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Abstract We study a graph-based version of the Ohta–Kawasaki functional, which
was originally introduced in a continuum setting to model pattern formation in diblock
copolymer melts and has been studied extensively as a paradigmatic example of a
variational model for pattern formation. Graph-based problems inspired by partial
differential equations (PDEs) and variational methods have been the subject of many
recent papers in the mathematical literature, because of their applications in areas such
as imageprocessing anddata classification.This paper extends the area ofPDE inspired
graph-based problems to pattern-forming models, while continuing in the tradition of
recent papers in the field. We introduce a mass conserving Merriman–Bence–Osher
(MBO) scheme for minimizing the graph Ohta–Kawasaki functional with a mass
constraint. We present three main results: (1) the Lyapunov functionals associated
with this MBO scheme �-converge to the Ohta–Kawasaki functional (which includes
the standard graph-basedMBOscheme and total variation as a special case); (2) there is
a class of graphs onwhich theOhta–KawasakiMBO scheme corresponds to a standard
MBOscheme on a transformed graph and forwhich generalized comparison principles
hold; (3) this MBO scheme allows for the numerical computation of (approximate)
minimizers of the graph Ohta–Kawasaki functional with a mass constraint.
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1 Introduction

In this paper, we study the minimization problem

min
u

TV(u) + γ

2
‖u − A(u)‖2H−1

onundirected graphs.HereTVand‖·‖2
H−1 are graph-based analogues of the continuum

total variation seminorm and continuum H−1 Sobolev norm, respectively, γ ≥ 0, and
u is allowed to vary over the set of node functions with prescribed average massA(u).
These concepts will bemade precise later in the paper, culminating in formulation (34)
of the minimization problem. Themain contributions of this paper are the introduction
of the graph Ohta–Kawasaki functional into the literature, the development of an
algorithm to produce (approximate)minimizers, and the study of that algorithm,which
leads to, among other results, further insight into the connection between the graph
Merriman–Bence–Osher (MBO) method and the graph total variation, following on
from initial investigations in van Gennip et al. (2014).

There are various reasons to study this minimization problem. First of all, it is the
graph-based analogue of the continuum Ohta–Kawasaki variational model (Ohta and
Kawasaki 1986; Kawasaki et al. 1988). This model was originally introduced as a
model for pattern formation in diblock copolymer systems and has become a paradig-
matic example of a variational model which exhibits pattern formation. It spawned a
large mathematical literature which explores its properties analytically and computa-
tionally. A complete literature overview for this area is outside the scope of this paper.
For a brief overview of the continuum Ohta–Kawasaki model, see Section S1 in Sup-
plementary Materials. (We use the prefix “S” to indicate a reference to Supplementary
Materials.) For a sample of mathematical papers on this topic, see for example (Ren
and Wei 2000; Choksi and Ren 2003; van Gennip et al. 2009; Choksi et al. 2009; Le
2010; Choksi et al. 2011; Glasner 2017) and other references mentioned in Section S1.
The problem studied in this paper thus follows in the footsteps of a rich mathematical
heritage, but at the same time, being the graph analogue of the continuum functional,
connects with the recent interest in discrete PDE inspired problems.

Recently, there has been a growing enthusiasm in the mathematical literature for
graph-based variational methods and graph based dynamics which mimic continuum-
based variational methods and partial differential equations (PDEs), respectively. This
is partly driven by novel applications of such methods in data science and image
analysis (Ta et al. 2011; Elmoataz et al. 2012; Bertozzi and Flenner 2012; Merkurjev
et al. 2013;Huet al. 2013;Garcia-Cardona et al. 2014;Calatroni et al. 2017;Bosch et al.
2016; Merkurjev et al. 2017; Elmoataz et al. 2017) and partly by theoretical interest
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in the new connections between graph theory and PDEs (van Gennip and Bertozzi
2012; van Gennip et al. 2014; Trillos and Slepčev 2016). Broadly speaking, these
studies fall into one (or more) of three categories: papers connecting graph problems
with continuum problems, for example through a limiting process (van Gennip and
Bertozzi 2012; Trillos and Slepčev 2016; Trillos et al. 2016), papers adapting a PDE
approach to a graph context in order to tackle a graph problem such as graph clustering
and classification (Bertozzi and Flenner 2016; Bresson et al. 2014; Merkurjev et al.
2016), maximum cut computations (Keetch and van Gennip in prep), and bipartite
matching (Caracciolo et al. 2014; Caracciolo and Sicuro 2015), and papers studying
the graph analogue of a PDE or variational problem that has interesting properties
in the continuum, to explore what (potentially similar) properties are present in the
graph based version of the problem (van Gennip et al. 2014; Luo and Bertozzi 2017;
Elmoataz and Buyssens 2017). This paper mostly falls in the latter category.

The study of the graph-based Ohta–Kawasaki model is also of interest, because
it connects with graph methods, concepts, and questions that have recently attracted
attention, such as the graph MBO method (also known as threshold dynamics), graph
curvature, and the question how these concepts relate to each other. The MBO scheme
was originally introduced (in a continuum setting) to approximate motion by mean
curvature (Merriman et al. 1992, 1993, 1994). It is an iterative scheme, which alter-
nates between a short-time diffusion step and a threshold step. Not only have these
dynamics been proven to converge to motion by mean curvature (Evans 1993; Barles
and Georgelin 1995; Swartz and Yip 2017), but they have been a very useful basis
for numerical schemes as well, both in the continuum and on graphs. Without aiming
for completeness, we mention some of the papers that investigate or use the MBO
scheme: (Mascarenhas 1992; Ruuth 1998a, b; Chambolle and Novaga 2006; Esedoḡlu
et al. 2008, 2010; Hu et al. 2013;Merkurjev et al. 2013, 2014; Hu et al. 2015; Esedoḡlu
and Otto 2015).

In this paper, we study two different MBO schemes, (OKMBO) and (mcOKMBO).
The former is an extension of the standard graphMBOscheme vanGennip et al. (2014)
in the sense that it replaces the diffusion step in the schemewith a stepwhose dynamics
are related to the Ohta–Kawasaki model and reduce to diffusion in the special case
when γ = 0 (for details, see Sect. 5.1). The latter uses the same dynamics as the
former in the first step, but incorporates mass conservation in the threshold step. The
(mcOKMBO) scheme produces approximate graph Ohta–Kawasaki minimizers and
is the one we use in our simulations which are presented in Sect. 7 and Section S9 of
Supplementary Materials. The scheme (OKMBO) is of interest both as a precursor to
(mcOKMBO) and as an extension of the standard graph MBO scheme. In van Gennip
et al. (2014), it was conjectured that the standard graph MBO scheme is related to
graph mean curvature flow and minimizers of the graph total variation functional.
This paper furthers the study of that conjecture (but does not provide a definitive
answer): in Sect. 5.2 it is shown that the Lyapunov functionals associated with the
(OKMBO) �-converge to the graph Ohta–Kawasaki functional (which reduces to the
total variation functional in the case when γ = 0). Moreover, in Sect. 6 we introduce a
special class of graphs, Cγ , dependent on γ . For graphs from this class the (OKMBO)
scheme can be interpreted as the standard graphMBO scheme on a transformed graph.
For such graphs we extend existing elliptic and parabolic comparison principles for
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the graph Laplacian and graph diffusion equation to our new Ohta–Kawasaki operator
and dynamics (Lemmas 6.13 and 6.15).

A significant role in the analysis presented in this paper is played by the equilibrium
measures associated to a given node subset (Bendito et al. 2000b, 2003), especially
in the construction of the aforementioned class C0. In Sect. 3 we study these equilib-
rium measures and the role they play in constructing Green’s functions for the graph
Dirichlet and Poisson problems. The Poisson problem in particular, is an important
ingredient in the definition of the graph H−1 norm and the graph Ohta–Kawasaki
functional as they are introduced in Sect. 4. Both the equilibrium measures and the
Ohta–Kawasaki functional itself are related to the graph curvature, which was intro-
duced in van Gennip et al. (2014), as is shown in Lemma 3.6 and Corollary 4.12,
respectively.

The structure of the paper is as follows. In Sect. 2 we define our general setting.
Section 3 introduces the equilibrium measures from Bendito et al. (2003) into the
paper (the terminology is derived from potential theory; see, e.g. Simon 2007 and
references therein) and uses them to study the Dirichlet and Poisson problems on
graphs, generalizing some results from Bendito et al. (2003). In Sect. 4 we define
the H−1 inner product and norm and use those to construct the object at the centre
of our paper: the (sharp interface) Ohta–Kawasaki functional on graphs, F0. We also
briefly consider Fε, a diffuse interface version of the Ohta–Kawasaki functional and
its relationship with F0. Moreover, in this section we start using tools from spectral
analysis to study F0. These tools will be one of themain ingredients in the remainder of
the paper. In Sect. 5 the algorithms (OKMBO) and (mcOKMBO) are introduced and
analysed. It is shown that both these algorithmshave an associatedLyapunov functional
(which extends a result from van Gennip et al. 2014) and that these functionals �-
converge to F0 in the limit when τ (the time parameter associated with the first step
in the MBO iteration) goes to zero. We introduce the class Cγ in Sect. 6 and prove
that the Ohta–Kawasaki dynamics [(i.e. the dynamics used in the first steps of both
(OKMBO) and (mcOKMBO)] on graphs from this class correspond to diffusion on a
transformed graph. We also prove comparison principles for these graphs. In Sect. 7
we then use (mcOKMBO) to numerically construct (approximate) minimizers of F0,
before ending with a discussion of potential future research directions in Sect. 8.
Supplementary Materials accompany this paper, which contain further background
information, results, examples, numerical simulations, and deferred proofs.

2 Setup

In this paper we consider graphs G ∈ G, where G is the set consisting of all finite,
simple,1 connected, undirected, edge-weighted graphs (V, E, ω) with n := |V | ≥ 2
nodes. Here E ⊂ V × V and ω : E → (0,∞). Because G ∈ G is undirected, we
identify (i, j) ∈ E with ( j, i) ∈ E . If we want to consider an unweighted graph, we
view it as a weighted graph with ω = 1 on E .

1 By ‘simple’ we mean here ‘without multiple edges between the same pair of vertices and without self-
loops’

123



J Nonlinear Sci

Assume G ∈ G is given. Let V be the set of node functions u : V → R and E
the set of skew-symmetric2 edge functions ϕ : E → R. For i ∈ V , u ∈ V , we write
ui := u(i) and for (i, j) ∈ E , ϕ ∈ E we write ϕi j := ϕ((i, j)). To simplify notation,
we extend each ϕ ∈ E to a function ϕ : V 2 → R (without changing notation) by
setting ϕi j = 0 if (i, j) /∈ E . The condition that ϕ is skew-symmetric means that, for
all i, j ∈ V , ϕi j = −ϕ j i . Similarly, for the edge weights we write ωi j := ω((i, j))
and we extend ω (without changing notation) to a function ω : V 2 → [0,∞) by
setting ωi j = 0 if and only if (i, j) /∈ E . Because G ∈ G is undirected, we have for
all i, j ∈ V , ωi j = ω j i .

The degree of node i ∈ V is di :=
∑

j∈V ωi j and the minimum and maximum

degrees of the graph are defined as d− := min
1≤i≤n

di and d+ := max
1≤i≤n

di , respectively.

BecauseG ∈ G is connected and n ≥ 2, there are no isolated nodes and thus d−, d+ >

0.
For a node i ∈ V , we denote the set of its neighbours by

N (i) := { j ∈ V : ωi j > 0}. (1)

For simplicity of notation, we will assume that the nodes of a given graph G ∈ G
are labelled such that V = {1, . . . , n}. For definiteness and to avoid confusion we
specify that we consider 0 /∈ N, i.e. N = {1, 2, 3, . . .}, and when using the subset
notation A ⊂ B we allow for the possibility that A = B. The characteristic function
(or indicator function) χS of a node set S ⊂ V is defined by (χS)i := 1 if i ∈ S
and (χS)i := 0 otherwise. If S = {i}, we can use the Kronecker delta to write:3

(χ{i}) j = δi j :=
{
1, if i = j,

0, otherwise.
As justified in earlier work (Hein et al. 2007; van Gennip and Bertozzi 2012; van

Gennip et al. 2014), we introduce the following inner products,

〈u, v〉V :=
∑

i∈V
uivi d

r
i , 〈ϕ,ψ〉E := 1

2

∑

i, j∈V
ϕi jψi jω

2q−1
i j ,

for parameters q ∈ [1/2, 1] and r ∈ [0, 1].4 We define the gradient ∇ : V → E by,
for all i, j ∈ V ,

(∇u)i j :=
{

ω
1−q
i j (u j − ui ), if ωi j > 0,

0, otherwise.

2 In the literature, the condition of skew-symmetry (i.e. ϕi j = −ϕ j i ) is often, but not always included in
definitions of the edge function space. We follow that convention, but it does not hinder or help us, except
for simplifying a few expressions, such as that of the divergence below.
3 When beneficial for the readability, we will also write δi, j for δi j .
4 Note that the powers 2q−1 and 1−q in the E inner product and in the gradient are zero for the admissible
choices q = 1

2 and q = 1 respectively. In these cases we define ω0
i j = 0 whenever ωi j = 0, so as not to

make the E inner product (or the gradient) nonlocal on the graph.
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Note that 〈·, ·〉V is indeed an inner product on V if G has no isolated nodes (i.e. if
di > 0 for all i ∈ V ), as is the case for G ∈ G. Furthermore, 〈·, ·〉E is an inner product
on E (since functions in E are either only defined on E or are required to be zero on
V 2\E , depending on whether we consider them as edge functions or as extended edge
functions, as explained above).

Using these building blocks, we define the divergence as the adjoint of the gradient
and the (graph) Laplacian as the divergence of the gradient, leading to,5 for all i ∈ V ,

(divϕ)i := 1

dri

∑

j∈V
ω
q
i jϕ j i , (�u)i := (div (∇u))i = d−r

i

∑

j∈V
ωi j (ui − u j ),

as well as the following norms:

‖u‖V := √〈u, u〉V , ‖ϕ‖E := √〈ϕ, ϕ〉E ,

‖u‖V,∞ := max{|ui | : i ∈ V }, ‖ϕ‖E,∞ := max{|ϕi j | : i, j ∈ V }.

