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ABSTRACT

The aim of this work was to investigate the interactions of anionic radionuclides 129I, 77Se

(as a proxy for 79Se) and 99Tc with soil geocolloids under a range of conditions. These

anionic fission products are of specific concern to policy makers regarding human and

environmental risk assessments. Previous research has demonstrated strong links

between soil organic matter (SOM) content and reduced mobility of these radionuclides.

Negatively charged humic substances (HS), such as humic acid (HA) and fulvic acid

(FA), may constitute 80% of organic matter and the mechanisms that allow anionic

radionuclide to interaction with these HSs are not well understood. In the case of all three

radionuclides, speciation plays a significant role in controlling their environmental

mobility, therefore HPLC and SEC coupled to ICP-MS was used to monitor the

speciation changes as the isotopes were progressively incorporated into HA. X-ray

absorption spectroscopy was also employed in order to establish the solid phase

speciation of Se after reaction with soil geocolloids.

Surface charge development of the HA significantly affected reaction with iodate

(129IO3
-) and iodide (129I-). Iodide added to HA systems demonstrated slow oxidation and

formation of organically bound iodine (Org-129I) predominantly at higher pH (pH 6).

Conversely IO3
-, was rapidly transformed to form both I- and Org-I. As pH decreased,

the rate of this reduction reaction increased. Increasing HA concentration also increased

the rate of IO3
- reduction and formation of Org-I. Previous research has suggested that

the most likely mechanism is IO3
- reduction to I2 or HOI which then binds with phenolic

groups on OM forming Org-I species. However, IO3
- was observed to rapidly bind to HA

forming Org-I species with no initial evidence of I- formation; I- concentration then

increased over time as Org-I decreased. Where Fe2+/Fe3+ was present increased reduction
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of IO3
- to I- was observed, mediated by association with HA, resulting in less Org-I

formation overall. Instantaneous reaction of I- with HA was observed in the presence of

Fe2+/Fe3+, with bonding via cation bridging. Some I- was subsequently re-released as I-

likely due to ongoing Fe hydrolysis. Modelling of the systems alone was successful and

will assist the improvement of whole soil assemblage models.

Selenite (Se(IV)) reaction with HA was most rapid at low pH, with minimal/no reduction

occurring at > pH 6. Reduction of selenate (Se(VI)) also occurred but this was less than

for Se(IV), at low pH. No formation of Se(VI) from Se(IV) was observed, suggesting no

oxidation took place, however some formation of Se(IV) from Se(VI ) was observed, also

the formation of an unknown Se species suspected to be organic in nature. Humic acid

concentration had no significant effect on the rate of Se(IV) or Se(VI) reduction, suggesting

that HA itself was not responsible for the reduction. X-ray absorption spectroscopy

(XAS) demonstrated the potential for significant reduction to Se(0) at pH 4 and bonding

through a Se-O-C chain. The role of microbial communities on Se(IV) and Se(VI) reduction

in the HA systems was demonstrated through the use of soil inoculum and glucose

additions in sterile and non-sterile systems. No reduction of Se(IV) or Se(VI) and bonding

to HA was observed in filter and -irradiation systems. Additions of inoculum and

glucose increased the rate of reduction. Additions of Fe2+ did not increase reduction of

Se(IV) or Se(VI) when compared to non-sterile HA systems, however XAS analysis

demonstrated formation of HA-Fe cation bridges.

No reaction of pertechnetate (99Tc(VII)) with HA was observed in these aerobic systems.

An unknown Tc species was occasionally observed (<0.005 µ L-1) and it is possible that

this is an organic-Tc species. Significant incorporation of Tc into the solid phase was
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observed in aerobic soils, with most Tc(VII) being retained in soils with high OM contents

and low pH.

The mechanisms considered here build upon the basic processes considered in current

biosphere models for I and Se. Assemblage models must be used in order to reliably

model the interactions of elements within soils due to the complexity of the systems. In

order to understand the long-term radiological risks associated with geological

repositories, the fine-scale mechanisms must be understood geochemically across a range

of different soil types and conditions. The effect of I and Se speciation on bioavailability

in soils determines both the potential transfer of radioactive isotopes to the food chain

from GDF’s and from aerial sources of contamination. Alongside this, the work also has

significant implications for advising on cost-effect fertiliser application methods for both

I and Se, in order to tackle nutrient deficiencies worldwide.
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BACKGROUND

The research presented here forms part of the Transfer Exposure and Effects (TREE)

project as funded by the Natural Environment Research Council (NERC), the

Environment Agency (EA) and Radioactive Waste Management Limited (RWM) under

the Radioactivity and the Environment (RATE) program. The aim of the TREE project

is to reduce the uncertainty surrounding radioactive risk assessments for humans and

wildlife through understanding the underlying processes and mechanisms that lead to

exposure. Research within the programme has focused on: the biogeochemical behaviour

of radionuclides in soils, radionuclide transfer from soils-plants, exposure mechanisms

for humans and wildlife, and prediction of the long-term environmental fate of key

radionuclides. The research presented here forms a significant part of the investigations

into the biogeochemical behaviour of radionuclides in soils, the aim of which is to be

able to predict the behaviour of 129I, 79Se, 99Tc and U isotopes in soils. From this the hope

is that short term measurements, over 2.5 years, could be used to validate models to

predict the long-term behaviour. A soils incubation experiment included 20 soils from

the UK, and 10 soils from the Chernobyl Exclusion Zone (CEZ), with a range of

characteristics (pH, OM content, Fe/Mn oxide content) from various land uses

(woodland, grassland, arable). The field-moist soils were spiked with 129I, 79Se, 99Tc and

238U, incubated under aerobic conditions at 10oC, and sampled 15 times over the course

of 2.5 years. At each time point the four analytes were fractionated and speciated. The

data presented in this thesis report on the interactions between 129I, 79Se and 99Tc and

selected soil geocolloids (Humic and fulvic acid; Fe oxide) to complement the soils

experiment. Working with single isolated geocolloids provided greater certainty in

elucidating the interactions involved and enabled comparison of biotic and abiotic

reaction mechanisms. Understanding the underlying reactions between radionuclides and
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soils will enable further development of comprehensive soil assemblage kinetic models

and thereby improve the validity of long-term predictions of radionuclide fate.
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1. INTRODUCTION

1.1 RADIATION HAZARD

Radioactive waste has accumulated in the UK from a number of sources, the most

predominant being the operation of nuclear power stations to generate electricity. In

2008 the UK government began a process to find a suitable underground location to

store legacy waste in a Geological Disposal Facility (GDF) based on the initial 2008

White Paper titled “Managing radioactive waste safely – A framework for

implementing geological disposal” (DEFRA and BERR, 2008). Many radiotoxic

elements found in nuclear waste repositories invoke relatively little concern, due to

their low mobility. However there are a number of radionuclides that are highly mobile

and able to reach the biosphere, thus contributing to long-term exposure risks

(Grambow, 2008). Release from GDF’s is one way in which high risk radionuclides can

enter the environment, other pathways include release from historic weapons testing

and with the widespread development of nuclear power comes the inevitable, yet rare,

nuclear accident. The world’s most serious nuclear accident occurred in the Ukraine at

the Chernobyl Nuclear Power Plant on 26 April 1986.The subsequent discharge

resulted in the contamination of large areas of the northern hemisphere including

Belarus, Russia, Poland, Norway, Sweden and parts of the UK (Collier & Davies,

1986). Across these countries soil types and properties vary, resulting in different

environmental mobilities and therefore bioavailabilites of deposited radionuclides (Bell

and Shaw, 2005). The fission and activation products that are of primary concern tend

to be anionic radionuclides as migration times and distances can be large, these include;

129I, 79Se and 99Tc (Grambow, 2008; Marivoet and Weetjens, 2012). Each of these

radionuclides have long half-lives; 1.57 x 107, 3.27 x 105 and 2.13 x 105 respectively,

and this combined with their high inventory in radioactive waste make them of specific
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concern due to their environmental persistence and contribution to human and animal

dose rates. Upon release from GDF’s mobile anionic radionuclides can migrate to the

surface where soil conditions pH, redox status, clay content, organic matter (OM)

content and metal oxide content will play an important role in determining their

mobility in the terrestrial environment.

1.2 HUMIC SUBSTANCES

Carbon stored in soil organic matter (SOM) is thought to exceed the amount stored in

living vegetation by a factor of 2-3 (Schlesinger, 1990). Soil organic matter is

predominantly composed of humus, 80% of which can be accounted for by

macromolecular and colloidal humic substances (HS). The rate of formation of HS

(humification) is determined by factors including climate, vegetation, parent material,

topography and cropping (Tipping, 2002; Zech et al., 1997). Humification results in

dark-coloured, biologically refractory, heterogeneous organic compounds produced as

by-products of microbial metabolism of plant and animal remains in soils (Sposito,

2008). Therefore HS structural composition varies significantly depending upon the

nature of the organic inputs to the humification process. Humic substances can be

divided into three operationally defined fractions: humin, humic acid and fulvic acid

(Goure-Doubi et al., 2014). Humin is insoluble in both acid and alkaline conditions and

contains fibrous plant material and mineral-occluded hydrophobic constituents. Humic

acid (HA) is the alkali-soluble fraction that is insoluble under acidic conditions and

bridges the molecular-to-colloidal divide with an apparent molecular weight range of

100-700 kDa (Perminova et al., 2003). The fulvic acid (FA) fraction has a lower

molecular weight range (1-5 kDa) and is highly substituted with oxy-acid functional

groups (more hydrophilic than HA) and so is soluble in both acidic and alkaline
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conditions (Güngör & Bekbölet, 2010; Kamei-Ishikawa et al., 2008). Humic and fulvic

acids differ in quantity and chemical composition; consequently this heterogeneity

makes chemically defining their structure and reactivity challenging (Traversa et al.,

2014). Infrared spectroscopy (IR) and nuclear magnetic resonance (NMR) can be used

to investigate the functional groups present and the three-dimensional properties of HA

and FA, which aids understanding of their behaviour in terrestrial and aquatic

environments. In the same context the acid-base equilibrium of HA and FA is also

important, as it provides useful information on the complexing abilities of HA. The

proton equilibria of HA can be investigated by interpretation of potentiometric titration

data, which provides information on the dissociation of functional groups with pH and

can be extremely useful in modelling HS environmental behaviour. Humic substances

participate in a variety of electron transfer reactions. Lovley et al. (1996) established

that humic substances can act as electron acceptors for anaerobic microbial oxidation of

organic compounds and, by also acting as an electron shuttle, can enable microbial

humic-mediated reduction of metals. This functionality is due to the high proportion of

oxygen-containing functional groups; i.e. phenol, hydroxyl, ketone and hydroquinone

groups, which are capable of interacting with metal ions, metal oxides/hydroxides and

minerals (Kerndorff and Schnitzer, 1980). By measuring the formal electrode potential

of 3 standard humic acids, during titration with I2, Struyk & Sposito (2001) were able to

demonstrate that the oxidation capacity of a HA was positively correlated with the

stable free radical (semiquinone) content. The structure of HS plays an important role

in the functionality of the soil ecosystems as a whole, and is considered instrumental in

determining the bioavailability of organic and inorganic substances therein (Piccolo,

2002).
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1.3 IODINE IN THE ENVIRONMENT

Iodine is an essential nutrient for humans and animals, and severe deficiency can lead

to iodine deficiency disorders (IDD) the most common of which is goitre; the

hypertrophy of the thyroid gland (Fordyce, 2013; Fuge, 2005; Johnson, 2003b). The

average stable iodine content of surface soils (top 15 cm) worldwide is quoted as c. 5

mg kg-1 (Fuge and Johnson, 1986; Johnson, 2003). Whitehead (1984) suggests UK

soils have a mean concentration of 9.2 mg kg-1 due to proximity to the coast, high

amounts of rainfall and relatively high SOM contents. However due to the skewed

nature of the data Johnson (2003) suggests the geometric mean is probably closer to 3.0

mg kg-1 for the UK. Atmospheric iodine inputs are considered to be the most important

factor that determines soil iodine concentrations (Whitehead, 1984). Most

environmental iodine originates from the oceans, and following volatilisation, rainfall

can then wash it out of the atmosphere (Fuge, 1996; Leblanc et al., 2006). Due to the

high inventory of oceanic iodine, coastal areas tend to have higher soil iodine

concentrations than inland areas due to sea inundation of land, sea spray and rainfall

(Bowley, 2013; Q. Hu et al., 2009). The importance of rainfall can be demonstrated by

the presence of ‘rain shadows’ where each side of a mountain receives different rainfall

patterns that correlate directly with soil iodine concentrations (Fuge & Johnson, 2015;

Slavin, 2005).

1.3.1 Anthropogenic 129Iodine

Iodine-129 has been released through anthropogenic actions such as weapons testing

(50-150 kg between 1945-1964), nuclear fuel reprocessing or nuclear accidents such as

the Chernobyl accident that released a further 6 kg (Gómez-Guzmán et al., 2014; Xu et

al., 2012). The naturally occurring inventory of 129I has been estimated to be 230 kg,
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from cosmic-ray spallation of Xe and fission of U in the geosphere (Fabryka-Martin et

al., 1985; Rao and Fehn, 1999). The largest sustained anthropogenic release of 129I has

been suggested to arise from nuclear fuel reprocessing plants such as Sellafield,

England (Gómez-Guzmán et al., 2014). Modelling of historic discharge data from

Sellafield estimates that 1371 kg of 129I was discharged between 1952 and 2004 into

the NE Irish Sea, with a further 182 kg released to the atmosphere (Gómez-Guzmán et

al., 2014, 2013; López-Gutiérrez et al., 2004). It is difficult to know the exact amount

released as it wasn’t monitored closely in the first few years. Worldwide it is estimated

that 68,000 kg of anthropogenic 129I has been produced in nuclear power reactors up

until the year 2005, the majority of which is contained in spent fuel (Hou et al., 2009).

This substantial inventory and the long half-life of 129I make it an important

radionuclide in the safety case for nuclear waste disposal (Bostock et al., 2003). Also as

a constituent of thyroid hormones 129I can accumulate in the thyroid gland and has been

linked to increased occurrences of thyroid cancer (Amachi, 2008), for this reason is

recognised as an important radionuclide when considering long-term health effects (Hu

et al., 2012).

1.3.2 Iodine species

Iodine is multivalent, and depending on the pH and redox status of the environment can

be found in a range of inorganic and organic forms. The chemical form of iodine has a

significant effect on its environmental behaviour and consequently its bioavailability

(Dai et al., 2009; Hu et al., 2012). The primary inorganic species include iodide (I-),

iodate (IO3
-) and elemental iodine (I2), and when in contact with OM can also be found

as organic-iodine species (Liu & Von Gunten, 1988; Yamada et al., 2002; Yamada et

al., 1999). Although both IO3
- and I- are monovalent anions they show significantly
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different sorption mechanisms within environmental compartments, which has been

verified by many laboratory studies and will be discussed further throughout this thesis.

1.3.3 Iodine in soil

The role soils and sediment fractions play in the environmental cycling and fate of

iodine has been widely recognised (Amachi, 2008; Shetaya et al., 2012; Yamada et al.,

1999; Yamaguchi et al., 2010). Iodine can be significantly sorbed and accumulated

within soils, however the interaction is strongly affected by various physiochemical

parameters such as soil type, pH, redox potential (Eh), salinity, metal oxide content,

and OM content. A number of studies have also discussed the interactions of microbial

communities on the speciation and interaction of iodine with soils (Amachi, 2008; Seki

et al., 2013; Sheppard and Hawkins, 1995; Yamaguchi et al., 2010).

1.3.3.1 Effect of soil redox status

Ashworth et al. (2003) found that the redox potential of a soil has a significant effect on

iodine mobility. Through investigating the migration of 125I through soil columns, it

was observed that 125I is mobile throughout the anoxic, saturated, low redox zone of the

soil (bottom of column), but accumulates in the zone between anoxic and oxic soil

where the Eh increases. This demonstrates that a decrease in Eh leads to an increase in

iodine solubility and therefore greater plant availability. Release of iodine from soil to

soil solution under anoxic conditions has been consistently reported with Hansen et al.

(2011) demonstrating greater iodine mobility and availability in anoxic marine

sediments in comparison to oxic sediments.
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1.3.3.2 Iodine interaction with OM

It has long been recognised that soils with a high OM content, such as peat soils, often

alongside a low pH, have a strong ability to retain iodine leading to the theory that

iodine can interact significantly with OM, often binding as organic-iodine species

therefore reducing its environmental mobility (Francois, 1987; Seki et al., 2013;

Whitehead, 1984, 1973; Xu et al., 2013; Yamada et al., 2002; Yamaguchi et al., 2010).

Francois (1987) discussed the potential redox reactions that could take place with IO3
-

and I- in soils, whereby reduction of IO3
- and oxidation of I- leads to the formation of

reactive intermediates such as I2 and HOI that are then capable of binding with OM.

This was elucidated through the use of a benzenediol, resorcinol, with its two electron-

donor groups it is capable of undergoing electrophilic substitution with I2 or HOI

competitively instead of humics. Reduced iodine content in the humics demonstrated

the presence of these electropositive iodine species as reactive intermediates. In

addition to this the formation of I2 and HOI during IO3
- reduction by OM can be

quantified by the oxidation of leucocrystal violet (LCV), by I2 or HOI, to crystal violet

(CV) measured by visible spectroscopy as demonstrated by Steinberg et al. (2008).

Shetaya et al. (2012) also demonstrated the instantaneous conversion of added 129I from

inorganic into the organic phase when incubated with a range of soils under differing

pH and temperature conditions. The most significant removal of 129I from solution was

observed in soils at high temperatures, low pH levels and high OM content. Yamaguchi

et al. (2010) used a different approach involving x-ray absorption spectroscopy (XAS),

namely K-edge X-ray absorption near-edge structure (XANES), to investigate the

transformations of inorganic iodine in soils with varying OM contents and found that

after 60 days incubation both I- and IO3
- were converted to Org-I species when the soils
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contained a substantial amount of OM, compared to those with limited OM where

added IO3
- remained unchanged.

The iodination of humic substances is now widely accepted as the mechanism by which

iodine interacts with SOM, yet there is still much to learn about the mechanisms

involved. Schlegel et al. (2006) compared XANES data for naturally iodinated humic

substances to organic iodine reference standards, and found structural features

consistent with electrophilic substitution into organic molecules. The corresponding

extended X-ray absorption fine structure (EXAFS) data indicated that iodine

incorporated into humic substances is surrounded by carbon shells at distances

corresponding to those for aromatic-bound iodine references. Reiller et al. (2006) and

Xu et al. (2011) were both able to demonstrate that an increase in H/C ratio leads to a

corresponding increase in iodination kinetics and organo-iodine i.e. increasing

aromaticity of the OM, again highlighting the probability of a covalent aromatic C-I

bond accounting for organo-iodine species in the field. The mechanisms associated

with these interactions, especially the pH dependent kinetics, are poorly understood and

there is little quantitative data from which to assess reaction rates and the inherent

stability of the resulting organic complexes.

1.3.3.3 Iodine interaction with metal oxides

Metal oxides are also considered important in determining the environmental mobility

of iodine species. Iron oxide and manganese oxide are two of the most important

oxidants in the earth crust, and are highly abundant in natural environments. Not only

are they capable of readily oxidising I- to reactive intermediates for association with

OM (Allard et al., 2009; Gallard et al., 2009), but they also have positively charged
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surfaces available for association with anionic species (Whitehead, 1984). Kodama et

al. (2006) used K-edge XANES to demonstrate the significant ability of

ferromanganese oxides to selectively incorporate IO3
- even when systems received

additions of I-, once again highlighting the strong capacity for oxidising I- and I2.

Aluminium, iron and manganese oxides have all been recognised, to differing degrees,

to play an important role in iodine dynamics within soils; for example there is much

evidence describing the role of MnO2 in increasing I reaction with OM through driving

required redox reactions (Anschutz et al., 2000). This association of I with metal

oxides/hydroxides is highly pH dependent and sorption with Fe, Al and Mn

hydroxides/oxides generally decreases with increasing pH. Organic matter in the

presence of MnO2 demonstrated increased iodination at pH 3-4 than without MnO2, and

showed a decrease as pH increased beyond pH 7 (Xu et al., 2011). Hematite

demonstrated significant reaction with IO3
- at pH levels below 9, by substitution for

hydroxide ions on the surface, whilst above this showed a decrease (Couture and Seitz,

1983). This is due to the increased net positive charge of metal oxide surfaces at low

pH, and decrease at high pH (Fuhrmann et al., 1998).

1.3.3.4 Role of soil microorganisms in iodine mobility

Microorganisms play a vital role in natural iodine cycling and therefore under certain

conditions can determine the mobility and fate of iodine. Often, determining the role of

microorganisms on interactions within soils involves autoclaving to remove all

biological activity to see if this changes the mobility and fate of a specific element.

Muramatsu et al. (2004) discussed the observed effects of autoclaving on both iodate

and iodide sorption in soils, and found that iodide sorption was reduced by more than

80% in autoclaved soils. This is attributed to the destruction of microorganisms and the
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products of microorganisms such as enzymes. This has also been documented by Seki

et al., (2013) whereby autoclaving, heating and γ-irradiation were employed to destroy 

microorganisms. Both autoclaving and γ-irradiation (autoclaving to a greater degree 

than irradiation) have been shown to significantly alter the characteristics of OM by

decreasing aromaticity and polycondensation and causing changes to the carbohydrate

and N-alkyl regions of OM (Berns et al., 2008). This can make it hard to determine

whether the effects are solely biological. Alongside an inhibition in iodide sorption on

soils it was acknowledged that there was a reduction in soil laccase activity. Upon

addition of bacterial laccase back into the system after autoclaving, partial return of

iodide sorption was observed. This highlights the importance of enzymes in the

oxidation of iodide to reactive intermediates which can go on to associate with SOM.

The effect of autoclaving on iodate sorption in soils differs from iodide; Yamaguchi et

al. (2008) demonstrated that soils spiked with iodate showed no retardation of iodate

transformation to Org-I when microbial activity was reduced by γ-irradiation. The 

summation of this evidence suggests that microbial activity has a significant effect on

iodide sorption on soils through oxidation, yet little/no effect on iodate sorption and

reduction.

