Structural and physico-chemical analysis of calcium/ strontium substituted, near-invert phosphate based glasses for biomedical applications

Faculty of Engineering, University of Nottingham, Nottingham, NG7 2RD, UK

ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, OX11 0QX, UK

Department of Medical Physics and Biomedical Engineering, University College London, London, UK

Abstract

Neutron diffraction, 23Na and 31P NMR and FTIR spectroscopy have been used to investigate the structural effects of substituting CaO with SrO in a 40P$_2$O$_5$·(16-x)CaO·20Na$_2$O·24MgO·xSrO glass, where x is 0, 4, 8, 12 and 16 mol%. The 31P solid-state NMR results showed similar amounts of Q1 and Q2 units for all of the multicomponent glasses investigated, showing that the substitution of Sr for Ca has no effect on the phosphate network. The M-O coordinations (M= Mg, Ca, Sr, Na) were determined for binary alkali and alkaline earth metaphosphates using neutron diffraction and broad asymmetric distributions of bond length were observed, with coordination numbers that were smaller and bond lengths that were shorter than in corresponding crystals. The Mg-O coordination number was determined most reliably as 5.0(2). The neutron diffraction results for the multicomponent glasses are consistent with a structural model in which the coordination of Ca, Sr and Na is the same as in the binary metaphosphate glass, whereas there is a definite shift of Mg-O bonds to longer distance. There is also a small but consistent increase in the Mg-O coordination number and the width of the distribution of Mg-O bond lengths, as Sr substitutes for Ca. Functional properties, including glass transition temperatures, thermal processing windows, dissolution rates and ion release profiles were also investigated. Dissolution studies showed a decrease in dissolution rate with initial addition of 4 mol% SrO, but further addition of SrO showed little change. The ion release profiles followed a similar trend to the dissolution rates observed. The limited changes in structure and dissolution rates observed for substitution of Ca with Sr in these fixed 40 mol% P$_2$O$_5$ glasses were attributed to their similarities in terms of ionic size and charge.

1. Introduction

Phosphate based glasses containing ions characteristically native to bone (Ca$^{2+}$, Na$^{2+}$, Mg$^{2+}$, PO$_4^{3-}$) have been widely investigated due to their fully resorbable properties, controlled dissolution rates, and biocompatible nature. The ability to control these properties makes phosphate glasses extremely well suited for delivery of therapeutic ions. Their use in both hard and soft tissue repair has been extensively studied and the benefits of adding these ions into bioactive materials have been summarised by Mourino et al. and Hoppe et al.

Research into bioactive glasses has focused on tailoring glass properties to address specific clinical needs. The ability to introduce new oxides to the basic sodium-calcium phosphate glass network is of great interest as it allows properties such as their dissolution rates to be tailored (see for example works studying the effect of MgO9, TiO$_2^1$ and Fe$_2$O$_3^{12}$) and the addition of therapeutic ions for controlled release into the body.
One of the most common treatments for osteoporosis was administration of low doses (316–634 mg/kg per day Sr⁴⁰) of strontium ranelate or strontium chloride for 9-26 weeks. This was shown to reduce bone resorption and stimulate bone formation via increased replication of osteoblastic cells. This beneficial since it is the imbalance of bone deposition and resorption which leads to osteoporosis¹⁴-¹⁶ and the dual effect of strontium on bone metabolism has been investigated by researchers for use in orthopaedic applications.¹⁷-²¹ Recent studies have shown that addition of strontium ions to phosphate glasses has the potential to aid treatment of osteoporosis.²², ²³ Strontium is known to follow a similar physiological pathway in humans as calcium, where a large portion accumulates in bone via ionic exchange of calcium for strontium, thus it has been used in bone therapies.²⁴ However, controversy does exist in the use of strontium in bone health products due to its ability to displace calcium in the bone at high concentrations and reside there, which in turn leads to increased attenuation of x-rays, leading to overestimation of bone mineral density (BMD) values.²⁵, ²⁶ By incorporating strontium into a fully degradable material, it should be possible to achieve a controlled release of strontium into the body over time.

The dissolution rates of phosphate glasses are dominated by their formulation, though factors such as pH and temperature can also have an effect. Multiple factors contribute to this dependence of dissolution on formulation. The two key factors are network connectivity²⁷ and the arrangement of modifier cations and modifier-chain bonding in the glass. Previous studies have shown that the addition of alkali and alkaline earth oxides to a phosphate network reduced the glass network connectivity by replacing BO (bridging oxygen) with NBO (non-bridging oxygen) in the phosphate backbone²⁸ and the modifier oxides occupied interstitial spaces between chains of [PO₄] units.²⁹ The ionic strengths of the modifiers will determine bond strength and this has been shown to influence physical properties such as glass transition temperature and dissolution rates. For example, a highly coordinated modifier cation, with high ionic strength, can increase cross-linking within the glass network, rendering the glass formulation less prone to dissolution.³⁰ The degradation properties of phosphate glasses are known to be sensitive to the glass structure and understanding the short and medium range order of specific formulations is important to allow glass formulations to be tuned for their potential therapeutic applications.

The dissolution of phosphate-based glasses, explained by Bunker et al.,³¹ occurs via three steps; initially H⁺ and OH⁻ ions are taken up on the surface of the glass via an acid/base reaction until fully saturated. This is followed by a hydration process where ion exchange occurs via an inward diffusion of H⁺ molecules and outward diffusion of alkali/alkaline earth cations, releasing chains into solution. The degree of hydration has been shown to be influenced by the concentration of mobile cations on the surface and the ratio of BO to NBO sites in the bulk glass matrix.³¹-³³ Both of these factors are dependent on the glass composition. This is then followed by hydrolysis of the chains in solution. Dissolution of the glass matrix results in a reduction of alkali ions on the outer surface.³¹ External factors such as solution pH and concentration of ions in the solution can also have a strong effect on dissolution rate, for example a decrease in pH has been shown to accelerate glass dissolution.³¹

The aim of this study was to investigate phosphate glass formulations which degraded and released strontium ions at a controlled rate. To achieve this it was desirable to substitute strontium into a previously investigated phosphate host glass formulation, ideally retaining the dissolution rate of this previously optimised glass.⁴ To enable this, strontium ions were introduced to the glass network (40P2O5·(16-x)CaO·20Na2O·24MgO·xSrO) by substitution for calcium to minimise the changes in the
glass structure; cations with the same valence and similar charge to size ratio can be easily substituted within glass structures. The glasses investigated had a fixed P_2O_5 content at 40 mol% which can be considered to be on the verge of an invert phosphate glass formulation. Invert glasses are defined as containing <40 mol% of P_2O_5, where they predominantly consist of pyro- and orthophosphates, thus forming a highly depolymerised network with properties governed by the modifier ions.

Structural studies examining substitution of calcium for strontium in a bioactive silicate glass formulation (49.46SiO$_2$-26.38Na$_2$O-1.07P$_2$O$_5$-(23.08-x)CaO-xSrO; where $x=0, 11.54, 23.08$) found a split in the Ca-O, Sr-O, and Na-O nearest neighbour correlations which was attributed to the cations bonding to BO and NBO atoms. This was in agreement with other studies of the sodium environment in silicate glasses. These studies of bioactive silicate glass compositions found that the substitution between two cations within the same periodic group did not disrupt the bonding within the silica glass network.

However, although several studies on the structure of phosphate based glasses have been conducted, very little is known about the effect of cation substitution on the structure of complex, multicomponent, lower phosphate containing glasses (i.e. for phosphate glasses close to invert glass formulations). This is primarily due to the difficulties associated with the deconvolution of overlapping modifier–oxygen peaks in diffraction data.

In this study, the effect of isostoichiometric substitution of CaO for SrO in a multicomponent phosphate glass fixed with 40 mol% P_2O_5 has been characterised through examination of the structure and properties of the glasses. Neutron diffraction, 31P MAS NMR and 23Na MAS NMR studies have been conducted to understand the short range order and the coordination environment of the modifiers and results have been related to the thermal properties, dissolution rates and ion release profiles of the glasses.

2. Experimental

2.1 Sample preparation

A series of two- (binaries) and five- (multi) component phosphate glasses, with a phosphate to cation ratio of 50:50 and 40:60 respectively, were made using the following precursors; P_2O_5 (Sigma Aldrich, assay 98%), NaH$_2$PO$_4$ (Sigma Aldrich, assay ≥99%), CaHPO$_4$ (Sigma Aldrich, assay 98-105.5%), MgHPO$_4$·3H$_2$O (Sigma Aldrich, assay ≥97%), and SrCO$_3$ (Sigma Aldrich, assay ≥99%) (See Table 1). Binary compositions with the same P_2O_5 content (40 mol% P_2O_5) as the multicomponent glasses would not form a glass. The weighed precursors were thoroughly mixed and heated in a 5% Au/95% Pt crucible at 350°C for 30 minutes to dehydrate and remove CO$_2$ before placing the mixture into a furnace and heated to 1150°C for 1.5h. The melts for the binary samples were quenched between two stainless steel plates and the melts for the multicomponent series were poured into preheated graphite moulds (10°C above the glass transition temperature of each sample). The latter were annealed for 1h, followed by slow cooling to room temperature overnight. The amorphous nature of all the multicomponent glasses was confirmed using a Bruker D500 X-ray diffractometer.