Note that we indeed have, for all u ∈ V and all ψ ∈ E ,

〈∇u, ψ〉E = 〈u, divψ〉V . (2)

In van Gennip et al. (2014, Lemma 2.2) it is proven that, for all u ∈ V ,

d
r
2−‖u‖V,∞ ≤ ‖u‖V ≤ √vol (V )‖u‖V,∞. (3)

For a function u ∈ V , we define its support as supp(u) := {i ∈ V : ui �= 0}. The
mass of a function u ∈ V is M(u) := 〈u, χV 〉V = ∑

i∈V dri ui , and the volume of a
node set S ⊂ V is vol (S) := M(χS) = ‖χS‖2V =∑i∈S dri . Note that, if r = 0, then
vol (S) = |S|, where |S| denotes the number of elements in S. Using (2), we find the
useful property that, for all u ∈ V ,

M(�u) = 〈�u, χV 〉V = 〈∇u,∇χV 〉E = 0. (4)

For u ∈ V , define the average mass function of u as A(u) := M(u)
vol(V )

χV . Note in
particular that

M(u − A(u)) = 0. (5)

We also define the Dirichlet energy of a function u ∈ V ,
1

2
‖∇u‖2E = 1

4

∑

i, j∈V
ωi j (ui − u j )

2, (6)

and the total variation of u ∈ V , TV(u) := max
{〈divϕ, u〉V : ϕ ∈ E, ‖ϕ‖E,∞ ≤ 1

}

= 1
2

∑
i, j∈V ω

q
i j |ui − u j |.

5 Note that for the divergence we have used the assumption that ϕ is skew-symmetric.
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Remark 2.1 We have introduced two parameters, q ∈ [1/2, 1] and r ∈ [0, 1], in our
definitions so far. As we will see later in this paper, the choice q = 1 is the natural
one for our purposes. In those cases where we do not require q = 1, however, we do
keep the parameter q unspecified, because there are papers in the literature in which
the choice q = 1/2 is made, such as Gilboa and Osher (2009). One reason for the
choice q = 1/2 is that in that caseωi j appears in the graph gradient, graph divergence,
and graph total variation with the same power (1/2), allowing one to think of

√
ωi j as

analogous to a reciprocal distance.
The parameter r is the more interesting one of the two, as the choices r = 0

and r = 1 lead to two different graph Laplacians that appear in the spectral graph
theory literature under the names combinatorial (or unnormalized) graph Laplacian
and random walk (or normalized, or non-symmetrically normalized) graph Laplacian,
respectively. Many of the results in this paper hold for all r ∈ [0, 1], and we will
clearly indicate whether and when further assumptions on r are required

We note that, besides the graph Laplacian, also the mass of a function depends on
r , whereas the total variation of a function does not depend on r , but does depend on
q. The Dirichlet energy depends on neither parameter.

Unless we explicitly mention any further restrictions on q or r , only the conditions
q ∈ [1/2, 1] and r ∈ [0, 1] are implicitly assumed.

Given a graph G = (V, E, ω) ∈ G, we define the following useful subsets of V:
the subset of node functions with a given mass M ∈ R,

VM := {u ∈ V : M(u) = M}; (7)

the subset of nonnegative node functions,

V+ := {u ∈ V : ∀i ∈ V ui ≥ 0};
the subset of {0, 1}-valued binary node functions,

Vb := {u ∈ V : ∀i ∈ V ui ∈ {0, 1}}; (8)

the subset of {0, 1}-valued binary node functions with a given mass M ≥ 0,

Vb
M := VM ∩ Vb;

the subset of [0, 1]-valued node functions,

K := {u ∈ V : ∀i ∈ V ui ∈ [0, 1]}; (9)

the subset of [0, 1]-valued node functions with a given mass M ≥ 0,

KM := VM ∩ K. (10)

The space of zero mass node functions, V0, will play an important role, as it is the
space of admissible ‘right-hand side’ functions in the Poisson problem (17). Note that
every u ∈ Vb is of the form u = χS for some S ⊂ V .
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Observe that for M > vol (V ), Vb
M = ∅. In fact, for a given finite graph there are

only finitely many M ∈ [0, vol (V )] such that Vb
M �= ∅. For a given graph, we define

the (finite) set of admissible masses as

M := {M ∈ [0, vol (V )] : Vb
M �= ∅}. (11)

In Lemma S6.5 of Supplementary Materials we construct M for the example of a
star graph.

3 Dirichlet and Poisson Equations

3.1 A Comparison Principle

Lemma 3.1 (Comparison principle I) Let G = (V, E, ω) ∈ G, let V ′ be a proper
subset of V , and let u, v ∈ V be such that, for all i ∈ V ′, (�u)i ≥ (�v)i and, for all
i ∈ V \V ′, ui ≥ vi . Then, for all i ∈ V , ui ≥ vi .

Proof The result follows as a special case of the comparison principle for uniformly
elliptic partial differential equations on graphs with Dirichlet boundary conditions in
Manfredi et al. (2015, Theorem 1). For completeness (and future use in the proof of
Lemma 6.13) we provide the proof of this special case here. In particular, we will
prove that if w ∈ V is such that, for all i ∈ V ′, (�w)i ≥ 0, and, for all i ∈ V \V ′,
wi ≥ 0, then for all i ∈ V , wi ≥ 0. Applying this to w = u − v gives the desired
result.

If V ′ = ∅, the result follows trivially. In what follows we assume that V ′ �= ∅.
Define the set U := {

i ∈ V : wi = min j∈V w j
}
. Note that U �= ∅. For a proof

by contradiction, assume min j∈V w j < 0, then U ⊂ V ′. By assumption V ′ �= V ,
hence ∅ �= V \V ′ ⊂ V \U . Let i∗ ∈ V \U . Since G is connected, there is a path
from U to i∗.6 Fix such a path and let k∗ be the first node along this path such
that k∗ ∈ V \U and let j∗ ∈ U be the node immediately preceding k∗ in the path.
Then, for all k ∈ V , (∇w)k j∗ ≤ 0, and (∇w)k∗ j∗ = ω

1−q
k∗ j∗(w j∗ − wk∗) < 0. Thus

drj∗(�w) j∗ = ∑
k∈V ω

q
j∗k(∇w)k j∗ < 0. Since j∗ ∈ V ′, this contradicts one of the

assumptions on w, hence mini∈V wi ≥ 0 and the result is proven. ��

Wewill see a generalization of Lemma 3.1 as well as another comparison principle
in Sect. 6.2, but their proofs require some groundwork which is interesting in its own
right as well. That is the topic of Sect. 6.1.

6 By a path from U to i∗ we mean a finite sequence of nodes {i j }kj=1, such that i1 ∈ U , ik = i∗, and for
all j ∈ {2, . . . , k}, (i j , i j+1) ∈ E .
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3.2 Equilibrium Measures

Let G = (V, E, ω) ∈ G. Given a proper7 subset S ⊂ V , consider the equation

{
(�νS)i = 1, if i ∈ S,

νS
i = 0, if i ∈ V \S.

(12)

We recall some properties that are proven in Bendito et al. (2003, Section 2).

Lemma 3.2 Let G = (V, E, ω) ∈ G. The following results and properties hold:

1. The Laplacian � is positive semidefinite on V and positive definite on V0.
2. The Laplacian satisfies a maximum principle: for all u ∈ V+, max

i∈V (�u)i =
max

i∈supp(u)
(�u)i .

3. For each proper subset S ⊂ V , (12) has a unique solution in V . If νS is this
solution, then νS ∈ V+ and supp(νS) = S.

4. If R ⊂ S are both proper subsets of V and νR, νS ∈ V+ are the corresponding
solutions of (12), then νS ≥ νR.

Proof These properties are proven to hold in Bendito et al. (2003, Section 2) for r = 0;
in Section S10.1 of Supplementary Materials, we give our own proofs for the general
case in detail. ��

Using property 3 in Lemma 3.2, we can now define the concept of the equilibrium
measure of a node subset S.

Definition 3.3 LetG = (V, E, ω) ∈ G. For any proper subset S ⊂ V , the equilibrium
measure for S, νS , is the unique function in V+ which satisfies, for all i ∈ V , the
equation in (12).

In Lemmas S6.4 and S6.5 in Supplementary Materials, we construct equilibrium
measures on a bipartite graph and a star graph, respectively.

3.3 Graph Curvature

We recall the concept of graph curvature, which was introduced in van Gennip et
al. (2014, Section 3).

Definition 3.4 Let G ∈ G and S ⊂ V . Then we define the graph curvature of the set
S by, for all i ∈ V ,

(κ
q,r
S )i := d−r

i

{∑
j∈V \S ω

q
i j , if i ∈ S,

−∑ j∈S ω
q
i j , if i ∈ V \S.

7 The subset S is proper if S �= V . Note that, by (4), the equation �u = f on V can only have a solution
u if f has zero mass. If S = V , this necessary zero mass solvability condition is not satisfied by Eq. (4).
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We are mainly interested in the case q = 1 in this paper and in any given situation, if
there are any restrictions on r ∈ [0, 1], they will be clear from the context. Hence, for
notational simplicity, we will write κS := κ

1,r
S .

For future use, we also define

κ+
S := max

i∈V (κS)i . (13)

The following lemma collects some useful properties of the graph curvature.

Lemma 3.5 Let G ∈ G, S ⊂ V , and let κ
q,r
S and κS be the graph curvatures from

Definition 3.4. Then
TV(χS) = 〈κq,r

S , χS〉V (14)

and
�χS = κS, (15)

Moreover, if κ+
S is as in (13), then κ+

S = maxi∈S (κS)i .

Proof The properties in (14) and (15) are proven in van Gennip et al. (2014, Section
3) and can be checked by a direct computation. Note that the latter requires q = 1.
The property for κ+

S follows from the fact that κS is nonnegative on S and nonpositive
on Sc. ��

We can use Lemma 3.1 to connect the equilibrium measures from (12) with the
graph curvature.

Lemma 3.6 Assume G = (V, E, ω) ∈ G and let S be a proper subset of V . Let νS

be the equilibrium measure for S from (12) and let κS be the graph curvature of S
(for q = 1) and κ+

S its maximum value, as in Definition 3.4. Then, for all i ∈ S,

νS
i ≥ (κ+

S

)−1
.

Proof Define x := mini∈S (κS)
−1
i = (κ+

S

)−1
. Since G is connected and S is a proper

subset of V , maxi∈S (κS)i > 0, and hence x is well-defined. Using (15), we compute
�(xχS) = xκS ≤ 1 on V (and in particular on S). Hence, for i ∈ S, (� (xχS))i ≤
1 = (�νS

i

)
i . Furthermore, for i ∈ V \S, x (χS)i = 0 = νS

i . Thus, by Lemma 3.1, for
all i ∈ S, x = x(χS)i ≤ νS

i . ��
We illustrate Lemma 3.6 with bipartite and star graph examples in Remark S6.6 in

Supplementary Materials.

3.4 Green’s Functions

Next we use the equilibriummeasures to construct Green’s functions for Dirichlet and
Poisson problems, following the discussion in Bendito et al. (2003, Section 3); see
also Bendito et al. (2000a) and Chung and Yau (2000).

In this section, all the results assume the context of a given graph G ∈ G. In this
section and in some selected places later in the paper, we will also denote Green’s
functions by the symbol G. It will always be very clear from the context whether G
denotes a graph or a Green’s function in any given situation.
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Definition 3.7 For a given subset S ⊂ V , we denote by V(S) the set of all real-valued
node functions whose domain is S. Note that V(V ) = V .

Given a nonempty, proper subset S ⊂ V and a function f ∈ V(S), the (semihomo-
geneous) Dirichlet problem is to find u ∈ V such that, for all i ∈ V ,

{
(�u)i = fi , if i ∈ S,

ui = 0, if i ∈ V \S.
(16)

Given k ∈ V and f ∈ V0, the Poisson problem is to find u ∈ V such that,
{

�u = f,

uk = 0.
(17)

Remark 3.8 Note that a general Dirichlet problem which prescribes u = g on V \S,
for some g ∈ V(V \S), can be transformed into a semihomogeneous problem by
considering the function u − g̃, where, for all i ∈ S, g̃i = 0 and for all i ∈ V \S,
g̃i = gi .

Lemma 3.9 Let S ⊂ V be a nonempty, proper subset, and f ∈ V(S). Then the
Dirichlet problem (16) has at most one solution. Similarly, given k ∈ V and f ∈ V0,
the Poisson problem (17) has at most one solution.

Proof Given two solutions u and v to the Dirichlet problem, we have �(u − v) = 0
on S and u − v = 0 on V \S. Since the graph is connected, this has as unique solution
u − v = 0 on V (see the uniqueness proof in point 3 of Lemma 3.2, which uses the
comparison principle of Lemma 3.1). A similar argument proves the result for the
Poisson problem. ��

Next we will show that solutions to both the Dirichlet and Poisson problem exist,
by explicitly constructing them using Green’s functions.

Definition 3.10 Let S be anonempty, proper subset ofV . The functionG : V×S → R

is aGreen’s function for the Dirichlet equation, (16), if, for all f ∈ V(S), the function
u ∈ V which is defined by, for all i ∈ V ,

ui :=
∑

j∈S
drj Gi j f j , (18)

satisfies (16).
Let k ∈ V . The function G : V × V → R is a Green’s function for the Poisson

equation, (17), if, for all f ∈ V0, (17) is satisfied by the function u ∈ V which is
defined by, for all i ∈ V ,

ui :=
∑

j∈V
drj Gi j f j = 〈Gi •, f 〉V , (19)

where, for all i ∈ V , Gi · : V → R.8

8 We can rewrite the Green’s function for the Dirichlet equation in terms of the V inner product as well, if
we extend either Gi · or f to be zero on V \S and extend the other function in any desired way to all of V .
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In either case, for fixed j ∈ S (Dirichlet) or fixed j ∈ V (Poisson), we define
G j : V → R, by, for all i ∈ V ,

G j
i := Gi j . (20)

Lemma 3.11 Let S be a nonempty, proper subset of V and let G : V × S → R. Then
G is a Green’s function for the Dirichlet equation, (16), if and only if, for all i ∈ V
and for all j ∈ S, {

(�G j )i = d−r
j δi j , if i ∈ S,

G j
i = 0, if i ∈ V \S.

(21)

Let k ∈ V and G : V × V → R. Then G is a Green’s function for the Poisson
equation (17), if and only if there is a q ∈ V which satisfies

M(q) = − 1 (22)

and there is a C ∈ R, such that G satisfies, for all i, j ∈ V ,

{
(�G j )i = d−r

j δi j + qi ,

G j
k = C.

(23)

Proof For the Dirichlet case, let u be given by (18), then, for all i ∈ S, (�u)i =∑
j∈S drj (�G j )i f j . If the function G is a Green’s function, then, for all f ∈ V(S)

and for all i ∈ S, (�u)i = fi . In particular, if we apply this to f = χ{ j} for j ∈ S,
we find, for all i, j ∈ S, drj (�G j )i = δi j . Moreover, for all f ∈ V(S) and for all
i ∈ V \S, ui = 0. Applying this again to f = χ{ j} for j ∈ S, we find for all i ∈ V \S
that drj G

j
i = 0. Hence, for all i ∈ V \S, and for all j ∈ S, G j

i = 0. This gives us (21).
Next assume G satisfies (21). By substituting G into (18), we find that u satisfies

(16) and thus G is a Green’s function.
Now we consider the Poisson case and we let u be given by (19). Let q satisfy (22).