1.4 SELENIUM IN THE ENVIRONMENT

Selenium is an essential dietary trace element; as a constituent of selenoproteins, Se has

structural and enzymatic roles (Rayman, 2000; Vinceti et al., 2014). Selenium is well

known to be both toxic at high concentrations (> 400 µg day-1) and to cause dietary

deficiency at low concentrations (< 40 µg day-1), with the range between these being

the narrowest of all essential elements (Rayman, 2000). Environmental Se

concentrations are determined predominantly by geological conditions, therefore Se
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status varies widely worldwide (Fordyce, 2013). Selenium in rocks comprises 40% of

Se in the Earth’s crust, making biogeochemical processes such as the weathering of

rocks and rock-water interactions the primary determinant of environmental Se

concentrations (Rosenfield and Beath, 1964; Wang and Gao, 2001). World average Se

soil concentrations are 0.01-2 mg kg-1, with seleniferous soils containing 1-1,200 mg

kg-1 and Se deficient soils 0.004-0.48 mg kg-1 (Fordyce, 2013). Given that the majority

of environmental Se comes from rocks, Se deficiencies and toxicities are often

determined by local biogeochemical characteristics. Organo-mineral associations are

subject to environmental changes, therefore it is expected that climate change will

inevitably have an effect on Se environmental behaviour (Tolu et al., 2014). Using

moderate climate change scenarios for 2080-2099 Jones et al. (2017) predicts that as

climate change continues, a decrease in soil Se concentrations will be seen with a

corresponding increase in Se deficiency particularly in agricultural areas (66% of

croplands predicted to lose 8.7% selenium), highlighting the increasing importance of

understanding Se environmental mobility.

1.4.1 Se isotopes

Stable (non-radioactive) isotopes of Se dominate the environment with 73% of Se being

found as 80Se and 78Se. Similarly to iodine, most other radioactive (unstable) Se

isotopes are short-lived with half-lives ranging from 21 seconds to 121 days. Selenium-

79 is the only radioactive isotope of serious environmental concern due to its long half-

life and its β-emitting nature (Shaw and Ashworth, 2011).
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1.4.2 Anthropogenic Se

Selenium has been released by a number of anthropogenic processes such as Se-rich

coal combustion, wastewater discharge from oil refineries and release from radioactive

waste repositories (Shaw and Ashworth, 2011). The latter is the primary source of 79Se

as a fission product of 235U and is present in spent fuel and wastes in relatively large

amounts. The yield of 79Se from fission is relatively low at about 0.04% meaning that

79Se is only found in significant quantities in spent fuel and wastes created by spent fuel

reprocessing (Bienvenu et al., 2007; Shaw and Ashworth, 2011).

1.4.3 Selenium species

Like iodine the species that selenium is present as strongly determines the

environmental mobility and consequently bioavailability. Selenium can exist in 5

chemical forms; selenide (Se2-), elemental Se (Se0), selenite (Se4+ or SeIV), selenate

(Se6+ or SeVI) and organic Se. Most soluble selenium is considered to be in the form of

SeVI, whereas the less mobile SeIV is normally bound within soils to OM, metal oxides

and hydroxides, or mineral surfaces (Kamei-Ishikawa et al., 2007; Zawislanski et al.,

2003). Elemental Se (Se0) is the least soluble Se species and considered the most stable.

1.4.4 Selenium in soil

1.4.4.1 Selenium interaction with OM

It is well documented that Se concentrations in soils and sediments correlates strongly

with organic carbon content, highlighting the importance of OM in Se fixation (Dhillon

and Dhillon, 1999; Li et al., 2017; Tolu et al., 2014; Wiramanaden et al., 2010a,

2010b). Dutch soils containing low Se concentrations demonstrated a strong correlation

between extractable organic carbon and Se concentrations, showing that Se present in
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these soils is predominantly associated with OM (Supriatin et al., 2015). Tolu et al.

(2014) in a similar study compared Se adsorption within a range of soils including

agricultural, meadow and forest soils using HPLC-ICP-MS and demonstrated that Se in

soils containing less than 20% OM was associated with crystalline oxy-hydroxides,

whereas association with OM is important in soils with higher OM contents thus

reducing Se leaching in podzol and peat soils. Selenium association with OM has been

attributed to reactions with humic substances specifically, due to the functional groups

present here being highly reactive. Selenium chemistry is analogous with sulphur

chemistry, which makes it likely that when interacting with humic substances, Se could

replace sulphur where sulphur is bonded to carbon on the surface. Kang et al. (1991)

found that Se bound to the humic acid fraction was closely associated with the amino

acids in the acid hydrolysate, and concluded that the Se most likely displaces sulphur in

amino acids and forms seleno-amino acids. Gustafsson and Johnsson (1994) added

labelled and unlabelled selenite to two forest floors and through sequential extraction

were able to demonstrate significant incorporation into the humic fraction. Both the

contribution of microbial reduction of selenite prior to association, and incorporation of

inorganic selenite to metal-humic complexes were highlighted. Alongside this Coppin

et al. (2009) concluded that Se interaction is mainly by indirect association through

surface Fe oxides on OM; however, they did not completely rule out direct association.

Meanwhile Martin et al. (2017) demonstrated the contribution of cation bridging in the

association of Se with OM, highlighting the significant reaction of Se(IV) and the lack of

Se(VI) association. The interactions of Se(VI) with OM is a topic of great uncertainty with

much contradicting literature surrounding whether or not Se(VI) is capable of directly

reacting with OM.
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1.4.4.2 Selenium interaction with metal oxides

Metal oxides are ubiquitous in soil environments and have been shown to play a

significant role in determining selenium bioavailability. There is much evidence

surrounding the sorption of Se(IV) and Se(VI) on Al, Fe and Mn oxides under a range of

conditions (Chan et al., 2009; Peak, 2006; Rovira et al., 2008; Scott and Morgan,

1996). Both Se(IV) and Se(VI) have demonstrated interactions with metal oxides,

however it has been shown that Se(IV) is more strongly sorbed than Se(VI), which is

thought to be due to Se(IV) being more polar than Se(VI) (Wiramanaden et al., 2010b),

with Se(IV) predominantly forming stronger inner-sphere complexes (Fernández-

Martínez and Charlet, 2009). Unlike the reactions of Se(VI) with OM, there is much

literature describing the reactions of Se(VI) with iron oxides. Selenate has been shown to

be sorbed weakly by Fe-oxides such as goethite, however there has been much

discussion as to whether this is by inner- or outer-surface complexes, with Peak and

Sparks (2002) concluding that Se(VI) is capable of forming a mixture of both depending

on the pH or ionic strength of the system. In the case of Se(VI) it has been shown that at

pH levels above 6 outer-sphere complexes are likely to form, whereas below pH 6

inner-sphere complexes will form (Peak and Sparks, 2002). Selenite complexation with

hematite and goethite is also significant, again predominantly at acidic pH, and tends to

form FeOSe(O)O- complexes on hematite, and a combination of FeOSe(O)O- and

FeOSe(O)OH on goethite (Rovira et al., 2008).

1.4.4.3 Role of soil microorganisms in selenium mobility

The biotic processes determining Se environmental mobility are significant and have

been widely documented, with microbial reduction of Se(IV) and Se(VI) to Se(0) being

considered the most important process (Doran and Alexander, 1977; Li et al., 2017;
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Lusa, 2015; Oremland et al., 1989). During this reduction process there are a number of

different bacteria and archaea that can use Se as a terminal electron acceptor thus

driving this reaction (Oremland et al., 1989). Alongside the microbial reduction to

insoluble Se(0) it has been shown that due to the chemical similarities between selenium

and sulphur, Se has been found to replace S where S is incorporated into amino acids

forming selenoamino acids such as selenomethionine and selenocystein (Doran and

Alexander, 1977; Turner et al., 1998). Gustafsson and Johnsson (1994) demonstrated

the role of microbial reductive incorporation of selenium into OM, specifically the low

molecular weight fraction of humic substances. It was thought here that the main

reductive mechanisms were biotically driven but that the underlying sorption to the

humic substances was abiotic, demonstrating the biotic and abiotic connections and the

complexity of this in terms of selenium mobility. Alongside microbial incorporation of

Se into OM, it has been shown that biological volatilisation by microbes can also occur

in soils and sediments whereby up to 30% of Se added has been transformed into

volatile species and lost to the atmosphere (Cooke and Bruland, 1987; Hansen et al.,

1998). As previously discussed in the case of iodine, sterilisation is often used to

determine the contribution of microbes to selenium reduction in soils. Soils that are

sterilised show less reduction and retention of Se in soils; Lusa (2015) demonstrated

that sterilised soils only sorbed 1% of the Se(IV) that was incorporated in the non-

sterilised soils. However, once again these soils were autoclaved which provides

problems with regards to OM structural changes. Darcheville et al. (2008) used

irradiation to sterilise, which is considered to affect OM structure less (McNamara et

al., 2003), and found that soils lacking microbial activity retained less Se, and those

that weren’t sterilised retained more and the strength of retention was also greater, i.e.

less exchangeable selenium.
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1.5 TECHNETIUM IN THE ENVIRONMENT

Unlike iodine and selenium, technetium is an entirely artificial element the main

sources of which are from nuclear power, nuclear weapons and medical applications.

Therefore Tc found in the environment is always from anthropogenic sources (Garcia-

León, 2005). Technetium is also known to only have radioactive isotopes, there are no

stable Tc isotopes, with half-lives ranging from milliseconds to millions of years. The

most environmentally relevant Tc isotope is 99Tc due to its long half-life (2.13 x 105

years) and its inventory in nuclear waste. This long half-life ensures that once 99Tc is

released into the environment it remains over long time scales potentially providing a

significant dose to humans and wildlife. A value of 9 kg of 99Tc per 1 GW of energy

per year has been estimated from PWR fuels, which was up scaled to a value of 15000

TBq of 99Tc worldwide by 1983 (Luykx, 1986). Thirty-four years on this value has only

continued to increase due to the rising concerns associated with using fossil fuels,

resulting in a significant pool of 99Tc within the environment.

1.5.1 Technetium species

Technetium can exist in valence states from +7 to -1, with the +4 and 0 states being the

most stable. The most commonly released species of Tc into the environment is the

highly mobile pertechnetate ion (99Tc(VII)O4
-) which is produced during the processing

of nuclear waste (Darab and Smith, 1996). The oxidation state of Tc is particularly

important in determining the environmental behaviour of Tc chemical species (Begg et

al., 2007; Szecsody et al., 2014).
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1.5.2 Technetium in soil

1.5.2.1 Technetium interaction with OM

Technetium interaction with soils has received much attention over recent years,

following discussions regarding the safe confinement of radioactive waste. Interactions

between Tc and humic substances have been demonstrated (Geraedts et al., 2002; Maes

et al., 2004), however before this can occur it has been shown that reduction from

Tc(VII) to Tc(IV) must occur. The understanding is that under aerobic conditions Tc is

present as the highly mobile Tc(VII), whereas under anaerobic or reducing conditions it

is found as the less soluble reduced Tc(IV) (Bennett and Willey, 2003; Sheppard et al.,

1990). Stalmans et al. (1986) demonstrated that the OM fraction within soils plays an

important role in immobilising Tc through association with HA. However experiments

were run over a limited neutral to high pH range, and although the soil investigated was

aerobic initially, the soils were flooded and kept under a N2 atmosphere after Tc(VII)

addition, therefore encouraging reduction. A study by Sheppard et al. (1990) however

found no correlation between Tc immobilisation in anaerobic soils and OM content,

with only a slight correlation in the aerobic soils. More recently Abdelouas et al. (2005)

demonstrated through sequential extraction on a range of OM-rich soils that the

majority of Tc was extracted alongside the OM fraction (60-66%) followed by 23-31%

that was released with Fe-oxyhydroxides. Technetium interaction with humic acid

specifically has been demonstrated; in the case of Sekine et al. (1993) association with

HA was demonstrated at pH 4 in the presence of Sn2+ as a reducing agent, showing

increasing Tc complexation with increasing concentrations of Sn2+. However it appears

as though when increasing the concentration of HA in solution alongside a range of

Sn2+ concentrations, the residual Tc in solution (%) was greater at higher HA

concentrations suggesting that HA concentration was not the determining factor, but
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that the reduction step was most limiting. This is once again confirmed by Geraedts et

al. (2002) who showed how in the presence of Gorleben groundwater (high natural HS

content) Tc(VII) could be reduced with or without humic substances by the addition of a

reducing surface, but in the presence of HS Tc-organic colloids associated with HS

were precipitated. However, once again this was at neutral to high pH levels. EXAFS

analysis of Tc in combination with humic substances demonstrated no direct connection

between Tc and HS via a Tc-C bond as would be expected during complexation (Maes

et al., 2004), which has led to the theory that Tc(IV) oxidic polymers may interact with

humic substances by colloid sorption. Although Tc interaction with humic substances

specifically has been demonstrated in a number of studies, in all cases the Tc has

undergone reduction prior to association.

1.5.2.2 Technetium interaction with metal oxides and ions

Alongside Tc interactions with OM, it is expected that Tc associations with metal

oxides could be significant in soils containing high concentrations of metal oxides.

Most evidence surrounding Tc interactions with metal ions involves Fe(II) acting as an

electron donor and reducing Tc(VII) to Tc(IV) thus immobilising it under anaerobic

conditions (Jaisi and Plymale, 2009; Li and Kaplan, 2012; Peretyazhko et al., 2008;

Thorpe et al., 2014; Zachara et al., 2007). The abiotic reduction of Tc(VII) by aqueous

Fe(II) showed strong pH dependency, resulting in a precipitated Fe/Tc(IV) product

(Zachara et al., 2007). Using scanning transmission electron microscopy, Tc was shown

to be associated with nanometre size Fe(II)-rich particles when present at a high

concentration in sediments, providing evidence for Tc reduction and association with

metal ions (Druteikiene et al., 2014). It was also demonstrated that when precipitated in

this form rather than as Tc(IV)O2•nH2O it was much less likely to remobilise when
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conditions were oxidising (Jaisi and Plymale, 2009; Zachara et al., 2007), thus keeping

the Tc immobilised. Iron oxides, hydroxides and (oxy)hydroxides have all been shown

to significantly reduce Tc(VII) to Tc(IV) in solution, and reduce re-oxidation, thus have

been considered as a potential component of barrier systems for geological disposal of

nuclear waste because of this (Jaisi and Plymale, 2009; Um et al., 2011).

1.5.2.3 Role of soil microorganisms in technetium mobility

Whilst there is much evidence for Tc reduction by metal oxides, there is also significant

evidence surrounding microbial reduction, whether that is directly (i.e. during

respiration or enzyme-mediated) (De Luca et al., 2001; Lloyd et al., 1999), or indirectly

(i.e. through microbial alteration of the redox potential) (Tagami and Uchida, 1996;

Thorpe et al., 2014). Abdelouas et al. (2005) demonstrated that the presence of metal-

and sulphate-reducing bacteria has a significant effect on the reduction and

immobilisation of Tc in soils with a high OM content. In systems without these

microorganisms (0.22µm sterilisation) Tc(VII) was not reduced and therefore remained

mobile in solution. The role of hydrogenase in the reduction of Tc(VII) is well

documented. The enzyme hydrogenase uses hydrogen as an electron donor in the

reduction of Tc(VII), and in experiments with microbial communities with and without

functioning hydrogenase production, Tc(VII) reduction is present in communities

capable of production, and absent in communities that are not (De Luca et al., 2001;

Lloyd et al., 1999). Istok et al. (2004) demonstrated a lack of Tc(VII) reduction in the

absence of a electron donor, however in the presence of a suitable donor and NO3
-,

denitrification occurred and concomitantly Tc(VII) reduction. This suggests that

microbial reduction of Tc is predominant in environmental systems, whereas chemical

reduction plays a less significant role. Reduction of Tc(VII) in microbially Fe(III)-
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reducing sediments was shown to be the most significant reduction mechanism by

Burke et al. (2010) where both microbially-active reducing sediments and pre-reduced

sediments showed significant removal of Tc within 10 mins to 36 days. The ability of

microorganisms to directly or indirectly drive reduction of Tc(VII) within soils and

sediments is so reliable at immobilising Tc that it is being investigated as a means of

bioremediation for Tc contaminated environments (De Luca et al., 2001; Marshall et

al., 2008; Wildung et al., 2000). Newsome et al. (2017) investigated the potential of

microbially-mediated reducing conditions in the in situ bioremediation of Tc(VII)

through using alternative slow release electron donor and chemical reduction based

substrates. They were able to demonstrate not only the precipitation and consequent

immobilisation of Tc(VII) as Tc(IV) but also the resilience of these formed hydrous Tc(IV)-

oxides and Tc(IV)-sulfides to reoxidation, providing evidence for how the microbially

induced reduction of Tc(VII) could be used as a viable bioremediation technique.

1.6 AIMS

Iodine, selenium and technetium are all key radionuclides of concern with regards to

nuclear waste disposal due to their environmental persistence. Soil properties affect the

speciation of these 3 elements and therefore their mobility and bioavailability. The OM

content, metal oxide content and pH of a soil have been recognised as some of the most

important factors governing their transformations within the soil ecosystem. There is

limited data regarding the interactions of these 3 radionuclides with OM specifically, in

its purest forms of humic acid and fulvic acid, alone and in combination with metal

oxides at different pH levels. Through investigation of the abiotic interactions between

these radionuclides and OM, it will allow a better understanding of the interactions

within soil environments as a whole. Currently the TREE project is developing
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predictive models for these radionuclides based on data collected from 30 different

soils with varying properties including OM content, metal oxide content, pH and

texture. The interactions with HA and FA investigated here under varying pH

conditions will allow a better understanding of the short- and long-term fate of these

elements when released from underground sources and aerially deposited loads.

In this work, four main questions are explored:

1. How do environmental factors such as pH and temperature influence the

interactions of I, Se and Tc with soil humic and fulvic acids?

2. How does the presence of metal ions affect the interactions of I, Se and Tc with

humic and fulvic acids?

3. How do the interactions with HA and FA compare to interactions within whole

soils?

4. Can the interactions observed be reliably modelled, alone and in combination

with whole soil data, to allow prediction of the fate of these elements?
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2. MATERIALS AND METHODS

2.1 INTRODUCTION

Humic and fulvic acids used in this work were extracted from an Irish moss peat

purchased from Sycamore Trading, County Derry, Ireland. Irish moss peat has a high

OM content allowing maximum HA and FA extraction yield. Sample extraction and

processing are detailed below. Purifying HA and FA of inorganic impurities is vital in

order to avoid complications and errors associated with the analyses of HA (Malcom,

1976). This chapter describes methods used throughout the work to extract and purify

the HA and FA. The analytical methods used to assay I, Se and Tc are also described.

2.2 HUMIC ACID EXTRACTION

Humic acid (HA) was extracted from Irish moss peat soil according to the procedures

recommended by the International Humic Substances Society (IHSS). Approximately

300 g of <2 mm sieved peat was saturated with 1 L of 1 M NaOH and then made to 10 L

with 0.1 M NaOH under an N2 blanket, giving an extractant-to-peat ratio of 10:1.

Intermittent shaking for 4 h ensured complete mixing prior to leaving overnight under

N2. The supernatant was then siphoned off from the humin before acidification with

constant stirring to pH 1 with 6 M HCl to precipitate the HA. This was then left for 12-

16 h to allow the HA to settle. The supernatant (which contains the fulvic acid fraction)

was decanted and retained for further processing while the HA floc was centrifuged

(Model Z 400, Hermle) at 25,000 rpm for 15 minutes in order to completely remove all

supernatant, which was added to the FA stock. The precipitated HA fraction was then re-

dissolved in the minimum amount of 0.1 M KOH, under an N2 blanket, to pH 13, before

solid KCl was added to give a concentration of 0.3 M [K+]. The solution was then
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centrifuged to remove suspended inorganic solids and acidified to pH 1 by adding 6 M

HCl, to re-precipitate the HA. The suspension was left to stand for another 12-16 hours

before the supernatant was discarded. The HA was then mixed with Milli-Q water (18.2

MΩ cm) to generate a slurry before it was transferred to 10,000 Dalton visking dialysis 

tubing against Milli-Q water. Dialysis was continued, with frequent replacement of

Milli-Q water, until a negative Cl-test with silver nitrate (AgNO3
-) was achieved. The

HA was then transferred into universal tubes and frozen at -84oC prior to freeze drying

(Model Alpha 2.4, Christ).

2.3 FULVIC ACID EXTRACTION

2.3.1 Column Preparation

The supernatant collected following the initial acid-precipitation of HA contains the FA

fraction. To separate the FA from salts present following HA flocculation the supernatant

must be passed through a Superlite DAX-8 resin (Sigma-Aldrich, U.K.) column (50 mL)

before acidification of the FA functional groups by passing through an Amberlite IR-120

(Sigma-Aldrich, U.K.) column (50 mL). The FA must be passed through both columns

in quick succession in order to reduce organic oxidation by oxygen uptake under alkaline

conditions (Malcom, 1976), therefore both must be prepared at the same time.

To prepare the columns, a small amount of quartz wool was placed in the bottom of two

60 mL polypropylene syringes before the resins were added with a 2-3 cm head of Milli-

Q water to ensure that they remained wet. The Superlite DAX-8 resin was soaked in

methanol for 15 min in a fume hood before the methanol was decanted and replaced with

Milli-Q water for 10 min to ensure that it was sufficiently wet. The Amberlite IR-120

resin initially in the Na+ form was washed with 5-10 column volumes of 0.1 M HCl to
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convert the strong acid sulphonate groups to the H+ form. It was then washed through

with Milli-Q water to remove extraneous Cl- ions, before being ready to use. It was

wetted with Milli-Q water for 15 minutes prior to use. Approximately 0.15 mL of

Superlite DAX-8 resin is required per gram of initial sample dry weight; for the peat FA

50 mL was enough to process 1 L of FA solution.

2.3.2 DAX-8 Resin Column Procedure

Acidification with HCl was used to separate FA from HA resulting in an excess of NaCl

is the FA fraction. The FA solution was passed through the Superlite DAX-8 column at

a flow rate of 15 bed volumes per hour, whilst collecting the effluent which was

discarded. The column was then washed with Milli-Q water in order to wash out the

excess NaCl. Desorption of FA from the Superlite DAX-8 resin with 1 column volume

of 0.1 M NaOH and 2-3 column volumes of Milli-Q water was performed in order to

increase recovery of the hydrophobic FA by concentrating the FA into a smaller volume

(Thurman and Malcolm, 1981).

2.3.3 Amberlite IR-120 Column Procedure

The eluate from the Superlite DAX-8 column was passed through the H+-Amberlite IR-

120 column in order to convert the sodium salt of the FA to its free-acid form (hydrogen

saturated) (Thurman and Malcolm, 1981). It was then divided into polypropylene tubes

and frozen before being freeze dried (Model Alpha 2.4, Christ) until constant weight was

achieved (typically 4 – 5 days).
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2.4 HUMIC AND FULVIC ACID CHARACTERISATION

2.4.1 Carbon and Nitrogen Content

To determine the carbon, nitrogen and sulphur content of the HA and FA, 8.22 mg of HA

was weighed directly into a tin capsule and combusted at 900-1000oC using an Organic

Elemental Analyser (Model Flash 2000, CE Instruments).

2.4.2 Ash Content

Samples were dried at 105oC for 24 hours to removal all moisture. Ash content by was

determined by combustion at 550oC for 4 hours in a muffle furnace (AAF 1100,

Carbolite) (Stevenson, 1982).