Table 1: Compositions and densities of the samples, with the preparation method indicated by X.
Table

<table>
<thead>
<tr>
<th>Sample</th>
<th>P₂O₅ (mol%)</th>
<th>CaO (mol%)</th>
<th>Na₂O (mol%)</th>
<th>MgO (mol%)</th>
<th>SrO (mol%)</th>
<th>Meltquenched</th>
<th>Castrod</th>
<th>Density (g cm⁻³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CaP₂O₆</td>
<td>50</td>
<td>50</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>X</td>
<td>-</td>
<td>2.69</td>
</tr>
<tr>
<td>Na₃P₂O₄</td>
<td>50</td>
<td>-</td>
<td>50</td>
<td>-</td>
<td>-</td>
<td>X</td>
<td>-</td>
<td>2.55</td>
</tr>
<tr>
<td>MgP₂O₆</td>
<td>50</td>
<td>-</td>
<td>50</td>
<td>-</td>
<td>50</td>
<td>X</td>
<td>-</td>
<td>2.49</td>
</tr>
<tr>
<td>SrP₂O₆</td>
<td>50</td>
<td>-</td>
<td>-</td>
<td>50</td>
<td>X</td>
<td>-</td>
<td>-</td>
<td>3.30</td>
</tr>
<tr>
<td>P₄0</td>
<td>40</td>
<td>16</td>
<td>20</td>
<td>24</td>
<td>-</td>
<td>-</td>
<td>X</td>
<td>2.71</td>
</tr>
<tr>
<td>Sr₄</td>
<td>40</td>
<td>12</td>
<td>20</td>
<td>24</td>
<td>4</td>
<td>-</td>
<td>X</td>
<td>2.74</td>
</tr>
<tr>
<td>Sr₈</td>
<td>40</td>
<td>8</td>
<td>20</td>
<td>24</td>
<td>8</td>
<td>-</td>
<td>X</td>
<td>2.79</td>
</tr>
<tr>
<td>Sr₁₂</td>
<td>40</td>
<td>4</td>
<td>20</td>
<td>24</td>
<td>12</td>
<td>-</td>
<td>X</td>
<td>2.84</td>
</tr>
<tr>
<td>Sr₁₆</td>
<td>40</td>
<td>-</td>
<td>20</td>
<td>24</td>
<td>16</td>
<td>-</td>
<td>X</td>
<td>2.89</td>
</tr>
</tbody>
</table>

2.2 Density, molar volume and free volume

The density of each sample was measured three times using Micromeritics Accupyc1340 pycnometer, with helium as the displacement gas. For each measurement, a series of repeat readings were taken until a series of five results agreed within an error of ±0.02 g cm⁻³.

2.3 Thermal analysis

DSC measurements (TA Instruments SDT Q600, UK) were collected on 40mg of sample, with a particle size of 100–120 µm. These were heated from 50 °C to 1000 °C at a heating rate of 10 °C/minute under flowing argon gas to determine the glass transition temperature, Tg, crystallisation temperature, Tc, and melting temperature, Tm, of each glass sample.

2.4 Spectroscopy

Energy-dispersive X-ray spectroscopy (EDX) was used to determine glass composition. Glass samples were embedded in epoxy resin and ground using SiC paper followed by diamond polishing. Due to the hygroscopic nature of phosphate glass, industrial methylated spirit (IMS, Sigma Aldrich, UK, ≥99.5%) was used as a lubricating medium to prevent degradation of the sample. Samples were then placed in an ultrasonic bath of IMS for 10 minutes and left to dry, followed by carbon coating with a thickness of ~15nm. EDX measurements of composition were carried out using Oxford Instruments INCA EDX system fitted with a Si-Li crystal detector. The EDX system was attached to a Philips XL30 scanning electron and operated in backscattered electron mode, with an accelerating voltage of 20kV and a working distance of 10mm. Analysis was conducted on three separate areas on each sample, and three separate samples were used for each multicomponent composition.

Fourier transform infrared spectroscopy (FTIR) was performed on all multicomponent glasses using a Bruker Tensor-27 Fourier transform infrared spectrometer. Glass samples were ground to a fine powder (45-63 µm) and scanned over the range 0 – 4000 cm⁻¹. The spectra were analysed using the OPUS™ software which included subtraction of air as background.

Solid-state ³¹P and ²³Na NMR spectra were obtained via the EPSRC UK National Solid-state NMR Service at Durham using a Varian VNMRS spectrometer and a 4 mm magic-angle spinning probe with a spin rate of 11–12 kHz. They were recorded using direct excitation at a Larmor frequency of 161.87 MHz for ³¹P and 105.78 MHz for ²³Na NMR. The ³¹P spectra were obtained with a 300 second pulse
delay and 4.4 μs pulse duration and were referenced to 85% H₃PO₄. The ²³Na spectra were acquired with a 1 s pulse delay and 1.0 μs pulse duration and were referenced to 0.1 M aqueous NaCl.

2.5 Neutron diffraction

Neutron diffraction data were collected on the GEM diffractometer⁴⁵ at the ISIS spallation neutron source at Rutherford Appleton Laboratory, UK.

In a neutron diffraction experiment, the differential cross section, \(\frac{d\sigma}{d\Omega} \) or total scattering, \(I(Q) \) is measured:

\[
\frac{d\sigma}{d\Omega} = I(Q) = I^s(Q) + i(Q)
\]

where the total scattering from a sample is equal to the sum of the self-scattering, \(I^s(Q) \), and the distinct scattering, \(i(Q) \). Coarsely ground binary samples were contained in vanadium cylinders with a diameter of 10.3 mm and wall thickness of 40 μm. The Sr-series glasses were cast into rods and fixed to sample holders, eliminating the need for a container. In addition to collecting interference patterns for each sample, data for the empty cans, a vanadium rod and the empty instrument were also obtained in order to carry out the appropriate corrections (for attenuation, multiple scattering and self-scattering) using the programme GUDRUN⁴⁶ and ATLAS⁴⁷ software.

The total correlation function \((T(r)) \) can then be calculated via Fourier transformation of \(i(Q) \).

\[
T(r) = T^0(r) + \frac{2}{\pi} \int_0^\infty Q i(Q) M(Q) \sin(rQ) dQ
\]

Where \(T^0(r) \) is the average density contribution to the correlation function \(T^0(r) = 4\pi\rho^0 \left(\sum_{l=1}^{N} c_l \bar{b}_l \right)^2 \), \(r \) is the distance between atoms, \(\rho^0 \) is the average atomic number density, \(N \) is the number of elements in the sample, and \(c_l \) and \(\bar{b}_l \) are respectively the atomic fraction and coherent scattering for element \(l \). \(M(Q) \) is a modification function (e.g. Lorch⁴⁸ or step), which is used to take account of the fact that experimental data are only available up to some finite maximum momentum transfer, \(Q_{\text{max}} \), not infinity as in Equation (2).

Structural information was obtained by fitting \(T(r) \), which is the weighted sum of all the possible partial correlation functions, \(t_{\ell\ell'}(r) \), given by

\[
T(r) = \sum_{\ell\ell'} c_\ell \bar{b}_\ell t_{\ell\ell'}(r)
\]

At short distances, where a peak in \(T(r) \) arises from only one particular pair of elements \((\ell \text{ and } \ell') \), the peak area, \(A_{\ell\ell'} \), interatomic distance, \(r_{\ell\ell'} \), and the coordination number, \(n_{\ell\ell'} \), can be calculated, according to:

\[
n_{\ell\ell'} = \frac{A_{\ell\ell'} r_{\ell\ell'}^2}{(2-\delta_{\ell\ell'}) c_\ell \bar{b}_\ell \bar{b}_{\ell'}}
\]

where \(\delta_{\ell\ell'} \) is the Kronecker delta.
2.6 Dissolution and ion release studies

The dissolution studies were conducted using glass discs (c.a. 9mm Ø by 5mm width) degraded in 30ml of ultra-pure water (18.2 MΩ) at 37°C. The medium was replenished at each time point (1, 3, 7, 14, 21 and 28 days) replaced with 30ml of fresh ultra-pure water along with conducting pH measurements at each time point. This study was repeated using discs with a dimension of c.a. 9mm Ø by 10mm width in deionised water (DI) and phosphate-buffered saline (PBS). The release of Ca2+, Na+, Mg2+ and Sr2+ from the dissolution media at each time point were quantified using an ICS-1000 ion chromatography system (Thermo Scientific, Dionex, UK). An eluent of 20mM methanosulfonic acid (Sigma-Aldrich) was used. All specimens were analysed using a Dionex IonPac® CS12A 2mm x 250mm analytical column, and analysed under suppressed conductivity (CSRS 300 2mm, Thermo Scientific, Dionex). Results were calculated against a four-point calibration curve using a Combined Six Cation Standard II and Strontium (Sr2+) 1000mg/l in water (Thermo Fisher Scientific). A stock solution containing the cations was prepared. From which serially diluted cation standards were prepared at the following dilution factors; 1:1024, 1:256, 1:64 and 1:16. Data analysis was performed using the Chromeleon® software, and the cumulative release per unit area of each sample was calculated.

3. Results and discussion

The bulk characterisation results presented here are those of the multicomponent glasses in the series P40, Sr4, Sr8, Sr12 and Sr16. The binary glasses were fabricated and analysed in order to aid deconvolution of the neutron diffraction correlation functions measured for the multicomponent glasses.

3.1 Glass characterisation

EDX analyses (see Figure 1) confirmed all compositions to be within the 1-2% of the target composition, and hence the nominal compositions were used for the analysis of the structural studies. A ~1 mol% reduction in CaO was accompanied by a SrO increase of ~1 mol% compared to that of the target values. Similar increases/decreases in compositions and error margins have also been reported previously when investigating PBG and such discrepancies were attributed to losses occurring during melting, and/or due to the initial compositions of the precursor salts themselves, in particular those containing phosphate, due to its hygroscopic nature.$^4, 49-51$
The atomic mass of Sr is more than double that of calcium, resulting in an increase in density from 2.71 to 2.89 g/cm3 as SrO is substituted for CaO (see Figure 2). In contrast, only a small linear change in molar volume was observed across the compositional range (from 29.44 cm3 mol$^{-1}$ to 31.78 cm3 mol$^{-1}$) due to the similarity in ionic radii. The changes observed with increasing SrO content also correlated well with results of a previous study in the literature19 which reported a 0.04 g/cm3 increase on substituting 5 mol% SrO for Na$_2$O in a series of glasses with composition 50P$_2$O$_5$·(20- x)Na$_2$O·30CaO·xSrO where x = 1, 3 and 5 mol%. Al Qaysi et al.51 also reported a linear change from 2.6 g/cm3 to 3.0 g/cm3 when substituting SrO for CaO in a 50P$_2$O$_5$·10Na$_2$O·5TiO$_2$·(35-x)CaO·xSrO where x = 0, 3.5, 17.5 and 35 glass system.
Figure 2: Density and molar volume of the multicomponent glasses $40P_2O_5·(16-x)CaO·20Na_2O·24MgO·xSrO$ glass. The ionic radius and mass of calcium and strontium atoms, and the mass and radius ratios between the two are also shown.