If G is a Green’s function, then, for all f ∈ V0, �u = f . Let l1, l2 ∈ V and apply
�u = f to f = drl1χ{l1} −drl2χ{l2}. It follows that, for all i ∈ V ,

(
�Gl1

)
i −
(
�Gl2

)
i =

d−r
l1

(
(χ{l1}

)
i − d−r

l2

(
χ{l2}

)
i . In particular, if l1 �= i ≤ l2 the right-hand side in this

equality is zero and thus for all i ∈ V , j �→ (
�G j

)
i is constant on V \{i}. In other

words, there is a q ∈ V , such that, for all i ∈ V and for all j ∈ V \{ j}, (�G j
)
i = qi .

Next let l ∈ V and apply �u = f to the function f = χ{l} −A (χ{l}
)
. We compute

that (�u)i = (�Gk
)
i d

r
k − drk d

r
i

vol(V )

(
�Gi

)
i − drk

vol(V )
qi (vol (V ) − dri ). Hence, if l = i ,

�u = f reduces to
(
�Gi

)
i d

r
i

(
1 − dri

vol(V )

)
− dri qi + d2ri

vol(V )
qi = 1 − dri

vol(V )
. We

solve this for
(
�Gi

)
i to find

(
�Gi

)
i = d−r

i + qi . If l ∈ V \{i}, �u = f reduces to
(
�Gk

)
i

(
drl − drl + drl d

r
i

vol(V )

)
− drl d

r
i

vol(V )

(
�Gi

)
i = 0 − drl

vol(V )
. Using the expression for

(
�Gi

)
i that we found above, we solve for

(
�Gk

)
i to find

(
�Gi

)
i = qi .
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Combining the above, we find, for all i, j ∈ V , (�G j )i = d−r
j δi j + qi . Now we

compute, for each j ∈ V ,

0 = 〈�G j , χV 〉V = 〈d−r
j χ{ j} + q, χV 〉V = 1 + 〈q, χV 〉V = 1 + M(q),

thus M(q) = −1.
The ‘boundary condition’ uk = 0 for a fixed k ∈ V in (17), holds for all f ∈ V0.

Applying this again for f = d−r
l1

χ{l1} − d−r
l2

χ{l2} we find Gl1
k −Gl2

k = 0. Hence there

is a constant C ∈ R such that, for all j ∈ V , G j
k = C . This gives us (23).

Next assume G satisfies (23). By substituting G into (19) we find that u satisfies
(17). In particular, remember that f ∈ V0. Thus, since q does not depend on j we
have 〈q, f 〉V = 0 and moreover uk = CM( f ) = 0. Thus G is a Green’s function. ��
Remark 3.12 Any choice of q in (23) consistent with (22) will lead to a valid Green’s
function for the Poisson equation and hence to the same (and only) solution u of
the Poisson problem (17) via (19). We make the following convenient choice: for all
i ∈ V ,

qi = −d−r
k δik . (24)

In Lemma 3.16, wewill see that this choice of q leads to a symmetric Green’s function.
Also any choice of C ∈ R in (23) will lead to a valid Green’s function for the

Poisson equation. A function G̃ satisfies (23) with C = C̃ ∈ R if and only if G̃ − C̃
satisfies (23) with C = 0. Hence in Lemma 3.14, we will give a Green’s function for
the Poisson equation for the choice

C = 0. (25)

Corollary 3.13 For a given nonempty, proper subset S ⊂ V , if there is a solution
to (21), it is unique. Moreover, for given k ∈ V , q ∈ V−1, and C ∈ R, if there is a
solution to (23), it is unique.

Proof Let j ∈ S (or j ∈ V ). If G j and H j both satisfy (21) [or (23)], then G j − H j

satisfies a Dirichlet (or Poisson) problem of the form (16) [or (17)]. Hence by a similar
argument as in the proof of Lemma 3.9, G j − H j = 0. ��

For the following lemma, recall the definition of equilibrium measure from Defi-
nition 3.3.

Lemma 3.14 Let S be a nonempty, proper subset of V . The function G : V × S → R,
defined by, for all i ∈ V and all j ∈ S,

Gi j = νS
j

M(νS) − M(νS\{ j})

(
νS
i − ν

S\{ j}
i

)
, (26)

is the Green’s function for the Dirichlet equation, satisfying (21).
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Let k ∈ V . The function G : V × V → R, defined by, for all i, j ∈ V ,

Gi j = 1

vol (V )

(
ν
V \{k}
i + ν

V \{ j}
k − ν

V \{ j}
i

)
, (27)

is the Green’s function for the Poisson equation, satisfying (23) with (24) and (25).

Proof This can be checked via direct computations. We provide the details in Sec-
tion S10.2 of Supplementary Materials. ��
Remark 3.15 Let G be the Green’s function from (27) for the Poisson equation. As
shown in Lemma 3.14, G satisfies (23) with (24) and (25). Now let us try to find
another Green’s function satisfying (23) with (25) and with a different choice of q.
Fix k ∈ V and define q̃ ∈ V , by, for all i ∈ V , q̃i := qi + d−r

k δik . Then, by (22),
M(q̃) = 0. Hence, using (19) with the Green’s function G, we find a function v ∈ V
which satisfies, �vi = q̃ and vk = 0. Hence, for all i, j ∈ V ,

{
(�(G j + v))i = d−r

j δi j − d−r
k δik + q̃i ,

(G j + v)k = 0.

So G j + v is the new Green’s function we are looking for.

Lemma 3.16 Let S be a nonempty, proper subset of V . If G : V × S → R is the
Green’s function for the Dirichlet equation satisfying (21), then G is symmetric on
S × S, i.e. for all i, j ∈ S, Gi j = G ji .

Let k ∈ V . If G : V × V → R is the Green’s function for the Poisson equation
satisfying (23) with (24) (and any choice of C ∈ R), then G is symmetric, i.e. for all
i, j ∈ V , Gi j = G ji .

Proof LetG : V×S → Rbe theGreen’s function for theDirichlet equation, satisfying
(21). Let u ∈ V be such that u = 0 on V \S. Let i ∈ V , then

〈�Gi , u〉V =
∑

j,k∈V
ω jk(G

i
j − Gi

k)u j =
∑

j∈S
k∈V

ω jk(G
i
j − Gi

k)u j

=
∑

j∈S
drj d

−r
i δ j i u j = ui ,

where the third equality follows from d−r
i δ j i (�Gi ) j = d−r

j

∑
k∈V ω jk(Gi

j − Gi
k).

Now let i, j ∈ S and use the equality above with u = G j to deduce

Gi j = G j
i = 〈�Gi ,G j 〉V = 〈Gi ,�G j 〉V = Gi

j = G ji .

Next we consider the Poisson case with Green’s function G : V × V → R,
satisfying (23) with (24) and (25). Let k ∈ V and u ∈ V with uk = 0. Then, similar
to the computation above, for i ∈ V , we find
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〈�Gi , u〉V =
∑

j∈V
(�Gi ) j u j d

r
j =

∑

j∈V

(
d−r
i δ j i + q j

)
u jd

r
j

= ui −
∑

j∈V
d−r
k δ jku j d

r
j = ui − uk = ui ,

where we used (24). If we use the identity above with u = G j , we obtain, for i, j ∈ V ,

Gi j = G j
i = 〈�Gi ,G j 〉V = 〈Gi ,�G j 〉V = Gi

j = G ji ,

where we have applied that G j
k = Gi

k = 0.
Finally, if G̃ : V ×V → R satisfies (23) with (24) andwithC �= 0, then G̃ = G+C

and hence G̃ is also symmetric. ��
The symmetry and support of the Green’s functions are discussed in some more

detail in Remarks S5.3 and S5.4 in Supplementary Materials. Section S2 of Supple-
mentary Materials gives a random walk interpretation for the Green’s function for the
Poisson equation.

4 The Graph Ohta–Kawasaki Functional

4.1 A Negative Graph Sobolev Norm and Ohta–Kawasaki

In analogy with the negative H−1 Sobolev norm (and underlying inner product) in the
continuum (see for example Evans 2002; Adams and Fournier 2003; Brezis 1999), we
introduce the graph H−1 inner product and norm.

Definition 4.1 The H−1 inner product of u, v ∈ V0 is given by

〈u, v〉H−1 := 〈∇ϕ,∇ψ〉E ,

where ϕ,ψ ∈ V are any functions such that �ϕ = u and �ψ = v hold on V .

Remark 4.2 The zero mass conditions on u and v in Definition 4.1 are necessary and
sufficient conditions for the solutions ϕ and ψ to the Poisson equations above to exist
as we have seen in Sect. 3.4. These solutions are unique up to an additive constant.
Note that the choice of this constant does not influence the value of the inner product.

Remark 4.3 It is useful to realize we can rewrite the inner product from Definition 4.1
as

〈u, v〉H−1 = 〈ϕ,�ψ〉V = 〈ϕ, v〉V or 〈ϕ, v〉V = 〈�ϕ, v〉H−1 . (28)

Remark 4.4 Note that for a connected graph the expression in Definition 4.1 indeed
defines an inner product on V0, as 〈u, u〉H−1 = 0 implies that (∇ϕ)i j = 0 for all
i, j ∈ V for which ωi j > 0. Hence, by connectivity, ϕ is constant on V and thus
u = �ϕ = 0 on V .
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The H−1 inner product then also gives us the H−1 norm:

‖u‖2H−1 := 〈u, u〉H−1 = ‖∇ϕ‖2E = 〈u, ϕ〉V .

Let k ∈ V . By (5), if u ∈ V , then u − A(u) ∈ V0, and hence there exists a unique
solution to the Poisson problem

{
�ϕ = u − A(u),

ϕk = 0,
(29)

which can be expressed using the Green’s function from (27).We say that this solution
ϕ solves (29) for u. Because the kernel of � contains only the constant functions, the
solution ϕ for any other choice of k will only differ by an additive constant. Hence the
norm

‖u − A(u)‖2H−1 = ‖∇ϕ‖2E = 1

2

∑

i, j∈V
ωi j (ϕi − ϕ j )

2,

is independent of the choice of k. Note also that this norm in general does depend on
r , since ϕ does. Contrast this with the Dirichlet energy in (6) which is independent of
r . The norm does not depend on q.

Using the Green’s function expansion from (19) for ϕ, with G being the Green’s
function for the Poisson equation from (27), we can also write

‖u − A(u)‖2H−1 = 〈u − A(u), ϕ〉2V =
∑

i, j∈V
(ui − A(u)) dri Gi j d

r
j

(
u j − A(u)

)
.

Note that this expression seems to depend on the choice of k, via G, but by the
discussion above we know in fact that it does not depend on k. This can also be seen as
follows. A different choice for k, leads to an additive constant change in the function
G, which leaves the norm unchanged, since

∑
i∈V dri (ui − A(u)) = 0.

Let W : R → R be the double-well potential defined by, for all x ∈ R,

W (x) := x2(x − 1)2. (30)

Note that W has wells of equal depth located at x = 0 and x = 1.

Definition 4.5 For ε > 0, γ ≥ 0 and u ∈ V , we now define both the (epsilon)
Ohta–Kawasaki functional (or diffuse interface Ohta–Kawasaki functional)

Fε(u) := 1

2
‖∇u‖2E + 1

ε

∑

i∈V
W (ui ) + γ

2
‖u − A(u)‖2H−1 , (31)

and the limit Ohta–Kawasaki functional (or sharp interface Ohta–Kawasaki func-
tional)

F0(u) := TV(u) + γ

2
‖u − A(u)‖2H−1 . (32)
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The nomenclature and notation is justified by the fact that F0 [with its domain
restricted to Vb, see (8)] is the �-limit of Fε for ε → 0 (this is shown by a straightfor-
ward adaptation of the results and proofs in van Gennip and Bertozzi (2012, Section
3); see Section S3 in Supplementary Materials).

There are two minimization problems of interest here:

min
u∈VM

Fε(u), (33)

min
u∈Vb

M

F0(u), (34)

for a given M ∈ R for the first problem and a given M ∈ M for the second. In this
paper we will mostly be concerned with the second problem (34).

In Lemma S6.7 in Supplementary Materials, we describe a useful symmetry of F0
for the star graph example.

4.2 Ohta–Kawasaki in Spectral Form

Because of the role the graph Laplacian plays in the Ohta–Kawasaki energies, it is
useful to consider its spectrum. As is well known (see for example Chung 1997; von
Luxburg 2007; van Gennip et al. 2014), for any r ∈ [0, 1], the eigenvalues of�, which
we will denote by

0 = λ0 ≤ λ1 ≤ · · · ≤ λn−1, (35)

are real and nonnegative. The (algebraic and geometric) multiplicity of 0 as eigenvalue
is equal to the number of connected components of the graph and the corresponding
eigenspace is spanned by the indicator functions of those components. If G ∈ G, then
G is connected, and thus, for all m ∈ {1, . . . , n − 1}, λm > 0. We consider a set of
correspondingV-orthonormal eigenfunctionsφm ∈ V , i.e. for allm, l ∈ {0, . . . , n−1},

�φm = λmφm, and 〈φm, φl〉V = δml , (36)

where δml denotes the Kronecker delta. Note that, since � and 〈·, ·〉V depend on r , but
not on q, so do the eigenvalues λm and the eigenfunctions φm .

For definiteness we choose9

φ0 := (vol (V ))−1/2χV . (37)

The eigenfunctions form a V-orthonormal basis for V , hence, for any u ∈ V , we have

u =
n−1∑

m=0

amφm, where am := 〈u, φm〉V . (38)

9 As opposed to the equally valid choice φ0 = −(vol (V ))−1/2.
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As an example, Laplacian eigenvalues and eigenfunctions for the star graph are
given in Lemma S6.8 in Supplementary Materials.

The following result will be useful later.

Lemma 4.6 Let G = (V, E, ω) ∈ G, u ∈ V , and let {φm}n−1
m=0 be V-orthonormal

Laplacian eigenfunctions as in (36). Then

n−1∑

m=0

〈u, φm〉2V = M(u2).

Proof Let j ∈ V and define f ∈ V by, for all i ∈ V , f j
i := d−r

i δi j , where δ denotes
the Kronecker delta. Using the expansion in (38), we find, for all i ∈ V ,

f j
i =

n−1∑

m=0

〈 f j , φm〉V φm
i =

n−1∑

m=0

∑

k∈V
d−r
i δk j d

r
kφ

m
k φm

i =
n−1∑

m=0

φm
j φm

i .

Hence

n−1∑

m=0

〈u, φm〉2V =
n−1∑

m=0

∑

i, j∈V
uiu j d

r
i d

r
jφ

m
i φm

j =
∑

i, j∈V
uiu j d

r
i d

r
j f

j
i

= 〈u2, χV 〉V = M(u2).

