evaluation of an internet-based animated preparatory video for children undergoing non-sedated MRI

Shortened Title:

Evaluation of an internet-based animation to prepare children for MRI

(69 characters including spaces)

Type of Manuscript:

Full Paper

Authors:

Hannah L. McGlashan BPsysci. Radiological Sciences, Division of Clinical Neuroscience, University of Nottingham, Nottingham, UK

Rob A. Dineen MRCP FRCR PhD. Radiological Sciences, Division of Clinical Neuroscience, University of Nottingham, Nottingham, UK; and Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, UK

Sofia Szeszak BMedSci. Radiological Sciences, Division of Clinical Neuroscience, University of Nottingham, Nottingham, UK

William P Whitehouse FRCP, FRCPC. Division of Child Health, University of Nottingham, Nottingham, UK; Nottingham Children’s Hospital, Nottingham University Hospitals NHS Trust, Nottingham, UK

Gabriel Chow, MD, MBA, FRCPC. Nottingham Children’s Hospital, Nottingham University Hospitals NHS Trust, Nottingham, UK

Andrew Love, School of Art & Design, Nottingham Trent University, Nottingham, UK

Gill Langmack BSc MSc. School of Health Sciences, University of Nottingham, Nottingham, UK

Heather Wharrad BSc PhD. School of Health Sciences, University of Nottingham, Nottingham, UK

Corresponding author:

Rob A. Dineen
Funding: The Childhood Ataxia Telangiectasia Neuroimaging Assessment Project (CATNAP), in which this evaluation was conducted, was funded by a joint grant from the A-T Children’s Project and Action for A-T. The funders had no role in study design, the collection, analysis and interpretation of data, the writing of the report, or the decision to submit the article for publication.

Conflicts of interest: None

Acknowledgements: The authors would like to thank the families, and in particular the children, who participated in this study. We also thank Rachel Man for developing the animation, Dr Felix Raschke for assistance with data collection, and Prof Dorothee Auer, co-investigator in CATNAP.

Keywords: Child, Magnetic resonance imaging, educational video, CATNAP, animation, preparation
Abstract

Objectives: We evaluate the value of an internet-based educational animated video designed to prepare children for MRI scans, and whether this video reduces scan-related anxiety in children with a neurological disorder, and healthy controls.

Methods: Participants completed a pre- and post-scan questionnaire evaluating participant online viewing behaviour, understanding of the MRI procedure, anxiety regarding the MRI, impact of animation in preparing the child, and whether the child’s expectation of the MRI scan matched their experience.

Results: Twenty-one children were recruited (12 healthy controls) ranging in age from 6.5 to 11.5 years. The animation was successfully accessed by participants on a range of digital devices and had high levels of approval. Children who viewed the animation had a good understanding of the MRI procedure and low anxiety levels prior to the scan, and reported that their expectations broadly matched the real-life MRI experience. Children reported that the animation positively impacted on their preparation with similar ratings before and after the scan, and the impact on preparation was rated greater by younger children. There were no group differences between healthy children and those with the neurological disorder for ratings of anxiety, impact on preparation, and expectation of the experience.

Conclusions: This evaluation demonstrates accessibility, acceptability and relevance of internet-based educational animation for typically developing children, and children with a neurodisability aged 6 to 11 years, with positive impact on preparation for MRI.

Advances in Knowledge: The internet-based educational animation provides a widely accessible tool to support preparation of children for non-sedated MRI.

Introduction
Awake magnetic resonance imaging (MRI) scanning can be difficult for young children due to anxiety caused by the confined space, loud noises, unfamiliar environment, and the need to lie still for an extended period of time.1-3 Anxiety and resultant poor compliance can lead to poor quality images or abandonment of the procedure. General anaesthesia is widely employed in young children having MRI but introduces additional risks and costs, hence alternative strategies should be sought.4

Interventions such as play therapy and mock MRI scans increase compliance of children having scans without sedation but are resource and staff intensive.3, 5-8 Internet-based delivery of preparatory materials provides an inexpensive, accessible and time efficient way of enhancing preparation of children for MRI. However, despite the now widespread use of internet-delivered health information9, prospective studies evaluating the impact of these materials are generally lacking. We previously developed and evaluated an animated educational video to prepare children for awake MRI and found this animation improved the knowledge and reduced anticipatory anxiety.10 The participants in this previous report were healthy children who did not undergo MRI, as the focus for this report was on the evaluation of the attributes of the animation intervention for improving knowledge and reducing anxiety in children in this age range.

