Electronic Supplementary Information

Structural variations in hyperbranched polymers prepared via thermal polycondensation of lysine and histidine and their effects on DNA delivery

Ali Alazzo, Tatiana Lovato, Hilary Collins, Vincenzo Taresco, Snjezana Stolnik, Mahmoud Soliman, Keith Spriggs, and Cameron Alexander

a School of Pharmacy, University of Nottingham, NG7 2RD, UK. E-mail: cameron.alexander@nottingham.ac.uk. Tel: +44 (0)115 846 7678
b Department of Pharmaceutics, University of Mosul, Mosul, Iraq
c School of Pharmacy, University of Nottingham, NG7 2RD, UK.

Table of Contents

1 Synthesis and characterization of hyperbranched polymers .. 2

Figure s1: FT-IR spectra of hyperbranched polymers. ... 2
Figure s2: H-NMR spectrum of hb-polyk. .. 3
Figure s3: 13C-NMR spectrum of hb-polyk. .. 4
Figure s4: H-NMR spectrum of hb-polykh ... 5
Figure s5: 13C-NMR spectrum of hb-polykh. ... 6
Figure s6: H-NMR spectrum of polymers in group-A stacked together to show the growth in the imidazole peaks with increase in molar ratio of histidine. .. 7
Figure s7: H-NMR spectrum of polymers in group-B stacked together to show the growth in the imidazole peaks with increase in molar ratio of histidine. ... 7
Figure s8: HSQC spectrum of hb-polyk .. 9
Figure s9: HSQC spectrum of hb-polykh .. 10
Figure s10: Chemical shifts of imidazole amines in hyperbranched polymers at different pH values 11

2 Polypelexes preparation and characterization .. 12

Figure s11: (a) The histograms of AFM images, analysed by image-j, show the size distribution of polypelexes. (b) Hydrodynamic radii of polypelexes prepared in PBS, pH 7.4 at different N/P ratios using polymers of group-a and group-b. .. 12
Figure s12: (a) Zeta potential measurements, (b) ethidium bromide displacement assay and (c) agarose gel electrophoresis of hyperbranched polymers/dna polypelexes prepared in PBS, pH 7.4 at different N/P ratios. ... 13

3 Biological evaluation of polypelexes ... 14

Figure s13: Metabolic activity of a549 cells treated with (a) the hyperbranched polymers and (b) their polypelexes. .. 14
Figure s14: Luciferase activity of polypelexes prepared in PBS, pH 7.4 with polymers of high molecular weight polypelexes. .. 15
Figure s15: Heparin competition assay .. 16
Figure s16: LDH assay .. 16
Synthesis and characterization of hyperbranched polymers