2.4.3 Total elemental composition

Total elemental composition of the HA and FA was determined by ICP-MS following

nitric acid digestion of the purified fractions. Approximately 50 mg (±1.8 mg) was

weighed directly into Teflon microwave digestion tubes with 2 mL of HNO3 (70% Trace

Analysis grade), 1 mL H2O2 and 1 mL Milli-Q water. The samples were then digested

with microwave heating (Anton Paar, Multiwave-3000 fitted with a 48-place rotor) at

1400 W for 90 minutes. Digested samples, once opened in a fume hood, were diluted

with 15 mL Milli-Q water and transferred into polypropylene tubes. A 1:10 dilution of

the samples with Milli-Q water was undertaken immediately prior to ICP-MS analysis

(Section 2.6.2).

2.4.4 Multi-elemental analysis

Multi-element analysis of diluted solutions was undertaken by ICP-MS (Thermo-Fisher

Scientific iCAP-Q; Thermo Fisher Scientific, Bremen, Germany). Samples were
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introduced from an autosampler (Cetac ASX-520) incorporating an ASXpress™ rapid

uptake module through a PEEK nebulizer (Burgener Mira Mist). Internal standards were

introduced to the sample stream on a separate line via the ASXpress unit and included

Sc (20 µg L-1), Rh (10 µg L-1), Ge (10 µg L-1) and Ir (5 µg L-1) in 2% trace analysis grade

(Fisher Scientific, UK) HNO3. External multi-element calibration standards (Claritas-

PPT grade CLMS-2 from SPEX Certiprep Inc., Metuchen, NJ, USA) included Ag, Al,

As, B, Ba, Cd, Ca, Co, Cr, Cs, Cu, Fe, K, Mg, Mn, Mo, Na, Ni, P, Pb, Rb, S, Se, Sr, Ti

(semi-quant), U, V and Zn, in the range 0 – 100 µg L-1 (0, 20, 40, 100 µg L-1). A bespoke

external multi-element calibration solution (PlasmaCAL, SCP Science, France) was used

to prepare Ca, Mg, Na and K standards in the range 0-30 mg L-1. Phosphorus, B and S

calibration utilized in-house standard solutions (KH2PO4, K2SO4 and H3BO3). In-sample

switching was used to measure B and P in STD mode, Se in H2-cell mode and all other

elements in He-cell mode. Sample processing was undertaken using Qtegra™ software

(Thermo-Fisher Scientific) utilizing external cross-calibration between pulse-counting

and analogue detector modes when required.

2.4.5 Iodine and Selenium Content

TMAH-extractable I and Se were determined after dissolving 50 mg (±1.30 mg) of HA

in 2 mL 5% TMAH in polypropylene tubes before being left for 20 minutes with

occasional agitation. An aliquot of 8 mL Milli-Q water was added to make a final solution

of 1% TMAH which was then analysed by ICP-MS without further dilution (Section

2.5.1).
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2.5 ICP-MS for quantification

ICP-MS is commonly used for the determination of I, Se and Tc in environmental

samples typically with typical detection limits of 0.0051-0.3 µg L-1 for 129I (Brown,

Geiszler and Lindberg, 2007; Shetaya et al., 2012), 0.016-0.086 µg L-1 for 77Se (Peng et

al., 2015; Paul, 2016) and 0.2-47 ppt for 99Tc (Rameback et al., 1998; Más et al., 2002).

There are a number of factors to consider when measuring I, Se and Tc in environmental

samples including matrix matching, interferences from isotopes of other elements and

polyatomics formed in or after the plasma. The major interferences include 129Xe+,

127IH2+ and 127ID+ ions for 129I (Izmer et al., 2004; Reid et al., 2008; Ohno et al., 2013),

40Ar36ArH+, 38Ar2H+ and 40Ar37Cl+ for 77Se (Hinojosa Reyes et al., 2003), and 99Ru,

98MoH, 59Co40Ar, 87Sr12C, 87Rb12C, 43Ca16O40Ar, 40Ar18OH and 40Ca18OH40Ar for 99Tc

(Keith-Roach et al., 2002; Más et al., 2002).

2.5.1 Totals analysis

All ICP-MS analysis was carried out at the University of Nottingham on a Thermo-

Scientific iCAPQ. The instrument was run employing three operational modes, including

(i) a collision-cell using He with kinetic energy discrimination (He-cell) to remove

polyatomic interferences when determining 99Tc, (ii) standard mode (STD) in which the

collision cell is evacuated for total 129I and (iii) hydrogen mode (H2-cell) in which H2 gas

is used as the cell gas for total 77Se and speciation analysis of 129I and 77Se. Internal

standards included 103Rh, 185Re and 115In, in a matrix of 2% TMAH and 4% methanol for

129I analysis. Sample and wash matrices were 1% TMAH to ensure full wash-out of I

between samples. Internal standards for 77Se and Tc analysis were 103Rh and 185Re

prepared in a 2% HNO3 matrix. Selenium and Tc analysis was performed with sample

matrices of 2% HNO3 to ensure full wash-out between samples.
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2.5.1 Isotopic Spikes 129I, 77Se and 99Tc

An 129I stock standard was obtained from High Technology Sources Ltd, UK, provided

as a 5 mL ampoule in the I- form and was made up to 100 mL with 0.01 M NaOH for

storage in a lead safe in a radiation laboratory. Working standards for 129I were prepared

from this stock. Oxidation of the 129I- stock to form 129IO3
- was performed by first

neutralising 100 mL of the 129I- stock with 0.1 M HCl, then immediately adding 10 mL

0.2 M chlorite for oxidation.

Selenium-77 standards were purchased from Isoflex, USA, and were prepared from an

elemental stock of enriched 77Se0 (50 mg: 99.2 % isotopic enrichment) as per Collins et

al., (2006). The 77Se(IV) was prepared by dissolving 77Se0 in 70% HNO3 in a conical flask

and heating at 60oC on a Teflon-coated block digester until all liquid was evaporated.

The remaining material was dissolved in 2% HNO3 and stored in the dark at room

temperature. To prepare the 77Se(VI) stock, 77Se0 was dissolved in 30% H2O2 and 2.0 M

KOH in a conical flask and heated at 90oC on a Teflon-coated graphite block digester

until all the liquid was evaporated. The remaining material was dissolved in 30% H2O2

and heated at 90oC, this was repeated thrice. The remaining material was then dissolved

in 2% HNO3 and also stored in the dark at room temperature. The concentrations of the

final stock solutions were 231 mg L-1 for 77Se(IV) and 259 mg L-1 for 77Se(VI).

Technetium-99 standards were purchased from the American National Institute of

Standards (NIST), U.S.A, and provided as a 5 mL ampoule of 99Tc in 0.001 M KOH.

This was transferred into a 100 mL volumetric flask and diluted with Milli-Q water.

Stored in a lead safe in a radiation laboratory at room temperature.
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2.5.2 Solution phase speciation

Chromatography to separate inorganic I and Se species was undertaken using HPLC

(Dionex, ICS-3000) coupled to the ICP-MS with a Hamilton PRP x-100 column (5 μm, 

4.1 x 100 mm). Samples (100 µl) were injected into an eluent (50 mM ammonium nitrate,

2% methanol, 1 x 10-5 EDTA, adjusted to pH 9 using TRIS buffer) at a flow rate of 1.6

mL min-1 eluent. Good separation was achieved within 320 seconds. Inorganic Tc species

were separated independently of I and Se in the same way using a Hamilton PRP x-50

column (5µm, 4.1 x 50 mm) with an eluent (50 mM ammonium perchlorate) flow rate of

1 mL min-1. Species-specific standards of 129IO3
- and 129I- at 1-10 µg L-1, 77Se(IV) and

77Se(VI) at 1-5 μg L-1, and 99TcO4
- at 1 μg L-1, freshly prepared in Milli-Q water were used

for calibration. Data processing was carried out for all species using Plasmalab software

(Version 2.5.1.276). Organic species formation was calculated from a mass balance as

shown here for I (Eqn. 1.1).

Org-129I = 129IA – 129IF (1.1)

Org-129I is the estimated concentration of organic I formed (μg L-1), 129IA is the total

inorganic I spike added either as 129IO3
- or 129I- (μg L-1), and 129IF is the total inorganic I

species formed (129IO3
- plus 129I- , μg L-1). Drift correction was applied using standards

repeated regularly throughout the analysis.

2.5.3 Organic iodine and selenium speciation

Further chromatographic investigation to verify the presence of high MW organic iodine

species employed size exclusion chromatography (SEC-ICP-MS) with a Superose 12

10/300 column (GE Healthcare) with a 100 µl injection into the same eluent used for

separation of the inorganic species (Section 2.5.2) flowing at 1 mL min-1 over 2000 s.
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3. CHARACTERISATION OF HUMIC AND FULVIC ACID

3.1 INTRODUCTION

Humic substances (HS) have a significant effect on the mobility of cationic and anion

species, due to their ubiquitous occurrence in the environment (Baidoo et al., 2014;

Benedetti et al., 1996; Tipping, 1994). The acid-base characteristics of HS, can be

determined by potentiometric titration against a standard acid to quantify surface

chemistry and predict their environmental behaviour (Avena et al., 1999; Baidoo et al.,

2014; Gamble, 1972). Characterisation of surface charge is also the logical first step in

the application of surface complexation models as the degree of negative charge on HS

will affect the kinetics of anion reduction and binding (Lützenkirchen, 1999).

Humic moieties are weak acid polyelectrolytes that deprotonate less readily than strong

acids and will therefore be only partially dissociated at intermediate pHs (Fukushima et

al., 1995). Carboxyl and phenolic hydroxyl groups on HA and FA, dissociate at different

pHs (Baidoo et al., 2014). It can be difficult to quantify the separate contributions of

carboxyl and phenolic groups to the total acidity of HA and FA. It is often assumed that

all carboxyl groups are dissociated by pH 8.0 (Santos et al., 1999) with phenolic groups

dissociating between pH 8.0 and pH 10.0 (Bowles et al., 1994) with some overlap around

pH 8.0. Baidoo et al. (2014) successfully employed potentiometric titration methods,

similar to those employed in this study, for quantification of acidic groups present on

tropical humic acids. He estimated the phenolic content as half the measured carboxyl

content due to uncertainties in calculations above pH 8. Numerical models that optimise

the proportions of carboxyl and phenolic groups as model parameters in fitting the charge

curves can also be used to determine the relative contributions of phenolic and carboxyl

groups to HS surface charge development (Ritchie and Perdue, 2003; Weber et al., 2006).
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The monitoring of HS charge development with pH allows consideration of surface

charge in terms of ion bonding to HA and FA. Dissolved I, Se and Tc are anionic and

therefore most likely to interact with HA and FA when the negative surface charge is at

a minimum. To understand the interaction of I, Se and Tc with natural humic substances

rapid forward titrations of extracted HA and FA were performed, and an empirical pH-

based method used to obtain estimates of total acidity (charge density at pH 8) and

descriptive titration curves.

3.2 AIMS AND OBJECTIVES

The aim of this work was to characterise how the HA and FA surface charge changes as

a function of pH and ionic strength.

The specific objectives were to:

1. Reliably estimate HA and FA total acidity;

2. Establish changes in HA and FA surface charge as a function of pH and ionic

strength;

3.3 MATERIALS AND METHODS

3.3.1 Total Acidity

The total acidity of the extracted HA and FA was determined using a modified version

of the barium hydroxide method proposed by Schnitzer and Khan, (1972). Freeze dried

HA (0.05 g) and FA (0.03 g) was dissolved in 5 mL of 0.1 M NaOH, and shaken for 1

hour. Barium chloride (2.5 mL, 0.2 M) was then added before the tubes were flushed

with N2 and shaken overnight. The suspension was then centrifuged at 1500 rpm for 15
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minutes, and 5 mL of the supernatant collected for titration. For titration, 55 mL of 1 M

NaCl was added to the 5 mL of HA/FA supernatant in a beaker titrated under N2 whilst

stirring down to pH 2.64-2.44 with 0.2 mL additions of 0.1 M HNO3. Blank titrations

were also conducted and the volume of acid required to titrate to the pH in the equivalent

HA/FA titration was recorded. The difference between sample and blank titrations was

used to obtain total acidity (mol kg-1) (Eqn. 3.1):

௔ܶ௖௜ௗ =
஻೅ିௌ೅ ୶ௌಷ

ு஺ೢ ೟୶ଵ଴଴଴
(3.1)

Where BT is the blank titre (mL), ST is the sample titre (mL), HAwt is the weight of humic

acid used (g), and SF is the sample factor (Eqn. 3.2):

ிܵ =
௏೔೙೔೟

௏೟೔೟ೝ೐
(3.2)

Where Vinit is the initial sample volume (mL), and Vtitre is the volume titrated (mL).

3.3.3 Surface Charge Model Development

Information to parameterise a surface charge model was collected by titrating 0.05 g of

HA dissolved in 5 mL of 0.1 M NaOH from pH 11.0 to pH 2.0 at three ionic strengths

(65 mL of 0.1, 0.05 and 0.01 M NaCl), pH was recorded after each 0.1 mL addition of

0.1 M HNO3.

Ionic strength (I) was calculated using the sum of the concentration of all ions in solution

(C, mol L-1) multiplied by their valence squared (z2) according to Eqn. 3.3:
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=ܫ
ଵ

ଶ
Σܥ௜ݖ௜

ଶ (3.3)

Which was approximated for a monovalent electrolyte as Eqn. 3.4:

=ܫ  Σܥ஼௔௧௜௢௡ (3.4)

From the ionic strength the activity coefficient (ߛ) of the HA was calculated according

to Eqn. 3.5:

=ߛ 10
ି଴.ହ଴ଽ×

√಺

భశ √಺
ି଴.ଷூ

(3.5)

The humic surface charge (Z) was calculated from Equation 3.6, after conversion of H+

and OH- activity, to concentrations (Eqn. 3.6):

Z =
[୓ୌష ]ା[୒୓య

ష ]ି[ୌశ ]ି[୒ୟశ ]

[ୌ୅]
(3.6)

The negative logarithm of the acid dissociation constant (pKa) was defined as (Eqn. 3.7):

pKୟ =  −logଵ଴ܭ௔ (3.7)

Where:

௔ܭ =
஺ൣ೔
ష൧[ுశ ]

[ு஺]
(3.8)
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and Ka is the acid dissociation constant and Ai
- represents deprotonated groups on the

humic acid.

A second method to calculate change in surface charge as a function of pH is to determine

the difference in acid addition required for a sample and blank titration to achieve a

desired pH. (Eqn. 3.9):

ܼ =
(஻೅ିௌ೅)[஺௖௜ௗ]

ெ ௔௦௦
(3.9)

Where Z is the HA/FA surface charge, BT is the acid volume used for the blank titration

(mL), ST is the acid volume used in the sample titration (mL) multiplied by the acid

concentration (M) and divided by the mass (g) of HA/FA used.

3.3.4 Calculation of Model Optimised Parameter Values

The proton binding groups of humic substances are heterogeneous, and therefore have a

range of intrinsic pK values. Two types of acid groups are distinguished, carboxyl (Type

A) and phenolic hydroxyl (Type B), which are each then subdivided into four different

sub-groups assumed to be present in equal amounts. The proportion of Type A and B

groups (mol kg-1) assumes that Type B groups contribute one third of the total acidity,

and Type A the remaining two thirds. Each of the 4 sub-groups will have a median pKA

or pKB value and a spreading factor (ΔpKA and ΔpKB) that define a range of 4 pKa

values around the mean intrinsic pK value. These pK values are calculated from Eqn.

3.10:

ܭ݌ = +௜௡௧ܭ݌ ܼݓ (3.10)
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Where Kint is the intrinsic dissociation constant, w is the electrostatic interaction factor

(Equ 3.11), and Z is the surface charge (mol kg-1).

ݓ = ܲ ݈݃݋ ଵ଴ܫexp(ܳ| |ܼ) (3.11)

where I is the ionic strength (M), and P and Q are fitted parameters.

The surface charge contribution of each of the sub-groups is calculated at each pH (Eqn.

3.12 and 3.13):

ܼ = ଵܣ]
ି] + ଶܣ]

ି] + ଷܣ]
ି] + ସܣ]

ି] + ଵܤ]
ି] + ଶܤ]

ି] + ଷܤ]
ି] + ସܤ]

ି] (3.12)

ଵܣ]
ି] =

்ಲభ

ଵା൬
಼೔೙೟భబ

షೢ ೋ

(ಹశ )
൰

(3.13)

Where [A1
-] is the surface charge of the type A sub-group 1, [B1

-] is the surface charge

of type B sub-group 1 etc., TA1 is the total concentration of Type A sub-group 1 (mol kg-

1), Kint is the intrinsic dissociation constant, w is the electrostatic interaction factor (see

Equ 3.11), and Z is the charge (mol kg-1).

The surface charge across all 8 acid groups was summed to give a Model Charge value

(mol kg-1) at each pH. The error sum of squares (ESS) for each pH was also calculated

(Eqn. 3. 14):

ESS = ( ெܼ ௘௔௦− ெܼ ௢ௗ௘௟)
ଶ (3.14)
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Where both the surface charge (ZMeas) and model charge (ZModel) are in mol kg-1. The

electrostatic factor (P) (Eqn. 3.11), which accounts for non-uniform charge distribution

around humic molecules, average intrinsic pK values, and the spreading factors were

optimised based on the ESS in order to establish the best model fit to the measured data

at each ionic strength.

By including the proportion of Type A (and B) groups as an optimised value (TProp), it is

possible to further refine the model fit (Eqn. 3. 15 and 3.16):

஺ܶ ൌ ��ܶ ௔௖௜ௗ�ൈ �ܶ ௉௥௢௣ (3.15)

஻ܶ ൌ �ܶ ௔௖௜ௗ�ൈ�ሺͳ െ ௉ܶ௥௢௣) (3.16)

4.5 Surface Charge Prediction Model

Fixing the Type A and Type B groups, means that optimising the ESS enables reliable

prediction of the surface charge of the HA or FA based on the pH and the ionic strength.

Figure 3.1. Schematic of the
model structure used to optimise
the ESS for model optimisation.
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The measured surface charge (Zin) was therefore optimised against the modelled surface

charge (Zout) output by minimising the ESS (Figure 3.1).

3.4 RESULTS AND DISCUSSION

3.4.1 Humic acid composition

The nature of the parent material and the purification steps undertaken during

extraction and preparation (Section 2.4) have resulted in a relatively pure HA sample

(Table. 3.1).

Table 3.1. Measured characteristics of humic acid (HA) collected from Irish moss peat.

Characteristic Value Units

Ash Content 0.056 %

C 48.71 %

N 2.12 %

H 4.91 %

Fe content 95.79 mg kg-1

Al content 100.30 mg kg-1

127I  20.36 μg g-1

78Se  1.57 μg g-1

3.4.2 Acidic group abundance

3.4.2.1 FTIR

The FTIR spectra of the HA is similar to others in the literature and confirms the HA is

typical (Figure 3.2). The band around 1700 cm-1 indicates carboxylic groups, and the

band around 1590 cm-1 is typical of C=O stretching associated with aromatic rings

(Doskocil et al., 2018; Manzak et al., 2017). The broad band around 3200-3600 cm-1 is

associated with aliphatic chains, and that at 2915 cm-1 describes symmetric stretching of

methylene (C-H) groups (Doskocil et al., 2018; Traversa et al., 2014).
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3.4.2.2 NMR

Quantitative analysis of HA by NMR demonstrated a large number of different carbon

environments. The 13C magnetic angle spinning (MAS) spectrum shows a broad

spectrum with overlapping peaks (Figure 3.3), highlighting the polymeric nature of HA.

The MAS rate of 12.5 kHz is fast enough to allow separation between the spinning

sidebands and central intensity. Cross polarisation (CP) relaxation analysis was also

acquired and is shown in Figure 3.4. This enabled correction of the 13C MAS spectrum
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Figure 3.2. FTIR spectra for HA.

Figure 3.3.
13C MAS spectrum of HA at a MAS rate 12.5 kHz.
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(Figure 3.3) by accounting for relaxation effects by calculation of the ratio of peak area

missing in the spectrum. Given the broad nature of this spectrum it was not possible to

identify individual sites so the quantitative analysis was determined for aliphatic,

carbohydrate, aromatic and carboxylic sites (Table 3.2).

Table 3.2. Percentage composition of the HA used in this work.

Composition (%)

Aliphatic (0 – 50 ppm) 11 ± 1.5

Carbohydrate (50 – 108 ppm) 30 ± 1.1

Aromatic (108 – 162 ppm) 43 ± 1.3

Carboxylic (162 – 220 ppm) 15 ± 0.7

Sp2/Sp3 (108 – 162 ppm)/(0 – 108 ppm) 1.4 ± 0.05

Figure 3.4. 13C CPMAS spectrum of HA with a MAS rate of 6 kHz and a relaxation
delay of 0.0001 seconds (blue) and 25 seconds (red) with a relaxation delay of 2
seconds.
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The parent material and environment in which HA forms, determines the composition

and structure of the HA; it can therefore vary greatly between soils (Table 3.3). For

example, González Pérez et al. (2004) demonstrated that a non-cultivated oxisol in Brazil

had a lower aromaticity (%) and a higher aliphatic content than the same oxisol under

conventional tillage practice and maize-fallow cultivation. The no-till system resulted in

continuous accumulation of plant residues at the surface, providing fresh crop residues

for microbial metabolism, resulting in OM with a higher aliphatic content. This perfectly

demonstrates how systems under different stresses result in differing degrees of

humification of HA. The HA extracted from the Irish moss peat that is under

investigation here has a higher aromatic C content (%) than many other HAs (Table 3.3).

Aromaticity of HA typically increases with humification, demonstrated by an increase in

C/H ratio (Stevenson, 1982), and since this peat soil has a high OM content the degree

of humification is likely to be high. The aliphatic content of the HA is correspondingly

lower than many other HAs (Table 3.3).

Table 3.3. Distribution of 13C in humic acids from a range of different soil types by
CP/MAS 13C NMR.

Soil Region Composition(%) Reference

Mangrove lake Aromatic C 33 (Hatcher, 1980)

Ombotrophic peat bog Aromatic C 21/23a (Gondar et al., 2005)

Carboxylic C 8/12a

Forest podzol Aliphatic C 34.3 (Cook and Langford, 1998)

Aromatic C 18.7

Carboxylic C 15.7

Carbohydrate C 21

Calcaric cambisol Aromatic C 14.7 (Adani et al., 2006)

Carboxylic C 16.2

Aliphatic C 30.9

Oxisol (NC) Aromatic C 24 (González Pérez et al., 2004)
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Carboxylic C 16

Aliphatic C (0-65 ppm) 42

Oxisol (CT1) Aromatic C 30 (González Pérez et al., 2004)

Carboxylic C 17

Aliphatic C (0 – 65 ppm) 37

a surface horizon/deeper horizon, NC = Not Cultivated,

CT1 = Conventionally tilled, maize-bare fallow

3.4.2.3 Total acidity

The abundance of acidic groups differed between the HA (6.523 mol kg-1) and the FA

(8.225 mol kg-1) fractions, with the FA fraction having a higher total acidity. This is

consistent with the results of previous workers (Gondar et al., 2005; Ritchie and Michael

Perdue, 2003; Weber and Wilson, 1975) and is thought to be due to the lower average

molecular weight of FA as a result of HA hydrolysis. Humic acids undergo hydrolysis,

where non-acidic ester groups are broken into aromatic acid and alcohol containing

groups thus resulting in increased carboxyl content in the resulting FAs (Weber and

Wilson, 1975).