Based on this previous work, we now test the novel hypothesis that the animated educational video provides an internet-based tool for MRI preparation that reduces scan-related anxiety in young children undergoing awake MRI. Secondly, we hypothesise that the animated educational video is accessible to a range of children including those with a neurodisability. To explore the hypotheses, we evaluated the animation in two groups of children at opposite ends of a neurodisability spectrum (typically developing children and those with a severe cerebellar ataxia and involuntary movement disorder due to Ataxia-telangiectasia (A-T)) undergoing a clinical research MRI scan. Specifically we measured the
child and parent rated (1) usage and acceptability of the animation, (2) the child’s understanding of the MRI procedure, (3) the child’s anxiety regarding MRI scanning, (4) the impact of the animation on preparing the child for MRI scan, (5) whether the child’s expectation of the scan matched their experience of the MRI scan, and (6) whether there were any differences in the above parameters between the neurological disease and healthy control groups.

Materials and methods

Recruitment

Participants in the Childhood Ataxia Telangiectasia Neuroimaging Assessment Project (CATNAP) aged 6 to 11 years were invited to take part in the evaluation of the animated preparatory video. CATNAP recruited children aged 6 to 18 years with ataxia telangiectasia (A-T, a progressive neurodegenerative disorder) and age-matched healthy controls (HC, children whose physical, cognitive, social, and emotional development were deemed typically within the accepted norms for the age of the child). Children with A-T were recruited through the UK National Paediatric A-T clinic at the Name of University Hospitals NHS Trust. Healthy controls were recruited through posters in the local community. Adult participants were the parents/guardians of participating children. Parents/guardians gave initial verbal consent for participation in the animation evaluation at the time of booking their child’s MRI appointment, after which they were sent the internet link to the animation and two information sheets, one that was intended for the parent, and an age appropriate information sheet for their child. Written informed consent for parent and child participation was obtained on the day of the MRI appointment prior to completing the animation evaluation interview and questionnaires. Children under 16 years old were asked five questions to ensure they were happy to participate in the study. The questions included whether somebody had explained the study to them, if they understood what the study was about, if they had the opportunity to ask questions and whether these questions were
answered, and finally if they were happy to take part. If children did not understand the study
the researcher would spend time explaining what the study was for, and what it would
involve. If the children where physically able to, they were given the opportunity to sign their
name on the consent form, otherwise verbal assent was accepted. The children were
informed that they had a right to withdraw at any time. The study was approved by the Name
of Region NHS Research Ethics Committee (14/EM/1175).

The MRI animation

The animation used was an updated version from the Researcher et al. (2016) study and
lasts 3 minutes (m) and 8 seconds (s). The animation is about a young girl called Jess who
has an MRI scan. Justification for the characters, dialogue, and theme of the animation are
described previously.

Procedure

Participants were sent an internet link to the animation prior to the MRI scan appointment so
they could watch the animation in advance. Participants received a REC approved
information sheet, which included a brief description of the MRI procedure, and a verbal
table of the MRI procedure by the researcher on the day of the visit. The animation
evaluation questionnaire was completed during the visit for the MRI scan, and comprised
three parts (see supplementary material). Parts 1 and 2 were completed before the MRI
scan by participating children and parents respectively. Part 3 was completed by children
following the MRI brain scan. If required, the researcher would read the questions for parts
1 and 3 to the participating children. Some children were unable to physically complete the
questionnaire themselves due to neurological disability therefore the researcher recorded
their answers verbatim. Parents self-completed part 2 of the questionnaire.