Figure S1: FT-IR of hyperbranched polymers

Vibrational absorptions at (3283, 3063, 2925, 2862, 1644, 1529, 1439, 1369, 1309, 1253 cm\(^{-1}\)) and strong peaks at 1640 cm\(^{-1}\) and 1529 cm\(^{-1}\) (amide bands I and II) confirm the formation of the peptide bonds.
Figure S2: 1H-NMR spectrum of hb-polyK, shows the structural units of the polymers, (400 MHz, D$_2$O) δ = 4.13 (b, 1H, COCH(R)NαH, dendritic unit), 3.85 (br, 1H, COCH(R)NαH, α-linear unit), 3.33 (br, 1H, COCH(R)NαH, terminal unit), 3.23 (br, 1H, COCH(R)NαH, ε-linear unit), 3.11 (br, 2H, -CH$_2$-NεH), 2.68 (br, 2H, -CH$_2$-NεH$_2$), 1.8–1.2 (br, 6H, -CH$_2$-).
Figure S3: 13C-NMR spectrum of hb-polyK, (100 MHz, D$_2$O) δ = 177.3 (-C(O)-NH), 54.6 (-COCH(R)NαH), 38.9 (-CH$_2$-NεH$_2$), 34.0 (-CH$_2$-CH-NαH$_2$), 28.2 (-CH$_2$-CH$_2$-NεH), 22.3 (-CH$_2$-CH$_2$-CH$_2$-NεH$_2$).
Figure S4: 1H-NMR spectrum of hb-polyKH, (400 MHz, D$_2$O) δ = 7.59 (br, 1H, CH of imidazole ring), 6.81 (br, 1H, CH of imidazole ring), 4.11 (br, 1H, COCH(R)NαH, dendritic unit), 3.85 (br, 1H, COCH(R)NαH, α-linear unit), 3.31 (br, 1H, COCH(R)NαH, terminal unit), 3.22 (br, 1H, COCH(R)NαH, ε-linear unit), 3.10 (br, 2H, -CH$_2$-NeH), 2.77 (br, 2H, -CH$_2$-NeH), 1.8−1.2 (br, 6H, -CH$_2$−).
Figure S5: 13C-NMR spectrum of hb-polyKH, (100 MHz, D$_2$O) δ = 177.3 (C(O)-NH), 135.8 (C- OF IMIDAZOLE RING), 54.6 (COCH(R)NaH), 38.9 (-CH$_2$-NεH$_2$), 34.0 (-CH$_2$-CH$_2$-NaH$_2$), 28.28 (-CH$_2$-CH$_2$-NεH), 22.38 (-CH$_2$-CH$_2$-CH$_2$-NεH$_2$).
Figure S6: 1H-NMR spectra of polymers in Group-A. The integrals corresponding to the protons of the imidazole ring (7.59 ppm and 6.81 ppm) increase with the increase in molar ratio of histidine.
Figure S7: 1H-NMR spectra of polymers in Group-B. The integrals corresponding to the protons of the imidazole ring (7.59 ppm and 6.81 ppm) increases with the increase in molar ratio of histidine.
Figure S8: HSQC spectrum of \(hb \)-polyK.

The spectrum shows the resonances of the various \(\alpha\)-CH protons linked to those for the \(\alpha\)-C of \(^{13}\)C-NMR spectrum, which confirms that there are several environments for these protons dependent on the different branch units.
Figure S9: HSQC spectrum of hb-polyKH, confirming the incorporation of histidine in the polymers
Figure S10: Chemical shifts of imidazole protons of hyperbranched polymers at different pH values, which were used to calculate the pKa of imidazole amine.
2 Polyplexes preparation and characterization.

A

hb-polyK-13kDa (N/P ratio of 5) hb-polyKH2-18kDa (N/P ratio of 5)

B

Figure S11: (A) the histograms of AFM images, analysed by Image-J, show the size distribution of polyplexes. (B) Hydrodynamic radii of polyplexes prepared in PBS, pH 7.4 at different N/P ratios using polymers of Group-A and Group-B.
Figure S12: (A) Zeta potential measurements, (B) ethidium bromide displacement assay and (C) agarose gel electrophoresis of hyperbranched polymers/DNA polyplexes prepared in PBS, pH 7.4 at different N/P ratios.
Figure S13: Metabolic activity of A549 cells treated with (A) the hyperbranched polymers and (B) their polyplexes.

(A) A549
Figure S14: Luciferase activity of polyplexes prepared in PBS, pH 7.4 with polymers of high molecular weight.
Figure S15: Heparin competition assay, the polyplexes of hb-polyK-13kDa, hb-polyKH₂-18kDa, hb-polyK-33kDa and hb-polyKH₂-34kDa at N/P ratio of 10 were incubated with increased amount of heparin sulfate for 30 min and observed by gel electrophoresis.

Figure S16: LDH assay of hb-polyK-13kDa and hb-polyKH₂-18kDa polyplexes of N/P ratio of 10 in A549 and H1299 cell lines, which reflect the stable nature of A549 membrane in comparison with H1299 where the difference between hb-polyK-13kDa and hb-polyKH₂-18kDa in their ability to interact and permeabilise the membranes can be seen clearly in H1299 but not in A549.