��
Lemma 4.7 Let u ∈ V , k ∈ V , then ϕ satisfies �ϕ = u − A(u), if and only if

ϕ = A(ϕ) +
n−1∑

m=1

λ−1
m 〈u, φm〉V φm . (39)

Proof Let ϕ satisfy �ϕ = u−A(u). Using expansions as in (38) for ϕ and u−A(u),
we have

�

(
n−1∑

m=0

amφm

)
= �ϕ = u − A(u) =

n−1∑

m=0

bmφm,

where, for all m ∈ {0, . . . , n − 1}, am := 〈ϕ, φm〉V and bm := 〈u − A(u), φm〉V .
Hence

∑n−1
m=0 amλmφm =∑n−1

m=0 bmφm and therefore, for any l ∈ {0, . . . , n − 1},

alλl =
〈
n−1∑

m=0

amλmφm, φl

〉

V
=
〈
n−1∑

m=0

bmφm, φl

〉

V
= bl .
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In particular, ifm ≥ 1, then am = λ−1
m bm . Because λ0 = 0, the identity above does not

constrain a0. Because, form ≥ 1, 〈φ0, φm〉 = 0, it follows that, form ∈ {1, . . . , n−1},

bm = 〈u − A(u), φm〉V = 〈u, φm〉V − M(u)

vol (V )
〈χV , φm〉

= 〈u, φm〉V − M(u)

vol (V )
(vol (V ))1/2〈φ0, φm〉

= 〈u, φm〉V . (40)

and therefore, for all m ∈ {1, . . . , n − 1}, am = λ−1
m 〈u, φm〉V . Furthermore

a0 = 〈ϕ, φ0〉V = (vol (V ))−1/2〈ϕ, χV 〉V = (vol (V ))−1/2M(ϕ).

Substituting these expressions for a0 and am into the expansion of ϕ, we find that ϕ is
as in (39).

Conversely, if ϕ is as in (39), a direct computation shows that �ϕ = u − A(u). ��
Remark 4.8 From Lemma 4.7 we see that we can write ϕ − A(ϕ) = �†(u − A(u)),
where �† is the Moore–Penrose pseudoinverse of � (Dresden 1920; Bjerhammer
1951; Penrose 1955).

Lemma 4.9 Let q ∈ [1/2, 1], S ⊂ V , and let κ
q,r
S , κS be the graph curvatures from

Definition 3.4, then

TV(χS) =
n−1∑

m=1

〈κq,r
S , φm〉V 〈χS, φ

m〉V .

Furthermore, if q = 1, then

TV(χS) =
n−1∑

m=1

λm〈χs, φ
m〉2V (41)

=
n−1∑

m=1

λ−1
m 〈κs, φm〉2V . (42)

Proof Using an expansion as in (38) for χS together with (14), we find

TV(χS) =
〈
κ
q,r
S ,

n−1∑

m=0

〈χS, φ
m〉V φm

〉

V
=

n−1∑

m=0

〈κq,r
S , φm〉V 〈χS, φ

m〉V

=
n−1∑

m=1

〈κq,r
S , φm〉V 〈χS, φ

m〉V ,

where the last equality follows from
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〈κq,r
S , φ0〉V = (vol (V ))−1/2

⎛

⎝
∑

i∈S

∑

j∈Sc
ω
q
i j (χV )i −

∑

i∈Sc

∑

j∈S
ω
q
i j (χV )i

⎞

⎠ = 0.

Moreover, we use (15) to find 〈χS, λmφm〉V = 〈χS,�φm〉V = 〈�χS, φ
m〉V =

〈κs, φm〉V , hence
〈χS, φ

m〉V = λ−1
m 〈κs, φm〉V , (43)

If q = 1, such that κq,r
S = κS , then (41) and (42) follow. ��

Lemma 4.10 Let q ∈ [1/2, 1], S ⊂ V , and let κS be the graph curvature (with q = 1)
from Definition 3.4, then

‖χS − A(χS)‖2H−1 =
n−1∑

m=1

λ−1
m 〈χS, φ

m〉2V =
n−1∑

m=1

λ−3
m 〈κS, φm〉2V .

Proof Let k ∈ V and let ϕ ∈ V solve �ϕ = χS − A(χS), with ϕk = 0. Using
Lemma 4.7, we have ϕ − A(ϕ) = ∑n−1

m=1 λ−1
m 〈χS, φ

m〉V φm . Because 〈A(ϕ), χS −
A(χS)〉V = 0, we have

‖χS − A(χS)‖2H−1 = 〈ϕ − A(ϕ), χS − A(χS)〉V

=
n−1∑

m=1

λ−1
m 〈χS, φ

m〉V 〈φm, χS − A(χS)〉V .

As in (40) (with u replaced by χS), we have, for m ≥ 1, 〈φm,A(χS)〉V = 0, and thus
‖χS − A(χS)‖2H−1 =∑n−1

m=1 λ−1
m 〈χS, φ

m〉2V .

We use (43) to write 〈χS, φ
m〉2V = λ−2

m 〈κS, φm〉2V , and therefore ‖χS −
A(χS)‖2H−1 =∑n−1

m=1 λ−3
m 〈κS, φm〉2V . ��

Remark 4.11 Note that ‖χS − A(χS)‖2H−1 is independent of q and thus the results
from Lemma 4.10 hold for all q ∈ [1/2, 1]. However, the formulation involving the
graph curvature relies on (43) and thus on the identity (15) which holds for κS only,
not for any κ

q,r
S . If q �= 1 this leads to the somewhat unnatural situation of using κS

(which corresponds to the case q = 1) in a situation where q �= 1. Hence the curvature
formulation in Lemma 4.10 is more natural, in this sense, when q = 1.

Corollary 4.12 Let q = 1, S ⊂ V , and let F0 be the limit Ohta–Kawasaki functional
from (32), then

F0(χS) =
n−1∑

m=1

(
λm + γ λ−1

m

)
〈χs, φ

m〉2V

=
n−1∑

m=1

(
λ−1
m + γ λ−3

m

)
〈κs, φm〉2V . (44)
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Proof This follows directly from the definition in (32) and Lemmas 4.9 and 4.10. ��
Lemma S6.9 in Supplementary Materials explicitly computes F0(χS) for the

unweighted star graph example, which allows us, in Corollary S6.10, to solve the
binary minimization problem (34) for this example graph. Remarks S6.11 and S6.12
provide further discussion on these results.

5 Graph MBO Schemes

5.1 The Graph Ohta–Kawasaki MBO Scheme

One way in which we can attempt to solve the Fε minimization problem in (33) (and
thus approximately the F0 minimization problem in (34) in the �-convergence sense
of Section S3 in Supplementary Materials) is via a gradient flow. In Section S4 in
Supplementary Materials we derive gradient flows with respect to the V inner product
(which, if r = 0 and each u ∈ V is identified with a vector in Rn , is just the Euclidean
inner product on R

n) and with respect to the H−1 inner product which leads to the
graph Allen–Cahn and graph Cahn–Hilliard type systems of equations, respectively.
In our simulations later in the paper, however, we do not use these gradient flows, but
we use the MBO approximation.

Heuristically, graph MBO type schemes [originally introduced in the continuum
setting in Merriman et al. (1992) and Merriman et al. (1993)] can be seen as approx-
imations to graph Allen–Cahn type equations [as in (S1)], obtained by replacing the
double-well potential term in that equation by a hard thresholding step. This leads to
the algorithm (OKMBO). In the algorithm we have used the set V∞, which we define
to be the set of all functions u : [0,∞) × V → R which are continuously differen-
tiable in their first argument (which we will typically denote by t). For such functions,
we will use the notation ui (t) := u(t, i). We note that where before u and ϕ denoted
functions in V , here these same symbols are used to denote functions in V∞.

For reasons that are explored in Remark S5.1 in Supplementary Materials, in the
algorithm we use a variant of (29): for given u ∈ V , if ϕ ∈ V satisfies

{
�ϕ = u − A(u),

M(ϕ) = 0,
(45)

we say ϕ solves (45) for u.
If ϕ ∈ V solves (45) for a given u ∈ V and ϕ̃ ∈ V solves (29) for the same u and a

given k ∈ V , then�(ϕ − ϕ̃) = 0, hence there exists aC ∈ R, such that ϕ = ϕ̃ +CχV .
Because ϕ̃k = 0, we have C = ϕk . In particular, because (29) has a unique solution,
so does (45).

For a given γ ≥ 0, we define the operator L : V → V as follows. For u ∈ V , let

Lu := �u + γ ϕ, (46)

where ϕ ∈ V is the solution to (45).
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Algorithm (OKMBO): The graph Ohta–Kawasaki Merriman–Bence–Osher
algorithm

Data: An initial node subset S0 ⊂ V , a parameter γ ≥ 0, a parameter r ∈ [0, 1], a time step τ > 0,
and the number of iterations N ∈ N ∪ {∞}.

Output: A sequence of node sets {Sk }Nk=1, which is the (OKMBO) evolution of S0.
for k = 1 to N, do

ODE step. Compute u ∈ V∞ by solving

{
∂u
∂t = −Lu, on (0, ∞) × V,

u(0) = u0, on V,
(47)

where u0 = χSk−1 and L is as in (46) with ϕ ∈ V∞ being such that, for all t ∈ [0, ∞), ϕ(t)
solves (45) for u(t).

Threshold step. Define the subset Sk ⊂ V to be

Sk :=
{
i ∈ V : u(τ ) ≥ 1

2

}
.

Remark 5.1 Since L , as defined in (46), is a continuous linear operator from V to V
(see (55)), by standard ODE theory (Hale 2009, Chapter 1; Coddington and Levinson
1984, Chapter 1) there exists a unique, continuously differentiable-in-t , solution u of
(47) on (0,∞) × V . In the threshold step of (OKMBO), however, we only require
u(τ ), hence it suffices to compute the solution u on (0, τ ].

By standard ODE arguments (Hale 2009, Chapter III.4) we canwrite (and interpret)
the solution of (47) as an exponential function: u(t) = e−t Lu0.

In SupplementaryMaterials, Remark S5.1 andLemmaS5.2 address the relationship
between solutions of (29) and (45).

The next lemma will come in handy later in the paper.

Lemma 5.2 Let G = (V, E, ω) ∈ G, γ ≥ 0, and u ∈ V , then the function

[0,∞) → R, t �→
〈
e−t Lu, u

〉

V (48)

is decreasing. Moreover, if u is not constant on V , then the function in (48) is strictly
decreasing.

Furthermore, for all t > 0,

d

dt
M
(
e−t Lu0

)
= 0.
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Proof Using the expansion in (38) for u, we have

〈
e−t Lu, u

〉

V =
〈
n−1∑

m=0

e−t�m 〈u, φm〉V φm,

n−1∑

l=0

〈u, φl〉Vφl

〉

V

=
n−1∑

m,l=0

e−t�m 〈u, φm〉V 〈u, φl〉V δml =
n−1∑

m=0

e−t�m 〈u, φm〉2V . (49)

Since, for eachm ∈ {0, . . . , n−1}, the function t �→ e−t�m is decreasing, the function
in (48) is decreasing. Moreover, for eachm ∈ {1, . . . , n−1}, the function t �→ e−t�m

is strictly decreasing; thus the function in (48) is strictly decreasing unless for all
m ∈ {1, . . . , n − 1}, 〈u, φm〉V = 0.

Assume that for all m ∈ {1, . . . , n − 1}, 〈u, φm〉V = 0. Then, by the expansion
in (38) and the expression in (37), we have u = 〈u, φ0〉V φ0 = vol (V )−1M(u)χV .
Hence u is constant. Thus, if u is not constant, then the function in (48) is strictly
decreasing.

The proof of the mass conservation property follows very closely the proof of
(van Gennip et al. 2014, Lemma 2.6(a)). Using (4) and (45), we find d

dtM(u(t)) =
M (

∂
∂t u(t)

) = −M(�u(t)) − γM(ϕ) = 0. ��
The following lemma introduces a Lyapunov functional for the (OKMBO) scheme.

Lemma 5.3 Let G = (V, E, ω) ∈ G, γ ≥ 0, and τ > 0. Define Jτ : V → R by

Jτ (u) := 〈χV − u, e−τ Lu〉V . (50)

Then the functional Jτ is strictly concave and Fréchet differentiable, with directional
derivative at u ∈ V in the direction v ∈ V given by

d Juτ (v) := 〈χV − 2e−τ Lu, v〉V . (51)

Furthermore, if S0 ⊂ V and {Sk}Nk=1 is a sequence generated by (OKMBO), then for
all k ∈ {1, . . . , N },

χSk ∈ argmin
v∈K

d J
χSk−1
τ (v), (52)

whereK is as defined in (9). Moreover, Jτ is a Lyapunov functional for the (OKMBO)
scheme in the sense that, for all k ∈ {1, . . . , N }, Jτ (χSk ) ≤ Jτ (χSk−1), with equality
if and only if Sk = Sk−1.

Proof This follows immediately from the proofs of (van Gennip et al. 2014, Lemma
4.5, Proposition 4.6) [(which in turn were based on the continuum case established in
Esedoḡlu and Otto (2015)], as replacing � in those proofs by L does not invalidate
any of the statements. It is useful, however, to reproduce the proof here, especially
with an eye to incorporating a mass constraint into the (OKMBO) scheme in Sect. 5.3.
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First let u, v ∈ V and s ∈ R, then we compute

dJτ (u + sv)

ds

∣∣∣∣
s=0

= 〈χV − u, e−τ Lv〉V − 〈v, e−τ Lu〉V = 〈χV − 2e−τ Lu, v〉V ,

where we used that e−τ L is a self-adjoint operator and e−τ LχV = χV . Moreover, if
v ∈ V\{0}, then

d2 Jτ (u + sv)

ds2

∣∣∣∣
s=0

= −2〈v, e−τ Lv〉V < 0,

where the inequality follows for example from the spectral expansion in (49). Hence
Jτ is strictly concave.

To construct a minimizer v for the linear functional d J
χSk−1
τ over K, we set vi = 1

whenever 1 − 2
(
e−τ LχSk−1

)
i ≤ 0 and vi = 0 for those i ∈ V for which 1 −

2
(
e−τ LχSk−1

)
i > 0.10 The sequence {Sk}Nk=1 generated in this way by setting Sk =

{i ∈ V : vi = 1} corresponds exactly to the sequence generated by (OKMBO).
Finally we note that, since Jτ is strictly concave and d J

χSk−1
τ is linear, we have, if

χSk+1 �= χSk , then

Jτ
(
χSk+1

)− Jτ
(
χSk
)

< d J
χSk
τ

(
χSk+1 − χSk

) = d J
χSk
τ

(
χSk+1

)− d J
χSk
τ

(
χSk
) ≤ 0,

where the last inequality follows because of (52). Clearly, if χSk+1 = χSk , then
Jτ
(
χSk+1

)− Jτ
(
χSk
) = 0. ��

Remark 5.4 It is worth elaborating briefly on the underlying reason why (52) is the
right minimization problem to consider in the setting of Lemma 5.3. As is standard
in sequential linear programming the minimization of Jτ over K is attempted by
approximating Jτ by its linearization,

Jτ (u) ≈ Jτ
(
χSk
)+ d J

χSk−1
τ

(
u − χSk

) = Jτ
(
χSk
)+ d J

χSk−1
τ (u) − d J

χSk−1
τ

(
χSk
)
,

and minimizing this linear approximation over all admissible u ∈ K.