3.4.2 Surface charge development

Surface charge data was plotted against pH. As pH increased, the negative surface charge

also increased, with a ‘dip’ around pH 8.0 (Figure 3.5). This ‘dip’ is thought to be the

point in the titration where all the carboxyl groups have dissociated, leaving the phenol

hydroxyl groups to dissociate at higher pH (Marshall et al., 1995). From comparison of

the acid-base properties of HA and FA it is clear that the FA has a greater negative charge

at any given pH than HA, an observation consistent with findings of previous studies

(Gondar et al., 2005; Milne et al., 2001; Ritchie and Michael Perdue, 2003). The second

method (described in Section 3.3.3, Eqn. 3.9) was used to calculate the FA surface
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charge. Both methods were used to calculate HA surface charge. Both proved to be a

reliable way to calculate the surface charge development (Figure 3.6), therefore

comparisons between FA and HA data can be reliably made.

The binding of ions to HA and FA is influenced by charge variation. Cations form

stronger bonds to HA and FA functional groups at higher pH (Catrouillet et al., 2014;

Tipping and Hurley, 1992; Xiong et al., 2013). Anions are more likely to bind at low pH

due to reduced electrostatic repulsion. Although there is a net negative charge on HA

and FA, even at very low environmental pH values, there are amphiprotic groups such

as R-NH2
+ which could act as sites for anion adsorption.
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Ionic strength had a significant effect on the charge development of HA and FA (Figure

3.5). At a given pH, both HA and FA carry a greater negative charge at higher ionic

strengths. The dissociation of the acid groups was therefore enhanced with increasing

salt concentrations (Fukushima et al., 1995; Nederlof et al., 1993). A higher counter ion

availability (or concentration) in the bulk solution enables the generation of a higher

surface charge because the de-stabilising effect of thermal diffusion on the counter-ion

cloud is lowered (Baidoo et al., 2014). The effect of ionic strength was less at low pH,

but greater for HA at high pH. Baidoo et al. (2014) suggests that at low pH, the humic

moiety will possess a smaller charge and therefore the fewer counter ions are needed to

sustain the charge and therefore increasing ionic strength had less of an effect. At high

pH where the humic molecules have a greater charge, availability of counter ions is more

critical to the maintenance of surface charge, and so ionic strength has a greater effect.

The effect of ionic strength on FA was different to that of HA with the least effect at

neutral pHs. In the case of FA, the difference at varying ionic strengths did not converge
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at low pH as it did in the HA, but instead appeared to converge between pH 7-8 and then

diverge at higher pH values, as expected. The lack of convergence at lower pH values

may reflect the stronger acidity of the FA. The apparent convergence at neutral pH values

may simply be the product of less reliable data in the region of minimal buffer capacity

close to the end of the carboxyl buffer region and before phenolic-OH groups had started

to dissociate. It is noticeable that the asymptote associated with the carboxyl endpoint

was much more pronounced for FA and especially for the lower ionic strength. Further

and repeated experiments would be necessary to resolve these questions.

Charge development curves for HA at each ionic strength show a tendency to ‘splay out’

at the extremes of the pH range titrated (Figure 3.7). Marshall et al. (1995) suggested

that this arises from unreliability in the humic charge calculation, that becomes

increasingly sensitive to error at both high and low pHs. This results from the

increasingly important role of [H+] in the charge balance calculation at low pH, and [OH-

0

1

2

3

4

5

6

0 2 4 6 8 10 12 14

N
eg

at
iv

e
S

ur
fa

ce
C

ha
rg

e
(m

ol
kg

-1
)

pH

Collected Value

+0.05

-0.05
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pH on humic acid surface charge. Surface charge data plotted for the
measured ionic strength of 0.1, and calculated for +0.05 and -0.05 pH values.
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] at high pH, which increases the sensitivity to errors associated with the measured value

of pH. This is demonstrated in Figure 3.7 where the measured pH has been changed by

±0.05 and the surface charge re-calculated. It demonstrates how a slight error in pH

measurement can result in significantly different values of surface charge being

calculated at both low and high pH. For this reason when discussing surface charge

development as a function of pH only the range pH 4 to 10 will be considered.
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3.4.3 Modelling surface charge

Initially a constant capacitance type model was fitted using a fixed proportion of Type A

and Type B groups (Figure 3.8); Type A was set to be ⅔of the total acidity, and Type B 

as ⅓. This is a strict arrangement and although useful in simplifying the description of 

the binding of other ions (Tipping, 1994), it does not allow for the best possible fit as the

proportions of Type A and Type B are unlikely to be that exact. To address this issue a

‘Proportion Factor’ was introduced, which improved the fit of the model (Figure 3.8b).

Type A and Type B proportions were optimised to 0.529 and 0.471 respectively.

3.6 CONCLUSIONS

NMR and FTIR data demonstrate a significant contribution of aromatic groups and

carboxyl groups to HA surface structure. The contribution of these groups will be

instrumental in the interactions of HA with I, Se and Tc in the coming experiments.

A clear relationship between HA and FA surface charge and pH was observed. The

surface charge of both HA and FA became increasingly negative with increasing pH as

more acidic groups dissociated. Higher ionic strengths increased the negative charge on

both HA and FA due to the stabilising effect of counter ions in solution. Surface charge

was successfully modelled when the proportions of Type A and Type B groups were

allowed to vary.

The effect of surface charge on the kinetics of I, Se and Tc reactions with HA and FA

will be addressed in subsequent chapters to assist in understanding the reaction

mechanisms.
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4. IODINE INTERACTION WITH SOIL GEOCOLLOIDS

4.1 INTRODUCTION

Soils and sediments play an essential role in the environmental cycling and fate of I. Soil

pH, OM content, oxide content, salinity and redox potential (Eh) all effect I sorption. The

pH of the soil determines the net positive charge on metal oxides (Fuhrmann et al., 1998);

low pH results in a greater positive charge and consequently increased associations with

anionic I species. Iron and manganese oxides provide positively charged surfaces to

which both IO3
- and I- can adsorb. Ferromanganese oxides selectively incorporate IO3

-,

and oxidise added I- prior to adsorption (Kodama et al., 2006). Although metal oxides

can adsorb I, it is thought that they play only a minor, transient role in influencing I

behaviour in soils, and that OM is the predominant factor (Shetaya et al., 2012).

There is an increasing body of evidence demonstrating significant I interactions with

SOM (Section 1.3.3.2). Under acidic pH conditions, OM can reduce/oxidise inorganic I

species (IO3
- and I-), to form reactive intermediates (e.g. HOI and I2) (Francois, 1987),

allowing them to sorb as organic-iodine species (Shetaya et al., 2012; Whitehead, 1984;

Yamaguchi et al., 2010). A major constituent of OM is highly reactive HS, iodination of

which is now widely accepted as the mechanism of I association with SOM.

Understanding the dynamics of I interaction with HS is therefore important for cycling

of I. Bowley et al. (2016), demonstrated rapid reduction of added IO3
- in the presence of

HA, and slow oxidation of added I-, forming Org-I species. The mechanism of this

association with HA is likely electrophilic substitution of I into aromatic structures

(Reiller et al., 2006; Schlegel et al., 2006; Xu et al., 2011). There is however a gap in the

understanding of the effect of pH, HA concentration and temperature on these
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interactions. It is suspected that as pH decreases, the negative surface charge of HS will

reduce and therefore interactions with anionic I species are likely to increase. Alongside

this as HA concentration increases the rate of reaction should also increase.

Speciation of I is important in determining its fate within the soil environment. The

different sorption behaviour of I- and IO3
- in soils is evident in the literature, however it

is difficult to identify the factors involved due to the complexity of soil environments.

For example I- was shown to be converted into organic species much more quickly than

IO3
- (Shetaya et al., 2012) in a wide range of soil types, which is in contrast to the findings

of Hu et al., (2009) where IO3
- interaction was most rapid. Monitoring the speciation of

I is therefore vital in order to elucidate reaction mechanisms.

4.2 AIMS AND OBJECTIVES

The aim of the work in this chapter was to investigate the interactions of IO3
- and I- with

soil geocolloids; specifically HA, HA in combination with metal ions and oxides, and

FA, in order to improve understanding of I reactions with soils. Techniques including

ICP-MS linked to SEC and HPLC were employed to monitor changes in speciation and

incorporation into the organic phase under a range of conditions.

Specific objectives included:

 Investigation of the dynamics of IO3
- and I- reaction with HA alone and in

combination with metal ions;

 Investigation of the effect of temperature, pH and metal oxides on the formation

of organic-I species;
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 Modelling of the interactions of IO3
- and I- with HA, alone and in the presence of

metal ions.

4.3 MATERIALS AND METHODS

An overview of the experiments undertaken and their scope is given in Table 4.1.

4.3.1 Humic acid stock solutions

Freeze dried HA (0.5 g) was initially dissolved in 1 mL of 1 M NaOH, 9 mL of 1 M NaCl

to adjust the ionic strength and 50 mL Milli-Q water (18.2 MΩ cm) before being made 

up to 1 L with Milli-Q water to give a stock solution of 0.5 g L-1 HA. A second stock

solution of 1.5 g L-1 HA was also prepared by dissolving 0.3 g of HA in 0.2 mL of 1 M

NaOH and 1.8 mL of 1M NaCl before being made to 200 mL. The pH of the stock

solutions were adjusted from ~pH 7 to the desired pH using 0.1M HNO3.

4.3.2 Isotope spike solutions

Isotope spike solutions (1000 µg L-1) were prepared for each species (129IO3
- and 129I-) by

dilution of concentrated stocks described in Section 2.5.1. Solutions were diluted in

Milli-Q water to neutralise the basic pH of the concentrated stocks.
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Table 4.1. Experiment overview.

Experiment Treatments Isotope spike Purpose Section

Range finding  0.05 g L-1 and 0.2 g L-1 HA

 Fe2+ and Mn2+ (30%

occupancy)

 Goethite (20% by weight)

 pH 4 and pH 6

 4oC and 20oC

 Spiked separately (ox. and red.)

pH 4 (Ox.) = 10 µg L-1 129IO3
-

pH 4 (Red.) = 5 µg L-1 129I-

pH 6 (Ox.) = 540 µg L-1 129IO3
-

pH 6 (Red.) = 5 µg L-1 129I-

To explore the system

and narrow the focus of

future experiments.

4.3.3

4.4.1.1

Effect of pH  pH range 4-7 (0.5 increments)

 0.2 g L-1 HA

 4oC, 10oC and 20oC

 Spiked separately (ox. and red.)

10 µg L-1 129IO3
- Investigation of the effect

of pH on IO3
- reduction

in HA systems.

4.3.4

4.4.1.2

Effect of HA concentration  0.01-1 g L-1 HA

(5 concentrations)

 pH 4

 4oC, 10oC and 20oC

10 µg L-1 129IO3
- Investigation of the effect

of HA concentration on

IO3
- reduction in HA

systems.

4.3.5

4.4.1.3

FA  0.2 g L-1 FA

 pH 4 and pH 6

 4oC and 20oC

10 µg L-1 129IO3
- Investigation of the effect

of FA on IO3
- reduction

for comparison with HA.

4.3.6

4.4.2

Effect of redox coupling  0.2 g L-1 HA

 pH 4

 4oC and 20oC

 Mixed spike

Mixed spike of 10 µg L-1

129IO3
- and 127I-

Investigation of potential

of redox coupling

between IO3
- and I- in

HA systems.

4.3.7

4.4.3.1

78
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Effect of Microbes  0.2 g L-1 HA

 Filtered (0.22 µm)

and non-filtered

 Glucose (10 mM)

 Filtered and non-filtered soil

inoculum

 γ-irradiated and non-irradiated 

 pH 4

 20oC

Mix spike of 10 µg L-1 129IO3
-

and 127I-

Investigation of the effect

of microbes on IO3
- and I-

interactions with HA to

establish if the reactions

are abiotic or biotic.

4.3.8

4.4.4

Effect of Fe (Non-Sterile)  0.2 g L-1 HA

 Fe2+ and Fe3+ (30% occupancy)

 pH 4 and pH 6

 4oC and 20oC

10 µg L-1 129IO3
- Investigation of the

effects of Fe2+/3+ on the

interactions of IO3
- in HA

systems.

4.3.9.1

4.4.5

Effect of Fe (Sterile)  0.2 g L-1 HA

 Fe2+ and Fe3+ (10, 20 and 50%

occupancy)

 pH 6

 4oC and 20oC

Mixed spike of 10 µg L-1

129IO3
- and 127I-

Investigation of both the

effect of Fe concentration

and filter sterilization on

IO3
- and I- interactions

with HA.

4.3.9.2

4.4.5

79
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4.3.3 Range finding experiment

A range finding experiment was undertaken to investigate a range of factors in a single

experiment, thereby allowing a more well-informed approach to designing subsequent

experiments. The experimental set-up is shown in Figure 4.1.

Stock HA suspensions, calculated to contain either 0.05 g L-1 or 0.2 g L-1 HA after all

subsequent additions, were prepared by dilution of a concentrated HA stock. Stock

solutions of Fe2+ and Mn2+ (500 mg L-1) were prepared from ferrous chloride and

manganese (II) chloride. A suspension of goethite was prepared by dissolving ferric

nitrate in 600 mL deionised water, 1 M NaOH was then added at a rate of 10 mL min-1

until pH 10.6 was obtained (~400 mL). The stock was aged at 60oC for 24 hours prior to

dialysis against deionised water. This was diluted further by taking ~5.4 mL of solid

goethite and diluting to 1 L with Milli-Q water, resulting in a concentration of ~14 g L-1

goethite in the stock used here.

Additions of Fe2+, Mn2+ or goethite or Milli-Q water were added to portions of the HA

solutions. Goethite was added at 20% of the weight of HA in the sample. Additions of

Mn2+ and Fe2+ were at concentrations equivalent to 30% of the HA carboxyl group

concentration (Eqn. 4.1.). Additions of Fe2+ (or Mn2+) were calculated from the total

carboxyl content (COOHt) of the HA (mol kg-1 of HA) as follows:

௧ܪܱܱܥ =
்ೌ೎೔೏

ଶ
(4.1)

Where Tacid is the total acidity of the HA (mol kg-1). The concentration of carboxyl groups

in solution (COOHc, mol L-1) is governed by the concentration of HA in solution and

therefore:
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஼ܪܱܱܥ = ×௧ܪܱܱܥ ×௦ܣܪ 0.001 (4.2)

Where HAs is the concentration of HA in solution (g L-1). The amount of Fe (Few, mg)

required to occupy a given percentage of the carboxyl groups present was:

ܨ ௪݁ = ×௖ܪܱܱܥ ቀ
ை௖௖

ଵ଴଴
ቁ× 0.5 × ܨ ெ݁ ௐ × 1000 × ቀ

௏

ଵ଴଴଴
ቁ (4.3)

Where Occ is the required carboxyl occupancy, FeMW (g mol-1) is the molecular weight

of iron and V (mL) is the volume of stock solution required.

Solutions were pH adjusted using 0.1 M HNO3 or 0.1 M NaOH to pH 4 or 6 and were

left overnight as pH drift was anticipated before a second pH adjustment was made.

Solutions were then divided into 8 x 14 mL aliquots based on treatment, pH, temperature

and whether they were to receive an oxidised (IO3
-) or reduced (I-) isotope spike. All

samples were prepared in duplicate. Oxidised samples at pH 4 samples were spiked with

10 µg L-1 129IO3
- and reduced samples with 10 µg L-1 129I-. Oxidised pH 6 samples were

spiked with 540 µg L-1 129IO3
- and reduced samples were spiked with 5 µg L-1 129I-.

Samples were stored in the dark at either 4oC or 20oC and shaken intermittently. Aliquots

were removed for analysis at 12, 45, 80, 142, and 163 days for samples at pH 6, and 6,

12, 41, 88, and 122 days for samples at pH 4.
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4.3.4 Effect of pH on IO3
- reaction with HA

Aliquots of a 0.5 g L-1 HA solution were diluted and pH adjusted using 0.1 M HNO3 in

order to achieve solutions of 0.2 g L-1 HA at pH 4, 4.4, 5, 5.5, 6, 6.5 and 7. After pH

adjustment duplicate solutions were spiked with 10 µg L-1 IO3
- and 10 µg L-1 selenate

(see Chapter 5), stored in the dark at 4oC, 10oC and 20oC and shaken intermittently.

Aliquots were removed for analysis after 3, 16, 30, 44, 65, and 86 days.

4.3.5 Effect of HA concentration on reaction with IO3
-

Humic acid samples containing 1, 0.5, 0.1, 0.05, and 0.01 g L-1 HA were prepared as

described in Section 4.3.3 by dilution of a 1.5 g L-1 HA stock before adjustment to pH 4

Figure 4.1. Graphical representation of the range finding experiment set up. After
spiking samples were divided and stored at 4oC and 20oC.
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or pH 6 using 0.1 M HNO3. A spike of 129IO3
- was then added to give a final concentration

of 10 μg L-1. Samples were stored in the dark at 4oC, 10oC and 20oC. Aliquots were

sampled for analysis after 2, 16, 37, 57, 71, 112 and 141 days.

4.3.6 Reaction of IO3
- with Fulvic Acid

Freeze dried FA was initially dissolved in 0.1 mL of 1 M NaOH and 0.9 mL of 1 M NaCl,

to adjust the ionic strength, before dilution to give a stock solution of 0.2 g

L-1 FA. Adjustment to pH 4 and pH 6 was achieved with 0.1 M HNO3. Samples were

filter sterilised using 0.22 µm filter units before a spike of 129IO3
- was added to give a

final concentration of 10 µg L-1 129IO3
-. Samples were stored in the dark at 4oC and 20oC.

Aliquots were sampled for analysis after 4, 18, 25 and 39 days.

4.3.7 Redox coupling between IO3
- and I- and reaction with HA

Humic acid samples (0.2 g L-1 at pH 6) were prepared according to Section 4.3.3. with a

mixed spike of 129IO3
- and 127I- to achieve a final concentration of 10 μg L-1 of each

isotope. Samples were stored in the dark at 4oC and 20oC and aliquots removed for

analysis after 3, 15, 31, 50 and 92 days.

4.3.8 Effect of microbes on I interactions with HA

Humic acid samples (0.2 g L-1) were prepared and adjusted to pH 4 according to the

method described in Section 4.3.3. A soil inoculum from an acidic woodland soil (Sutton

Bonington, U.K.) was prepared by shaking 10 g of freshly collected soil with 95 mL

Milli-Q water and allowing particulate matter to settle. A 0.1 M D-glucose solution was

prepared by gently heating and stirring until complete dissolution was achieved. Samples

of HA were either filtered (0.22 µm) or non-filtered, with additions of filtered or non-
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filtered soil inoculum and glucose (0.01 M). Samples were spiked with 10 µg L-1 129IO3
-

and 10 µg L-1 127I-, Se, (Chapter 5) and Tc (Chapter 6). Half of the samples were γ-

irradiated (137Cs) for 24 hours to achieve sterilisation, whilst the other half were kept in

the dark nearby. Samples were then stored in the dark at 20oC. Aliquots were subsampled

in a laminar flow hood using autoclaved pipette tips to maintain sterile environment, at

4, 18, 25 and 39 days.

4.3.9 Effect of Iron

4.3.9.1 Effect of Fe2+ and Fe3+ on IO3
- reaction with HA

Suspensions of HA were prepared as described in Section 4.3.3, but pH adjustment was

only to pH 4 and 6. Aliquots of Fe2+ as ferrous chloride, and Fe3+ as ferric chloride were

added with the aim of creating 30% occupancy of the HA carboxyl groups, prior to the

addition of an 129IO3
- spike to give a final concentration of 10 µg L-1 129IO3

- in solution

in 0.2 g L-1 HA. Duplicate samples were stored in the dark at 4oC, 10oC and 20oC with

intermittent shaking. Aliquots were removed for analysis after 3, 16, 30, 44, 65, and 86

days.

4.3.9.2 Effect of Fe2+/Fe3+ concentration and sterilisation on I interactions with HA

Humic acid samples containing 0.2 g L-1 HA were prepared as described in Section 4.3.3

by dilution of a 1.6 g L-1 HA stock solution before adjustment to pH 6 using 0.01 M

HNO3 and additions of Fe2+ and Fe3+ sufficient to occupy 0%, 10%, 30%, and 50%, of the

carboxyl groups. Samples were then left to stand overnight to allow for any pH drift

before further adjustment using 0.01 M NaOH. A mixed IO3
-/I- spike was then added to

give 10 µg L-1 129IO3
- and 10 μg L-1 127I-. Samples were stored in the dark at 4oC and 20oC
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and shaken intermittently. Aliquots were sampled for analysis after 3, 15, 31, 50 and 92

days.

4.3.10 ICP-MS Analysis

Measurement of iodine total concentration was undertaken using ICP-MS as described

in Section 2.5.1. Chromatography was used to analyse iodine species using a Dionex

ICS-3000 HPLC (with Chromeleon 6.2 software plugin) coupled to ICP-MS as described

in Section 2.5.2. Separation of organic iodine species from inorganic species was

undertaken using SEC-ICP-MS as described in Section 2.5.3.

4.3.11 Modelling

Results were modelled using Open Model (http://openmodel.info/, Version 2.4.2).

Observed 129I transformations were represented as simultaneous ordinary differential

equations (Figure. 4.2):

ௗூைయ
ష

ௗ௧
= − ଵ݇ × ܫܱ ଷ

ି − ଶ݇ × ܫܱ ଷ
ି (4.4)

ௗூష

ௗ௧
= + ଶ݇ × ܫܱ ଷ

ି + ଷ݇ × ݎܱ݃ −ܫ  ସ݇ × ିܫ (4.5)

ௗை௥௚ூ

ௗ௧
= + ଵ݇ × ܫܱ ଷ

ି + ସ݇ × ିܫ −  ଷ݇ × ݎܱ݃ ܫ (4.6)

where k1, k2, k3 and k4 are unknown rate coefficients (day-1) estimated by fitting the model

to the observed concentrations of 129IO3
-, 129I- and Org-129I.
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The differential equations were solved using 4th order Runge-Kutta (Press et al., 2007)

and fitting was performed using a Metropolis-Hastings search (Van Oijen et al., 2005)

supplemented with a Marquardt (Tarsitano et al., 2011) ‘polishing’procedure. The

observations were weighted using the estimated standard errors. The fitting procedure

minimised residual sum of squares (RSS) between the modelled and measured values

over all time points, pH levels, temperatures and HA concentrations. Alternative model

structures were considered and will be discussed briefly in Section 4.5. The arrangement

described in Figure 4.2 (based on that presented in Bowley et al. (2016)) provided the

best fit to the data.