Questionnaires
In part 1, questions 1-3 asked about participant viewing behaviour. Questions 4-19 were a combination of four-point Likert scales and qualitative responses. Likert scale questions covered three domains: Approval of the animation (5 questions), levels of pre-scan anxiety (3 questions) and impact of the animation in preparing the child for MRI (3 questions). Within each domain responses were summed to create an overall score. Qualitative responses created the fourth domain and were designed to assess the participant’s pre-scan understanding of the MRI procedure. Qualitative responses were coded for analysis by the same researcher (Initials of researcher) for standardisation, with a score of 0 for no knowledge, a score of 1 for some knowledge, and a score of 2 for good knowledge.

Part 2 of the questionnaire (completed by parents) assessed technical problems accessing the animation online, improvements that could be made to the animation, and the perceived importance of certain aspects of the animation. Questions were made up of Likert and qualitative questions.

Part 3 of the questionnaire assessed four domains, three of which mirrored the pre-scan questionnaire – anxiety, understanding of the MRI procedure, and impact of the animation in preparing the child for MRI scan. The fourth domain examined whether the child’s expectation of the scan matched their experience. The four-point Likert scale format used in the children’s pre-scan animation questionnaire was used in the post-scan questionnaire.

Scan tolerance and image quality

The core MRI scan protocol comprised localisers and 5 research series (including 3D T1-weighted volume acquisition) lasting 25m 19s, with 3 additional series lasting 12m 27s seconds for children tolerating the scan well. Duration of tolerated scan was recorded. Image quality of the T1-weighted volume acquisition was rated by Initials of Researcher using a 5-point scale (Supplementary table 1).
Analysis

Average ratings in each domain were converted to percentages and interpreted as follows: 0-30% poor, 30-60% moderate, 60-80% good, and 80-100% excellent. The relationship of age to impact of the animation was examined by Pearson correlation. One-way ANOVA was used to explore group differences across total scores from each domain. Results of descriptive statistics are reported as mean±SD unless stated otherwise. Qualitative data can be found in the supplementary material. Statistical analyses were performed with SPSS v21 (Armonk, NY: IBM Corp).

Results

Participants were 12 males and 9 females aged 6.5 to 11.5 years (9.23±1.68). There were 9 children with A-T and 12 HC with no group differences in sex (F(1,20)=0.543, p=.470) or age (F(1,20)=0.202, p=.658). Based on parental reports 9 children had previous MRI scans (8 from the A-T group and 1 from the HC group). Three children had previous scans under general anaesthetic, 2 children had previous scans while awake, 1 child had scans both awake and under general anaesthetic, and three parents did not answer this question.

Viewing behaviour and approval

Of the 21 children, 43% (9) watched the animation only once and 57% (12) children watched the animation 2 to 5 times. Eighteen children (86%) watched the animation with family and 3 children (14%) watched the animation alone. The device on which the child watched the animation was split between laptop computer (6), desktop computer (6), tablet/iPad (4) and mobile phone (5). When asked how much the child liked the animation the total mean score was 16.9±2.3 out of a maximum of 20 (84.5%). Child approval and parent importance ratings for animation components can be seen in Figure 1a and 1b. Free text comments suggested improvements that could be made to make the animation more appealing. For example, an 11.5-year-old female from the HC group stated, “I would have liked it more if
there were some more noises of what the scanner sounded like and more about the types of
gear/equipment you have to wear.” A 9.5-year-old female from the A-T group commented
that she would have liked “more realistic noises, to show a real scanner, and reassure that it
won’t hurt them.” To see all of the free text comments collected for this study please refer to
Table 2a through to 2g.

Knowledge, anxiety, preparation, and expectations regarding the MRI procedure
As can be seen in Figure 2, the children had a good pre-scan understanding of the MRI
procedure with a whole group mean of 7.7±1.6 points out of 10 (77%). Pre-scan anxiety for
the whole group was low with a mean score of 5.5±1.3 out of 12 (45.8%) (lower scores
indicate lower levels of anxiety). Post-scan anxiety was 47.5% or a mean of 11.4±3.8) out of
24. The impact the animation had on preparing the children for the MRI before their scan
was rated good with a whole group mean of 8.6±1.8 out of 12 (70.8%). Impact of the
animation post-scan was rated good with a mean of 13.8±3.4 out of 20 (69%). The good
level of impact the animation had on preparing the children for their scan was reflected in
some of the comments from their parents, including “This was undoubtedly essential for us
to make sure the children understood what to expect and to provide reassurance – it helps
remove the anxiety” (parent of a 7.7-year-old child in the A-T group) and “An accessible way
to present what’s going to happen” (parent of a 7.1-year-old child in the HC group).