3.2 Thermal analyses

Figure 3 and Table 2 show the DTA traces of the multicomponent glasses investigated. Results showed very little change in T_g when substituting strontium for calcium, with a decrease of only 7 °C. Direct comparisons between this work and studies in the literature is made difficult by the very different modifier concentrations in the various glass series discussed. The small change in T_g observed in this study is attributed to the similar charges and M-O (where M is the modifier) bond strengths of Ca^{2+} and Sr^{2+} with both ions playing a similar role in the network structure and Lakhkar et al. observed similar results to those reported here when substituting SrO for CaO in the PBG system $50P_2O_5·(30-x)CaO·17Na_2O·3TiO_2·xSrO$ (where $x = 0, 1, 3, 5$). Abou Neel et al. showed that when Sr^{2+} was substituted with Na^+, a monovalent cation, in the PBG system $50P_2O_5·(20-x)Na_2O·30CaO·xSrO$ (where $x = 0, 1, 3$ and 5 mol%), a large decrease in T_g, from 383 to 428 °C was reported.

Work on silicate glass systems has shown that the substitution of strontium for calcium resulted in an increase in T_g and it was suggested that this was due to the expansion and disruption of the silicate glass network with increased strontium due to the larger ionic radius of Sr compared to Ca. The different behaviours in the two networks could be attributed to the presence of NBOs.
associated with the P atoms, where the double bonded oxygen is not present in silicate glasses, thus forming a continuous 3D glass network.

Figure 3: Thermal traces showing T_g, T_c and T_m of the multicomponent glass samples.

Table 2: Glass transition, T_g, crystallisation, T_c, onset of crystallisation, T_{onset}, and melting temperatures, T_m, for each composition is given along with the calculated thermal processing window, T_{onset}-T_g, of each glass.

<table>
<thead>
<tr>
<th>Glass code</th>
<th>T_g (ºC)</th>
<th>T_{onset} (ºC)</th>
<th>T_c (ºC)</th>
<th>T_m (ºC)</th>
<th>T_{onset} (ºC)</th>
<th>T_{onset}-T_g (ºC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P40</td>
<td>450 ± 0.71</td>
<td>573 ± 0.14</td>
<td>591 ± 0.00</td>
<td>762 ± 0.01</td>
<td>123</td>
<td></td>
</tr>
<tr>
<td>Sr4</td>
<td>447 ± 0.76</td>
<td>588 ± 0.24</td>
<td>609 ± 0.00</td>
<td>759 ± 0.00</td>
<td>141</td>
<td></td>
</tr>
<tr>
<td>Sr8</td>
<td>447 ± 0.63</td>
<td>582 ± 1.13</td>
<td>601 ± 0.00</td>
<td>734 ± 0.34</td>
<td>854 ± 2.45</td>
<td>135</td>
</tr>
<tr>
<td>Sr12</td>
<td>447 ± 0.83</td>
<td>571 ± 0.18</td>
<td>589 ± 0.00</td>
<td>685 ± 0.60</td>
<td>742 ± 0.05</td>
<td>124</td>
</tr>
<tr>
<td>Sr16</td>
<td>443 ± 0.28</td>
<td>538 ± 0.24</td>
<td>565 ± 0.20</td>
<td>679 ± 0.33</td>
<td>725 ± 0.71</td>
<td>95</td>
</tr>
</tbody>
</table>

A distinctive crystallisation peak was seen to shift from 591ºC for the host glass composition (P40) to 609ºC with the addition of 4 mol% of SrO (Sr4), followed by a single melting peak. As more strontium was added to the glass (Sr8 – Sr16) the crystallisation temperature continues to decrease to 565ºC and the melting peaks became broader, less defined and reduced in area. With increasing addition of strontium to ≥ 8mol% SrO two melting features were observed, shifted to lower temperatures. This, coupled with the broadening of the crystallisation peak, was attributed to the presence of more than one crystalline phase. A recent study51 investigating the substitution of CaO for SrO in a fixed 50mol% P$_2$O$_5$ PBG system found that increasing SrO content led to a more prominent melting peak (which was not apparent in this study), and a reduction in the thermal processing window. The presence of two T_m peaks in PBG systems with fixed 45 and 50 mol% P$_2$O$_5$ have previously been correlated with the following two dominating crystal phases; sodium calcium phosphate
(NaCa(PO₃)₃), and a beta calcium metaphosphate (CaP₂O₆), as reported by Ahmed et al.¹ when investigating ternary 50P₂O₅·40CaO·10Na₂O and 55P₂O₅·35CaO·10Na₂O glass systems. They reported that the predominant crystal phase in both 45 and 50 mol% P₂O₅ ternary glasses was sodium-calcium phosphate. A NaCa(PO₃)₃ crystal phase was also found to be dominant in a previous study by Lakhkar et al.⁵⁴ when investigating CaO substitution with SrO in a P₂O₅·Na₂O-CaO-TiO₂·SrO glass system.

The materials thermal processing window; i.e. the gap between Tₘ and the onset of crystallisation, T_onset, can provide a good indication of the thermal stability of a glass system.⁵⁵ The thermal processing window data in Table 2 shows that addition of a fifth component to the glass system (i.e. 4 mol% of SrO) increased the thermal processing window from 123°C to 141°C. This could be explained by the effect of increasing the crystallisation barrier, thus increasing the energy barrier for the rearrangement of atoms in order to form a critical size defect i.e. the entropy of mixing increases.⁶⁶ ⁴⁹ Further substitution of CaO with SrO resulted in a gradual decrease in the thermal processing window which is suggested to be due to the lower field strength of Sr²⁺ (0.28 valence/Å²) compared to Ca²⁺ (0.33 valence/Å²) according to Dietzel.⁵⁶, ⁵⁷ This, correlated with the observation that the calcium free (Sr16) glass composition had to be cooled much more rapidly than the others to form a glass, agrees well with the work of Lee et al.⁵⁷, ⁵⁸ who observed that a higher tendency of crystallisation occurred with increasing SrO content in a 30P₂O₅·7MgO·3TiO₂·(60-x)CaO·xSrO and 30P₂O₅·7Na₂O·3TiO₂·(60-x)CaO·xSrO (mol %) glass system where x is 0-60. The narrowing of the thermal processing window with increasing SrO, may potentially make thermal post processing (such as extrusion and fibre drawing) of high strontium content phosphate glasses more difficult than for lower strontium containing formulations.

3.3 Fourier transform infra-red spectroscopy

Figure 4 shows the FTIR spectra for the multicomponent glasses studied. The prominent band positions (wavenumber cm⁻¹) are indicated by a dotted line and their assignmentss are shown in Table 3. The first two prominent absorption bands at 725 and 890 cm⁻¹ were attributed to symmetric and asymmetric stretching of P-O-P respectively.⁵⁹ The bands near 990 and 1100 cm⁻¹ have been assigned to symmetric and asymmetric stretching of chain end units associated with Q₄ units⁵⁹, ⁶⁰ and 1250 cm⁻¹ for asymmetric stretching of NBO in a phosphorous atom in Q₄ units.⁵¹, ⁶⁰, ⁶¹ where the n in Qⁿ refers to the number of BO atoms in the PO₄ tetrahedral unit. Both the peak intensity and position remained constant for all multicomponent glasses studied, suggesting similarities in structure between all compositions. Al Qaysi et al.⁵¹ investigated the FTIR spectra of Sr-containing phosphate glasses in the composition 50P₂O₅·10Na₂O·5TiO₂·(35-x)CaO·xSrO (where x=0, 3.5, 17.5 and 35), which showed an unexpected decrease in intensity for peaks at 900cm⁻¹ associated with P-O-P asymmetric stretching of Q₄ units and an increase in peak intensity at 1100cm⁻¹ associated with Q² units with increasing Sr content. The lack in variation between the samples examined in this study using FTIR was attributed to the fact that the O/P ratio (3.25) was constant for each sample, thus not influencing the network structure.
Figure 4: FTIR spectra obtained for multicomponent glasses. The dotted lines indicate prominent bands in the spectra.

Table 3: The FTIR wavenumbers (cm\(^{-1}\)) and band assignments attributed to the multicomponent glass samples.

<table>
<thead>
<tr>
<th>Wavenumber (cm(^{-1}))</th>
<th>Assignment (^{51, 59-61})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1250</td>
<td>Asymmetric stretching of two NBO bonded to a phosphorous atom in Q(^2) units</td>
</tr>
<tr>
<td>1100</td>
<td>Asymmetric stretching of Q(^1) chain end units</td>
</tr>
<tr>
<td>990</td>
<td>Symmetric stretching of Q(^1) chain end units</td>
</tr>
<tr>
<td>890</td>
<td>Asymmetric P-O-P stretching</td>
</tr>
<tr>
<td>725</td>
<td>Symmetric P-O-P stretching</td>
</tr>
</tbody>
</table>

3.4 Nuclear magnetic resonance spectroscopy

Figure 5 shows the solid-state \(^{31}\)P and \(^{23}\)Na NMR spectra for the multicomponent glasses. The two dominant isotropic peaks in the \(^{31}\)P NMR spectra are at ca. -8.0 ppm and -22 ppm and are ascribed to Q\(^1\) and Q\(^2\) units respectively.\(^{28, 59}\) The relative intensity of these features remained constant with Ca/Sr content, supporting the analysis of the FTIR spectra. This behaviour arises due to the oxygen concentration in the glasses which does not change. For an alkali or alkaline earth phosphate glass with a composition of 100y mol\% P\(_2\)O\(_5\), with y in the range from 0.5 to 0.333, there are expected to be only Q\(^2\) and Q\(^1\) units, with an abundance \(Q^2 = (1-2y)/y\) and \((5-1-Q^1)\). For the multicomponent glasses, y=0.4, and hence equal numbers of Q\(^2\) and Q\(^1\) units are expected. The fact that equal numbers are observed (Table 4) is evidence that all of the modifiers in the glass are indeed acting as network modifiers, and not as network formers. If the PBG contains only Q\(^2\) and Q\(^1\) units, then the average number of BO atoms in a PO\(_4\) unit is given by

\[N_{BO} = 2 - Q^1 \] \(^{(5)}\)
This is also sometimes referred to as network connectivity.27 Here, Q^n indicates the fraction of P with n bonds to bridging oxygen (BO), as determined by 31P NMR.