We can use Lemma 5.3 to prove that the (OKMBO) scheme converges in a finite
number of steps to stationary state in sense of the following corollary.

Corollary 5.5 Let G = (V, E, ω) ∈ G, γ ≥ 0, and τ > 0. If S0 ⊂ V and {Sk}Nk=1 is
a sequence generated by (OKMBO), then there is a K ≥ 0 such that, for all k ≥ K,
Sk = SK .

Proof If N ∈ N the statement is trivially true, so now assume N = ∞. Because
|V | < ∞, there are only finitely many different possible subsets of V , hence there

10 Note that the arbitrary choice for those i for which 1−2
(
e−τ LχSk−1

)

i
= 0 introduces non-uniqueness

into the minimization problem (52).
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exists K , k′ ∈ N such that k′ > K ′ and SK = Sk
′
. Hence the set in l := min{l ′ ∈ N :

SK = SK+l ′ }11 is not empty and thus l ≥ 1. If l ≥ 2, then by Lemma 5.3 we know that
Jτ (χSK+l ) < Jτ (χSK+l−1) < · · · < Jτ (χSK ) = Jτ (χSK+l ). This is a contradiction,
hence l = 1 and thus SK = SK+1. Because equation (47) has a unique solution (as
noted in Remark 5.1), we have, for all k ≥ K , Sk = SK . ��
Remark 5.6 For given τ > 0, the minimization problem

u ∈ argmin
v∈K

Jτ (v) (53)

has a solution u ∈ Vb, because Jτ is strictly concave and K is compact and convex.
This solution is not unique; for example, if ũ = χV −u, then, since e−τ L is self-adjoint,
we have

Jτ (u) = 〈ũ, e−t L(χV − u)〉V = 〈χV − ũ, e−τ L ũ〉V = Jτ (ũ).

Lemma 5.3 shows that Jτ does not increase in value along a sequence {Sk}Nk=1 of sets
generated by the (OKMBO) algorithm, but this does not guarantee that (OKMBO)
converges to the solution of the minimization problem in (53). In fact, we see in
Lemma S5.10 and Remark S5.11 in Supplementary Materials that for every S0 ⊂ V
there is a value τρ(S0) such that S1 = S if τ < τρ(S0). Hence, unless S0 happens to
be a solution to (53), if τ < τρ(S0) the (OKMBO) algorithm will not converge to a
solution. This observation and related issues concerning the minimization of Jτ will
become important in Sect. 5.2, see for example Remarks 5.12 and 5.16.

We end this sectionwith a look at the spectrumof L , which plays a role in our further
study of (OKMBO). More information is given in Section S5.2 of Supplementary
Materials. Moreover, in Section S5.3 we use this information about the spectrum to
derive pinning and spreading bounds on the parameter τ in (OKMBO) along similar
lines as corresponding results in van Gennip et al. (2014).

Remark 5.7 Remembering from Remark 4.8 the Moore–Penrose pseudoinverse of�,
which we denote by �†, we see that the condition M(ϕ) = 0 in (45) allows us to
write ϕ = �†(u − A(u)). In particular, if ϕ satisfies (45), then

ϕ =
n−1∑

m=1

λ−1
m 〈u, φm〉V φm, (54)

where λm and φm are the eigenvalues of � and corresponding eigenfunctions, respec-
tively, as in (35), (36). Hence, if we expand u as in (38) and L is the operator defined
in (46), then

L(u) =
n−1∑

m=1

(
λm + γ

λm

)
〈u, φm〉V φm . (55)

11 Remember that we use the convention 0 /∈ N.
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In particular, L : V → V is a continuous, linear, bounded, self-adjoint, operator and
for every c ∈ R, L(cχV ) = 0. If, given a u0 ∈ V , u ∈ V∞ solves (47), then we
have that u(t) = e−t Lu0. Note that the operator e−t L is self-adjoint, because L is
self-adjoint.

Lemma 5.8 Let G = (V, E, ω) ∈ G, γ ≥ 0, and let L : V → V be the operator
defined in (46), then L has n eigenvalues �m (m ∈ {0, . . . , n − 1}), given by

�m =
{
0, if m = 0,

λm + γ
λm

, if m ≥ 1,
(56)

where the λm are the eigenvalues of � as in (35). The set {φm}n−1
m=0 from (36) is a set

of corresponding eigenfunctions. In particular, L is positive semidefinite.

Proof This follows from (55) and the fact that λ0 = 0 and, for all m ≥ 1, λm > 0. ��
In the remainder of this paper we use the notation λm for the eigenvalues of � and

�m for the eigenvalues of L , with corresponding eigenfunctions φm , as in (35), (36),
and Lemma 5.8.

Using an expansion as in (38) and the eigenfunctions and eigenvalues as in
Lemma 5.8 in the main paper, we can write the solution to (47) as

u(t) =
n−1∑

m=0

e−t�m 〈u0, φm〉V φm . (57)

5.2 �-Convergence of the Lyapunov Functional

In this section we prove that the functionals J̃τ : K → R, defined by

J̃τ (u) := 1

τ
〈χV − u, e−τ Lu〉V , (58)

for τ > 0, �-converge to F̃0 : K → R as τ → 0, where F̃0 is defined by

F̃0(u) :=
{
F0(u), if u ∈ K ∩ Vb,

+∞, otherwise,
(59)

where F0 is as in (32) with q = 1.12 We use the notation R := R ∪ {−∞,+∞} for
the extended real line. Remember that the set K was defined in (9) as the subset of all
[0, 1]-valued functions in V . We note that J̃τ = 1

τ
Jτ |K, where Jτ is the Lyapunov

functional from Lemma 5.3. Compare the results in this section with the continuum
results in (Esedoḡlu and Otto 2015, Appendix).

12 Note thatK∩Vb = Vb . We includedK explicity in the intersection here to emphasize that the domain
of F̃0 is K, not V .
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In this section we will encounter different variants of the functional 1
τ
Jτ , such as

J̃τ , J τ , and J τ , and similar variants of F0. The differences between these functionals
are the domains on which they are defined and the parts of their domains on which they

take finite values: J̃τ is defined on all of K, while J τ and J τ (which will be defined
later in this section) incorporate a mass constraint and relaxed mass constraint in their
domains, respectively. For technical reasons, we thought it is prudent to distinguish
these functionals through their notation, but intuitively they can be thought of as the
same functional with different types of constraints (or lack thereof).

For sequences in V we use convergence in the V-norm, i.e. if {uk}k∈N ⊂ V , then
we say uk → u as k → ∞ if ‖uk − u‖V → 0 as k → ∞. Note, however, that all
norms on the finite space V induce equivalent topologies, so different norms can be
used without this affecting the convergence results in this section.

Lemma 5.9 Let G = (V, E, ω) ∈ G. Let {uk}k∈N ⊂ V and u ∈ V\Vb be such that
uk → u as k → ∞. Then there exists an i ∈ V , an η > 0, and a K > 0 such that for
all k ≥ K we have (uk)i ∈ R\([−η, η] ∪ [1 − η, 1 + η]).
Proof Because u ∈ V\Vb, there is an i ∈ V such that ui /∈ {0, 1}. Since G ∈ G,
we know that dri > 0. Thus, since uk → u as k → ∞, we know that for every
η̂ > 0 there exists a K (η̂) > 0 such that for all k ≥ K (η̂) we have |(uk)i − ui | < η̂.

Define η := 1

2
min{|ui | , |ui − 1|} > 0. Then, for all k ≥ K (η), we have |(uk)i | ≥

∣∣ |(uk)i − ui | − |ui |
∣∣ >

1

2
|ui | ≥ η and similarly |(uk)i − 1| > η. ��

Theorem 5.10 (�-convergence). Let G = (V, E, ω) ∈ G, q = 1, and γ ≥ 0. Let
{τk}k∈N be a sequence of positive real numbers such that τk → 0 as k → ∞. Let
u ∈ K. Then the following lower bound and upper bound hold:

(LB) for every sequence {uk}k∈N ⊂ K such that uk → u as k → ∞, F̃0(u) ≤
lim inf
k→∞ J̃τk (uk), and

(UB) there exists a sequence {uk}k∈N ⊂ K such that uk → u as k → ∞ and
lim sup
k→∞

J̃τk (uk) ≤ F̃0(u).

Proof With Jτ the Lyapunov functional from Lemma 5.3, we compute, for τ > 0 and
u ∈ V ,

Jτ (u) = 〈χV − u, e−τ Lu〉V = M
(
e−τ Lu

)
− 〈u, e−τ Lu〉V = M(u) − 〈u, e−τ Lu〉V ,

where we used the mass conservation property from Lemma 5.2. Using the expansion
in (38) and Lemma 4.6, we find

1

τ
Jτ (u) = 1

τ
M(u) −

n−1∑

m=0

e−τ�m − 1

τ
〈u, φm〉2V − 1

τ

n−1∑

m=0

〈u, φm〉2V

= −
n−1∑

m=0

e−τ�m − 1

τ
〈u, φm〉2V + 1

τ

(
M(u) − M(u2)

)
.
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Now we prove (LB). Let {τk}k∈N and {uk}n∈N ⊂ K be as stated in the theo-

rem. Then, for all m ∈ {0, . . . , n − 1}, we have that − lim
k→∞

e−τk�m − 1

τk
= �m and

lim
k→∞ 〈uk, φm〉2V = 〈u, φm〉2V , hence

lim
k→∞ −

n−1∑

m=0

e−τk�m − 1

τk
〈uk, φm〉2V =

n−1∑

m=0

�m〈u, φm〉2V ≥ 0. (60)

Moreover, if u ∈ K∩Vb, then, combining the above with (44) (remember that q = 1)
and Lemma 5.8, we find

lim
k→∞ −

n−1∑

m=0

e−τk�m − 1

τk
〈uk, φm〉2V = F0(u). (61)

Furthermore, since, for every k ∈ N, uk ∈ K, we have that, for all i ∈ V , u2i ≤ ui and
thus M(uk) − M(u2k) ≥ 0. Hence

lim inf
k→∞ J̃τk (uk) ≥ −lim inf

k→∞

n−1∑

m=0

e−τk�m − 1

τk
〈uk, φm〉2V = F0(u).

Assume now that u ∈ K\Vb instead, then by Lemma 5.9 it follows that there are
an i ∈ V and an η > 0, such that, for all k large enough, (uk)i ∈ (η, 1− η). Thus, for
all k large enough,

M(uk) − M(u2k) ≥ dri (uk)i (1 − (uk)i ) > dri η
2 > 0.

Combining this with (60) we deduce

lim inf
k→∞ J̃τk (uk) ≥ lim inf

k→∞
1

τk

(M(uk) − M(u2k)
) = +∞ = F0(u),

which completes the proof of (LB).
To prove (UB), first we note that, if u ∈ K\Vb, then F0(u) = +∞ and the upper

bound inequality is trivially satisfied. If instead u ∈ K∩Vb, then we define a so-called
recovery sequence as follows: for all k ∈ N, uk := u. We trivially have that uk → u
as k → ∞. Moreover, since u = u2, we find, for all k ∈ N, M(uk) − M(u2k) = 0.
Finally we find

lim sup
k→∞

J̃τk (uk) = − lim
k→∞

n−1∑

m=0

e−τk�m − 1

τk
〈u, φm〉2V = F0(u),

where we used a similar calculation as in (61). ��
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Theorem 5.11 (Equi-coercivity). Let G = (V, E, ω) ∈ G and γ ≥ 0. Let {τk}k∈N be
a sequence of positive real numbers such that τk → 0 as k → ∞ and let {uk}k∈N ⊂ K
be a sequence for which there exists a C > 0 such that, for all k ∈ N, J̃τ (uk) ≤ C.
Then there is a subsequence {ukl }l∈N ⊂ {uk}k∈N and a u ∈ Vb such that ukl → u as
l → ∞.

Proof Since, for all k ∈ N, we have uk ∈ K, it follows that, for all k ∈ N, 0 ≤
‖uk‖2 ≤ √

n, where ‖ · ‖2 denotes the usual Euclidean norm on R
n pulled back to V

via the natural identification of each function in V with one and only one vector in Rn

(thus, it is the norm ‖ · ‖V if r = 0). By the Bolzano–Weierstrass theorem it follows
that there is a subsequence {ukl }l∈N ⊂ {uk}k∈N and a u ∈ V such that ukl → u with
respect to the norm ‖ · ‖2 as l → ∞. Because the V-norm is topologically equivalent

to the ‖ · ‖2 norm (explicitly, d
r
2−‖ · ‖2 ≤ ‖ · ‖V ≤ d

r
2+‖ · ‖2), we also have ukl → u as

l → ∞. Moreover, since convergence with respect to ‖ · ‖2 implies convergence of
each component of (ukl )i (i ∈ V ) in R we have u ∈ K.

Next we compute

τkl J̃τkl (ukl ) = 〈χV − ukl , e
−τkl Lukl 〉V = 〈χV , ukl 〉V − 〈ukl , e−τkl Lukl 〉V

≥ 〈χV − ukl , ukl 〉V , (62)

where we used both the mass conservation property 〈χV , e−τkl Lukl 〉V = 〈χV , ukl 〉V
and the inequaltiy 〈ukl , e−τkl Lukl 〉V ≤ 〈ukl , ukl 〉V from Lemma 5.2. Thus, for all
l ∈ N, we have

0 ≤ 〈χV − ukl , ukl 〉V ≤ Cτkl . (63)

Assume that u ∈ K\Vb, then there is an i ∈ V such that 0 < ui < 1. Hence, by
Lemma 5.9, there is a δ > 0 such that for all l large enough, δ < (ukl )i < 1 − δ and
thus

〈χV − ukl , ukl 〉V ≥ dri
(
1 − (ukl )i

)
(ukl )i ≥ dri δ

2. (64)

Let l be large enough such that Cτkl < dri δ
2 and large enough such that (64) holds.

Then we have arrived at a contradiction with (63) and thus we conclude that u ∈ Vb.
��

Remark 5.12 The computation in (62) shows that, for all τ > 0 and for all u ∈ K,
we have τ J̃τ (u) ≥ 〈χV − u, u〉V ≥ 0. Moreover, we have J̃τ (0) = J̃τ (χV ) = 0.
Furthermore, since each term of the sum in the inner product is nonnegative, we have
〈χV − u, u〉V = 0 if and only if u = 0 or u = χV . Hence we also have J̃τ (u) = 0
if and only if u = 0 or u = χV . The minimization of J̃τ over K is thus not a very
interesting problem. Therefore we now extend our �-convergence and equi-coercivity
results from above to incorporate a mass constraint.