IO
3

-
I

-

Org-I

k
1

k
2

k
4

k
3

Figure 4.2. Conceptual model of the transformations of added
129IO3

- in the presence of HA. Rate constants k1-k4 describe first
order reactions.
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4.4 RESULTS AND DISCUSSION

4.4.1 Iodate interactions with humic acid

4.4.1.1 Range finding experiment

The aim of this experiment was to investigate the factors that had the most significant

effect on 129IO3
- reactions with HA. Figure 4.3 shows the changes observed in speciation

over c. 3 months when HA suspensions at two concentrations at pH 4 were spiked with

10 µg L-1 129IO3
- with additions of Fe2+ or Mn2+. Concentrations of IO3

- decreased and a

corresponding increase in 129I- concentration and Org-129I (not shown) was observed.

Loss of 129IO3
- was initially very rapid and followed by a slower-time dependent sorption.

Greatest initial loss was observed in samples at a higher temperature and higher HA

concentration. On average ~84% of the added 129IO3
- was reduced within the first 6 days

in 0.2 g L-1 samples at 20oC, compared to ~54% at 4oC, demonstrating a clear temperature

dependency. The amount of 129IO3
- rapidly reduced at 20oC in 0.05 g L-1 HA systems

was ~31% on average, significantly less than that in the 0.2 g L-1 system.
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The differences observed between pH 4 and pH 6 seen in this experiment are hard to

compare due to discrepancies in 129IO3
- spike concentrations; pH 4 samples were spiked

with 10 µg L-1, and pH 6 samples were unintentionally spiked with 540 µg L-1 (Figure

4.4). Nonetheless reduction of 129IO3
- was still apparent at pH 6, where ~30% reduction

was observed at 20oC and ~23% at 4oC (0.2 g L-1) over the entire 163 day experiment.
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Figure 4.3. Transformations of added 129IO3
- (a, c) to 129I- (b, d) with time after an addition

of 10 µg L-1 129IO3
- to HA suspensions at pH 4 containing 0.2 g L-1 and 0.05 g L-1 with or

without additions of Fe2+ (▲) and Mn2+ (●) at 4oC (blue) and 20oC (red). Error bars based
on two replicates.
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This demonstrates a significantly slower rate of reduction than seen at pH 4. Due to the

differences in spiking concentration, it is hard to say whether or not the reduced rate of

129IO3
- removal and transformation is due to a pH effect, or an effect of the I:HA ratio.

At such a high I:HA ratio as seen here, it is possible that the rate of 129IO3
- reduction was

slower as the HA was over-saturated, therefore its capacity to reduce and transform
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Figure 4.4. Transformations of added 129IO3
- (a, c) to 129I- (b, d) with time after an addition

of 540 µg L-1 129IO3
- to HA suspensions at pH 6 containing 0.2 g L-1 and 0.05 g L-1 with or

without additions of Fe2+ (▲) and Mn2+ (●) at 4oC (blue) and 20oC (red). Error bars based on
two replicates.
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129IO3
- was lessened. However, given the change in HA surface charge with pH, it is

expected that reaction at pH 6 would be slower than that at pH 4.

Additions of Fe2+ and Mn2+ did not result in an increased rate of 129IO3
- reduction, the

only effect observed was a slight reduction in the rate of iodate loss in the 0.2 g L-1 HA

suspension. Systems containing Fe2+ did however increase the amount of 129I- formed at

both pH 4 and pH 6.

The rate of IO3
- reduction was increased in HA systems containing goethite (Figure 4.5)

compared to HA only systems (Figure 4.3), and instantaneous sorption of IO3
- occurred

in goethite only systems at pH 4 (95% and 97% reduction at 4oC and 20oC respectively

after 3 days) with no transformation to 129I- (Figure 4.5). This indicates that at pH 4, HA

in combination with goethite transforms/sorbs IO3
- more rapidly than HA alone, but not

as rapidly as goethite alone. In samples at pH 6 transformation of IO3
- is slower in

comparison to HA only systems (Figure 4.4), and goethite alone does not result in

instantaneous sorption as seen at pH 4. It is unknown whether the increased concentration

of IO3
- added (540 µg L-1) to the pH 6 system is resulting in a concentration effect. Nagata

& Fukushi (2010) also demonstrated increased IO3
- adsorption onto goethite with

decreasing pH. As pH decreases goethite has a greater positive surface charge (Sigg &

Stumm, 1981), which aids in the adsorption of anionic IO3
-. Humic acid adsorption onto

goethite has also been demonstrated to increase with decreasing pH (Antelo et al., 2007).

Humic acid could therefore be in competition with IO3
- for goethite adsorption sites

hence the increased IO3
- sorption in goethite only systems. In HA systems combined with

goethite it is possible that both interaction with HA, with simultaneous adsorption on

goethite, is increasing the overall rate in comparison to HA only systems.
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Figure 4.5. Humic acid systems (0.05 and 0.2 g L-1 HA) with goethite (20% by HA
weight) and goethite alone, spiked at a) pH 4 with 10 µg L-1 129IO3

- and b) pH 6 with 540
µg L-1 129IO3

-. Stored at 4oC (blue) and 20oC (red). Error bars based on two replicates.

Unlike IO3
-, HA systems containing goethite did not result in an increased rate of I-

transformation (Figure 4.6) in comparison to HA only systems (Figure 4.17, Section

4.4.3), however goethite only systems at pH 4 did increase the rate of sorption. As

previously mentioned in the case of IO3
-, it is possible that HA is in competition with I-

for adsorption sites in the combined HA/goethite systems therefore reducing the rate of

removal in comparison to goethite only systems. Compared to the instantaneous

adsorption of IO3
- to goethite at pH 4, I- added to goethite systems demonstrated much

slower adsorption at pH 4, and as with IO3
-, no adsorption at pH 6 was observed here.
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Kaplan et al. (2000) demonstrated no adsorption of I- on goethite surfaces between pH

5.8 and 6.2. However, Nagata et al. (2009) demonstrated that I- adsorption onto goethite

could be predicted to increase with decreasing pH as observed here.

Figure 4.6. Humic acid systems (0.05 and 0.2 g L-1 HA) with goethite (20% by HA
weight) and goethite alone, spiked at a) pH 4 with 10 µg L-1 129I- and b) pH 6 with 5 µg
L-1 129I-. Stored at 4oC (blue) and 20oC (red). Error bars based on two replicates.

It is unlikely that the initial rapid loss of 129IO3
- in any of the systems was a result of

volatilisation of iodine, as it has been previously demonstrated that loss in this form is

minimal (Bostock et al., 2003; Sheppard et al., 2006). Total 129I analysis of samples was

undertaken to confirm this and demonstrated that there was no significant loss of iodine.
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reactive intermediates such as HOI or I2 before subsequent incorporation into aromatic

structures or, in the presence of goethite, electrostatic sorption (Allard et al., 2009;

Francois, 1987; Fuhrmann et al., 1998; Reiller & Moulin, 2002; Schlegel et al., 2006;

Steinberg et al., 2008).

4.4.1.2 Effect of pH

Changes in speciation were monitored over > 3 months when HA suspensions (0.2 g L-

1) were spiked with 10 µg L-1 129IO3
- at a pH range of 4-7 (0.5 pH increments). All pH

systems at 4oC (Figure 4.7), 10oC (Figure 4.8) and 20oC (Figure 4.9) demonstrated loss

of 129IO3
- from solution, with concomitant increases in both 129I- and Org-129I. As

previously observed; an apparently instantaneous ‘loss’ of 129IO3
- from solution was

followed by slower time-dependent sorption. After just 3 days at pH 4 >50% of the added

129IO3
- had been reduced and transformed; by 30 days all had been transformed to 129I- or

bound as Org-129I at all three temperatures. In contrast at pH 7 ~16% was removed over

the first 3 days and 51.9% on average after 30 days, suggesting a significantly slower

reaction at higher pHs. As pH decreased and temperature increased there was a clear

increase in the rate of 129IO3
- transformations.

Increased pH was demonstrated to increase the negative surface charge on the HA

(Chapter 3) and therefore to increase the electrostatic repulsion of anionic species. This

would explain the reduced rates of IO3
- reduction at pH 6. It is also likely that competition

between hydroxyl and iodine ions for binding sites would be greater and would contribute

to this effect (Ashworth et al., 2003). This interaction between negatively charged OM

and IO3
- at low pH has also been demonstrated by Steinberg et al. (2008) where the rate

of reaction of 129IO3
- with Sphagnum peat was shown to increase as pH decreased. This
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was attributed to electrostatic repulsion between the peat matrix and IO3
- ions at high pH.

The naturally high OM content of the Sphagnum peat would likely behave in a similar

manner to the pure OM systems investigated here.
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Figure 4.7. HA systems (0.2 g L-1) spiked with 10 µg L-1 129IO3
- and incubated for 106 days at 4oC at a range of pH levels; a) pH 4.0, b) pH

4.5, c) pH 5.0, d) pH 5.5, e) pH 6.0, f) pH 6.5 and g) pH 7.0. Removal of iodate (black circles) is shown alongside an increase in iodide
(white triangles) and Org-I (grey squares). Lines indicate model fits (discussed in Section 4.4.6). Error bars based on two replicates.
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Figure 4.8. HA systems (0.2 g L-1) spiked with 10 µg L-1 129IO3
- and incubated for 106 days at 10oC at a range of pH levels; a) pH 4.0, b)

pH 4.5, c) pH 5.0, d) pH 5.5, e) pH 6.0, f) pH 6.5 and g) pH 7.0. Removal of iodate (black circles) is shown alongside an increase in iodide
(white triangles) and Org-I (grey squares). Lines indicate model fits (discussed in Section 4.4.6). Error bars based on two replicates.
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Figure 4.9. HA systems (0.2 g L-1) spiked with 10 µg L-1 129IO3
- and incubated for 106 days at 20oC at a range of pH levels; a) pH 4.0, b)

pH 4.5, c) pH 5.0, d) pH 5.5, e) pH 6.0, f) pH 6.5 and g) pH 7.0. Removal of iodate (black circles) is shown alongside an increase in
iodide (white triangles) and Org-I (grey squares). Lines indicate model fits (discussed in Section 4.4.6). Error bars based on two
replicates.
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When 129IO3
- interacts with HA both 129I- and Org-129I are formed to different degrees

depending on the conditions of the system. The relationship between 129I- formation and

pH is not as clear as that for 129IO3
- reduction. The general trend observed is the formation

of more 129I- at lower pH, however temperature was also important since increased

temperature resulted in greater 129I- formation. When samples were incubated at 20oC an

average of ~57.7% (at pH 4-5) and ~46.1% (at pH 5.5-7) of the initial 129IO3
- spike was

converted to 129I- after 106 days, whereas only ~32.8% and ~21.2%, and ~8.1% and

~6.5% was converted for the respective pH groups at 10oC and 4oC. Humic acid has the

ability to both reduce IO3
- and oxidise I- in soils, therefore the 129I- formed can be oxidised

(Yamaguchi et al., 2010). However, the oxidation of I- by OM is expected to be minimal

due to the reduced reactivity of I- towards OM (Schlegel et al., 2006).

4.4.1.3 Effect of HA concentration

The effect of HA concentration on the transformations of 129IO3
- was investigated in

suspensions containing 1, 0.5, 0.1, 0.05 and 0.01 g L-1 HA all spiked with 10 µg L-1

129IO3
- at 4oC (Figure 4.10), 10oC (Figure 4.11) and 20oC (Figure 4.12). The rate of both

129IO3
- reduction and the formation of 129I- and Org-129I increased with increasing HA

concentration and temperature. Humic acid behaves as an electron acceptor, reducing

IO3
- to reactive intermediates and allowing reaction with HA carboxyl and phenolic

groups. Therefore, the more HA the greater the electron supply and the more carboxyl

and phenolic groups available for reaction, thus an increased rate of IO3
- reduction and

transformation to Org-I. No previous studies of iodine interaction with HA have directly

altered the HA concentrations as undertaken here, there are however a number of studies

that have adjusted the I:HA ratio by adding different concentrations of iodine to HA/OM

systems. Both Xu et al. (2012) and Schwehr et al. (2009) varied the amount of 129I added
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to HA and high OM sediments, and demonstrated an increasing kd in favour of Org-I

formation when I concentration decreased. This confirmed that the transformation of I

species to reactive intermediates and its association with OM is influenced by the amount

of OM/HA. The effect of OM content has also been demonstrated in whole soil systems,

for example Yamaguchi et al. (2010) demonstrated that a soil with a higher OM content

retained more I in a non-exchangeable form, than a soil with a lower OM content.

Conversely, Bowley et al. (2016) added varying concentrations of IO3
- to HA

suspensions to achieve differing I:HA ratios, and demonstrated no significant effect of

I:HA ratio on the rate of IO3
- transformation. However the HA concentration used by

Bowley et al. (2016) was 7.18 g L-1, which is c.7 times higher than the highest

concentration used in this study. The IO3
- concentrations were 22.1, 44.1 and 88.2 µg L-

1, again significantly higher than those used here. It is possible that the maximum rate of

reaction was observed in these experiments and therefore increasing the ratio didn’t

increase the rate of reduction despite the I:HA ratios being similar to those investigated

here. It is apparent that HA content, and consequently SOM content, has a significant

effect on the rate of IO3
- removal from solution and its transformation, however further

investigation is encouraged to fully understand these mechanisms.
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Figure 4.10. HA systems spiked with 10 µg L-1 129IO3
- and incubated for 141 days at 4oC at a range of HA concentrations; a) 1 g L-1, b) 0.5 g L-1, c) 0.1 g

L-1, d) 0.05 g L-1, and e) 0.01 g L-1. Removal of iodate (black circles) is shown alongside an increase in iodide (white triangles) and Org-I (grey squares).
Lines indicate model fits. Error bars are based on two replicates.
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Figure 4.11. HA systems spiked with 10 µg L-1 129IO3
- and incubated for 141 days at 10oC at a range of HA concentrations; a) 1 g L-1, b) 0.5 g L-1, c) 0.1

g L-1, d) 0.05 g L-1, and e) 0.01 g L-1. Removal of iodate (black circles) is shown alongside an increase in iodide (white triangles) and Org-I (grey
squares). Lines indicate model fits. Error bars are based on two replicates.
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Figure 4.12. HA systems spiked with 10 µg L-1 129IO3
- and incubated for 141 days at 20oC at a range of HA concentrations; a) 1 g L-1, b) 0.5 g L-1, c)

0.1 g L-1, d) 0.05 g L-1, and e) 0.01 g L-1. Removal of iodate (black circles) is shown alongside an increase in iodide (white triangles) and Org-I (grey
squares). Lines indicate model fits. Error bar are based on two replicates.102
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4.4.1.4 Formation of organic-I species

The formation of Org-129I species here has been calculated as the difference between

129IO3
- added and 129I- formed, as shown in Figures 4.7, 4.8 and 4.9 across the 4-7 pH

range and Figures 4.10, 4.11 and 4.12 at a range of HA concentrations. Due to the

ongoing formation of 129I- with time in most systems and the consistent reduction of

129IO3
-, a pattern of Org-129I formation and then loss was observed in some systems. For

example, Figure 4.9 demonstrates rapid formation of Org-129I species followed by a slow

reduction in Org-129I as apparent conversion to I- occurs. The reduction in the

concentration of Org-129I appeared to be more rapid at lower pHs (e.g. Figure 4.9) and

high temperatures (e.g. Figures 4.7-4.9), and has not been reported before. All previous

HA studies in the literature investigate the interaction of I with HA at neutral pH, where

this mechanism is less obvious unless experiments are conducted over extended time

periods. For example, Bowley et al. (2016) investigated the dynamics of IO3
- with HA at

pH 7 over 2000 hours and Org-I and I- concentrations increased gradually before

apparently reaching a plateau, a decrease in Org-I was not observed.
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Size exclusion chromatograms collected alongside inorganic speciation (HPLC-ICP-

MS) information demonstrated a similar trend of initial incorporation into the organic

phase, followed by remobilisation back into solution with an increase in the I- peak over

time (Figure 4.13). A comparison of inorganic speciation data with SEC data suggested

that there was accurate recovery of inorganic iodine species by SEC but Org-I was less

than the total I added by an average of 3.33 µg L-1 (Figure 4.14).

Figure 4.13. Size exclusion chromatograms of 129I in a HA suspension spiked with 129IO3
-

and incubated for 106 days at 20oC. Chromatograms are offset by 2 x 103 counts per second
to allow clear comparison.
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Total I analysis by ICP-MS confirmed that all the 129I added to the samples was present,

and that volatilisation had not occurred. This suggests that either SEC data is only

indicative of the presence of Org-I species and cannot be used quantitatively, or the

presence of an intermediate species has not been isolated by either technique.

Consequently the calculated increase in Org-I concentration could include intermediate

species that are formed but are not observed in the chromatograms and the increase in

Org-I concentration could be more gradual. However, the increase in I- concentration

suggests that if HA is mediating the conversion of IO3
- to I- then the Org-I concentration

must be reducing over time. Steinberg et al. (2008) demonstrated an initial increase in

Org-129I concentration when IO3
- was added to Sphagnum peat followed by a decrease as

I- was formed, but this aspect of the data was not acknowledged or discussed. Steinberg

et al. (2008) also calculated Org-I on a mass balance basis. Sphagnum peat soils have a

very high OM content, the similarity between the results of Steinberg et al. (2008) and

this study suggests that this mechanism should be further investigated.

Both Xu et al. (2012) and Schlegel et al. (2006) suggest that iodinated HSs are quite

stable, and the covalent C-I bond can only be broken, and the I replaced, by nucleophiles

or electrophiles stronger than itself. This suggests that I- release from HSs is limited in

contrast to the pattern observed here. Farrenkopf et al. (1997) investigated the reduction

of IO3
- in seawater in the presence of the bacteria Shewanella putrefaciens, and found

that IO3
- was initially reduced to HOI and I2 which reacted rapidly with organic substrates

forming C-I or N-I bonds, and following this, was re-released as I-. These reactions were

attributed to the presence of the bacteria and took place at pH 8.2; the HA systems here

are much more acidic. Microbial activity is typically greater at neutral pH and is therefore
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less likely to be important in these HA systems. Remobilisation of Org-I as I- has

implications for the bioavailability of I in systems with high OM contents.

4.4.2 Iodate interactions with FA

The reaction between IO3
- and FA appears to occur at a similar rate to the equivalent

reaction with HA (Figure 4.15). In reaction with HA at pH 4 (20oC) ~77% 129IO3
- was

reduced after 4 days (based on modelled data, Figure 4.9a), compared to FA systems

under the same conditions where after 4 days ~95% reduction was observed. However,

Figure 4.15. Comparison between FA and HA systems (both 0.2 g L-1) at
pH 4 and pH 6 spiked with 10 μg L-1 129IO3

-. Samples stored at a) 4oC and
b) 20oC.
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significantly more 129I- was formed (Figure 4.16). The total acidity of the FA and HA

were 8.225 mol kg-1 and 6.523 mol kg-1 respectively (Section 3.4.1.3). This relates to an

increased proportion of carboxyl (COOH) groups in the FA. A greater proportion of

reactive groups would encourage IO3
- interaction. However, this would also result in a

greater negative surface charge on the FA, increasing the electrostatic repulsion with IO3
-

at a given pH (Section 3.4.2). The increased COOH content of FA might also result in a

greater proportion of I- release from Org-I as demonstrated for HA systems (Section

4.4.1.4).
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4.4.3 Iodide interactions with humic acid

When HA suspensions were spiked with 129I-, its removal from solution was much slower

than observed for 129IO3
-. Removal of 129I- from solution in 0.05 and 0.2 g L-1HA at pH

4 and pH 6, demonstrated gradual formation as Org-129I, with no observed 129IO3
- (Figure

4.17). After 163 days, ~35% of the added 129I- had on average been transformed to Org-

129I in the 0.2 g L-1 HA samples at pH 6 (20oC), and 17% in the 0.05 g L-1 HA samples

Figure 4.16. Comparison of 129I- formation in FA and HA systems (both
0.2 g L-1) at pH 4 and pH 6 when spiked with 10 μg L-1 129IO3

-. Samples
stored at a) 4oC and b) 20oC.
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under the same conditions. Although this reaction was slower than that of IO3
-, it

demonstrates an effect of increased HA concentration on the rate of reaction. Unlike

129IO3
-, reaction was greater at pH 6 than at pH 4. The slow reaction of I- with HA is in

contrast to the rapid removal seen in whole soil systems by Shetaya et al. (2012). In order

for 129I- to interact with OM it must first be oxidised to intermediate species, e.g. I2 or

HOI. Evidence suggests that the most significant oxidising agents in soils are metal

oxides and enzymes, in addition to OM itself (Allard et al., 2009; Gallard et al., 2009;

Seki et al., 2013; Yamaguchi et al., 2010). Bowley (2013) suggested that IO3
- can react

more readily with HA than, I-, by polarising its negative charge towards the oxygen atoms

and creating a slight positive charge around the I atom (Iᵟ+) allowing it to approach the

negatively charged surface of the HA. Iodide is unable to do this which would explain

the greater reaction rate of 129IO3
- with HA compare to 129I-. Another possible explanation

is suggested by the work of Bors & Martens (1992) who investigated the contribution of

microbial biomass to the adsorption of radioiodine in soils, and found that when the

microbial community was reduced by as little as 10%, a detrimental effect on 125I- soil

adsorption was observed. Seki et al. (2013) investigated the effect of autoclaving, heat

treatment, γ-irradiation and addition of reducing agents on soil laccase activity and found 

that reduced laccase activity significantly reduced I- oxidation and consequent

incorporation into OM. Rapid removal of I- from soil solution, in contrast to the slow

reaction seen in HA-only systems, indicates that I- interaction with SOM may therefore

be microbially, or enzymatically, mediated. The slow reaction observed in these pure HA

systems could be attributed to a lack of microbial activity and therefore enzyme activity.
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Figure 4.17. Transformations of added 129I- over time after an addition of 10 µg L-1 129I- to
HA suspensions at pH 4 and pH 6 containing 0.05 g L-1 and 0.2 g L-1 with or without
additions of Fe2+ (▲) and Mn2+ (●) at 4oC (blue) and 20oC (red). Error bars based on standard
deviation of two replicates.
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4.4.3.1 Redox coupling

Changes in speciation were monitored in HA systems (0.2 g L-1) at pH 6 that received a

mixed iodine spike containing 129IO3
- and 127I- together, compared to HA systems with

129I- (Figure 4.18) or 129IO3
- (Figure 4.19) as separate spikes. When IO3

- was added

together with I- to HA suspensions, the rate of 129IO3
- reduction was not significantly

increased. However, the rate of I- oxidation was significantly increased when added as a

mixed spiked compared to when added as a single spike (Figure 4.18). The only other

experiment containing a single I- spike for comparison was spiked with 5 µg L-1, whereas

the mixed spiked experiment was spiked with 10 µg L-1. If there was a concentration

effect, the higher concentration of I- would effectively have a lower rate of reduction as
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Figure 4.18. Single spiked system was spiked with 5 µg L-1 129I- alone (closed
markers), whereas mixed spiked system received 10 µg L-1 127I- alongside 10 µg L-1

129IO3
- (open markers). Both in the presence of HA (0.2 g L-1) at pH 6. Error bars

based on two replicates.
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the I:HA ratio would be greater, therefore it is suspected that the concentration has little

effect. When I- was added alone the rate of transformation was very slow, with 32.6%

reduction in concentration after 142 days. However, when spiked with IO3
- the rate of

transformation significantly increased, with 92.8% reduction in I- concentration after 31

days. Similar results were observed by Bowley et al. (2016) where the rate of I-

transformation when added together with IO3
- in HA systems was enhanced by suspected

redox coupling. However the systems investigated by Bowley et al. (2016) also

demonstrated an increased rate of IO3
- reduction and formation of Org-I in mixed

systems; only a suggestion of this appears in the 20oC systems investigated here. Redox

coupling of IO3
- and I- is expected according to Equation 4.7:

ܫܱ ଷ
ି ൅ ͷିܫ ൅ ͸ܪା ֊ ଶܫ͵ ൅ ଶܱܪ͵ (4.7)

This reaction suggests the rate of I- oxidation is 5 times faster when in combination with

IO3
-, with only a minor increase in IO3

- reduction depending upon the IO3
-:I- ratio. This
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Figure 4.19. Reduction of 129IO3
- when spiked at 10 µg L-1 either alone (closed

markers) or as a mixed spiked (open markers) alongside 127I- in the presence of HA
(0.2 g L-1) at pH 6.
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interaction is difficult to characterize as when IO3
- alone is added I- is formed and redox

coupling can occur. This makes determining the mechanism complex since both species

are present as the same isotope (129I).