This study showed a constant network connectivity $N_{BO} \approx 1.5$ as given in Table 4. This corresponded to the fact that the overall modifier content was constant throughout the glass series. In summary, replacing calcium for strontium had minimal effects on the phosphorous environment as examined by MAS NMR and FTIR, and this outcome is predicted to have negligible effects on the dissolution rate of these glasses. If the PBG contains only Q^1 and Q^2 units, and there are no rings in the structure, then the average number of PO$_4$ tetrahedra in a chain is $\bar{N} = 2/Q^1$. Thus the average length of chains in our multicomponent glasses is four tetrahedra. This result is based on the assumption that two Q^1 units are required to terminate the ends of a chain, with Q^2 units between the ends. However, it is also assumed that there are no rings of PO$_4$ units. For compositions close to metaphosphate (O/P = 3) it has been shown that cyclic phosphate ring structures can also exist,62 necessitating the formation of shorter chains or phosphate dimers (i.e. pyrophosphates).

Figure 5 (b) shows each 23Na NMR spectrum. This exhibits a single, broad, slightly asymmetric peak at approximately 15 ppm.63, 64 Detailed information on the chemical environment for sodium is difficult to obtain due to the inability to eliminate second-order quadrupolar interactions and distribution of bond angles.63, 64 A study of the sodium environment in a binary sodium tellurite glass system found that increasing concentration of Na$_2$O in the glass, caused a change in chemical shift in the 23Na NMR spectra, which was attributed to a decrease in the sodium-oxygen coordination from six to five.65 The lack of change in chemical shift in this study indicated that substituting CaO for SrO had no effect on the local environment of sodium atoms in the glass.

Figure 5: Solid-state (a) 31P NMR and (b) 23Na NMR data of multicomponent glasses investigated.
Table 4: Chemical shifts (ppm referenced using H$_3$PO$_4$) and relative concentrations of Qn units determined by solid-state 31P NMR of each composition investigated and the numbers of bridging oxygens (BOs) and non-bridging oxygens (NBOs) per PO$_4$ unit, calculated using equation 5.

<table>
<thead>
<tr>
<th>Glass code</th>
<th>Relative intensity at -8 ppm /% (Q1)</th>
<th>Relative intensity at -22 ppm /% (Q2)</th>
<th>N$^\text{BO}$</th>
<th>N$^\text{NBO}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>P40</td>
<td>49</td>
<td>51</td>
<td>1.51</td>
<td>2.49</td>
</tr>
<tr>
<td>Sr4</td>
<td>49</td>
<td>51</td>
<td>1.51</td>
<td>2.49</td>
</tr>
<tr>
<td>Sr8</td>
<td>49</td>
<td>51</td>
<td>1.51</td>
<td>2.49</td>
</tr>
<tr>
<td>Sr12</td>
<td>50</td>
<td>50</td>
<td>1.50</td>
<td>2.50</td>
</tr>
<tr>
<td>Sr16</td>
<td>49</td>
<td>51</td>
<td>1.51</td>
<td>2.49</td>
</tr>
</tbody>
</table>

3.5 Neutron diffraction

Due to the complexity of the multicomponent glasses, extracting coordination information for each of the cations in the glass would be extremely difficult; each of the peaks in the correlation function arising from modifier-oxygen bonds overlaps with at least one other. In the case of the Sr-O peak, of primary interest for this study, there is overlap with peaks arising for Ca-O and Na-O bonds and O...O distances. To provide additional information with which to guide the fits to the correlation functions for the multicomponent glasses, neutron diffraction patterns were measured for relevant binary metaphosphate glasses (CaP$_2$O$_6$, SrP$_2$O$_6$, MgP$_2$O$_6$ and NaPO$_3$) in addition to the multicomponent glasses. Modifier-oxygen peak positions, widths and areas from fitting the correlation functions for the binary metaphosphate glasses were used to aid in the interpretation of the neutron diffraction data from the multicomponent glasses.

3.5.1 Diffraction patterns

The distinct scattering functions, $i(Q)$, for the binary metaphosphate glasses are shown in Figure 6a, with the main graph showing the low Q region in order to display the most prominent changes, and the insert showing the data to a maximum Q of 50 Å$^{-1}$, as used to Fourier transform the data. This high value of Q_{max} yields a narrow resolution in real-space. The high penetration of neutrons and high resolution in reciprocal-space gives good sensitivity to the presence of crystallinity, and hence the amorphylicity of each sample was confirmed via the lack of Bragg peaks. Neutron diffraction is highly sensitive to the presence of hydrogen in a sample, due to the high incoherent scattering cross-section of hydrogen, and thus the presence of water contamination is readily detected; there was no evidence for water contamination of the samples. The neutron diffraction data presented here are available from the ISIS Disordered Materials Database.\cite{isis}

The first sharp diffraction peak (FSDP) is at 1.56 Å$^{-1}$ for MgP$_2$O$_6$, and shifts slightly to higher Q with increasing alkaline earth radius (see Fig. 6a). This shift is surprising, because the position of the FSDP arises from the typical size of the cages formed by the network.\cite{fSDP} It has previously been suggested, on the basis of molar volume studies, that an expansion of the silicate network occurs when strontium is substituted for calcium in silicate glasses.\cite{strontium} However, the FSDP shift does not provide support for an expansion of the phosphate network as Sr substitutes for Ca. In contrast, the diffraction patterns for the multicomponent glasses showed almost no change in the FSDP with
composition (see Fig. 6b), suggesting that the size of the network cages does not change significantly as Sr substitutes for Ca.

Figure 6: Distinct scattering, $i(Q)$, of (a) binary metaphosphate, and (b) multicomponent glasses $40P_2O_5\cdot(16-x)CaO\cdot20Na_2O\cdot24MgO\cdot xSrO$ glass, where x is 0, 4, 8, 12 and 16 mol%.

3.5.2 The P–O coordination

Figure 7a shows the total correlation functions, $T(r)$, for the binary metaphosphate glasses, and Figure 7b displays the corresponding $T(r)$ for the multicomponent glasses. The step modification function was used to calculate $T(r)$ (see equation 2) for the region at low r preceding the dotted line (at 1.8 Å), and the Lorch modification function was used for the region subsequent to the dotted line at high r. The step modification function results in narrower real-space resolution, at the expense of much larger termination ripples either side of real peaks, and the use of the step function at low r reveals a splitting of the P-NBO and P-BO peaks at ca. 1.5 Å and ca. 1.6 Å respectively (Fig. 7a and 7b). Table 5 gives the parameters obtained by fitting these two peaks using the PFIT correlation.
function fitting software, which takes into account the real-space resolution function appropriate to the choice of modification function. For these fits, the correlation function obtained using the step modification function was fitted. In order to obtain reliable results, consistent between the samples, it was necessary to constrain the ratio of the two coordination numbers for P-NBO and P-BO. For an alkali or alkaline earth phosphate glass with a composition of 100γ mol\% P_2O_5, the ratio is $n_{P-BO}/n_{P-NBO}=4\gamma-1$, and hence it was constrained to be 1.0 for the binary metaphosphate glasses, and to be 0.6 for the multicomponent glasses (consistent with the 31P NMR results for these samples given in Table 4). The bond lengths and peak widths obtained are consistent with previous high real-space resolution studies, and in particular similar increases in both bond lengths with modifier content have been found previously. Total P-O coordination numbers from 3.77 to 4.00 were found; the expected P-O coordination number of these tetrahedral glasses is four, but it is common for the experimental values to be slightly lower than the expected value due to the damping of peaks at high r arising from Q-resolution (in reciprocal-space). It can also be noted that there is less variation in bond lengths amongst the multicomponent glasses than is observed for the binary glasses, indicating that the substitution of calcium for strontium has very little effect on the P-O bond lengths.
Figure 7: Total correlation functions, $T(r)$, of (a) binary glasses, and (b) multicomponent glasses, where the region before the vertical line at 1.8 Å was Fourier transformed using the step modification function, and the region after the dotted line was Fourier transformed using the Lorch48 modification function. Thick coloured lines are for experimental data, whilst thin black lines indicate fitted peaks (individual components are shown dashed, and sums of components are shown continuous).