There was a significant negative relationship between age and impact on preparation rated
post-scan (r=-.669, p=.001), which approached significance pre-scan (r=-.427, p=.053)
indicating the animation had a larger impact on younger children. This age-related impact
was reflected in the free text comments. For example, a 10.6-year-old male from the HC
group commented, “It was aimed at younger children”. These comments indicate the older
children would have liked a more mature version of the animation. The post-MRI rating of
whether pre-scan expectations of the MRI experience were met was good (72.5%, 8.7 out of
12).
Group differences in responses

Results of the one-way ANOVA testing for group differences in pre- and post-scan ratings of understanding of the MRI procedure, anxiety, impact on preparation, and scan expectation are shown in Table 1. No significant differences between groups was found except for pre-scan understanding of the MRI procedure.

Parent / guardian responses

Results from the parent/guardian questionnaire showed 100% of parents agreeing that the animated film helped prepare their child for the MRI scan, that the film held the child's attention better than a booklet would, and future animated films would help prepare children for other hospital procedures. Examples of comments from the parents included that the animation was “more memorable than a booklet”, “Children today are far more likely to pay attention to a cartoon”, and “I think this should become standard procedure, the idea of the animation is fantastic, children need to understand what procedures will be, how they will be done, noises to expect etc. doing this visually is much better for a child”. For more supporting free text comments see Table 2a through to 2g.

Scan tolerance and image quality

Nineteen of 21 children completed the core MRI research protocol (90%). Medium scan duration was 37m 46s (range 19m 43s to 37m 46s). Eighteen of 21 children (86%) had scan quality rated as ‘minor’ or ‘no’ movement artefact visible. Scans from 3 children in the A-T group showed movement artefact, for 2 (aged 10.2 and 8 years) rated as ‘moderate’ for 1 (aged 9.5 years) rated as ‘severe’ (Supplementary table 1).

Discussion
Digital media are widely used to deliver health-related information. A number of internet-based animations and ‘apps’ are available to help prepare children for medical procedures.

Ease of access combined with high levels of engagement with digital media by children suggests intuitively that these materials will be successful in informing children about the procedure and thus reducing anxiety and improving compliance. However, there is a paucity of properly conducted evaluations of such digital materials. Evaluation of publically available digital materials is important to confirm efficacy of the material, for justifying resource allocation for development and maintenance.

Our previous evaluation of this animation in healthy children not having MRI showed that the animation retained attention, improved knowledge of MRI procedure and reduced anticipated anxiety of MRI. The current work aimed to extend these previous findings by recruiting both typically developing children and children with a neurodisability, with both groups undergoing an MRI scan. It was hypothesised that the animated educational video would provide a tool for MRI preparation that reduced scan-related anxiety in young children undergoing MRI.

Our results showed that moderate levels of anxiety regarding MRI scanning were reported before the scan, and hence the animation does not fully reduce anxiety. Similar levels of anxiety regarding MRI were reported after the scan. Free text comments show that tunnel size and scanner vibrations contribute to residual feelings of anxiety. Nine children across both groups commented they wanted more realistic and louder noises in the animation and six children wanted a better indication of scanner size.

Our second hypothesis was that the animated educational video would be accessible to a range of children including those with a neurodisability. The results supported this hypothesis with no significant differences between HC and A-T groups for pre- and post-scan ratings of understanding of the MRI procedure, anxiety, impact on preparation, and scan expectation except for pre-scan understanding of the MRI procedure. The animation was considered valuable across groups for both children and parents demonstrated by high
approval ratings. Furthermore, children who view the internet-based animation before MR scanning had a good understanding of the MRI procedure with their expectations broadly matching the real-life MRI experience. Children across both groups reported that the animation positively impacted on their preparation, with similar ratings both before and after the scan. The lack of change in ratings is important; a significant drop would have indicated that the children felt the animation failed to prepare them for the real-life MRI. Correlation analysis revealed a strong negative relationship between age and impact of the animation on preparation indicating higher impact ratings for younger children. Two older children and two of the parents commented that they would like a version of the animation for older children.