As an aside, note that Lemma S5.10 and Remark S5.11 in SupplementaryMaterials
guarantee that for τ large enough and S0 such that vol

(
S0
) �= 1

2vol (V ), the (OKMBO)
algorithm converges in at most one step to the minimizer ∅ or the minimizer V .

Let M ∈ M, whereM is the set of admissible masses as defined in (11). Remember
from (10) thatKM is the set of [0, 1]-valued functions in V with mass equal to M . For
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τ > 0 we define the following functionals with restricted domain. Define J τ : KM →
R by J τ := J̃τ

∣∣∣KM
, where J̃τ is as defined above in (58). Also define F0 : KM → R

by F0(u) := F̃0
∣∣∣KM

, where F̃0 is as in (59), with q = 1. Note that by definition, F̃0,

and thus F0, do not assign a finite value to functions u that are not in Vb.

Theorem 5.13 Let G = (V, E, ω) ∈ G, q = 1, γ ≥ 0, and M ∈ M. Let {τk}k∈N be
a sequence of positive real numbers such that τk → 0 as k → ∞. Let u ∈ KM. Then
the following lower bound and upper bound hold:

(LB) for every sequence {uk}k∈N ⊂ KM such that uk → u as k → ∞, F0(u) ≤
lim inf
k→∞ J τk (uk), and

(UB) there exists a sequence {uk}k∈N ⊂ KM such that uk → u as k → ∞ and
lim sup
k→∞

J τk (uk) ≤ F0(u).

Furthermore, if {vk}k∈N ⊂ KM is a sequence for which there exists a C > 0 such
that, for all k ∈ N, J τ (vk) ≤ C, then there is a subsequence {vkl }l∈N ⊂ {vk}k∈N and
a v ∈ KM ∩ Vb such that vkl → v as l → ∞.

Proof We note that any converging sequence in KM with limit u is also a converging
sequence inKwith limit u. Moreover, onKM we have J τk = J̃τk and F0 = F̃0. Hence
(LB) follows directly from (LB) in Theorem 5.10.

For (UB) we note that if we define, for all k ∈ N, uk := u, then trivially the mass
constraint on uk is satisfied for all k ∈ N and the result follows by a proof analogous
to that of (UB) in Theorem 5.10.

Finally, for the equi-coercivity result, we first note that by Theorem 5.11 we imme-
diately get the existence of a subsequence {vkl }l∈N ⊂ {vk}k∈N which converges to
some v ∈ K. Since the functional M is continuous with respect to V-convergence,
we conclude that in fact v ∈ KM . ��

Remark 5.14 Note that for τ > 0, M ∈ M, and u ∈ KM , we have

τ J τ (u) = M(u) − 〈u, eτ Lu〉V = M −
n−1∑

m=0

e−τ�m 〈u, φm〉2V

= M

(
1 − M

vol (V )

)
−

n−1∑

m=1

e−τ�m 〈u, φm〉2V .

Hence finding the minimizer of J τ in KM is equivalent to finding the maximizer of

u �→
∑n−1

m=1
e−τ�m 〈u, φm〉2V in KM .

The following result shows that the �-convergence and equi-coercivity results still
hold, even if the mass conditions are not strictly satisfied along the sequence.
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Corollary 5.15 Let G = (V, E, ω) ∈ G, q = 1, and γ ≥ 0 and let C ⊂ M be a set
of admissible masses. For each k ∈ N, let Ck ⊂ [0,∞) be such that

⋂

k∈N
Ck = C and

define, for all k ∈ N,

Kk
M := {u ∈ K : M(u) ∈ Ck}.

Let {τk}k∈N be a sequence of positive real numbers such that τk → 0 as k → ∞.

Define J τk : K → R by

J τk (u) :=
{
J̃τk (u), if u ∈ Kk

M ,

+∞, otherwise.

Furthermore, define F0 : K → R by

F0(u) :=
{
F̃0(u), if u ∈ KM ,

+∞, otherwise.

Then the results of Theorem 5.13 hold with J τk and F0 replaced by J τk and F0,
respectively, and with the sequences {uk}k∈N and {vk}k∈N in (LB), (UB), and the equi-
coercivity result taken in K instead of KM, such that, for each k ∈ N, uk, vk ∈ Kk

M .

Proof The proof is a slightly tweaked version of the proof of Theorem 5.13. On Kk
M

we have that J τk = J̃τk and F0 = F̃0. Hence (LB) follows from (LB) in Theorem 5.10.

For (UB) we note that, since
⋂

k∈N
Ck ⊃ C, the recovery sequence defined by, for all

k ∈ N, uk := u, is admissible and the proof follows as in the proof of Theorem 5.10.
Finally, for the equi-coercivity result, we obtain a converging subsequence

{vkl }l∈N ⊂ {vk}k∈N with limit v ∈ K by Theorem 5.11. By continuity ofM it follows
that M(v) ∈ ⋂

k∈N
Ck , where · denotes the topological closure in [0,∞) ⊂ R.

Because M is a set of finite cardinality in R, we know
⋂

k∈N
Ck ⊂ C ⊂ M is closed,

hence M(v) ∈
⋂

k∈N
Ck ⊂ C and thus v ∈ KM . ��

Remark 5.16 By a standard �-convergence result (Maso 1993, Chapter 7; Braides
2002, Section 1.5)we conclude fromTheorem5.13 that (for fixedM ∈ M)minimizers
of J τ converge (up to a subsequence) to a minimizer of F0 (with q = 1) when τ → 0.

ByLemma5.3we know that iterates of (OKMBO) solve (52) and decrease the value
of Jτ , for fixed τ > 0 (and thus of J̃τ ). By Lemma S5.10 in Supplementary Materials,
however, we know thatwhen τ is sufficiently small, the (OKMBO) dynamics is pinned,
in the sense that each iterate is equal to the initial condition. Hence, unless the initial
condition is a minimizer of J τ , for small enough τ the (OKMBO) algorithm does
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not generate minimizers of J τ and thus we cannot use Theorem 5.13 to conclude that
solutions of (OKMBO) approximate minimizers of F0 when τ → 0.

As an interesting aside that can be an interesting angle for future work, we note
that it is not uncommon in sequential linear programming for the constraints (such as
the constraint that the domain of J̃τ consists of [0, 1]-valued functions only) to be an
obstacle to convergence; compare for example the Zoutendijk method with the Topkis
and Veinott method (Bazaraa et al. 1993, Chapter 10). An analogous relaxation of
the constraints might be a worthwhile direction for alternative MBO type methods
for minimization of functionals like J̃τ . We will not follow that route in this paper.
Instead, in the next section, we will look at a variant of (OKMBO) which conserves
mass in each iteration.

5.3 A Mass Conserving Graph Ohta–Kawasaki MBO Scheme

In Sect. 5.2 we saw that, for given M ∈ M, any solution to

u ∈ argmin
ũ∈KM

Jτ (ũ), (65)

where Jτ is as in (50)13 is an approximate solution to the F0 minimization problem in
(34) (with q = 1) in the �-convergence sense discussed in Remark 5.16.

We propose the (mcOKMBO) scheme described below to include the mass condi-
tion into the (OKMBO) scheme. As part of the algorithm we need a node relabelling
function. For u ∈ V , let Ru : V → {1, . . . , n} be a bijection such that, for all i, j ∈ V ,
Ru(i) < Ru( j) if and only if ui ≥ u j . Note that such a function need not be unique,
as it is possible that ui = u j while i �= j . Given a relabelling function Ru , we will
define the relabelled version of u denoted by uR ∈ V , by, for all i ∈ V ,

uR
i := uR−1

u (i). (66)

In other words, Ru relabels the nodes in V with labels in {1, . . . , n}, such that in the
new labelling we have uR

1 ≥ uR
2 ≥ · · · ≥ uR

n .
Because this will be of importance later in the paper, we introduce the new set of

almost binary functions with prescribed mass M ≥ 0:14

Vab
M := {u ∈ KM : ∃i ∈ V ∀ j ∈ V \{i} u j ∈ {0, 1}} .

13 In Sect. 5.2 we required various rescaled versions of Jτ defined on different domains, for technical
reasons related to the �-convergence proof. Any of those functionals could be substituted in (65) for Jτ , as
long as their domain contains KM .
14 In the (mcOKMBO) algorithm we choose the initial function v0 from VM

ab . As the algorithm enforces
the mass condition in each iteration, it is not necessary for the initial condition to satisfy the mass condition
(or even to be almost binary, it could be any function in K) in order to for the output functions vk to be in
VM
ab , but for a cleaner presentation we assume it does (and is).
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Algorithm (mcOKMBO): The mass conserving graph Ohta–Kawasaki
Merriman–Bence–Osher algorithm

Data: A prescribed mass value M ∈ M, an initial function v0 ∈ Vab
M , a parameter r ∈ [0, 1], a

parameter γ ≥ 0, a time step τ > 0, and the number of iterations N ∈ N ∪ {∞}.
Output: A sequence of functions {vk }Nk=1 ⊂ Vab

M , which is the (mcOKMBO) evolution of v0.
for k = 1 to N, do

ODE step. Compute u ∈ V∞ by solving (47), where u0 = vk−1.
Mass conserving threshold step. Let Ru be a relabelling function and uR the relabelled version
of u as in (66). Let i∗ be the unique i ∈ V such that

i∗∑

i=1

dri ui ≤ M and
i∗+1∑

i=1

dri ui > M.

Define vk ∈ V by, for all i ∈ V ,

vki :=

⎧
⎪⎨

⎪⎩

1, if 1 ≤ i ≤ i∗,

d−r
i

(
M −∑i∗

i=1 d
r
i ui
)

, if i = i∗ + 1,

0, if i∗ + 2 ≤ i ≤ n.

We see that the ODE step in (mcOKMBO) is as the ODE step in (OKMBO), using
the outcome of the previous iteration as initial condition. However, the threshold step
is significantly different. In creating the function vk , it assigns the available mass to the
nodes {1, . . . , i∗} on which u has the highest value. Note that if r = 0, there is exactly
enough mass to assign the value 1 to each node in {1, . . . , i∗}, since we assumed that
M ∈ M and each node contributes the same value to the mass via the factor dri = 1.
In this case we see that vki∗+1 = 0. However, if r ∈ (0, 1], this is not necessarily the
case and it is possible to end up with a value in (0, 1) being assigned to vki∗+1 (even if
vk−1 ∈ Vb

M ). Hence, in general vk ∈ Vab
M , but not necessarily vk ∈ Vb

M .
Of course there is no issue in evaluating F0(vk) for almost binary functions vk , but

strictly speaking an almost binary vN cannot serve as approximate solution to the F0
minimization problem in (34) as it is not admissible. We can either accept that the
qualifier “approximate” refers not only to approximate minimization, but also to the
fact that vN is binary when restricted to V \{i∗ +1}, but not necessarily on all of V , or
we can apply a final thresholding step to vN and set the value at node i∗ + 1 to either
0 or 1 depending on which choice leads to the lowest value of F0 and/or the smallest
deviation of the mass from the prescribed mass M . In the latter case, the function
will be binary, but the adherence to the mass constraint will be “approximate”. We
emphasize again that this is not an issue when r = 0 (or on a regular graph; i.e. a graph
in which each node has the same degree). This case is the most interesting case, as the
mass condition can be very restrictivewhen r ∈ (0, 1], especially on (weighted) graphs
in which most nodes each have a different degree. When r ∈ (0, 1], our definition of
(mcOKMBO) suggests the first interpretation of “approximate”, i.e. we use vN as is
and accept that its value at node i∗ + 1 may be in (0, 1). All our numerical examples
in Sect. 7 (and Section S9 in Supplementary Materials) use r = 0.
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Note that the sequence {vk}Nk=1 generated by the (mcOKMBO) scheme is not nec-
essarily unique, as the relabelling function Ru in the mass conserving threshold step
is not uniquely determined if there are two different nodes i, j ∈ V such that ui = u j .
This non-uniqueness of Ru can lead to non-uniqueness in vk if exchanging the labels
Ru(i) and Ru( j) of those nodes leads to a different ‘threshold node’ i∗. In the practice
of our examples in Sect. 7 (and Section S9 in Supplementary Materials) we used the
MATLAB function sort(·, ‘descend’) to order the nodes.

Lemma 5.18 shows that some of the important properties of (OKMBO) from
Lemma 5.3 and Corollary 5.5 also hold for (mcOKMBO). First we state an inter-
mediate lemma.

Lemma 5.17 Let G = (V, E, ω) ∈ G, M ≥ 0 and z ∈ V . Consider the minimization
problem

min
w∈V

∑

l∈V
wl zl , subject to

∑

l∈V
wl = M and ∀l ∈ V 0 ≤ wl ≤ drl . (67)

Let w∗ ∈ V satisfy the constraints in (67). Then w∗ is a minimizer for (67) if and only
if for all i, j ∈ V , if zi < z j , then w∗

i = dri or w∗
j = 0.

Proof See Section S10.3 in Supplementary Materials. ��
Lemma 5.18 Let G = (V, E, ω) ∈ G, γ ≥ 0, τ > 0, and M ≥ 0. Let Jτ : V → R be
as in (50), v0 ∈ Vab

M , and let {vk}Nk=1 ⊂ Vab
M be a sequence generated by (mcOKMBO).

Then, for all k ∈ {1, . . . , N },

vk ∈ argmin
v∈KM

d J vk−1

τ (v), (68)

where d Jτ is given in (51). Moreover, for all k ∈ {1, . . . , N }, Jτ (vk) ≤ Jτ (vk−1), with
equality if and only if vk = vk−1. Finally, there is a K ≥ 0 such that for all k ≥ K,
vk = vK .

Proof For all i ∈ V , define wi := dri vi and zi := (
χV − 2e−τ Lvk−1

)
i . Then the

minimization problem (68) turns into (67). Hence, by Lemma 5.17, v∗ is a solution
of (68) if and only if v∗ satisfies the constraints in (68) and for all i, j ∈ V , if(
e−τ Lvk−1

)
i >

(
e−τ Lvk−1

)
j , then v∗

i = dri or v∗
j = 0. It is easily checked that vk

generated from vk−1 by one iteration of the (mcOKMBO) algorithm satisfies these
properties.

We note that (68) differs from (52) only in the set of admissible functions over
which the minimization takes place. This difference does not necessitate any change
in the proof of the second part of the lemma compared to the proof of the equivalent
statements at the end of Lemma 5.3.

The final part of the lemma is trivially true if N ∈ N. Now assume N = ∞. The
proof is similar to that of Corollary 5.5. In the current case, however, our functions
vk are not necessarily binary. We note that for each k, there is at most one node
i(k) ∈ V at which vk can take a value in (0, 1). For fixed k and i(k), there are only
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finitely many different possible functions that vk
∣∣
V \{i(k)} can be. Because M (

vk
) =

∑
i∈V \{i(k)}

(
vk
∣∣
V \{i(k)}

)

i
+dri(k)v

k
i(k) = M , this leads to finitely many possible values

vki(k) can have. Since i(k) can be only one of finitely many (n) nodes, there are only

finitely many possible functions that vk can be. Hence the proof now follows as in
Corollary 5.5. ��
Remark 5.19 Similar to what we saw in Remark 5.4 about (OKMBO), we note that
(68) is a sequential linear programming approach tominimizing Jτ overKM ; the linear
approximation of Jτ over KM is minimized instead.