Table 5: The phosphorous coordination in the binary and multicomponent glasses, from fitting $T(r)$ obtained using a step modification function.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Atom pair $l - l'$</th>
<th>Bond length $(r_{ll'}/\text{Å})$</th>
<th>Bond length variation $\langle u_{ll'}^2 \rangle^{1/2}/\text{Å}$</th>
<th>Coordination number $(n_{ll'})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>MgP$_2$O$_6$</td>
<td>P-NBO</td>
<td>1.4822 (4)</td>
<td>0.0347 (5)</td>
<td>1.92 (1)</td>
</tr>
<tr>
<td></td>
<td>P-BO</td>
<td>1.5998 (7)</td>
<td>0.0465 (6)</td>
<td>1.92 (1)</td>
</tr>
<tr>
<td></td>
<td>P-O sum</td>
<td></td>
<td></td>
<td>3.83 (2)</td>
</tr>
<tr>
<td>CaP$_2$O$_6$</td>
<td>P-NBO</td>
<td>1.4848 (4)</td>
<td>0.0375 (4)</td>
<td>2.00 (1)</td>
</tr>
<tr>
<td></td>
<td>P-BO</td>
<td>1.5969 (6)</td>
<td>0.0483 (5)</td>
<td>2.00 (1)</td>
</tr>
<tr>
<td></td>
<td>P-O sum</td>
<td></td>
<td></td>
<td>4.00 (2)</td>
</tr>
<tr>
<td>SrP$_2$O$_6$</td>
<td>P-NBO</td>
<td>1.4869 (4)</td>
<td>0.0356 (4)</td>
<td>1.88 (1)</td>
</tr>
<tr>
<td></td>
<td>P-BO</td>
<td>1.5962 (8)</td>
<td>0.0527 (7)</td>
<td>1.88 (1)</td>
</tr>
<tr>
<td></td>
<td>P-O sum</td>
<td></td>
<td></td>
<td>3.77 (2)</td>
</tr>
<tr>
<td>Na$_2$P$_2$O$_6$</td>
<td>P-NBO</td>
<td>1.4776 (8)</td>
<td>0.0365 (8)</td>
<td>1.93 (2)</td>
</tr>
<tr>
<td></td>
<td>P-BO</td>
<td>1.604 (1)</td>
<td>0.046 (1)</td>
<td>1.93 (2)</td>
</tr>
<tr>
<td></td>
<td>P-O sum</td>
<td></td>
<td></td>
<td>3.86 (4)</td>
</tr>
<tr>
<td>P40</td>
<td>P-NBO</td>
<td>1.49995 (5)</td>
<td>0.04196 (5)</td>
<td>2.458 (2)</td>
</tr>
<tr>
<td></td>
<td>P-BO</td>
<td>1.6039 (1)</td>
<td>0.0565 (1)</td>
<td>1.475 (1)</td>
</tr>
<tr>
<td></td>
<td>P-O sum</td>
<td></td>
<td></td>
<td>3.932 (3)</td>
</tr>
<tr>
<td>Sr4</td>
<td>P-NBO</td>
<td>1.4988 (2)</td>
<td>0.0386 (3)</td>
<td>2.435 (9)</td>
</tr>
<tr>
<td></td>
<td>P-BO</td>
<td>1.6031 (6)</td>
<td>0.0494 (6)</td>
<td>1.461 (5)</td>
</tr>
<tr>
<td></td>
<td>P-O sum</td>
<td></td>
<td></td>
<td>3.90 (1)</td>
</tr>
<tr>
<td>Sr8</td>
<td>P-NBO</td>
<td>1.4990 (1)</td>
<td>0.0383 (1)</td>
<td>2.407 (5)</td>
</tr>
<tr>
<td></td>
<td>P-BO</td>
<td>1.6079 (3)</td>
<td>0.0522 (3)</td>
<td>1.444 (3)</td>
</tr>
<tr>
<td></td>
<td>P-O sum</td>
<td></td>
<td></td>
<td>3.851 (8)</td>
</tr>
<tr>
<td>Sr12</td>
<td>P-NBO</td>
<td>1.4997 (2)</td>
<td>0.0383 (3)</td>
<td>2.41 (1)</td>
</tr>
<tr>
<td></td>
<td>P-BO</td>
<td>1.6083 (7)</td>
<td>0.0541 (6)</td>
<td>1.445 (7)</td>
</tr>
<tr>
<td></td>
<td>P-O sum</td>
<td></td>
<td></td>
<td>3.85 (2)</td>
</tr>
<tr>
<td>Sr16</td>
<td>P-NBO</td>
<td>1.4992 (3)</td>
<td>0.0394 (3)</td>
<td>2.38 (1)</td>
</tr>
<tr>
<td></td>
<td>P-BO</td>
<td>1.6070 (8)</td>
<td>0.0530 (7)</td>
<td>1.430 (6)</td>
</tr>
<tr>
<td></td>
<td>P-O sum</td>
<td></td>
<td></td>
<td>3.81 (2)</td>
</tr>
</tbody>
</table>

3.5.3 Modifier coordination in binary metaphosphates
The region of $T(r)$ from ca. 1.8 Å to ca. 2.7 Å has contributions from modifier M-O bonds, and also from O…O distances in PO$_4$ tetrahedra at ca. 2.5 Å. Whereas the P-O bonds can be resolved into two separate types of bond with distinctively different lengths, differing by ~0.1 Å, there is no evidence for a splitting in the 1.8-2.7 Å region into such narrowly resolvable interatomic distances. Therefore this region of $T(r)$ was obtained by Fourier transformation with the Lorch modification function, virtually eliminating termination ripples, but at the cost of some increase in real-space resolution.

Magnesium is the smallest of the modifier cations in this study, and the Mg-O peak in $T(r)$ for MgP$_2$O$_6$ is well separated from the O…O peak and the P-O peaks (Fig. 7a). Contrastingly, for all the other samples studied there is significant overlap between the M-O and O…O peaks. Thus $T(r)$ for MgP$_2$O$_6$ provides both a clear measurement of the Mg-O coordination, and a clear measurement of the O…O peak that can be used to aid the interpretation of the results for the other binary metaphosphate samples.

The Mg-O peak in $T(r)$ for MgP$_2$O$_6$ shows a clear asymmetry, with an extended tail on the long distance side, and hence it was fitted using two single distance peaks, with the parameters given in Table 6. Note that these two peaks are merely a convenient way of parameterising the distribution of Mg-O distances, and are not evidence of two discrete Mg-O bond lengths. The large error on the total Mg-O coordination number from the fit, 5.0±0.7, arises from the uncertainty of apportioning area between the two peak fit components, and is an over-estimate. Integration of the correlation function from 1.76 to 2.25 Å yields a Mg-O coordination number of 4.76±0.02 and a mean bond length of 2.001 Å, but provides no information on the distribution of distances. Integration gives an underestimate of the value of n_{MgO}, because the high r tail of the Mg-O distribution is not included. The difference between the two values for n_{MgO} can be taken as a realistic upper bound on the error in the coordination number, leading to a final result $n_{\text{MgO}}=5.0(2)$. There is a number of previous diffraction studies of MgP$_2$O$_6$ glass in the literature,$^{71-76}$ the earlier reports do not have sufficient real-space resolution to reveal the asymmetry of the Mg-O peak, but it has been noted in the later reports,$^{74-76}$ which have better resolution. The earlier reports with a symmetric distribution of Mg-O distances reported smaller coordination numbers ranging from 4.0 to 4.6, whereas the later reports with an asymmetric distribution reported larger coordination numbers ranging from 5.3 to 6.3. However, none of the previous reports had a value of Q_{max} as high in the present study, and this is the first time that MgP$_2$O$_6$ glass has been measured with sufficient resolution that there is insignificant overlap between the Mg-O and O…O peaks in $T(r)$; Fig.7 shows the best resolved measurement of the Mg-O peak that has yet been made.

It is most common in crystalline structures for Mg to be octahedrally coordinated by oxygen, and hence the measured coordination number of 5.0(2) is surprisingly low. For example, in crystalline Mg$_2$P$_2$O$_7$ there are two Mg sites and both are octahedral.77 Fig. 8a shows a comparison of $T(r)$ for MgP$_2$O$_6$ glass with a simulation for crystalline Mg$_2$P$_2$O$_7$, produced by use of the XTAL program.$^{78, 79}$ The simulated P-O, Mg-O and O…O peaks were broadened using the same values for the variation in bond length as obtained for the fits to $T(r)$ for the glass (Tables 5 and 6). There is a close similarity between the two P-O peaks at ~1.5 Å, since both glass and crystal are formed of PO$_4$ tetrahedra. However, there is a marked difference between the two Mg-O peaks at ~2.0 Å; for the glass the Mg-O peak is shifted to shorter distance and has smaller area. These differences are what is expected for a smaller coordination number in the glass, since bond valence consideration shows a strong correlation between coordination number and bond length.$^{80, 81}$ It is of note that studies of
magnesium silicate glasses also find an asymmetric distribution of Mg-O distances, and coordination numbers less than 6. In particular, the Mg-O coordination number in magnesium metasilicate glass, MgSiO$_3$, has been measured using neutron diffraction with isotopic substitution to be 4.5(1), with fitted bond lengths of 1.997 Å and 2.21 Å. Comparison of our measurement of $T(r)$ for MgP$_2$O$_6$ glass with the previous measurements that observed the asymmetric Mg-O distribution shows that they have over-estimated the extent to which the Mg-O distribution continues underneath the O…O peak in $T(r)$, due to insufficient resolution to clearly resolve the Mg-O and O…O peaks. This is the reason why they have obtained higher values for the coordination number.

Table 6 gives a calculation of the bond valence for the two fitted peaks, and their sum is very close to the ideal value of two (the formal valence of Mg$^{2+}$), indicating that the observed distribution of Mg-O coordination is a reasonable measurement. Finally, it is important to note that even though the Mg-O coordination number is low, 5.0(2), the NMR results indicate that MgO acts as a network modifier, not as a network former.

Figure 8: Comparisons between various total correlation functions, $T(r)$, evaluated using only the Lorch modification function, unless stated otherwise. a) MgP$_2$O$_6$ glass (blue, continuous line) compared with a simulation for crystalline Mg$_2$P$_4$O$_7$ (black, dashed line). b) Comparison of multicomponent glasses evaluated using the step modification function for distances shorter than 1.8 Å. c) MgP$_2$O$_6$ glass (blue, thick line) compared with P40 glass (black, thin line). The inset shows the two correlation functions in the region of the Mg-O peak, after division by the Mg-O coefficient (Eqn. 3) so as to yield the Mg-O partial correlation function, $t_{MgO}(r)$.