4.4.4 Effect of microbes on I interactions with HA

Microbial activity is a possible confounding factor in systems prepared in non-sterile

environments. Sterilisation by filtration was used to investigate any effect this could have

on I interactions in HA systems. Results demonstrated that there was no effect on the rate

of IO3
- reduction in HA systems compared to unfiltered systems (Figure 4.20 a and d).

However, there was a significant reduction in the amount of I- formed (Figure 4.20 b

and e) in filtered systems and consequently higher concentrations of Org-I concentrations

(Figure 4.20c and e). The effect was greater at 20oC than 4oC (Figure 4.20). This

suggests that the initial reduction of IO3
- is an abiotic interaction, but that the subsequent

formation of I- has a biotic component. Yamaguchi et al. (2008) demonstrated that soils

with reduced microbial activity, due to γ-irradiation, showed no retardation of IO3
-

transformation to Org-I species, providing further evidence that IO3
- reduction to reactive

intermediates is abiotic. The reduction in laccase activity observed by Seki et al. (2013)

with significantly reduced I- oxidation and consequent incorporation in OM, also

suggests that microbial activity is important in mediating I- reactions in soil systems.
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Figure 4.20. Measured transformations of added 129IO3
- into 129I- and Org-129I over time

after an addition of 10 µg L-1 129IO3
- to HA suspensions (0.2 g L-1) at pH 6. Samples were

either left untreated (●) or filter sterilised (□) and stored at 4oC (a, b, c) and 20oC (d, e, f).
Error bars based on standard deviation of two replicates.
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To investigate further filtered and non-filtered HA systems received additions of a

filtered soil inoculum (no microbes added) or a non-filtered soil inoculum, and glucose

as a food source to fuel microbial growth. Systems were also γ-irradiated but this resulted 

in speciation changes (identified by the inclusion of a control isotope solution) and

therefore nothing useful could be ascertained.
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Figure 4.21. Transformations of added 129IO3
- (10 µg L-1) in HA systems (0.2 g L-1)

systems sterilized by filtering (a, b, c) or unfiltered (not sterile) (d, e, f). Systems were set
up alone and in combination with a range of treatments; glucose (F), filtered soil
inoculum (NM), un-filtered soil inoculum (M), NM + F and M + F. Iodate (a, c) and
iodide (b, d) were measured. Error bars are based on two replicates.
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In non-irradiated systems, the reduction of 129IO3
- was not affected by the presence of

microbial activity and is therefore an entirely abiotic process (Figure 4.21). Again there

were differing amounts of 129I- formed depending on the presence/absence of microbes

(Figure 4.21b and d). Most 129I- was formed in systems containing soil inoculum

(microbes) without glucose, regardless of whether the initial HA suspensions were

filtered or not. In the previous experiment, filtering HA suspensions reduced the

formation of I- from IO3
- and this effect was attributed to the lack of microbial activity.

However, if this transformation was solely biotic then it would be anticipated that a

system containing added microbes and glucose would have the most I- formed, which

was not the case. Studies have shown the abiotic reduction of iodate to iodide to be

significant (Hu et al., 2004; Steinberg et al., 2008). A number of studies have also

identified specific microorganisms in soils and waters, particularly sulfate-reducing

bacteria and bacteria closely related to denitrifying bacteria, that are capable of reducing

IO3
- to I- either directly or enzymatically (Amachi et al., 2007; Councell & Lovley, 1997;

Farrenkopf et al., 1997). It is therefore likely that IO3
- can be reduced to I- both biotically

and abiotically making the elucidation of these mechanisms extremely complicated.

4.4.5 Effect of Fe2+ and Fe3+ on I interactions with HA

4.4.5.1 Effect of Fe on IO3
- interactions with HA

The range finding experiment demonstrated that additions of Fe2+ and Mn2+ did not result

in an increased rate of 129IO3
- removal from solution when compared to the HA only

samples. However, it was observed that at pH 4, the addition of Fe2+ significantly

increased the amount of 129IO3
- transformed to 129I-, and consequently the amount of Org-

129I formed was reduced.
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Both Fe2+ and Fe3+ can interact with carboxylic and phenolic groups on HA (Rose &

Waite, 2003; Tipping, 1998; Weber et al., 2006; Yamamoto et al., 2010). It was

hypothesised that HA in combination with Fe ions would increase I association with HA

by creating localised positive charges, and decreasing the overall negative charge of the

HA (Eqn. 4.8 and 4.9) (Weber et al., 2006; Yamaguchi et al., 2010):

ିܱܱܥܴ + ଷା݁ܨ = ܱܱܥܴ] − ூூூ]ଶା݁ܨ (4.8)

ିܱܱܥܴ + ଶା݁ܨ = ܱܱܥܴ] − ூூ]ା݁ܨ (4.9)

Similar to reactions observed in HA systems without Fe, transformation of 129IO3
- and a

concomitant increase in both 129I- and Org-129I was observed in HA systems containing

Fe (Figure 4.22, Figure 4.23 and Figure 4.24). When compared to systems without,

additions of Fe appear to both reduce the rate of IO3
- reduction and increase the amount

of 129I- formed. The behaviour of Fe2+ and Fe3+ in these systems was very similar. Given

the nature of HA as both an electron donor and acceptor it is possible that HA has

converted Fe2+/3+ to the same form. Weber et al. (2006) found that Fe3+ could be reduced

to Fe2+ in the presence of HA at low concentrations, however Tipping & Hurley (1992)

hypothesised that conversion of Fe2+ to Fe3+ can occur. Both are plausible given the

nature of HA and its ability to both donate and accept electrons, however no measurement

of Fe oxidation state was made. The presence of Fe in these systems appears to accelerate

129IO3
- reduction straight to 129I- bypassing complexation with HA and resulting in less

Org-129I formation in comparison to HA only systems. This is an unexpected result

suggesting that the reactive groups on the HA that are usually responsible for interacting

with I are occupied by Fe2+/3+, consequently the Fe2+/3+ is being oxidised by 129IO3
-,

resulting in direct production of 129I- rather than Org-129I (Eqn. 4.10 for Fe2+). Anschutz
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et al., (2000) demonstrated the ability of IO3
- to oxidise Mn2+ to MnOOH, consequently

reducing IO3
- to I- and increasing the concentration of I- in solution. This has not been

demonstrated directly for Fe2+ in combination with HA, however thermodynamically it

may be possible. Humic acid samples containing Fe2+/3+ were slightly darker/cloudier

than samples without, however no obvious precipitation was visible:

ଶା݁ܨ +
ଵ

଺
ܫܱ ଷ

ି +
ଶ

ଷ
ଶܱܪ ↔ ܱ݁ܨ ܪܱ +

ଵ

଺
ିܫ + ାܪ2 (4.10)

4.4.5.2 Effect of Fe concentration on IO3
-

The amount of Fe2+/Fe3+ in the system also appears to have an effect on the rate of 129IO3
-

transformation; increased Fe2+/Fe3+ resulted in a reduced rate of initial transformation.

The greater the concentration of Fe2+/Fe3+ the greater the proportion of carboxyl groups

associated with Fe2+/Fe3+ and therefore the slower initial rate of 129IO3
- transformation

(Figure 4.25 and Figure 4.26). If Fe is being oxidised by IO3
-, then the increase in the

Fe:IO3
- ratio could mean that the rate of oxidation of Fe is lower, thus transformation of

the IO3
- is slower. It is worth noting that alongside the addition of 129IO3

-, about 16%

127IO3
- is also added (present in the stock I standard). As an indication of the reliability

of the data the rate of 127IO3
- reduction was measured and compared to 129IO3

-

measurements. The ratio of 129IO3
- to 127IO3

- follows a straight line indicating very similar

reduction rates of both 129IO3
- and 127IO3

-, demonstrating the robustness of this

measurement technique and data (Figure 4.27). The points are scattered around the

second time point due to error and around the final time point as the 127IO3
- concentrations

were <0.1 µg L-1.
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Figure 4.22. HA systems (0.2 g L-1) spiked with 10 µg L-1 129IO3
- and incubated for 106 days at 4oC. Systems also contained additions of Fe3+ and

Fe2+ to occupy 30% of the HA carboxyl groups, and were adjusted to pH 4 and pH 6. Removal of iodate (black circles) is shown alongside an
increase in iodide (white triangles) and Org-I (grey squares). Lines indicate model fitting results; 129IO3

- model (solid black line), 129I- model
(dashed black line) and Org-129I model (dashed grey line). Error bar based on two replicates.

120
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Figure 4.23. HA systems (0.2 g L-1) spiked with 10 µg L-1 129IO3
- and incubated for 106 days at 10oC. Systems also contained additions of Fe3+ and

Fe2+ to occupy 30% of the HA carboxyl groups, and were adjusted to pH 4 and pH 6. Removal of iodate (black circles) is shown alongside an
increase in iodide (white triangles) and Org-I (grey squares). Lines indicate model fitting results; 129IO3

- model (solid black line), 129I- model
(dashed black line) and Org-129I model (dashed grey line). Error bar based on two replicates.

121
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Figure 4.24. HA systems (0.2 g L-1) spiked with 10 µg L-1 129IO3
- and incubated for 106 days at 20oC. Systems also contained additions of Fe3+ and

Fe2+ to occupy 30% of the HA carboxyl groups, and were adjusted to pH 4 and pH 6. Removal of iodate (black circles) is shown alongside an
increase in iodide (white triangles) and Org-I (grey squares). Lines indicate model fitting results; 129IO3

- model (solid black line), 129I- model
(dashed black line) and Org-129I model (dashed grey line). Error bar based on two replicates.

122
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Figure 4.25. HA systems (0.2 g L-1) spiked with 10 µg L-1 129IO3
- and incubated for 92 days at 4oC. Systems also contained

additions of Fe3+ and Fe2+ at 10%, 30% and 50% of the HA carboxyl groups, and were adjusted to pH 4. Removal of iodate
(black circles) is shown alongside an increase in iodide (white triangles) and Org-I (grey squares). Lines indicate model fitting
results; 129IO3

- model (solid black line), 129I- model (dashed black line) and Org-129I model (dashed grey line). Error bar based on
two replicates.

123
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Figure 4.26. HA systems (0.2 g L-1) spiked with 10 µg L-1 129IO3
- and incubated for 92 days at 20oC. Systems also contained additions of

Fe3+ and Fe2+ at 10%, 30% and 50% of the HA carboxyl groups, and were adjusted to pH 4. Removal of iodate (black circles) is shown
alongside an increase in iodide (white triangles) and Org-I (grey squares). Lines indicate model fitting results; 129IO3

- model (solid black
line), 129I- model (dashed black line) and Org-129I model (dashed grey line). Error bar based on two replicates.
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4.4.5.3 Effect of Fe on I- interaction with HA

The addition of 127I- to HA systems with Fe2+/3+ demonstrated an initial instantaneous

reaction followed by a gradual re-release from the Fe-HA complex as I- (Figure 4.28).

This is in stark contrast to HA systems without Fe where slow reduction occurred with

no re-release. The SEC chromatograms for these samples indicate a high concentration
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Figure 4.28. Measured changes in 127I- concentration with time following
spiking with 10 μg L-1 127I- to HA suspensions (0.2 g L-1) at pH 6 in
combination with Fe2+ (●) or Fe3+ (▴) at 4 different Fe concentrations based
on the % occupancy of HA carboxyl groups; 0% (■), 10% (white) , 30% 
(grey) and 50% (black). Stored at a) 4oC and b) 20oC. Error bar are based on
two replicates.
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of Org-127I after the first 3 days followed by a decline in concentration over time. Since

this is not observed in HA systems without Fe it is possible that I is associated with the

HA by a Fe cation bridge prior to being re-released as I- (Figure 4.29). It is hypothesised

that the 127I- is combining with the RCOO-Fe2+/Fe3+ and RO-Fe2+/Fe3+ instantaneously,

and as iron hydrolysis occurs the 127I- is released back into solution (Eqn. 4.11 and 4.12):

ܱܱܥܴ] − −ூூூ݁ܨ [ିܫ2 + ଶܱܪ = ܱܱܥܴ] − ା(ܪܱ)ூூூ݁ܨ − [ିܫ + ିܫ + ାܪ (4.11)

ܱܱܥܴ] − −ூூ݁ܨ [ିܫ + ଶܱܪ = ܱܱܥܴ] − [(ܪܱ)ூூ݁ܨ + ିܫ + ାܪ (4.12)
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Figure 4.29. Measured changes in Org-127I concentration by SEC with time
following spiking with 10 μg L-1 127I- to HA suspensions (0.2 g L-1) at pH 6
(20oC) in combination with Fe2+ (●) or Fe3+ (▴) at 4 different Fe
concentrations based on the % occupancy of HA carboxyl groups; 0% (■), 
10% (white) , 30% (grey) and 50% (black). Only a single replicate was
measured.
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4.4.5.4 Effect of Fe concentration on I-

At 4oC a higher concentration of Fe2+/Fe3+ resulted in a marginally greater concentration

of 127I- being re-released, most likely due to the greater degree of hydrolysis at higher Fe

concentrations. However, at 20oC all systems containing Fe showed similar amounts of

127I- re-release regardless of the Fe concentration, which may be a consequence of the

higher temperature. Throughout the duration of the experiment, systems containing Fe

drifted towards a more acidic pH, whereas pH drift in systems without Fe was minimal

(Table 4.2). This reduction in pH over time supports the idea that Fe hydrolysis could be

occurring, since this reaction produces H+ ions.

Table 4.2 pH drift in HA suspensions containing different concentrations of Fe,
measured on day 1 and at completion of the experiment (Day 100).

4oC 20oC

Sample Day 1 Day 100 Day 1 Day 100

Fe 0% 6.00 6.13 6.00 5.45

Fe2+ 10% 6.00 5.46 6.00 5.17

Fe2+ 30% 6.01 4.90 6.01 4.54

Fe2+ 50% 6.00 4.68 6.00 4.18

Fe3+ 10% 6.00 5.15 6.00 5.28

Fe3+ 30% 6.00 4.84 6.00 4.45

Fe3+ 50% 6.01 4.70 6.01 4.40

Sterilisation by filtration was also undertaken to observe any changes. Again the initial

reduction and transformation of added 129IO3
- was not affected by filtration when

compared to un-filtered systems at either 4oC or 20oC (Figure 4.30). However, I-

formation from added IO3
- appears to be increased by filtering. This is in contrast to

systems without Fe additions, where less I- was formed in the filtered systems. This could
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be due to the role iron hydrolysis is playing in the transformation of 129IO3
- to 129I- and

further investigation into these effects is necessary to fully understand the interactions.

Figure 4.30. Effect of filter sterilization on measured changes in 129I concentration and
speciation when 10 µg L-1 129IO3

- was added to HA suspensions (0.2 g L-1) containing Fe2+

(◦) and Fe3+ (▵) at pH 6 and stored at 4oC (a, b, c) and 20oC (d, e, f). Error bars based on two
replicates.
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4.4.6 Modelling

Fitted model predictions were compared to the observations and estimated rate

coefficients were calculated. The effect of pH and HA were modelled together whilst the

effect of Fe was modelled separately at a later date.

4.4.6.1 Modelling pH and HA concentration

The model fit was good (r2 = 0.87, p < 0.001, Figure 4.31), supporting the model

structure presented in Figure 4.2, however other model structures may also be supported

therefore alternative model pathways were considered. For example, a pathway allowing

oxidation of I- to IO3
- was tested. However, this was found to have no effect on the model

fit, and there was no experimental evidence of IO3
- formation. The best overall fit was

achieved for IO3
-; Org-I and I- gave a poorer fit. The poorer fit for Org-I and I- may be

due to the large concentration increases and decreases that are observed in some systems

(e.g. Figure 4.9a).

Iodate was rapidly converted to humic-bound forms (k1 = 0.363-0.011) whilst IO3
-

transformation to I- was very slow (k2 = 0.009-0.00001). After an initial rapid increase in

Org-I concentration from k1 there was a decrease as some Org-I was remobilised to I- (k3

= 0.034-0.00001) simultaneously to a slow oxidation back to Org-I (k4 = 0.060-0.0001).

The estimated rate constants presented here support the suggestion (Section 4.4.1.4) that

in these systems IO3
- undergoes reduction and incorporation into the organic phase prior

to remobilisation as I-. Removal of k2 had little or no effect on the model fit (r2 = 0.86)

demonstrating that reduction of IO3
- directly to I- does not appear to occur, and that in

these systems reduction of IO3
- to I- was mediated by HA. Correlation analysis confirmed
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that transformation of IO3
- to Org-I (k1) was significantly affected by both pH (r = 0.82,

Figure 4.32) and temperature (r = 0.64).



132

0

1

2

3

4

5

6

7

8

9

10

11

0 1 2 3 4 5 6 7 8 9 10

M
o

d
el

le
d

1
2

9
IO

3
-
(µ

g
L

-1
)

Measured 129IO3
- (µg L-1)

a) 129IO3
-

0

1

2

3

4

5

6

7

8

9

10

11

0 1 2 3 4 5 6 7 8 9 10

M
o

d
el

le
d

1
2

9
I-

(µ
g

L
-1

)

Measured 129I- (µg L-1)

b) 129I-

0

1

2

3

4

5

6

7

8

9

10

11

0 1 2 3 4 5 6 7 8 9 10

M
o

d
el

le
d

O
rg

-1
2

9
I

(µ
g

L
-1

)

Measured Org-129I (µg L-1)

c) Org-129I

Figure 4.31.Comparison of measured and modelled concentrations of I
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species. Data includes experimentally measured values from the pH and
HA experiments over 142 days.
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There were also strong correlations between HA concentration and both the conversion

of 129IO3
- to humic-bound species (k1 = 0.836-0.00001) and the remobilisation of Org-

129I as 129I- (k3 = 0.0113-0.00001), k1 (r = 0.92) and k3 (r = 0.88) respectively. Multiple

regression analysis demonstrated that temperature did not have a significant effect in the

experiments where HA concentration was varied, however a significant non-linear

relationship existed between HA concentration and k1 (Figure 4.33), which can be

attributed to the heterogeneity of the HA.

The HA experiment included a range of HA concentrations at pH 4, whilst the pH

experiment was run at pH 4-7 with a single HA concentration of 0.2 g L-1 HA. This

should have enabled the pH 4 data from the pH experiment, to be incorporated into the

modelling of the HA concentration data at 0.2 g L-1 HA. However, upon attempting this

it became apparent that the k1 values obtained for 0.2 g L-1 in the pH experiment were

significantly greater than the k1 values for 0.5 g L-1 in the HA ratio experiment (Figure
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4.33). The difference may arise from the way in which the HA stock solutions were

prepared. It is unlikely that the 0.2 g L-1 suspensions used in the pH experiment would

have a higher HA concentration than anticipated considering the way in which they were

prepared (0.5 g HA dissolved in 1L). In the experiment testing the effect of a range of

HA concentrations the HA (0.36 g) was dissolved in a smaller volume (250 mL) of

solution and possibly resulted in incomplete dissolution of the HA and therefore a lower

HA concentration than intended. Also more dilution steps were required in setting up this

ratio experiment, resulting in greater potential methodological error. Despite this issue

the experiment still enables comparison across a range of HA concentrations as all

samples were prepared from the same stock, however the exact concentrations are

suspected to be lower than those quoted.

4.4.6.2 Modelling systems containing Fe

The same model structure (Figure 4.2) was used for modelling the Fe data and gave a

better fit (r2 = 0.963, Figure 4.34) that for the pH and HA concentration data. This is

potentially because the systems containing Fe showed more gradual formation of I-. The

rate of IO3
- reduction was still the most rapid process (k1 = 0.4064-0.0085), with minimal

y = 0.0084e4.4955x
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Figure 4.33. Relationship between HA concentration and k1
at pH 4. White markers are the pH 4 samples (from the pH
experiment) that contained 0.2 g L-1 HA. These don’t fit to
the trend.
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conversion directly to I- (k2 = 0.0604 – 0.00001). When compared to systems without Fe

there was greater transformation of Org-I to I- (k3 = 0.1279 – 0.00001) and subsequently

greater oxidation of I- to Org-I (k4 = 0.2040 – 0.00001). Both pH and temperature had a

significant effect on the rate of k1, however since only pH 4 and 6 and 4oC and 20oC were

investigated, a broader range of temperatures and pH conditions would offer a more

reliable way of establishing these effects. A significant correlation (r = 0.62, p = 0.004)

was observed between Fe concentration and the rate of k3 which indicates that as the Fe

concentration increases, the rate of Org-129I transformation to 129I- increases (Figure

4.35). Removing the k2 pathway resulted in a slightly poorer model fit of r2 = 0.85

compared to r2 = 0.97. The increased contribution of k3 and k2 to both the model fit and

the flux of I between pools in systems containing Fe, further corroborates the discussion

in Section 4.4.5. It is likely that HA groups are occupied with Fe2+/Fe3+, consequently Fe

was oxidised by IO3
- resulting in an increase in I- formation both from IO3

- directly and

through association with HA first (Org-I to I-).
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4.5 CONCLUSIONS

Iodine dynamics in HA and FA systems of increasing complexity have been measured

and modelled over time scales up to 142 days. The change in surface charge of HA with

pH affects the reduction and binding of I- and IO3
-. Iodate was rapidly transformed via

intermediate species to both Org-I and I-. A strong dependence on pH was observed; as

pH decreased, the rate of this reduction reaction increased. Humic acid concentration was

also important, with increasing concentration increasing the rate of IO3
- reduction.