Remark S8.2 in Supplementary Materials discusses the behaviour of (mcOKMBO)
at small and large τ . If τ is too small, pinning can occur similar to, but for different
reasons than, the pinning behaviour of (OKMBO) at small τ .

6 Special Classes of Graphs

There are certain classes of graphs on which the dynamics of equation (47), can be
directly related to graph diffusion equations, in a way which we will make precise in
Sect. 6.1. The tools which we develop in that section will again be used in Sect. 6.2
to prove additional comparison principles.

6.1 Graph Transformation

Definition 6.1 Let G = (V, E, ω) ∈ G. For all j ∈ V , let νV \{ j} be the equilibrium
measure which solves (12) for S = V \{ j} and define the functions f j ∈ V as

f j := νV \{ j} − A
(
νV \{ j}) . (69)

Now we introduce the following classes of graphs:

1. C :=
{
G ∈ G : ∀ j ∈ V ∀i ∈ V \{ j} f j

i ≥ 0
}
,

2. C0 :=
{
G ∈ G : ∀ j ∈ V ∀i ∈ V \{ j} ωi j > 0 or f j

i ≥ 0
}
,

3. Cγ :=
{
G ∈ C0 : ∀ j ∈ V ∀i ∈ V \{ j} ωi j = 0 or d−r

i ωi j + γ
drj

vol(V )
f j
i > 0

}
,

for γ > 0.

For γ = 0, we define C0 := G.15

Remark 6.2 Let us have a closer look at the properties of graphs in Cγ . Let γ > 0. If
G ∈ Cγ , then per definition G ∈ C0. Let i, j ∈ V . If ωi j = 0, then per definition of

15 The definition of C0 is purely for notational convenience, so that we do not always need to treat the case
γ = 0 separately. Note that if we were to substitute γ = 0 directly into the definition of Cγ , we would have
C0 = C0 instead, which would be unneccessarily restrictive.
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C0, f j
i ≥ 0 and thus d−r

i ωi j + γ
drj

vol(V )
f j
i ≥ 0. On the other hand, if ωi j > 0, then

per definition of Cγ , d
−r
i ωi j + γ

drj
vol(V )

f j
i > 0.

Lemma 6.3 Let the setting and notation be as in Definition 6.1. Then, C ⊂ C0 and,
for all γ ≥ 0, C ⊂ Cγ . Moreover, if G ∈ C0\C, there is a γ∗(G) > 0 such that, for all
γ ∈ [0, γ∗(G)), G ∈ Cγ .

Proof The first two inclusions stated in the lemma follow immediately from the def-
initions of the sets involved. If γ = 0, then G ∈ Cγ in the final statement is trivially

true. To prove it for γ �= 0, let G ∈ C0\C and let j ∈ V , i ∈ V \{ j}. If f j
i ≥ 0, then,

ωi j = 0 or, for all γ > 0, d−r
i ωi j + γ

drj
vol(V )

f j
i > d−r

i ωi j ≥ 0. If f j
i < 0 (and, by the

assumption that G /∈ C, there are j ∈ V , i ∈ V \{ j} for which this is the case), then
by definition of C0 we have ωi j > 0. Define

γ∗(G) := vol (V )min

{
d−r
i d−r

j ωi j

∣∣∣ f j
i

∣∣∣
−1 : j ∈ V, i ∈ V \{ j} such that f j

i < 0

}

and let γ ∈ (0, γ∗(G)), then d−r
i ωi j + γ

drj
vol(V )

f j
i > d−r

i ωi j − γ∗(G)
drj

vol(V )
| f ij | ≥ 0.

��

Lemma S7.1 in Supplementary Materials shows C is not empty; in particular,
unweighted star graphs with three or more nodes are in C. Remark S7.2 shows that
C0\C �= ∅. Lemma S7.3 and Remarks S7.4 and S7.6 give and illustrate different suffi-
cient conditions for graphs to be in C or C0, which are used in Corollary S7.5 to show
that complete graphs are in C0.

The following lemma hints at the reason for our interest in the functions f j from
(69).

Lemma 6.4 Let G = (V, E, ω) ∈ G. Let j ∈ V and let f j ∈ V be as in (69). Then
the function ϕ j ∈ V , defined by

ϕ j := − drj
vol (V )

f j , (70)

solves (45) for χ{ j}.

Proof From (69) and (12) it follows immediately that, for all i ∈ V \{ j}, (� f j
)
i =

(
�νV \{ j})

i = 1. Thus, for all i ∈ V \{ j}, (�ϕ j
)
i = − drj

vol(V )
= (

χ{ j}
)
i − A (χ{ j}

)
.

Moreover, by (5) we have 0 = M
(
�ϕ j

)
= drj

(
�ϕ j

)

j
+

∑

i∈V \{ j}
dri

(
�ϕ j

)

i
, and

thus
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(
�ϕ j

)

j
= −d−r

j

∑

i∈V \{ j}
dri

(
�ϕ j

)

i
= d−r

j

∑

i∈V \{ j}
dri

drj
vol (V )

= vol (V ) − drj
vol (V )

= 1 − drj
vol (V )

= (χ{ j}
)
j − (A (χ{ j}

))
j .

Finally, by (69),M (
f j
) = 0, thus M (

ϕ j
) = 0. ��

Corollary 6.5 Let G = (V, E, ω) ∈ G. Let λm and φm be the eigenvalues and
corresponding eigenfunctions of the graph Laplacian � (with parameter r), as in
(35), (36). Let j ∈ V . If ϕ j ∈ V is as defined in (70), then, for all i ∈ V ,

ϕ
j
i =

n−1∑

m=1

λ−1
m drjφ

m
i φm

j . (71)

In particular, if f j is as in (69) and i ∈ V , then f j
i ≥ 0 if and only if∑n−1

m=1 λ−1
m drjφ

m
i φm

j ≤ 0.

Proof Let j ∈ V . By Lemma 6.4 we know that ϕ j solves (45) for χ{ j}. Then by (54)
we can write, for all i ∈ V ,

ϕ
j
i =

n−1∑

m=1

λ−1
m 〈χ{ j}, φm〉V φm =

n−1∑

m=1

λ−1
m drjφ

m
i φm

j ,

where we used that,

〈χ{ j}, φm〉V =
∑

k∈V
drk δ jkφ

m
k = drjφ

m
j , (72)

where δ jk is the Kronecker delta.
The final statement follows from the definition of ϕ j in Lemma 6.4, which shows

that, for all i ∈ V , f j
i ≥ 0 if and only ϕ

j
i ≤ 0. ��

Corollary 6.6 Let G = (V, E, ω) ∈ G. For all j ∈ V , let ϕ j be as in (70), let f j be
as in (69), and let νV \{ j} be the equilibrium measure for V \{ j} as in (12). If r = 0,
then, for all i, j ∈ V , ϕ j

i = ϕi
j , f

j
i = f ij , and

ν
V \{ j}
i − A

(
νV \{ j})

i
= ν

V \{i}
j − A

(
νV \{i})

j
.

Proof This follows immediately from (71), (70), and (69). ��
Remark 6.7 The result of Corollary 6.5 is not only an ingredient in the proof of
Theorem 6.9, but can also be useful when testing numerically whether or not a graph
is in C or in C0.
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Lemma 6.8 Let γ ≥ 0 and let G = (V, E, ω) ∈ Cγ . Let L be as defined in (46).
Let λm and φm be the eigenvalues and corresponding eigenfunctions of the graph
Laplacian � (with parameter r), as in (35), (36) and define

ω̃i j :=
{

−drj
∑n−1

m=1 �mφm
i φm

j , if i �= j,

0, if i = j,
(73)

where �m is defined in (56). Then, for all i, j ∈ V , ω̃i j ≥ 0. Moreover, if ωi j > 0,
then ω̃i j > 0. If, additionally, G ∈ C, then ω̃i j ≥ d−r

i ωi j .

Proof Expanding χ{ j} as in (38) and using (72), we find, for i, j ∈ V ,

(Lχ{ j})i =
n−1∑

m=1

〈χ{ j}, φm〉V
(
Lφm)

i = drj

n−1∑

m=1

�mφm
j φm

i . (74)

Note in particular that, if i �= j , then ω̃i j = −(Lχ{ j})i .
For i, j ∈ V we also compute

(�χ{ j})i = d−r
i

∑

k∈V
ωik(δ j i − δ jk) = d−r

i (diδ j i − ωi j ), (75)

hence, if i �= j , then ωi j = −dri
(
�χ{ j}

)
i . Combining the above with (70), we find

for i �= j ,

ω̃i j = −(Lχ{ j})i = − (�χ{ j}
)
i − γ ϕ

j
i = d−r

i ωi j + γ
drj

vol (V )
f j
i ≥ 0, (76)

where the inequality follows since G ∈ Cγ (note that for γ = 0 the inequality follows
from the nonnegativity of ω). Moreover, if ωi j > 0, then, by definition of Cγ , the
inequality is strict, and thus ω̃i j > 0.16

If additionally G ∈ C, then, for i �= j , f j
i ≥ 0 and thus by (76), ω̃i j ≥ ωi j . ��

Lemma 6.8 suggests that, given a graph G ∈ Cγ with edge weights ω, we can
construct a new graph G̃ with edge weights ω̃ as in (73), that are also nonnegative.
The next theorem shows that, in fact, if r = 0, then this new graph is in G and the
graph Laplacian �̃ on G̃ is related to L .

Theorem 6.9 Let γ ≥ 0 and let G = (V, E, ω) ∈ Cγ . Let L be as defined in (46).
Let λm and φm be the eigenvalues and corresponding eigenfunctions of the graph
Laplacian � (with parameter r), as in (35), (36). Assume r = 0 and let ω̃ be as in
(73). Let Ẽ ⊂ V 2 contain an undirected edge (i, j) between i ∈ V and j ∈ V if
and only if ω̃i j > 0. Then G̃ = (V, Ẽ, ω̃) ∈ G. Let �̃ be the graph Laplacian (with
parameter r̃ ) on G̃. If r̃ = 0, then �̃ = L.

16 This property is used to prove connectedness of G̃ in Theorem 6.9, which is the reason why we did not

define Cγ to simply be

{
G ∈ G : ∀ j ∈ V ∀i ∈ V \{ j} d−r

i ωi j + γ
drj

vol(V )
f ji ≥ 0

}
.
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Proof In the following it is instructive to keep r, r̃ ∈ [0, 1] as unspecified parameters
in the proof and point out explicitly where the assumptions r = 0 and r̃ = 0 are used.

From the definition of ω̃i j in (73) it follows directly that G̃ has no self-loops
(ω̃i i = 0). Moreover, using r = 0 in (73), we see that ω̃i j = ω̃ j i and thus G̃ is
undirected. Furthermore, by Lemma 6.8 we know that, for all i, j ∈ V , if ωi j > 0,
then ω̃i j > 0. Thus G̃ is connected, because G is connected. Hence G̃ ∈ G.

Repeating the computation from (75) for �̃ instead of �, we find, for i, j ∈ V ,

(
�̃χ{ j}

)

i
= d̃−r̃

i

(
d̃iδ j i − ω̃i j

)
, (77)

where d̃i := ∑
j∈V ω̃i j . Combining this with (74), we find that, if j ∈ V and i ∈

V \{ j}, then
(
�̃χ{ j}

)

i
= −d̃−r̃

i ω̃i j = d̃−r̃
i drj

n−1∑

m=1

�mφm
j φm

i = d̃−r̃
i

(
Lχ{ j}

)
i . (78)

Since we have 0 = 〈φm, χV 〉V =
∑

j∈V
drjφ

m
j , it follows that, for all i ∈ V ,

dri φ
m
i = −∑ j∈V \{i} drjφ

m
j . Thus, for i ∈ V , d̃i = ∑

j∈V ω̃i j = ∑
j∈V \{i} ω̃i j =

−∑n−1
m=1 �m

∑
j∈V \{i} drjφ

m
j φm

i = dri
∑n−1

m=1 �m
(
φm
i

)2
.By (74) and (77)with i = j ,

we then have

(
�̃χ{i}

)

i
= d̃1−r̃

i =
(
dri

n−1∑

m=1

�m
(
φm
i

)2
)1−r̃

= ((Lχ{i})i
)1−r̃

. (79)

Now we use r̃ = 0 in (78) and (79) to deduce that, for all j ∈ V , �̃χ{ j} = Lχ{ j}.
Since {χ{i} ∈ V : i ∈ V } is a basis for the vector space V , we conclude �̃ = L . ��
Remark 6.10 In the proof of Theorem 6.9, we can trace the roles that r and r̃ play.
We only used the assumption r = 0 in order te deduce that G̃ is undirected. The
assumption r̃ = 0 is necessary to obtain equality between �̃ and L in equations (78)
and (79).

These assumptions on r and r̃ have a further interesting consequence. Since the
graphs G and G̃ have the same node set, both graphs also have the same associated set
of node functions V . Moreover, since r = r̃ = 0, the V-inner product is the same for
both graphs. Hence we can viewV corresponding toG as the same inner product space
asV corresponding to G̃. In this setting the operator equality �̃ = L fromTheorem 6.9
holds not only between operators on the vector space V , but also between operators
on the inner product space V .
Lemma 6.11 Let γ ≥ 0, q = 1, and let G = (V, E, ω) ∈ Cγ . Assume r = 0. Let ω̃ be
as in (73)and Ẽ as in Theorem6.9. Let r̃ be the r-parameter corresponding to the graph
G̃ = (V, Ẽ, ω̃). Suppose S ⊂ V , F0 is as in (32), for all i ∈ V d̃i := ∑

j∈V ω̃i j ,
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and κ̃S is the graph curvature of S as in Definition 3.4 corresponding to ω̃. Then

F0(χS) =∑i, j∈S ω̃i j . Moreover, if r̃ = 0, F0(χS) =∑i∈S
(
d̃i − (κ̃S)i

)
.

Proof From Corollary 4.12 and (56) we find

F0(χS) =
n−1∑

m=1

�m〈χS, φ
m〉2V =

n−1∑

m=1

�m

∑

i, j∈V
(χS) i (χS) j d

r
i d

r
jφ

m
i φm

j

=
∑

i, j∈V
(χS)i (χS) j ω̃i j ,

where we used that r = 0. Moreover, if r̃ = 0,
∑

i, j∈S ω̃i j = ∑
i∈S
(∑

j∈V ω̃i j−
∑

j∈V \S ω̃i j

)
=∑i∈S

(
d̃i − (κ̃S)i

)
. ��

Lemma S7.7 in Supplementary Materials gives upper and lower bounds on ω̃ − ω

in terms of the Laplacian eigenvalues and eigenfunctions. Remarks S7.8 and S7.9
interpret these conditions in terms of the algebraic connectivity of the graph and use
them to give some intuition about the (mcOKMBO) dynamics. Lemma S7.10 and
Remarks S7.11 and S7.12 use the star graph to illustrate the results from this section.