Page 18 of 32
Table 6: The M-O (and O...O) parameters from fitting the correlation functions, $T(r)$, of the binary metaphosphate glasses, and the multicomponent Sr-series glasses. See the text for details of the fitting. The valence calculated from the parameters for M-O bonds is also given.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Atom pair</th>
<th>Bond length ($r_{II'}/\text{Å}$)</th>
<th>Bond length variation ($\langle u_{II'}^2 \rangle^{1/2}/\text{Å}$)</th>
<th>Coordination number ($n_{II'}$)</th>
<th>M-O valence (e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MgP$_2$O$_6$</td>
<td>Mg-O</td>
<td>1.945 (1)</td>
<td>0.066 (4)</td>
<td>2.6 (5)</td>
<td>1.30</td>
</tr>
<tr>
<td></td>
<td>Mg-O</td>
<td>2.07 (3)</td>
<td>0.11 (1)</td>
<td>2.4 (5)</td>
<td>0.87</td>
</tr>
<tr>
<td></td>
<td>Mg-O sum</td>
<td>2.5059 (9)</td>
<td>0.084 (1)</td>
<td>5.0 (7)</td>
<td>2.17</td>
</tr>
<tr>
<td></td>
<td>O...O</td>
<td></td>
<td></td>
<td>4.29 (4)</td>
<td></td>
</tr>
<tr>
<td>CaP$_2$O$_6$</td>
<td>Ca-O</td>
<td>2.299 (2)</td>
<td>0.078 (2)</td>
<td>2.91 (6)</td>
<td>1.19</td>
</tr>
<tr>
<td></td>
<td>Ca-O</td>
<td>2.506 (2)</td>
<td>0.069 (2)</td>
<td>2.10 (7)</td>
<td>0.49</td>
</tr>
<tr>
<td></td>
<td>Ca-O sum</td>
<td></td>
<td></td>
<td>5.01 (9)</td>
<td>1.68</td>
</tr>
<tr>
<td>SrP$_2$O$_6$</td>
<td>Sr-O</td>
<td>2.559 (1)</td>
<td>0.111 (1)</td>
<td>5.10 (6)</td>
<td>1.55</td>
</tr>
<tr>
<td>Na$_2$P$_2$O$_6$</td>
<td>Na-O</td>
<td>2.284 (2)</td>
<td>0.100 (3)</td>
<td>2.58 (6)</td>
<td>0.70</td>
</tr>
<tr>
<td></td>
<td>Na-O</td>
<td>2.564 (3)</td>
<td>0.070 (5)</td>
<td>1.20 (7)</td>
<td>0.15</td>
</tr>
<tr>
<td></td>
<td>Na-O sum</td>
<td></td>
<td></td>
<td>3.77 (9)</td>
<td>0.85</td>
</tr>
<tr>
<td>Multicomponent Sr-series glasses</td>
<td>Mg-O</td>
<td>2.01</td>
<td>0.09</td>
<td>2.77</td>
<td>1.18</td>
</tr>
<tr>
<td></td>
<td>Mg-O</td>
<td>2.06</td>
<td>0.09</td>
<td>2.19</td>
<td>0.81</td>
</tr>
<tr>
<td></td>
<td>Mg-O sum</td>
<td>2.51</td>
<td>0.09</td>
<td>4.96</td>
<td>1.99</td>
</tr>
<tr>
<td></td>
<td>O...O</td>
<td></td>
<td></td>
<td>4.25</td>
<td></td>
</tr>
</tbody>
</table>

The peak at ca. 2.5 Å in $T(r)$ for MgP$_2$O$_6$ glass was fitted by a single peak with the parameters given in Table 6. The average O...O coordination number for the O...O distance in a PO$_4$ unit in an alkali or alkaline earth phosphate glass with 100$_y$ mol% P$_2$O$_5$ is given by

$$n_{OO} = 3n_{OP} = \frac{24y}{14+4y}$$

(6)

and thus for the metaphosphate composition (y=0.5) a value $n_{OO}=4$ is expected. The O...O coordination number, $n_{OO}=4.29(4)$, from the fit is larger than this value, and the discrepancy is also apparent from the glass/crystal comparison shown in Fig.8. In the crystal there are only O...O distances in the range ~2.25 Å – 2.7 Å, and the discrepancy is evidence that in the glass there are also a small number of other types of distance in this range. It is most probable that the extra contribution in this distance range is due to cation-cation pairs, perhaps P-P pairs with small P-Ö-P bond angles ~110°.

Whereas the Mg-O peak in $T(r)$ for MgP$_2$O$_6$ is well separated from the O...O peak, for the other binary metaphosphates the M-O peak (M=Ca, Sr, Na) overlaps to a large extent with the O...O peak, and thus the distributions of M-O distances cannot be determined by direct fitting of $T(r)$. However, since the metaphosphate samples all have the same stoichiometry, it is reasonable to assume that the O...O peak is very similar for all of them. Therefore, the O...O peak that was fitted to $T(r)$ for MgP$_2$O$_6$ was subtracted from $T(r)$ for each of the other binary metaphosphates, and then the
residual was fitted to yield an estimate of the M-O distribution. Na$_2$P$_2$O$_6$ has a different oxygen atomic fraction, c_O, to the alkaline earth metaphosphates, and hence for this sample the O...O peak was multiplied by 0.9 prior to the subtraction (see Eqn. 3). The parameters for the peaks fitted to the M-O distributions are given in Table 6, together with a bond-valence calculation of the valence of the M-O bond. The valence sums are reasonable but are not as close to the ideal values (the formal valence of the M cation) as is the case for the Mg-O peak fit; this is perhaps to be expected because the fits are derived from a region of $T(r)$ that is dominated by the O...O contribution.

The Ca-O distribution in CaP$_2$O$_6$ is asymmetric and was fitted by two peaks, similar in form to the Mg-O distribution, but with a greater spread in distances. The total Ca-O coordination number of 5.01 for the glass is relatively small compared to the average value of 7.5 for crystalline β-Ca(PO$_3$)$_2$, but the crystal has a much longer average Ca-O bond length of 2.47 Å compared to the average value of 2.38 Å for the fit reported in Table 6, and so the result may be reasonable. In a combined neutron and X-ray diffraction study of calcium metaphosphate glass, Wetherall et al. have found a Ca-O coordination of 5.2 at a distance of 2.35 Å, similar to our result, and also additional coordination of 1.7 at a distance of 2.86 Å, beyond the range that we have addressed.

Our fit to the Sr-O distribution in SrP$_2$O$_6$ consists of a single peak at a distance of 2.559 Å. Martin et al. have found evidence for an asymmetric distribution of Sr-O distances in silicate glass, and it is likely that there is also an additional Sr-O component at longer distance in metaphosphate glass, as for Mg-O and Ca-O, but this is beyond the range that we have been able to probe. The measured Sr-O coordination number of 5.96 for the glass is smaller than the value of 8.0 for crystalline γ-Sr(PO$_3$)$_2$, but the crystal has a longer average bond length of 2.65 Å, and so it is expected to have a larger coordination number. In a high energy X-ray diffraction study of strontium metaphosphate glass, Hoppe et al. have determined a Sr-O coordination number and bond length of 6.0 and 2.552 Å, very similar to those reported here.

The Na-O distribution in Na$_2$P$_2$O$_6$ is asymmetric and was fitted by two peaks, as for the Mg-O and Ca-O distributions, but with an even greater spread in distances. The measured Na-O coordination number of 3.77 is smaller than the value of 5.0 for crystalline α-NaPO$_3$, but the crystal has a longer average bond length, 2.43 Å, compared to the average for the glass, 2.36 Å, and so the crystal should be expected to have a larger coordination number. In a neutron diffraction study of sodium metaphosphate glass, Pickup et al. found a Na-O coordination number of 4.0 at a single distance of 2.33 Å, whilst in a combined neutron and X-ray diffraction study Hoppe et al. found an asymmetric distribution of Na-O distances with a total coordination number of 4.20.

In summary, we have found that in binary metaphosphate glasses M-O (M=Mg, Ca, Sr, Na) coordination numbers are smaller and M-O bond lengths are shorter than in corresponding crystals. The distributions of M-O bond lengths are broad and asymmetric.

3.5.4 Modifier coordination in multicomponent glasses

For the multicomponent glasses, the region of $T(r)$ from ca. 1.8 Å to ca. 2.7 Å cannot be deconvoluted using the same fitting procedure as for the binary glasses because there are too many overlapping contributions (for Sr4, Sr8 and Sr12 there are contributions from Mg-O, Na-O, Ca-O, Sr-O
and O...O pairs). Fig. 8b shows a comparison of $T(r)$ for the five Sr-series multicomponent glasses, showing a great deal of similarity. Nevertheless, as Sr substitutes for Ca, there are small differences either side of the major peak at ~2.5 Å, consistent with the loss of the Ca-O contribution at shorter distances and the growth of the Sr-O contribution at longer distances. Fig. 8c shows a comparison of $T(r)$ for MgP$_2$O$_6$ and P40, and there is a marked difference in the clearly resolved Mg-O peak at ca. 2.0 Å. As shown by Eqn. 3, the Mg-O contribution is weighted by the Mg atomic fraction, c_{Mg}, and this is why the Mg-O peak for P40 (24 mol% MgO) has roughly half the size of the peak for MgP$_2$O$_6$ (50 mol% MgO). However, the inset to Fig. 8c shows the region around the Mg-O peak after division by the factor $2c_{\text{Mg}}^2b_{\text{Mg}}^2b_{\text{O}}$, so as to yield the Mg-O partial correlation function, $t_{\text{MgO}}(r)$. This inset shows that for P40 the Mg-O distribution is shifted significantly to longer bond length. In a neutron diffraction study of three magnesium phosphate glasses of different composition, Suzuya et al. have also observed composition-dependent changes in the distribution of Mg-O distances.