Previous research has suggested that the most likely mechanism is IO3
- reduction to I2

which then binds with phenolic groups on OM, forming Org-I species. However, the

results presented here demonstrate IO3
- reduction and association with HA as Org-I with

no evidence of initial I- formation. Iodide is formed over time as a result of release from

Org-I. Modelling confirmed this by showing minimal direct transfer of IO3
- to I-,

indicating that HA mediates formation of I-. This mechanism has not been suggested

before.
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Figure 4.35. Relationship between Fe concentration (% of HA carboxyl
groups) and rate constant k3.
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In contrast to the rapid reduction of IO3
- in HA systems, I- was only slowly oxidized to

reactive intermediates before forming Org-I. This is in contrast to observations in soils

where rapid transformation of I- to Org-I is measured (Shetaya et al., 2012). When IO3
-

and I- were added together redox coupling was indicated, resulting in an increased rate

of I- oxidation to reactive intermediates. Further investigation of this by changing I-:IO3
-

ratios under a range of conditions in both HA/FA systems and soils is necessary in order

to fully understand these interactions.

Iron in combination with HA was expected to provide a localised positive charge in order

to encourage IO3
- and I- interactions with HA by reducing the degree of electrostatic

repulsion. However, the addition of Fe slightly reduced the rate of IO3
- reduction and

significantly increased the rate of I- formation, resulting in less Org-I formation. In

systems where I- was added, instantaneous association of I- with HA was observed, likely

via association with Fe on the HA surface, before re-release of I-. Comparison of

modelling of systems with and without Fe demonstrated increased contribution of the

Org-I to I- pathway (k3) in the presence of Fe. Neither of these interactions have been

observed before, to fully elucidate these reaction mechanisms additional batch sorption

experiments and XAS experiments to investigate the nature of possible HA-Fe-I bridged

species are recommended.
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5. SELENIUM INTERACTION WITH SOIL GEOCOLLOIDS

5.1 INTRODUCTION

Organic matter has a significant influence on the fate of environmental Se(IV) and Se(VI)

(Dhillon and Dhillon, 1999; Li et al., 2017; Tolu et al., 2014; Wiramanaden et al., 2010a,

2010b). For example a strong correlation between extractable organic carbon and

extractable Se was observed in Dutch soils with low Se concentrations (Supriatin et al.,

2015). Sequential extraction approaches demonstrate that a significant proportion of soil

Se is associated with the organic phase, (Gustafsson and Johnsson, 1994) and there has

been some suggestion that microbial reductive incorporation may be an important

mechanism. Humic substances (humin, HA and FA) constitute a significant portion of

OM providing reactive functional groups including; carboxyl, carboxyl-phenol, phenolic

and quinone groups (Traversa et al., 2014), thought to be key for the association of Se

with OM. Bruggeman et al. (2007) observed that reaction of Se(IV) with HSs resulted in

a system dominated by colloidal Se species associated with HS after one month of

contact, whilst Se(VI) didn’t react with HSs. In addition to direct bonding of Se to HSs,

ternary complex formation by cation bridging with HA has been suggested as an

important mechanism for Se(IV) association (Martin et al., 2017). No cation bridging has

been observed with Se(VI) and detailed mechanistic understanding of the interactions of

Se with HS remains very limited.

In addition to association with organic phases in soils, Se can also be incorporated into

inorganic phases (Chan et al., 2009; Peak, 2006; Rovira et al., 2008; Scott and Morgan,

1996). Again Se(IV) is more reactive as it is more polar than the more oxidised Se(VI) ion

(Wiramanaden et al., 2010a). For example, the mechanism of Se(IV) and Se(VI) reaction
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with goethite, is relatively well understood. Goethite rapidly bonds both Se(IV) and Se(VI),

usually without reduction, however the nature of the Se(VI) species is not fully resolved.

Both inner and outer-sphere complexation is possible, whereas Se(IV) forms an inner-

sphere complex (Hayes et al., 1987; Manceau and Charlet, 1994; Peak and Sparks, 2002).

The role that inorganic phases, such as goethite, play in determining the fate of Se in soil

systems may be significant since they provide a positive surface with which these

oxyanions can interact.

Batch sorption experiments have been predominantly used to investigate interactions of

Se with HS, with minimal investigation of the solid phase species formed. The

determination of Se speciation in solids can be challenging at environmentally relevant

concentrations, however determining direct Se associations with soil or soil fractions by

X-ray Adsorption Spectroscopy (XAS) is well established (Kamei-Ishikawa et al., 2007;

Wiramanaden et al., 2010b). The Se K-edge X-ray Absorption Near Edge Spectrum

(XANES) is sensitive to oxidation state and chemical environment, allowing the

investigation of Se speciation in complex matrices such as soils. The extended X-ray

adsorption fine structure (EXAFS) spectra can be used to study the local environment of

Se in these systems. In combination with aqueous-phase speciation analysis this can

provide a way to undertake a comprehensive investigation of Se in combination with soil

geocolloids and soils.

5.2 AIMS AND OBJECTIVES

The aim of this study was to investigate interactions of Se(IV) and Se(VI) with soil

geocolloids; HA alone, HA in combination with metal ions and oxides, and FA, in order

to improve understanding of Se reactions and mobility in soils.
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Specific objectives included:

 Investigation of the interactions of Se(IV) and Se(VI) with HA alone and in

combination with metal ions;

 Investigation of the effect of temperature, pH and metal oxides on the formation

of organic-Se species;

 Investigation of the solid phase speciation of Se(IV) and Se(VI) adsorbed to soil

geocolloids using X-ray absorption spectroscopy.

5.3 MATERIALS AND METHODS

5.3.1 Isotope spike solutions

Isotope spike solutions (500 µg L-1) were prepared for each species (77Se(IV), 77Se(VI) and

74Se(VI)) by dilution of concentrated stocks as described in Section 2.5.2. Stocks were

diluted in Milli-Q water to neutralise the pH of the concentrated stocks.

5.3.2 Humic acid batch sorption experiments

Selenium spikes were included in the experiments described in Chapter 4. A range

finding experiment was first undertaken as described in Section 4.3.3. Oxidised samples

were spiked with 5 µg L-1 77Se(VI). Reduced samples were spiked with 5 µg L-1 77Se(IV).

The influence of HA concentration was determined as described in Section 4.3.5.

Samples were spiked with 5 µg L-1 77Se(VI). The effect of pH was investigated as

described in Section 4.3.4. Samples were spiked with 5 µg L-1 77Se(VI). All samples were

stored and sampled as described in the relevant sections.
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5.3.3 Effect of microbes on Se interactions with HA

5.3.3.1 Effect of filter sterilisation on Se interactions with HA and FA

Humic acid samples containing 0.2 g L-1 HA were prepared as described in Section 4.3.3

by dilution of a 1.5 g L-1 HA stock before adjustment to pH 4, 5, 6 and 7 using 0.1 M

HNO3. A spike of 77Se(IV) and 74Se(VI) was then added to give a final concentration of 5

µg L-1. Samples were filter sterilised (0.22 μm) and stored in the dark at 4oC and 20oC.

Aliquots were subsampled in a laminar flow hood using autoclaved pipette tips to

maintain a sterile environment after 0, 12, 32, 51 and 93 days for 74Se(VI) and 4, 16, 32,

51 and 93 days for 77Se(IV).

Fulvic acid samples were prepared, filtered, stored and subsampled as described in

Section 4.3.6. A mixed spiked of 77Se(IV) and 74Se(VI) was added to achieve a final

concentration of 5 µg L-1.

5.3.3.2 Effect of added microbes on Se interactions with HA

Humic acid samples were prepared, stored and subsampled according to Section 4.3.8.

A spike of 77Se(IV) and 74Se(VI) was added to give a final concentration of 5 µg L-1.

5.3.4 XAS

5.3.4.1 Sample preparation

Humic acid samples were prepared as described in Section 4.3.3 to achieve a final

concentration of 0.8 g L-1. Samples were converted to Ca-humate by flocculation with 1

M Ca(NO3)2 and centrifugation at 3000 g. The supernatant was discarded and the Ca-

humate was re-suspended with 0.01 M Ca(NO3)2. Adjustment to pH 4 and pH 6 was
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achieved with 0.1 M HNO3. A spike of Na2SeO3 and Na2SeO4 was then added to give a

final concentration of 10 and 100 mmol kg-1 from stock solutions (salts dissolved in Milli-

Q water). Samples were stored in the dark at 20oC for 60 days.

Humic acid samples containing Fe3+ were prepared as described above with an addition

of FeCl3 to achieve 20% occupancy of the HA COOH groups. Adjustment to pH 4 and

pH 6 was achieved with 0.1 M HNO3. A spike of Na2SeO3 and Na2SeO4 was then added

to give a final concentration of 100 mmol kg-1 from stock solutions. This was performed

1 day prior to analysis. Samples were converted to Ca-humate by flocculation with 1 M

Ca(NO3)2 and centrifugation at 3000 g.

The goethite stock prepared in Section 4.3.3 was used here. Adjustment to pH 4 and pH

6 was achieved using 0.1 M HNO3. Spikes of Na2SeO3 and Na2SeO4 were then added to

give final concentrations of 10 and 100 mmol kg-1. Samples were stored in the dark at

20oC for 60 days.

Two soils were selected based on their carbon content and pH characteristics; a

Derbyshire grassland soil (DY-G, pH 3.9, 11.4% Org-C), and a grassland soil from Stoke

Rochford (SR-G, pH 7.04, 5.7% Org-C). Spikes of Na2SeO3 and Na2SeO4 were added to

2 g of the soil to give final Se concentrations of 1 and 10 mmol kg-1. Samples were stored

moist (aerobic) at 20oC for 60 days. After this period samples were repeatedly washed

with Milli-Q water (resuspension followed by centrifugation at 3000 g) to remove excess

Se prior to analysis with XAS. Two selenium standards of 308 mg L-1 Na2SeO3 and

Na2SeO4 solutions were also prepared as standards for XAS analysis.
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5.3.4.2 Data collection/analysis

The concentration of Se in the supernatant after sample washing was determined by ICP-

MS. The concentration of Se sorbed to the solid phase was then determined as (Eqn. 5.1):
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(5.1)

Where; Sem is the mass of Se (µg) entrained in the solution phase of the centrifuged

sample plug, C0 is the concentration of Se (µg L-1) in the supernatant solution following

initial equilibration, V0 is the initial solution volume (mL) equilibrated with the solid

material (25 mL), Vp is the volume (mL) of entrained liquid following centrifugation and

after discarding the supernatant, Vw is the volume (mL) of the wash solution (20 mL) and

n is the number of wash steps.

All XAS data was collected in fluorescence mode at beamline I20-Scanning at the

Diamond Light Source (Oxfordshire, UK) using a Si 111 monochromator. Calibration

was achieved using elemental Se where the maximum in the first derivative on the edge

was set at 12658 eV. The Se k-edge XAS data was measured using a 64 element solid-

state Ge fluorescent detector. The k-range of the EXAFS spectra was limited to 10 Å-1 in

the soil samples due to the presence of a Pb-L3 adsorption edge at 13043 eV, which

distorted the EXAFS signal beyond this point. All samples were analysed as pastes at

liquid N2 temperature in an Al-holder with Kapton® windows. Between 4 and 12 scans

were taken per sample depending on the concentration of Se present. Reduction of Se by

the beam was observed when repeated scans were taken at the same point on the sample

therefore the beam position on the sample was adjusted between scans. Multiple XAS

scans for each sample were summed and averaged using Athena v 0.9.25. The EXAFS

spectra were then fitted in k-space using Artemis v 0.9.25 (Ravel and Newville, 2005).
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5.3.5 ICP-MS Analysis

Measurement of Se total concentration was undertaken using ICP-MS as described in

Section 2.5.1. Chromatography to separate Se species used a Dionex ICS-3000 HPLC

(Chromeleon software) coupled to ICP-MS as described in Section 2.5.2. Separation of

organic Se species from inorganic species was carried out using SEC-ICP-MS as

described in Section 2.5.3.

5.4 RESULTS AND DISCUSSION

5.4.1 Interactions with humic acid

5.4.1.1 Range finding results

When HA systems were spiked with 77Se(IV) and 77Se(VI) changes in speciation were

observed over the course of 160 days, predominantly in systems at lower pH and higher

temperature (Figure 5.1). Samples at pH 4 showed rapid instantaneous Se adsorption at

20oC (81% after 12 days) followed by a slower time-dependent removal. At pH 4 the

rate of Se(VI) loss was much slower than Se(IV), with 70% lost from solution after 41 days

(Figure 5.2). Selenium is most soluble and mobile as Se(VI) in contrast to Se(IV) which is

usually associated with OM (Kamei-Ishikawa et al., 2007; Zawislanski et al., 2003).

Greatest initial removal of Se(IV) and Se(VI) was observed at pH 4, with minimal/no

removal observed at pH 6 at either temperature. Reaction of both Se(IV) and Se(VI) was

less at 4oC compared to 20oC, demonstrating a clear temperature dependency. Humic

acid concentration appears to have minimal effect on the rate of Se(IV) removal, and no

effect on Se(VI). Indeed systems containing 0.05 g L-1 HA showed more reduction of Se(VI)

over 160 days compared to those with 0.2 g L-1 HA. A similar result was observed for
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Se(IV) at pH 6 where 28% of the Se was removed at the lower HA concentration, compared

to 15% at the higher concentration. If the method of Se removal in the presence of HA is

through association with the HA itself then it would be expected that a increased HA

concentration would result in increased removal. Pezzarossa et al. (1999) found that soils

with a higher OM content removed more inorganic Se(VI) from solution, than soils with

a lower OM content, as would be expected if Se complexes with the OM. The lack of an

effect of HA concentration of Se removal in this study was therefore unexpected and will

be considered in more detail in Section 5.4.1.3.
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Figure 5.1. Humic acid suspensions at 0.05 g L-1 and 0.2 g L-1 alone (square markers)
and in combination with Fe(2+) (triangles) and Mn2+ (circles) spiked with 5 µg L-1 77Se(IV)

at pH 4 (closed symbols) and pH 6 (open symbols). Samples were stored in the dark.
Error bar based on two replicates.



148

5.4.1.2 Effect of iron and manganese on Se sorption

The presence of Fe2+ and Mn2+ appears to have no effect on the rate of 77Se(IV) and 77Se(VI)

removal (Figure 5.1 and Figure 5.2). Despite this a number of papers have discussed the

potential for metal-humic complexes to play an important role in the sorption of Se in

soils (Bruggeman et al., 2007; Gustafsson and Johnsson, 1994; Martin et al., 2017).

Figure 5.2. Humic acid suspensions at 0.05 g L-1 and 0.2 g L-1 (squares) and in
combination with Fe(2+) (triangles) and Mn2+ (circles) spiked with 5 µg L-1 77Se(VI) at pH
4 (closed symbols) and pH 6 (open symbols). Samples were stored in the dark. Error bar
based on two replicates.
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5.4.2.3 Selenium interactions with Goethite

Humic acid systems that contained goethite at pH 4 demonstrated increased removal of

Se(IV) (Figure 5.3) from solution when compared to HA only systems (Section 5.4.1.1),

with a minor reduction in the rate of Se(VI) removal (Figure 5.4). Humic acid systems in

combination with goethite and the pure goethite systems at pH 4 both demonstrated

instantaneous sorption of Se(IV). This is likely due to absorption onto goethite directly, or

through association by Se-HA-Goethite complexes (Tam et al., 1995). Selenate in

combination with goethite alone at pH 4 also demonstrated instantaneous sorption,

however when present in HA systems containing goethite the rate of removal from

solution was slower than that observed in HA only systems. Humic acid is known to

adsorb onto goethite with decreasing pH (Antelo et al., 2007), therefore there could be

some degree of competition thus slowing Se(VI) absorption onto goethite in mixed

systems. Interactions with goethite systems at pH 6 are significantly slower than those

observed at pH 4. This is likely due to the surface charge properties of goethite, i.e. at

low pH the positive surface charge is greater therefore the Se oxyanions are likely to

interact more with the goethite surface (Rovira et al., 2008). Combined HA/goethite

systems at pH 6 resulted in increased Se(IV) removal from solution compared to pure HA

systems at pH 6. This may also be explained by slight positive charge contribution from

goethite compared to the negatively charged pure HA systems. Removal of both Se(IV)

and Se(VI) was more rapid in combination with pure goethite when compared to pure HA

systems, particularly for Se(VI). Again this is likely attributable to the surface properties

of goethite and HA; goethite is positively charged and therefore more likely to interact

with anionic species than the negatively charged HA.
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Figure 5.3. HA suspensions (0.05 and 0.2 g L-1 HA) with goethite
(20% of HA weight) and goethite alone, spiked with 5µg L-1

77Se(IV) at a) pH 4 and b) pH 6. Stored at 4oC (blue) and 20oC (red).
Error bars based on two replicates.
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5.4.1.4 Effect of humic acid concentration

As observed in the range finding experiment, HA concentration appears to have little

influence on the rate of Se(VI) removal (Figure 5.5). Soil OM is a known sink for Se under

certain conditions (i.e. low pH), where positive correlations have been demonstrated

between increasing soil OM content and increased soil Se concentrations (Spadoni et al.,

2007; Tolu et al., 2014). This usually then correlated with reduced plant Se uptake.

Therefore, it is expected that a positive correlation should exist between HA

Figure 5.4. HA suspensions (0.05 and 0.2 g L-1 HA) with
goethite (20% of HA weight) and goethite alone, spiked with
5µg L-1 77Se(VI) at a) pH 4 and b) pH 6. Stored at 4oC (blue)
and 20oC (red). Error bars based on two replicates.
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concentration and Se(VI) transformation into Org-Se species. Systems containing 1 g L-1

of HA had an increased rate of Se(VI) removal compared to systems with 0.01 g L-1 HA.

The pattern observed as a function of HA concentration was more complex with 0.5, 0.05

and 0.1 g L-1 HA suspensions removing 40, 75 and 100 % of the Se(VI) respectively at

10oC. If the reactive sites on the HA were responsible for the reduction of Se(VI) forming

Org-Se species then as the concentration of HA increased so would the quantity of

reactive sites, consequently the rate of Se(VI) reduction would also increase. The lack of

this relationship suggests that although the HA may be a sink for Se in soil, another soil

component could be responsible for the reduction of Se prior to its incorporation in OM.

There are no previous studies for comparison that investigate the effect of HA

concentration on Se(VI) interactions since Se(VI) has been described as showing no

interaction with HA (Bruggeman et al., 2007; Martin et al., 2017). However comparisons

can be made for the effect of HA concentration on Se(IV) interactions in Section 5.4.1.1

where similar results were observed as greater transformation in samples containing 0.05

g L-1 HA than 0.2 g L-1 (Figure 5.1). For example, Kamei-Ishikawa et al. (2007)

concluded that decreasing solid/solution ratio (HA concentration) increased Se(IV)

sorption on HA at pH 5-6. This is in agreement with the results of the range finding

experiment for Se(IV) (Figure 5.1). Humic acid structure is expected to vary as a function

of concentration, pH and ionic strength (Stevenson, 1982). This led Kamei-Ishikawa et

al. (2007) to hypothesise that the trends observed were related to a more linear HA

structure at low HA concentrations and therefore increased accessibility of reactive sites

for Se. However, although Kamei-Ishikawa et al. (2007) concluded that there was a

relationship between Se(IV) transformation and HA concentration, closer inspection of the

figures presented in the study appears to show no relationship between HA concentration
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and Se(IV) transformation. The solid/liquid ratio of 0.05 often resulted in greater Se(IV)

transformation than 0.01, and this shouldn’t be the case if a decreasing solid/liquid ratio

results in increased Se(IV) transformation.

Measurement of sample pH at the end of the experiment demonstrated some pH drift had

occurred. Most samples remained within one pH unit, however some showed more

significant changes. Samples at 20oC showed the greatest drift, with 4oC systems showing

negligible change. Samples containing 0.1 g L-1 HA at pH 4 showed the greatest change;

pH 5.77 (4oC), pH 5.72 (10oC) and pH 6.30 (20oC). Significant transformation of Se(VI)

was observed in the systems demonstrating the greatest pH drift, and since previously no

transformation of Se(VI) was observed at pH 6 (Figure 5.2), it is suspected that the pH

drift occurred during the experiment. These results make it difficult to determine the

mechanisms occurring during reduction of Se(VI) in the presence of HA. It is apparent

that Se interaction with HA is more complicated than a simple sorption reaction and it is

likely that multiple reactions are involved.
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Figure 5.5. Humic acid suspensions at 1, 0.5, 0.1, 0.05 and 0.01 g L-1, spiked
with 5 µg L-1 77Se(VI) at pH 4 and stored in the dark at a) 4oC, b) 10oC and c)
20oC. Error bar based on two replicates.
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5.4.1.5 Effect of pH

Humic acid suspensions over the pH range 4-7 demonstrated increased Se(VI) removal

with decreasing pH (Figure 5.6). Removal of 98%, 100%, 35%, 17%, 0%, and 5% of

Se(VI) was observed at pH 4.0, 4.5, 5.0, 5.5, 6.0, 6.5 and 7.0 respectively at 20oC. After

106 days of incubation there was a significant positive correlation (r2 = 0.81) between

pH and available Se(VI). However, neither the 4oC nor the 10oC show any Se(VI) reduction

suggesting that the activation energy for this reaction has not been overcome at these

temperatures. There is evidence in the literature to indicate that pH has a significant effect

on Se adsorption in soils, where increasing pH results in less adsorbed Se and therefore

greater Se plant uptake (De Temmerman et al., 2014; Gustafsson and Johnsson, 1994).

Goh and Lim (2004) concluded that Se(IV) and Se(VI) adsorption decreased with increasing

pH, which also correlated with decreasing soil surface charge density as pH increased.

As in the case of iodine, this indicates that adsorption could be inhibited at high pH due

to the increased quantity of OH- ions present in solution, resulting in a greater degree of

electrostatic repulsion between the Se oxyanions and the hydroxylic functional groups of

the HA. This would suggests that at low pH, when electrostatic repulsion is reduced,

Se(VI) reaction with HA would be encouraged.
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Figure 5.6. Humic acid suspensions (0.2 g L-1) spiked with 5 µg L-1 77Se(VI) at pH
4.0, 4.5, 5.0, 5.5, 6.0, 6.5 and 7.0. Samples were stored in the dark at a) 4oC, b) 10oC
and c) 20oC. Error bar based on two replicates.
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These results also demonstrated a delay in the reaction. Little/no reduction took place in

the 20oC system during the first 16 days, following this, reduction happened rapidly in

the most acidic systems. This pattern is not typical of adsorption kinetics where initial

rapid reaction is usually followed by slower time-dependent sorption. This initial delay

could suggest that the reaction is microbially driven, whereby it takes time for a microbial

community to establish before Se(VI) removal can occur. For example, D. desulfuricans

has been shown to have a delay in growth when grown on media containing Se(IV) or

Se(VI), with the lag period extending in the case of Se(VI) (Tomei et al., 1995). It was

observed that samples grown with Se(IV) formed Se(0) more rapidly than those grown with

Se(VI). However, this experiment investigated microbial growth on Se enriched medium,

and was performed at pH 6.5 to encourage growth of D. desulfuicans, whereas the

experiment undertaken here saw Se removal at more acidic pH. This makes comparisons

difficult but raises the possibility of a mechanisms capable of explaining the

discrepancies between the experiments so far observed.