The utilisation of a more mature educational video to prepare older children for MRI has been found efficacious in a study by Hogan et al. (2018)15. The educational video used in their study did not find a significant improvement in relaxation for younger children under the age of thirteen. This may suggest that the type of animation used in our study should be utilised for younger children, with older children benefitting from the video format that Hogan et al. evaluated.

Limitations

Our results are limited by small sample size and only included a single highly-selected disease group. Three participants had had previous awake MRI which could impact on measures of procedural knowledge and anxiety. The lack of a comparator group of children who were not shown the animation means that we cannot dissociate the effects of animation from the effects of standard preparatory strategies such as printed material and verbal explanation, although our previous evaluation of the animation in MRI-naïve children showed that the animation alone improved knowledge and reduced perceived anxiety. Another limitation of this study is that the questionnaires that were used for this study were all paper based, whereby the child was required to use a pencil to circle the number that represented how they felt to given statements. This method limited some of the children’s ability to be able to physically respond, instead having to verbally communicating their answer. Future
research may address this limitation by using computer tablet-based questionnaires where the child can select their answer by pressing on the icon that represents how they feel to each statement. Finally, we used an in-house developed questionnaire that included questions relating to anxiety, but could have used, modified, or selected items from a structured validated paediatric anxiety questionnaire, of which a number are available (for example, the State Trait Anxiety Inventory for Children13, or the Penn State Worry Questionnaire for Children14). Furthermore, future research should also evaluate the impact of parental anxiety on child compliance with MRI. Any items used from a validated questionnaire may also be adapted to a computer tablet format using picture response options so that the format is more user-friendly in this population.

Conclusion

This evaluation demonstrates accessibility, acceptability and relevance of internet-based educational animation for typically developing children, and children with a neurodisability aged 6 to 11 years, with positive impact on preparation for MRI. The animation provides a widely accessible tool to support preparation of children for non-sedated MRI.

References:

Table 1: Descriptive statistics and one-way ANOVA results for the comparison of variables between groups

<table>
<thead>
<tr>
<th></th>
<th>M(SD)</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before MRI scan</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Understanding of the MRI procedure (out of 10)</td>
<td>6.9(1.3)</td>
<td>8.3(1.6)</td>
<td>4.91</td>
</tr>
<tr>
<td>Anxiety regarding the MRI scan (out of 12)</td>
<td>5.9(0.6)</td>
<td>5.2(1.6)</td>
<td>1.67</td>
</tr>
<tr>
<td>Impact on preparation for the MRI scan (out of 12)</td>
<td>8.8(2.0)</td>
<td>8.4(1.7)</td>
<td>0.20</td>
</tr>
<tr>
<td>After MRI scan</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Understanding of the MRI procedure (out of 8)</td>
<td>7.6(0.9)</td>
<td>7.4(0.8)</td>
<td>0.14</td>
</tr>
<tr>
<td>Anxiety regarding the MRI scan (out of 24)</td>
<td>12.9(4.7)</td>
<td>10.3(2.7)</td>
<td>2.65</td>
</tr>
<tr>
<td>Impact on preparation for the MRI scan (out of 20)</td>
<td>14.4(3.9)</td>
<td>13.4(3.1)</td>
<td>0.37</td>
</tr>
<tr>
<td>Expectation of the MRI experience met (out of 12)</td>
<td>8.3(2.2)</td>
<td>8.9(1.6)</td>
<td>0.48</td>
</tr>
</tbody>
</table>
Figure 1: Bar charts to show (a) mean child-rated approval and (b) mean parent-rated importance of different components of the animation.

Figure 2: Bar chart to show comparison of child-rated knowledge, anxiety, and preparation pre- and post-scan.

Supplementary Material

File 1: The animation evaluation questionnaires

File 2: Supplementary table 1: Scan acquisition protocol and approximate acquisition time