Fig. 8b shows that for the Sr-series, $T(r)$ is almost exactly the same, and the only small identifiable differences are consistent with the substitution of Sr for Ca. That is to say, the substitution of Sr for Ca causes a loss of area in the region of the Ca-O distribution (r~2.15-2.40 Å), and a growth in area in the region of the Sr-O distribution (r~2.45-2.95 Å). Therefore, a fitting approach was adopted for the Sr-series in which it is assumed that the coordination of each modifier ion is the same in all of the samples, i.e. the M-O coordination number and distribution of M-O bond lengths remains the same, independent of SrO content. In this approach, the correlation functions of all five multicomponent Sr-series glasses were fitted simultaneously, with one single set of parameters ($r_{ll'}$, $\langle u_{ll'}^2 \rangle$ and $n_{ll'}$) to describe each coordination, as given in Table 6. This was achieved by use of a specially developed version of the programme NXFit, which also takes into account the correct real-space resolution function (as for PFiT), but does not evaluate errors on the fitted parameters. For Ca-O, Sr-O and Na-O, the parameters ($n_{ll'}$, $r_{ll'}$, and $\langle u_{ll'}^2 \rangle$) were fixed at the values found for the binary metaphosphates (Table 6), because no evidence has been found for a change. On the other hand, Fig. 8c shows clear evidence for a marked change in the Mg-O parameters, and hence these were allowed to vary in the fit. Also the parameters for the O...O peak were allowed to vary, and the P-O peak was included in the fit so as to take into account the small overlap with the Mg-O peak. The correlation functions obtained using the Lorch modification function were fitted in this fitting procedure over the range of 1.5 to 2.65 Å. The fitted functions are shown in Fig. 9, and the final entry of Table 6 gives the parameters obtained. The fits to the modifier-oxygen contributions as shown in Fig. 9 are satisfactory, although the residual for the Sr16 glass between 2.2 and 2.7 Å is noisier than for the others.

These fitting results show that the measured correlation functions for the Sr-series are consistent with a structural model in which the coordination of the modifiers does not change as Sr is substituted for Ca. Furthermore, the evidence is consistent with a model in which the Ca-O, Sr-O and Na-O coordinations are the same as in binary metaphosphate glasses. The exception is Mg-O; the measured correlation functions are consistent with a model in which the Mg-O coordination does not change for the Sr-series, but is different to that in magnesium metaphosphate glass or crystal. Our results show that for the Sr-series (with 40 mol% P$_2$O$_5$) the Mg-O distribution is shifted to longer bond length compared to binary magnesium metaphosphate (50 mol% P$_2$O$_5$), but with only a small increase in coordination number. In a neutron diffraction study of binary magnesium phosphate glasses, Suzuya et al. also found that the Mg-O distribution for 40 mol% P$_2$O$_5$ is at longer distance
than for 50 mol% P₂O₅, but with little change in coordination number. Also Karakassides et al. have reported molecular dynamics calculation for three magnesium phosphate glass compositions, predicting a Mg-O coordination number of five for all compositions, but with a small shift to longer Mg-O distance as the MgO content increases. Thus our result is consistent with the literature.

Figure 9: Total correlation functions, \(T(r) \), of multicomponent glasses, together with the results obtained by simultaneously fitting all five functions simultaneously using a specially developed version of the programme NXFit. See text for details of the fitting, and see legend for explanation of the various lines.

3.5.5 Mg-O coordination in multicomponent glasses

The fact that a simultaneous fit can be made (using the NXfit programme) to the total correlation functions, \(T(r) \), of all five multicomponent glasses shows that to a good approximation, the M-O coordinations are the same in all five samples. Furthermore, the Na-O, Ca-O and Sr-O coordinations in the multicomponent glasses are shown to be the same or very similar to those in the binary metaphosphate glasses. The exception to this is the Mg-O coordination, which changes with glass composition. Therefore, a further analysis of the correlation functions was made, in which the P-O, Na-O, Ca-O and Sr-O peaks were subtracted from \(T(r) \) for each multicomponent glass to yield a difference function, \(\Delta T(r) \), as shown in Figure 10 for samples P40 and Sr16. For this subtraction, the P-O peaks fitted to \(T(r) \) for the multicomponent glass (see section 3.5.2) were used, whilst the Na-O, Ca-O and Sr-O peaks were determined using the parameters from fitting the binary metaphosphate glasses. The difference function, \(\Delta T(r) \), has a peak at \(\sim 2.03 \) Å due to Mg-O bonds, and a peak at \(\sim 2.51 \) Å due mainly to O…O distances. As Sr substitutes for Ca, the Mg-O peak
increases in width and area. This may be the reason for the noisier residual noted above for the Sr-rich compositions, especially Sr16.

Figure 10: The correlation functions of the multicomponent glasses P40 and Sr16, after subtraction of the P-O, Na-O, Ca-O and Sr-O peaks; see the text for details. Also shown are examples of atomic environments giving rise to shorter and longer Mg-O bonds. The central (red) atom is a NBO, bonded to one phosphorus (small sphere), one Mg atom (intermediate size sphere), and either one or two other modifier cations (e.g. Sr, large spheres)

The difference functions for the five multicomponent glasses were fitted using two peaks to represent Mg-O and O...O distances respectively (in this case, two Mg-O components were not found to be required or supported by the experimental data), leading to the parameters given in Table 7. The dependence of the parameters on the Ca/Sr substitution is shown in Figure 11. There is very little change in the fitted parameters for the O...O peak, whilst in contrast there is a small but consistent growth in the Mg-O coordination number, mean Mg-O bond length, and variation in Mg-O bond length, as Sr substitutes for Ca.

It may be understood how the addition of Sr affects the Mg-O bonds, by consideration of the environments of the oxygens bonded to Mg2+ cations. Firstly, we note that it is NBOs that are important for this consideration, not BOs. The glass certainly must have Mg-BO bonds, but these BOs are likely to have OP2Mg motifs381; thus these BOs are not bonded to other (non-Mg) modifier cations, and hence the substitution of Sr for Ca does not affect the length of the Mg-BO bonds. A consideration of the electrostatic bond strengths581 of the various bonds in the glasses shows that the
two most likely motifs for NBOs that are bonded to Mg$^{2+}$ cations are OPMgM and OPMgM$_2$ (where M=Na, Ca or Sr). This conclusion is confirmed by the crystal structure of SrMgP$_2$O$_7$ \cite{91} in which each Mg-O bond involves an NBO with one of these two motifs. Secondly, we note that Sr$^{2+}$ is the largest modifier cation in these glasses, and hence Sr-O bonds have less valence and are weaker than any of the other M-O bonds. The effect of substituting Sr for Ca in a OPMgM motif will thus be to increase the valence of the Mg-NBO bond, and hence to shorten this bond. This is why the distribution of Mg-O bond lengths extends to shorter distance when Sr substitutes for Ca. On the other hand, the longer Mg-O bonds occur for oxygens with an OPMgM$_2$ motif, and the Sr/Ca substitution has a different effect on these motifs: The electrostatic bond strength of M-O bonds for M=Ca is \sim0.4 (based on a Ca-O coordination number of five – see Table 6), so that the bond strength sum is considerably in excess of two for an oxygen with an OPMgCa$_2$ motif. This means that OPMgCa$_2$ motifs are not very likely to occur. However, if Sr substitutes for Ca, then the bond strength sum for the OPMgM$_2$ motif is decreased closer to two, and hence the motif is more likely to occur. Thus the substitution of Sr for Ca leads to a growth in the number of OPMgM$_2$ motifs, and this is why the substitution leads to a growth in the long distance part of the distribution of Mg-O bond lengths. The two types of NBO motif giving rise to the short Mg-O bonds and the long Mg-O bonds, as in crystalline SrMgP$_2$O$_7$ \cite{91} are illustrated in Figure 10. The growth in the coordination number n_{MgO} suggests that the growth in OPMgM$_2$ motifs is the dominant effect on Ca/Sr substitution.

Table 7: The Mg-O (and O…O) parameters from fitting the correlation functions, $\Delta T(r')$, of the multicomponent Sr-series glasses, after subtraction of the P-O, Na-O, Ca-O and Sr-O peaks; see the text for details. The valence calculated from the parameters for Mg-O bonds is also given.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Atom pair</th>
<th>Interatomic distance ($r_{ll'}$/Å)</th>
<th>Variation in interatomic distance ($\langle u_{ll'}^2 \rangle^{1/2}$/Å)</th>
<th>Coordination number ($n_{ll'}$)</th>
<th>Mg-O valence (e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P40</td>
<td>Mg-O</td>
<td>2.0325 (5) 2.5063 (2)</td>
<td>0.0083 (6) 0.0833 (2)</td>
<td>4.73 (2) 4.13 (1)</td>
<td>1.89</td>
</tr>
<tr>
<td></td>
<td>O…O</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sr4</td>
<td>Mg-O</td>
<td>2.0344 (6) 2.5082 (2)</td>
<td>0.0891 (7) 0.0813 (2)</td>
<td>4.62(3) 4.10 (1)</td>
<td>1.84</td>
</tr>
<tr>
<td></td>
<td>O…O</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sr8</td>
<td>Mg-O</td>
<td>2.0353 (6) 2.5073 (2)</td>
<td>0.0926 (7) 0.0816 (2)</td>
<td>4.94 (3) 4.03 (1)</td>
<td>1.96</td>
</tr>
<tr>
<td></td>
<td>O…O</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sr12</td>
<td>Mg-O</td>
<td>2.0358 (6) 2.5080 (2)</td>
<td>0.0940 (7) 0.0815 (2)</td>
<td>4.92 (3) 4.04 (1)</td>
<td>1.95</td>
</tr>
<tr>
<td></td>
<td>O…O</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sr16</td>
<td>Mg-O</td>
<td>2.0365 (7) 2.5073 (2)</td>
<td>0.1021 (7) 0.0814 (2)</td>
<td>5.20 (3) 3.97 (1)</td>
<td>2.05</td>
</tr>
<tr>
<td></td>
<td>O…O</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 11: The Mg-O (closed symbols) and O…O (open symbols) parameters for peak fits to the correlation functions, $\Delta T(r)$, of the multicomponent Sr-series glasses, after subtraction of the P-O, Na-O, Ca-O and Sr-O peaks; see the text for details. The lines are guides to the eye.
3.6 Dissolution and ion release