6.2 More Comparison Principles

Theorem 6.9 tells us that, if γ ≥ 0 is such thatG ∈ Cγ and if r = 0, then the dynamics
in (47) can be viewed as graph diffusion on a new graph with the same node set, but a
different edge set and weights, as the original graph G. We can use this to prove that
properties of � also hold for L on such graphs. Note that, when γ = 0, L = �, so
this can be viewed as a generalization of results for � to L .

In this section, we prove a generalization of Lemma 3.1 and a generalization of the
comparison principle in (van Gennip et al. 2014, Lemma 2.6(d)). In fact, despite the
new graph construction in Theorem 6.9 requiring r = 0 for symmetry reasons (see
Remark 6.10), the crucial ingredient that will allow these generalizations is that G ∈
Cγ ; the assumption on r is not required. We will also see a counterexample illustrating
that this generalization does not extend (at least not without further assumptions) to
graphs that are not in Cγ .

Lemma 6.12 gives a result which we need to prove the comparison principles in
Lemmas 6.13 and 6.15.

Lemma 6.12 Let γ ≥ 0, G = (V, E, ω) ∈ Cγ , w ∈ V , and let i∗ ∈ V be such that
wi∗ = mini∈V wi . Let ϕ ∈ V solve (45) for w. Then ϕi∗ ≤ 0.

Proof Let j ∈ V and let ϕ j ∈ V be as in (70). Then, by Lemma 6.4, we have that

�ϕ j = χ{ j} − A (χ{ j}
)
and M

(
ϕ j
)

= 0. Furthermore, by Definition 6.1 and (70),

it follows that, for all i ∈ V \{ j}, ϕ
j
i ≤ 0. Because w =

∑
j∈V w jχ{ j}, we have

A(w) =
∑

j∈V w jA
(
χ{ j}

)
and thus �ϕ =

∑
j∈V w j

(
χ{ j} − A (χ{ j}

))
. Since
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also M
(∑

j∈V w jϕ
j
)

=
∑

j∈V
M
(
w jϕ

j
)

= 0, we find that ϕ =
∑

j∈V ϕ j .

Hence ϕi∗ =
∑

j∈V w jϕ
j
i∗ = wi∗ϕ

i∗
i∗ +

∑
j∈V \{i∗} w jϕ

j
i∗ . For j �= i∗, we know

that wi∗ ≤ w j and ϕ
j
i∗ ≤ 0, hence w jϕ

j
i∗ ≤ wi∗ϕ

j
i∗ . Therefore ϕi∗ ≤ wi∗ϕ

i∗
i∗ +∑

j∈V \{i∗} wi∗ϕ
j
i∗ = wi∗

∑

j∈V
ϕ
j
i∗ . If we define ϕ̃ :=

∑
j∈V ϕ j =

∑
j∈V (χV ) j ϕ

j ,

then by a similar argument as above, �ϕ̃ = χV − A (χV ) = 0 andM (ϕ̃) = 0. Thus
ϕ̃ = 0 and we conclude that ϕi∗ ≤ 0. ��
Lemma 6.13 (Generalization of comparison principle I). Let γ ≥ 0, G =
(V, E, ω) ∈ Cγ , and let V ′ be a proper subset of V . Assume that u, v ∈ V are
such that, for all i ∈ V ′, (Lu)i ≥ (Lv)i and, for all i ∈ V \V ′, ui ≥ vi . Then, for all
i ∈ V , ui ≥ vi .

Proof When r = 0, we know that L = �̃, where �̃ is the graph Laplacian on the
graph G̃, in the notation from Theorem 6.9. Because G and G̃ have the same node set
V , the result follows immediately by applying Lemma 3.1 to �̃. We will, however,
prove the generalization for any r ∈ [0, 1].

Let the situation and notation be as in the proof of Lemma 3.1, with the exception
that now, for all i ∈ V ′, (Lw)i ≥ 0 (instead of (�w)i ≥ 0). Let ϕ ∈ V by such that
�ϕ = w − A(w) and M(w) = 0. Proceed with the proof in the same way as the
proof of Lemma 3.1, up to and including the assumption that min j∈V w j < 0 and
the subsequent construction of the path from U to i∗ and the special nodes j∗ and
k∗ on this path. Then, as in that proof, we know that (�w)∗j < 0. Moreover, since
w j∗ = mini∈V wi , we know by Lemma 6.12 that ϕ j∗ ≤ 0. Hence, for all γ ≥ 0,
(Lw)∗j < 0. This contradicts the assumption that, for all i ∈ V ′, (Lw)i ≥ 0, hence
mini∈V wi ≥ 0 and the result is proven. ��

The following corollary of Lemma 6.12 will be useful in proving Lemma 6.15

Corollary 6.14 Let γ ≥ 0, G = (V, E, ω) ∈ Cγ . Assume that u, ũ ∈ V satisfy, for all
i ∈ V , ui ≤ ũi , and let there be an i∗ ∈ V such that ui∗ = ũi∗ . Then (Lu)i∗ ≥ (Lũ)i∗ .

Proof Define w := ũ − u, then, for all i ∈ V , w ≥ 0 and wi∗ = 0. We compute

dri∗(�w)i∗ = di∗wi∗ −
∑

j∈V
ωi∗ jw j = −

∑

j∈V
ωi∗ jw j ≤ 0.

Let ϕ ∈ V solve (45) for w. Since wi∗ = mini∈V wi , we have by Lemma 6.12 that
ϕi∗ ≤ 0. Hence

(Lũ)i∗ − (Lu)i∗ = (Lw)i∗ = (�w)i∗ + γ ϕi∗ ≤ 0.

��
Lemma 6.15 (Comparison principle II).Let γ ≥ 0, G = (V, E, ω) ∈ Cγ , u0, v0 ∈ V ,
and let u, v ∈ V∞ be solutions to (47), with initial conditions u0 and v0, respectively.
If, for all i ∈ V , (u0)i ≤ (v0)i , then, for all t ≥ 0 and for all i ∈ V , ui (t) ≤ vi (t).
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Proof If r = 0 we note that, by Theorem 6.9, L can be rewritten as a graph Laplacian
on a new graph G̃ with the same node set V . The result in (van Gennip et al. 2014,
Lemma 2.6(d)) shows the desired conclusion holds for graph Laplacians (i.e. when
γ = 0) and thus we can apply it to the graph Laplacian on G̃ to obtain to result for L
on G.

In the general case when r ∈ [0, 1], Corollary 6.14 tells us that L satisfies the
condition which is called W+ in Szarski (1965, Section 4).17 Since, for a given initial
condition, the solution to (47) is unique, the result now follows by applying (Szarski
1965, Theorem 9.3 or Szarski 1965, Theorem 9.4). ��
Corollary 6.16 Let γ ≥ 0, G = (V, E, ω) ∈ Cγ , and let w ∈ V∞ be a solution
to (47) with initial condition w0 ∈ V . Let c1, c2 ∈ R be such that, for all i ∈ V ,
c1 ≤ (w0)i ≤ c2. Then, for all t ≥ 0 and for all i ∈ V , c1 ≤ wi (t) ≤ c2.

In particular, for all t ≥ 0, ‖w(t)‖V,∞ ≤ ‖w0‖V,∞.

Proof First note that c1 and c2 always exist, since V is finite.
If u ∈ V∞ solves (47) with initial condition u0 = c1χV ∈ V , then, for all t ≥ 0,

u(t) = c1χV . Applying Lemma 6.15 with v0 = w0 and v = w, we obtain that, for
all t ≥ 0 and for all i ∈ V , wi (t) ≥ c1. Similarly, if v ∈ V∞ solves (47) with initial
condition v0 = c2χV ∈ V , then, for all t ≥ 0, u(t) = c2χV . Hence, Lemma 6.15 with
u0 = w0 and u = w tells us that, for all t ≥ 0 and for all i ∈ V , wi (t) ≤ c2.

The final statement follows by noting that, for all i ∈ V , −‖w0‖V,∞ ≤ (w0)i ≤
‖w0‖V,∞. ��
Remark 6.17 Numerical simulations show that when G /∈ Cγ , the results from Corol-
lary 6.16 do not necessarily hold for all t > 0. For example, consider an unweighted
4-regular graph (in the notation of Section S9.1 in Supplementary Materials we take
the graph G torus(900)) with r = 0 and γ = 0.7. We compute mini, j∈V (d−r

i ωi j +
γ

drj
vol(V )

f j
i ) ≈ −0.1906 in MATLAB using (70), (71), so the graph is not in C0.7.

Computing v(0.01) = e−0.01Lv0, where v0 is a {0, 1}-valued initial condition,18 we
find mini∈V vi (0.01) ≈ − 0.0033 < 0 and maxi∈V vi (0.01) ≈ 1.0033 > 1. Hence
the conclusions of Corollary 6.16 do not hold in this case.

We can use the result from Corollary 6.16 to prove a second pinning bound, in the
vein of Lemma S5.10, for graphs in Cγ ; see Lemma S8.1 in Supplementary Materials.

7 Numerical Implementations

We implement (mcOKMBO) (in MATLAB version 9.2.0.538062 (R2017a)) by com-
puting the eigenvalues �m with corresponding eigenfunctions λm and then using the

17 The property of L in Corollary 6.14 is sometimes also called quasimonotonicity, or, more properly it
can be seen as a consequence of quasimonotonicity in the sense of Volkmann (1972); Chaljub-Simon et al.
(1992); Herzog (2004).
18 To be precise, here we choose v0 based on the eigenvector corresponding to option (c) explained in
Section S9.3 in Supplementary Materials, with M = 450.
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spectral expansion from (57) to solve (47). This is similar in spirit to the spectral
expansion methods used in, for example (Bertozzi and Flenner 2012; Calatroni et al.
2017). However, in those papers an iterative method is used to deal with additional
terms in the equation. Here, we can deal with the operator L in (47) in one go. Note
that in other applications of spectral expansion methods, such as those in Bertozzi
and Flenner (2016), sometimes only a subset of the eigenvalues and corresponding
eigenfunctions is used. When n is very large, computation time can be saved, often
without a great loss of accuracy, by using a truncated version of (38) which only uses
the K � n smallest eigenvalues �m with corresponding eigenfunctions. The exam-
ples we show in this paper (and Supplementary Materials) are small enough that such
an approximation was not necessary, but it might be considered if the method is to be
run on large graphs.

Figure 1 shows the initial conditions and final states for three runs of (mcOKMBO)
on a two-moon graph Gmoons,19 with different values for γ . Figure 2 shows the cor-
responding values of Jτ (vk) and F0(vk) as a function of the iteration number k. In
each case, the algorithm was terminated when vk = vk−1, which is why in each plot
in Fig. 2 the final two values are the same.

As expected from Lemma 5.18, Jτ decreases along the iterates. By and large F0
also decreases, although Fig. 2d shows this is not necessarily always the case; also
note that the value at the final iterate is not guaranteed to be the minimum value among
all iterates (although in our tests it always is close, if not equal, to that minimum; see
the figures in Section S9 in Supplementary Materials).

In Section S9 of Supplementary Materials we provide additional results obtained
by running (mcOKMBO) on various different graphs, as well as in-depth discussions
about those results and the choice of τ , of the initial condition, and of the other
parameters (γ , q, r , M , N ) in the graph Ohta–Kawasaki model and the (mcOKMBO)
algorithm.

8 Discussion and Future Work

In this paper we presented three main results: the Lyapunov functionals associated
with the (mass conserving) Ohta–Kawasaki MBO schemes �-converge to the sharp
interface Ohta–Kawasaki functional; there exists a class of graphs on which this MBO
scheme can be interpreted as a standard graph MBO scheme on a transformed graph
(and for which additional comparison principles hold); the mass conserving Ohta–
Kawasaki MBO scheme works well in practice when attempting to minimize the
sharp interface graph Ohta–Kawasaki functional under a mass constraint. Along the
way we have also further developed the theory of PDE inspired graph problems and
added to the theoretical underpinnings of this field.

Future research on the graph Ohta–Kawasaki functional can mirror the research on
the continuumOhta–Kawasaki functional and attempt to prove the existence of certain
structures in minimizers on certain graphs, analogous to structures such as lamellae

19 Formore specifics about the construction ofGmoons and the initial conditions, see Sections S9.1 and S9.3
in Supplementary Materials, respectively.
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Fig. 1 Initial (left column) and final (right column) states of Algorithm (mcOKMBO) applied to Gmoons
with r = 0, M = 300, τ = 1 for a different value of γ in each row. The initial conditions are eigenfunction
based in the sense of option (c) in Section S9.3 in Supplementary Materials. The values of F0 at the
final iterates are approximately 109.48 (top row), 230.48 (middle row), and 626.89 (bottom row). a Initial
condition for γ = 0.1, b Final iterate (k = 21) for γ = 0.1, c Initial condition for γ = 1, d Final iterate
(k = 9) for γ = 1, e Initial condition for γ = 10 and f Final iterate (k = 7) for γ = 10
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Fig. 2 Plots of J1
(
vk
)
(left column) and F0

(
vk
)
(right column) for the applications of (mcOKMBO)

corresponding to Fig. 1. a Plot of J1
(
vk
)
for γ = 0.1, b Plot of F0

(
vk
)
for γ = 0.1, c Plot of J1

(
vk
)

for γ = 1, d Plot of F0
(
vk
)
for γ = 1, e Plot of J1

(
vk
)
for γ = 10 and f Plot of F0

(
vk
)
for γ = 10
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and droplets in the continuum case. The numerical methods presented in this paper
might also prove useful for simulations of minimizers of the continuum functional.

The �-convergence results presented in this paper also fit in well with the ongoing
programme, started in van Gennip et al. (2014), aimed at improving our understanding
how various PDE inspired graph-based processes, such as the graph MBO scheme,
graph Allen–Cahn equation, and graph mean curvature flow, are connected.

One of the initial hopes for the graph Ohta–Kawaski functional when starting this
research was that it might be helpful to detect particular structures in graphs [(similar
to how the graph Ginzburg–Landau functional can be used to detect cluster structures
(Bertozzi and Flenner 2012) and to how the signless graph Ginzburg–Landau func-
tional detects bipartite structures (Keetch and van Gennip in prep)]. So far this line of
research has not yielded concrete results, but it is worth keeping in mind as a potential
application, if such a structure can be identified.

We thank the anonymous referee of the first draft of this paper for the suggestion that
the mass conserving MBO scheme can be useful for data clustering with prescribed
cluster sizes. It would be interesting to pursue this idea in future research.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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