Event series prediction via non-homogeneous Poisson process modelling

Goulding, James, Preston, Simon P. and Smith, Gavin (2016) Event series prediction via non-homogeneous Poisson process modelling. In: 2016 IEEE International Conference on Data Mining (ICDM), 12-25 Dec 2016, Barcelona., Spain.

Full text not available from this repository.

Abstract

Data streams whose events occur at random arrival times rather than at the regular, tick-tock intervals of traditional time series are increasingly prevalent. Event series are continuous, irregular and often highly sparse, differing greatly in nature to the regularly sampled time series traditionally the concern of hard sciences. As mass sets of such data have become more common, so interest in predicting future events in them has grown. Yet repurposing of traditional forecasting approaches has proven ineffective, in part due to issues such as sparsity, but often due to inapplicable underpinning assumptions such as stationarity and ergodicity.

In this paper we derive a principled new approach to forecasting event series that avoids such assumptions, based upon: 1. the processing of event series datasets in order to produce a parameterized mixture model of non-homogeneous Poisson processes; and 2. application of a technique called parallel forecasting that uses these processes’ rate functions to directly generate accurate temporal predictions for new query realizations. This approach uses forerunners of a stochastic process to shed light on the distribution of future events, not for themselves, but for realizations that subsequently follow in their footsteps.

Item Type: Conference or Workshop Item (Paper)
RIS ID: https://nottingham-repository.worktribe.com/output/833767
Additional Information: ©2016 IEEE. Personal use of this material is permitted. permission from IEEE must be obtained for all other uses, in any current, or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
Schools/Departments: University of Nottingham, UK > Faculty of Science > School of Computer Science
University of Nottingham, UK > Faculty of Science > School of Mathematical Sciences
Identification Number: 10.1109/ICDM.2016.0027
Depositing User: Eprints, Support
Date Deposited: 31 May 2018 13:42
Last Modified: 04 May 2020 18:26
URI: https://eprints.nottingham.ac.uk/id/eprint/52161

Actions (Archive Staff Only)

Edit View Edit View