It is well known that the physical-chemical properties of phosphate glasses are largely dependent on the cations that modify the network. These cations are thought to take up the interstitial sites created between phosphate chains, increasing the resistance to hydrolysis.\(^\text{38}\) As mentioned previously, the field strength of Sr\(^{2+}\) is less than that of Ca\(^{2+}\) (as a result of the larger ionic radius), and thus it may be hypothesised that the dissolution rate of the higher SrO containing glasses would be greater than those with more CaO. However, this is not what was found. The initial addition of SrO to the glass (adding 4mol% SrO) caused a reduction in the dissolution rate as shown in Figure 12, suggesting that replacing Ca with Sr can increase cross-linking between phosphate chains. The average mass loss per unit area decreased significantly (P < 0.001) on addition of 4 mol% strontium oxide from 8.4 × 10\(^{-4}\) g cm\(^{-2}\) to 5.5 × 10\(^{-4}\) g cm\(^{-2}\) at 72 hours (see Figure 12). However, further substitution of Sr for Ca had no significant effect on either average mass loss per unit area or dissolution rate. The inset in Figure 12 shows the dissolution rates for the multicomponent glasses determined via the slope of best fit for each composition in all three media tested. The rate remained similar for all the Sr-containing glasses, with the greatest change in rate occurring between P40 and Sr4 by 3 × 10\(^{-6}\) g/cm\(^2\)/hrs in ultra-pure water. The same trend was observed in both deionised water and PBS, with P40 degrading at a faster rate than the Sr glasses. A number of studies investigating the degradation profiles of Sr-containing phosphate glasses have reported that they degrade faster than Sr-free glasses. However, it should be noted that these studies investigated PBGs with fixed P\(_2\)O\(_5\) content of 50 mol%.\(^\text{53, 54, 90}\) The increased degradation profiles observed were attributed to expansion of the glass network with the addition of Sr, correlating with an increase in molar volume. However, although a small increase in molar volume was seen in this study, it did not exert any influence on the degradation of these glasses with fixed 40 mol% P\(_2\)O\(_5\) (i.e. almost invert glass structure).

The dissolution rates of the Sr-containing glass in this study did not vary greatly in any of the media tested. One explanation for this could be due to the fact that these glasses are on the verge of being an invert glass, and the various glass properties (e.g. dissolution rate) of such glasses are not controlled by the glass (P\(_2\)O\(_5\)) network skeleton nor the entanglement of chains, but rather the interaction of cations with the phosphate groups.\(^\text{27, 35, 93, 94}\) The total Ca-O and Sr-O coordination numbers reported in Table 6 are both close to five. However, there is a major difference between these two results, in that the Ca-O value includes a significant contribution from a long distance tail in the distribution, whereas the long distance tail has not been taken into account for the Sr-O value, because it is at too long a distance to be readily accessible. Thus it is most likely that the total Sr-O coordination number is significantly in excess of five. This suggests in turn that the decrease in dissolution rate for Sr-containing glasses could be attributed to the increase in coordination number leading to a more highly cross-linked structure, with increased resistance to hydrolysis. Alternatively, it is notable that the dissolution rate shown in Fig. 10 is higher for the two samples (P40 and Sr16) that contain four oxide components, whereas the samples with five components have a dissolution rate that is lower and is constant; this observation suggests that the greater structural frustration arising from the larger number of glass components leads to a smaller dissolution rate. It is also of note that the Sr16 sample is more prone to crystallisation than the other multicomponent samples.
(note the low values of T_{onset} and T_c in Table 2), suggesting that the greater frustration of the 5-component samples gives them a greater resistance to crystallisation.

Furthermore, the compositions studied here had high concentrations of MgO present where Mg$^{2+}$ has an even higher field strength (0.53 valence/Å2 when 4-coordinated or 0.46 valence/Å2 when 6-coordinated) than Ca$^{2+}$ and Sr$^{2+}$ due to the increasing atomic number of the alkaline earth metals. This in turn would increase packing density and so decrease dissolution and hence ion release rates. According to Dietzel’s rule,56,57 MgO is also known to behave as an intermediate, acting as either a network modifier or enter the phosphate network forming P-O-Mg bonds. From the 31P NMR results in this study, it was clear the MgO behaved as a glass modifier. Furthermore, the minimal change observed in the dissolution rates between the SrO containing glasses may be attributed to the dominating role MgO can play within the network because the MgO concentration (24mol%) remained constant for each composition. The significant decrease in dissolution rate of SrO containing glasses compared to the Sr free glass (P40) could be attributed to the increased packing density and crosslinking caused with the addition of an extra cation.

![Figure 12: The average mass loss per unit area (g cm$^{-2}$) for multicomponent glasses studied in ultra-pure water. The insert shows the dissolution rate (g/cm2/hrs) for each multicomponent glass (n=3) in ultra-pure water, deionised water (DI) and phosphate buffered saline (PBS) – see text for details.

The ion release studies were conducted for the following cations, Ca$^{2+}$, Na$^+$, Mg$^{2+}$ and Sr$^{2+}$. From the profiles observed (Figure 13), Na$^+$ and Mg$^{2+}$ followed a similar trend to the dissolution study where P40 released the highest concentration of cations over time, and strontium-containing glasses showed a consistent release of cations ranging from 0.27ppm for Sr4 at 24 hours to 50.95ppm for Sr16 at 672 hours. The correlation of ion release studies of Na$^+$ and Mg$^{2+}$ have also been observed
by Ahmed et al.3 where a cumulative release method was also used for a ternary based PBG. It was interesting to note that the concentration of Sr2+ released by the Sr 16 glass where CaO was fully substituted with SrO, was greater than the Ca2+ released from the P40 samples containing 0 mol% SrO. As expected a gradual increase in SrO in the glass samples resulted in a gradual increase in the amount of strontium and reduction in calcium ions released. These release profiles of Sr2+ coupled with the dissolution rate profiles provided evidence that it was possible to control the concentration of strontium ions released without affecting the rate of dissolution.

Figure 13: Cumulative cation release profiles from the multicomponent glasses investigated, which were degraded in ultra-pure water. The insert on each graph shows the ion release rates normalised to the surface area.

The ability to retain both structural and physico-chemical properties of the glasses in this study suggest the possibility of fine tuning the release of therapeutic ions such as Sr. Treatment of osteoporosis has involved oral administration of strontium ranelate at doses of 2g per day.25 This study has shown that dissolution rates of Sr-containing glasses could be maintained and that a linear rate of change of Sr release has been achieved with varying concentration. This study shows it is possible to preserve the optimised properties of the glass formulation whilst having a predictable release rate of Sr.

4. Conclusions
A comprehensive study of the structure and properties of 40P_2O_5-(16-x)CaO-20Na_2O-24MgO-xSrO glass (x = 0, 4, 8, 12 and 16 mol%) has been described. Thermal analysis showed that the substitution of Sr for Ca in a multicomponent glass with 40 mol% P_2O_5 has little effect on T_g until fully substituted, when a slightly larger decrease in T_g was observed. Initial substitution of Sr for Ca resulted in an increase in T_onset, T_c, T_m and thermal processing window, followed by a gradual decrease with increasing substitution. The initial increase in these temperatures was attributed to the effect of increased cross-linking arising from the addition of a fifth cation to the glass network, whilst further addition resulted in a decrease in the temperatures attributed to the smaller field strength of Sr^{2+} compared to Ca^{2+}. FTIR and NMR spectra (^{31}P and ^{23}Na) showed no evidence for changes in structure as Sr substitutes for Ca. The ^{31}P NMR spectra show that the multicomponent glasses have equal numbers of PO_4 tetrahedra occurring as Q^2 and Q^1 species, as is expected if all the modifier cations (Mg, Ca, Sr, Na) play the role of network modifiers, not network formers.

Neutron diffraction performed on binary metaphosphate glasses showed that in these glasses the M-O coordinations (M=Mg, Ca, Sr, Na) have a broad asymmetric distribution of bond length, with coordination numbers that are smaller and bond lengths that are shorter than in corresponding crystals. The most reliably determined coordination number is n_{MgO}=5.0(2). The Ca-O and Sr-O coordination numbers were determined as 5.01(9) and 5.10(6), but it is most likely that the Sr-O distribution includes an additional contribution at longer distance, beyond the range that we were able to probe. The neutron correlation functions for the multicomponent glasses are consistent with a structural model in which the coordination of Ca, Sr and Na is the same as in the binary metaphosphate glass. On the other hand, the Mg-O bonds in the multicomponent glasses are shifted to longer distance than for the binary metaphosphate glass. Furthermore, there is a small but consistent increase in the Mg-O coordination number and the width of the distribution of Mg-O bond lengths, as Sr substitutes for Ca.

The glasses with five components have a lower dissolution rate than the four-component glasses, and this may either be due to the increased cross-linking and packing density that arises from the addition of SrO, or simply to the increased structural frustration associated with the larger number of components. The results suggest that phosphate glasses with compositions close to invert formulations (i.e. fixed with 40 mol% P_2O_5) could provide a means of releasing controlled quantities of Sr^{2+} ions without significantly hindering the dissolution rate.

The increased cross linking and packing density of these glasses were shown to influence the decrease in dissolution rate with initial addition of SrO. Further addition of SrO had no significant effect on the dissolution rate of the glass and suggested that phosphate glasses with compositions close to invert formulations (i.e. fixed with 40 mol% P_2O_5) could provide a means of releasing controlled quantities of Sr^{2+} ions without significantly hindering the dissolution rate.

5. Acknowledgments

The authors would like to acknowledge that the Solid-state NMR spectra were obtained at the EPSRC UK National Solid-state NMR Service at Durham. The authors would also like to acknowledge funding received from the Science and Technology Facilities Council (STFC ref. no. ST/L502583/1)
References

68. A. C. Hannon, PFIT correlation function fitting software, http://www.alexhannon.co.uk/, (accessed 24/03/17).