5.4.2 Effect of microbes on Se interactions with HA

5.4.2.1 Effect of filter sterilisation on Se interactions with HA and FA

Filtering solution samples (0.22 µm) with a sterile filter unit has been shown to be

effective for bacterial and mould sterilisation (Walsh and Denyer, 2013). The possibility

of a microbial reaction resulting in the delay in Se(VI) removal in the range finding, pH

and HA concentration experiments was investigated by filtering HA suspensions spiked

with 5 µg L-1 77Se(IV) and 74Se(VI). No removal of 77Se(IV) (Figure 5.7) or 74Se(VI) (Figure

5.8) over 92 days at pH 4 or pH 6 was observed. Filtering of FA samples spiked with 5
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µg L-1 77Se(IV) and 74Se(VI) also resulted in no removal of either Se species from solution

(Figure 5.9).
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As Se(IV) and Se(VI) were both removed from suspension in non-sterile HA systems, it is

likely that a similar reaction would occur in non-sterile FA systems, since FA has a higher

total acidity. For example, IO3
- showed a marginal increase in rate of removal in the

presence of FA compared to HA. However as FA systems were not tested without

filtration, comparisons between non-filtered and filtered systems cannot be made. It is

apparent however that the reactions of Se(IV) and Se(VI) with both HA and FA is not abiotic

indicating that the Se removal observed in the unfiltered systems is most likely

microbially mediated, either directly or enzymatically.

5.4.2.2 Effect of added microbes on Se interactions with HA

Filtered and unfiltered, irradiated and non-irradiated suspensions of HA were supplied

with additions of microbes from a soil inoculum and glucose (as a food source) in order

to establish whether or not the mechanisms observed were biotic. All irradiated systems

showed little/no reduction of Se(IV) or Se(VI) over time (Figure 5.10) with the exception

of non-filtered HA systems where samples containing microbial and glucose additions
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L-1 77Se(IV) and 74Se(VI). Sampled over 40 days. Error bars based on two replicates.
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demonstrated removal of both Se(IV) and Se(VI). If this was the result of Se adsorption

onto particulate matter introduced in the soil inoculum, then it would demonstrate rapid

adsorption by abiotic kinetic mechanisms. This is not the case therefore it is more likely

that irradiation hasn’t completely sterilised these samples. Ideally samples should be -

irradiated to achieve a dose between 10-35 kGy for complete sterilisation (Berns et al.,

2008; McNamara et al., 2003). These samples however were only been irradiated to

achieve a dose of 6.5 kGy. This dose rate was selected on the basis that the HA had been

acid and alkaline treated during extraction, freeze dried and then re-dissolved in the lab

and therefore any microbial community present would be minimal, certainly less than

what you would find in an average soil sample.
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Non-irradiated systems demonstrated the greatest removal of Se(IV) and Se(VI) where soil

inoculum and glucose had been added (Figure 5.11), indicating that microbes are playing

a significant role in the reduction of Se. Figure 5.11d demonstrates significant Se(VI)

removal in non-filtered HA systems that received filtered inoculum alongside glucose.

Filtering the inoculum would have removed any microbes present from the soil therefore

this reduction must result from microbes present in the HA solution. Selenite reduction

in non-filtered HA systems (Figure 5.11b) demonstrated almost complete removal in all

systems regardless of added microbes or added glucose. Again this indicates that

microbes already present in the HA solutions and microbes added from the soil inoculum

are inducing Se(IV) removal. Although removal was observed in un-filtered HA systems

and those with added microbes, it is unlikely that the microbes introduced from the soil

inoculum are the same as those already present in the un-filtered HA systems, yet

reduction is observed in both cases.

When no microbes are actively added to the filtered HA systems, i.e. HA only, glucose

only and filtered inoculum systems, then less removal of Se(IV) and Se(VI) was observed

(Figure 5.11a and c). The literature suggests that Se(IV) reduction and consequent

incorporation tends to occur much more readily and extensively than Se(VI) reduction (Ike

et al., 2000) which agrees with the results observed here.

There is evidence to suggest that Se(IV) reduction occurs both biotically and abiotically

(Lusa, 2015), however since the rate and relative contribution of biological reactions is

likely larger (Li et al., 2017), the biotic reactions are possibly hiding the abiotic. These

results confirm the significant role microbes play in the reduction of Se(IV) and Se(VI)

either to Se(0) or prior to incorporation into humic substances as Org-Se species.
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Gustafsson and Johnsson (1994) used two antimicrobial agents; sodium azide and

chloroacetic acid, to investigate the effects of microbes on Se incorporation into soil

humic substances and found that both significantly reduced Se incorporation. Humic acid

itself can act as an electron donor during microbial reduction of Se species (Lovley et al.,

1999), likely by microbial reduction of quinone groups (Scott et al., 1998), although this

has only previously been demonstrated in anaerobic systems.
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Figure 5.11. Non-irradiated HA systems (0.2 g L-1) spiked with 5 µg L-1 77Se(IV) and
74Se(VI). Samples were either filter sterilised (a, c) or non-filtered (not sterile) (b, d).
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bars based on two replicates.
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Irradiated samples did not demonstrate any visible “growth”, however a number of the

non-irradiated samples showed significant growth with small brown colonies forming in

the solution (Figure 5.12). It is suspected that the “brown colonies” are actually colonies

of bacteria/fungi that have flocculated and collected the HA. This is because the HA

solution appears to be lighter in samples with growth in comparison to those without

growth. A record of which solutions demonstrated growth is presented in Table 5.1 and

correlates well with the systems that showed the most significant reduction of Se(IV) and

Se(VI). Identification of the microbial species responsible for these reactions was not

within the scope of this study but is an area that warrants further investigation.

Figure 5.12. Brown colony growth in unfiltered HA samples that have received
an addition of filtered inoculum and glucose. The samples showing no growth
have been irradiated.
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Table 5.1. Presence of colonies in non-irradiated samples compared to the amount of
77Se(IV) and 74Se(VI) reduction (loss as a %) after an initial spike of 5 µg L-1. Average based
on two replicates.

In the presence of a suitable electron donor, selenium oxyanions can be utilised as the

terminal electron acceptor for a range of different bacterial species. The literature

describes a number of other bacterial species capable of either directly respiring Se

(dissimilatory selenate reduction, DSeR) or indirectly for detoxification purposes; these

include Pseudomonas spp., specifically, P. stutzeri and W. succinogenes (Hockin and

Gadd, 2003; Kuroda et al., 2011; Lovley et al., 1996). Stolz and Oremland (1999)

describe the ability of T. selenatis, S. barnesii, B. selenitireducens and B.

arsenicoselenatis in Se reduction. D. desulfuricans, a species of sulfate-reducing

bacteria, has also demonstrated a capacity in Se bioremediation by reducing Se(IV) and

Se(VI) to Se(0) (Tomei et al., 1995). All of these species are thought to be widespread

across different soil types and conditions, in particular Pseudomonas spp. therefore it is

equally likely that any might be present in the soil inoculum used here. Lovley et al.

(1999) demonstrated the capacity of W. succinogenes in using a HS analogue

Filtered Growth Loss of
77

Se
(IV)

(%)

Loss of
74

Se
(VI)

(%)

Non-
Filtered

Growth Loss of
77

Se
(IV)

(%)

Loss of
74

Se
(VI)

(%)

HA only - 42.3 38.1 HA only - 94.9 30.5

+ G - 37.8 40.0 + G ✓ 97.9 97.1

+ FI - 36.7 38.3 + FI - 94.4 22.7

+ UnI ✓ 98.3 42.8 + UnI ✓ 92.1 15.7

+ FI + G - 32.9 34.9 + FI + G ✓ 95.0 95.9

+ UnI +
G

✓ 91.8 72.5 + UnI +
G

✓ 92.4 77.7
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anthrahydroquinone-2,6,-disulphonate (AHQDS) as an electron shuttle in Se(VI)

reduction. If this species were present it could reduce the HA, consequently the HA could

then transfer an electron to Se(IV) or Se(VI) causing reduction, leaving the HA oxidised

and capable of accepting electrons from W.succinogenes.

One key problem with the results presented here however is that bacteria tend to work

most effectively in neutral to high pH (pH 6-9) systems (Hageman et al., 2013), with B.

selenitireducens and B. arsenicoselenatis even being alkaliphilic (pH 9.8). It is therefore

unusual that the microbial species that seem to be present in the HA systems appear to

work most effectively at low pH. All experiments that were not sterilised show most

significant Se reduction at pH 4 compared to pH 6; if microbes are driving this it would

be expected that reduction would be greatest at higher pH. The soil used to prepare the

inoculum was collected from an acidic woodland soil (pH 3.87), consequently the

microbes collected are likely capable of working at low pH levels. Samples with

inoculum added and non-sterile HA suspensions show the same pattern of microbial

growth. However, only ~1% of bacterial species present in environmental samples are

culturable (Ultee et al., 2004), meaning that although the occurrence of colonies

correlates with samples demonstrating the greatest Se reduction, it’s not necessarily a

causal relationship. Also given the process required to extract and purify HA, it would

seem unlikely that a bacterial species would survive and, if it had, then the probability of

that species being capable of reducing Se is slim. It is also possible that rather than being

bacterially mediated, the reactions observed may be fungal. It is possible that introduction

of bacteria/fungi could occur from the lab, but again the likelihood of introducing a Se

reducing species seems small. All of these contradictory factors make the results difficult
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to interpret in terms identifying a direct mechanism, however it does appear that microbes

have an important role to play.

5.4.4 Formation of Org-Se species

Throughout these experiments it has been assumed that inorganic Se has been reduced to

form Org-Se. This suggests rapid formation of Org-Se species in systems at low pH and

high temperature. However, SEC of pH 4 (20oC) samples demonstrated only a very minor

increase in the organic part of the chromatogram (Figure 5.13), indicating that although

inorganic Se(VI) was reduced, only a small fraction was organically bound. Analysis of

total Se in both the pH and HA concentration experiments also demonstrated a missing

fraction of Se (Figure 5.14). In the systems that show significant reduction of Se(VI)

concentration, there is a lower overall Se concentration.
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Figure 5.13. Size exclusion chromatogram showing the incorporation of 5 µg L-1 77Se(VI) into HA (0.2
g L-1) at pH 4 and 20oC over 106 days.
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Any Se associated with the HA would be accounted for during analysis of total Se, which

implies the missing Se is not organically bound. On average 3 µg L-1 Se has been lost from

systems that have shown significant Se reduction (low pH). It’s possible that this fraction has

been lost through volatilisation as a number of experimental studies have identified micro-

organisms capable of volatilising inorganic and organic Se forms (Azaizeh et al., 1996; Zieve

and Peterson, 1984). Darcheville et al. (2008) investigated Se partitioning in an oxic sandy

soil and found that Se volatilisation did not occur in sterilised samples, however in non-sterile

samples volatilisation resulted in the loss of some Se from the system (0.0014-0.0087%).

Therefore, it is possible that Se in these samples could have been lost through volatilisation,

yet in some systems there was as much as 60% loss of Se and it is unlikely that this could all

be accounted for by volatilisation. Another possible explanation is that Se(VI) has been reduced

to elemental Se(0) and precipitated. Bruggeman et al. (2007) hypothesised that the reduction in

total Se concentration observed over time, when Se(IV) was in combination with HS, could be
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attributed to the reduction and precipitation of Se(IV) to Se(0) since it is possible for HS to aid

reduction of Se species. Shaking of the sample tubes with 1% TMAH was able to account for

as much as an extra 1 µg L-1 77Se, in some samples, on top of that accounted for in the solution

sample totals, suggesting that some Se was potentially retained on the tube walls. However this

still indicates a missing fraction of 2 µg L-1 on average. This warrants further investigation into

the formation of Org-Se species in HA systems, the volatilisation of Se in microbial HA

systems, and the potential interaction of Se with polypropylene tubes.

5.4.5 Formation of ‘Se unknown’

In many chromatograms an ‘Se unknown’ species was observed; in the range finding

experiment it was observed in samples spiked with 77Se(VI) at 20oC at pH 4 and pH 6, with more

at pH 6. The unknown species appeared on the chromatogram before the retention time of the

77Se(IV) peak (40-50 seconds). The unidentified species was integrated separately where it

appeared. Results collected from the range finding experiment demonstrated a steady increase

in this peak over 163 days at pH 6, whereas at pH 4 it appeared to increase and then decrease

to zero over 125 days (Figure 5.15). At pH 6 it was observed in all 20oC samples, and at both

0.05 g L-1 and 0.2 g L-1 HA concentrations. At pH 4 it was only observed in 0.05 g L-1 samples

at 20oC. The concentration of this unknown species was very low (<1 µg L-1) in all cases. It is

suspected that it is an intermediate, transient, species formed during the reduction of Se(VI) prior

to binding, or a soluble organic species. At pH 4 where the reduction of Se was greatest, the

unidentified species increased then decreased rapidly. It was formed more gradually and

remained in solution longer at pH 6, which could be due to slower reactions at higher pH.

Bruggeman et al. (2007) also discovered an unknown Se species present in HS samples spiked

with Se(IV), but to a greater degree than observed here, and observed no formation when spiked

with Se(VI). Given that it was only observed here in systems spiked with Se(VI) it could be a
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different unknown species to that observed in Bruggeman et al. (2007), although it is difficult

to conclude since no identification was possible in either case. They suggested it was an

organically bound Se species that indicated an abiotic route for the association of Se(IV) with

OM, with further spectroscopic evidence required.

5.4.6 X-ray absorption spectroscopy

Entrained Se present in the each paste sample was measured in order to demonstrate that the

XAS data collected was for Se in the solid phase. A sample of Ca-humate with 100 mmol kg-

1 Se(IV), was weighed after each wash step and the amount of entrained Se calculated from

Equation 1. Assuming a minimum of 15% of added Se was associated with HA, there was ~231

ppb Se in the solid phase and ~8.99 ppb in the entrained solution after 3 washes with Milli-Q

water. Given that the detection limit of Se by XAS is ~200 ppb Se, all results presented must

relate to Se bonded to the solid phase.
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X-ray absorption near-edge structure (XANES) and EXAFS spectra were obtained for all Ca-

humate and Ca-humate combined with Fe(III) samples at pH 4 and spiked soil samples (with the

except of the DY-G soil spiked with Na2SeO4). All Ca-humate plus goethite samples prepared

at pH 6 failed to show a Se edge at any Se concentration, a result that was anticipated from the

batch sorption experiments, where no transformation of inorganic Se(IV) or Se(VI) was observed

at pH 6 in the presence of HA or goethite.

5.4.5.1 XANES

The XANES spectra show Se was present at a range of oxidation states depending on the initial

spike and the type of sample (Figure 5.16). Selenium was reduced to some extent in the

majority of samples, either from Se(VI) to Se(IV), or Se(IV) to Se(0), and in one case from Se(VI) to

Se(0). Data collected from goethite samples demonstrated no change in Se oxidation state when

spiked with Se(IV), and a small degree of reduction when spiked with Se(VI). Goethite has

previously been shown to preserve Se(VI) and Se(IV) oxidation states during association (Das et

al., 2013; Hayes et al., 1987; Manceau and Charlet, 1994) so this was unexpected. A small

degree of Se reduction was observed in the beam during the experiment and this was minimised

by moving the sample position before each scan, but it cannot be ruled out that this small degree

of Se(VI) reduction is the result of photo-reduction.
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Elemental Se dominates the XANES spectra of the Ca-humate samples, demonstrating

the strong ability of Ca-humate to reduce both Se(IV) and Se(VI) to Se(0). When Ca-humate

was in combination with Fe(III) ions there was incomplete reduction to Se(0), with some

reduction from Se(VI) to Se(IV). Given that Fe is both capable of reducing Se species and

has been shown to form ternary complexes between Se(IV) and HA this is in-keeping with

the literature (Martin et al., 2017; Struyk and Sposito, 2001). The SR-G soils showed a

capacity to reduce Se(VI) to Se(IV), and incorporate both Se(IV) and Se(0) into the solid

phase, whilst the DY-G soil spiked with Se(IV) showed the most significant reduction to

Se(0). Given that DY-G has a higher OM content and lower pH when compared to SR-G,

this may be why more complete reduction to Se(0) was observed.

5.4.5.2 Linear Combination Fitting (LCF)

Linear combination fitting can be used to investigate the relative contribution of each

standard, in the fitting of a sample (Table 5.2). In the SR-G soil samples, spiked with

Se(IV) and Se(VI), it was apparent that Goethite-Se(IV) interactions made up a large

proportion (66 %) of the associations. Oxides analysis of the soil indicate that the SR-G

soil has a much higher Fe-oxide (50.8 mg kg-1) content than the DY-G soil (6.9 g kg-1),

and alongside a higher pH this could explain why Goethite-Se(IV) interactions contribute

more in the case of SR-G but not DY-G. In soil DY-G the fit was predominantly

explained by the presence of Se(0) in the sample (42 %), and by HA-Se(IV) and HA-Se(VI)

interactions (both 28 %) which are expected due to its higher OM content and lower pH.
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Samples containing Ca-humate plus Fe(III) demonstrate the importance of Fe for Se

association with HA. In sample HA-Se(IV)-Fe(III), Goethite-Se(IV) contributes 28% and

Goethite-Se(VI) 38% of the fit. The increased contribution of Goethite-Se(VI) was

unexpected and unexplained as this sample was spiked with Se(IV), suggesting some

degree of oxidation. The HA-Se(VI)-Fe(III) sample demonstrates a contribution of 35%

from Goethite-Se(VI), no contribution from Goethite-Se(IV), and significant reduction to

Se(IV) (45%), which is likely as OM in combination with Fe has been demonstrated to

result in significant reduction in previous studies (Bruggeman et al., 2007). However in

isolation linear combination fitting only provides limited information on the nature of the

Se species present.

Table 5.2. Relative contribution of each standard and sample to the LCF fitting for

each XANES sample.

Linear Combination Fitting (%)

Sample Se(0) Se(IV) Se(VI) HA Se(IV) HA Se(VI)

Goethite

Se(IV)

Goethite

Se(VI)

HA Se(IV)

Fe(III)

HA Se(IV) 74.1 23.0 2.9 0.0 0.0 0.0 0.0 0.0

HA Se(VI) 77.1 11.7 11.2 0.0 0.0 0.0 0.0 0.0

Goethite Se(IV) 3.1 96.9 0.0 0.0 0.0 0.0 0.0 0.0

Goethite Se(VI) 4.4 50.5 45.2 0.0 0.0 0.0 0.0 0.0

HA Se(IV)

Fe(III) 0.0 25.9 7.8 0.0 0.0 28.3 38.0 0.0

HA Se(VI)

Fe(III) 0.0 45.0 14.2 0.0 0.0 5.4 35.4 0.0

SRG Se(IV) 15.4 18.3 0.0 0.0 0.0 66.3 0.0 0.0

SRG Se(VI) 0.0 0.0 5.8 0.0 11.9 65.9 0.0 16.4

DYG Se(IV) 42.1 0.0 0.0 28.2 28.2 0.0 1.6 0.0
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5.4.5.3 EXAFS

Spectra of raw and fitted k3 weighted EXAFS data are shown in Figure 5.17. Fourier

transformed data for Se(IV) and Se(VI) are presented in Figure 5.18. All path distances and

fits are tabulated in Table 5.3. Analysis of the EXAFS k3 weighted data demonstrates

the amount of noise present; SRG-Se(VI), HA-Se(VI)-Fe(III) and HA-Se(IV)-Fe(III) samples

have the most noise and this will negatively impact model fitting results (Figure 5.17).

The Fourier transform magnitude was dominated by a strong peak at ~1.3Å, which arises

from backscattering of the oxygen atoms in the coordination sphere (Figure 5.18) (Hayes

et al., 1987). This peak can be fitted with Se-O paths depending on the presence of Se(IV)

or Se(VI) in the samples (1.65-1.71Å). In all cases however the spectra cannot be

completely described by fitting just oxygen atoms, suggesting the formation of inner-

sphere surface complexes.



177

-20

0

20

40

60

80

100

120

140

2 3 4 5 6 7 8 9 10 11 12

A
dj

us
te

d
E

X
A

F
S

k3

k(Å-1)

SRG Se(VI)

SRG Se(IV)

Goethite Se(VI)

Goethite Se(IV)

HA Se(VI) Fe(III)

HA Se(IV) Fe(III)

HA Se(IV)

Figure 5.17. The k3 weighted EXAFS spectra for the raw data (solid lines) and model fit
(circles).



178

HA Se(IV)

SRG Se(IV)

SRG Se(VI)

HA Se(IV) Fe(III)

HA Se(VI) Fe(III)

Goethite Se(IV)

Goethite Se(VI)

0

5

10

15

20

25

30

35

40

45

0 0.5 1 1.5 2 2.5 3 3.5 4

F
T

M
ag

ni
tu

d
e

(A
d

ju
st

ed
)

Radial Distance (Å)

a b c d

Figure 5.18. Fourier transform magnitude (k2X(k)) of the EXAFS spectra for Se(IV) and
Se(VI) incorporated into samples of Ca-humate, goethite and soil SRG. Solid lines
correspond to raw data and symbols to model fits. The magnitude has been adjusted to
show all samples on one plot. Lines indicate key paths/interatomic distances in the
spectra; a) Se-O, b) Se-Se, c) Se-C and d) Se-Fe.
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Table 5.3. EXAFS fitting results.

Coordination Shell

Sample Path N SO2 R(Å) σ2(Å2) e0 Reduced Chi2 R-Factor

HA Se(IV) (pH 4) Se-O 3.0 1.0 1.68 0.004 6.81 356 0.014

Se-C 1.0 1.0 2.74 0.008 6.81

HA Se(IV) Fe(III) (pH 4) Se-O 2.8 1.0 1.67 0.001 7.51 165 0.021

Se-Fe 1.8 1.0 3.30 0.006 7.51

HA Se(VI) Fe(III) (pH 4) Se-O 3.0 1.0 1.66 0.001 7.83 128 0.025

Se-Fe 1.0 1.0 3.28 0.003 7.83

Goethite Se(IV) (pH 4) Se-O 2.5 0.9 1.69 0.002 7.91 509 0.014

Se-Fe 1.5 0.9 3.34 0.005 7.91

Goethite Se(VI) (pH 4) Se-O 2.7 0.9 1.65 0.001 4.24 734 0.021

Se-Fe 2.0 0.9 3.33 0.014 4.24

SR-G Se(IV) Se-O 2.0 0.9 1.71 0.002 9.99 324 0.017

Se-Se 0.6 0.9 2.39 0.006 9.99

Se-Fe 1.0 0.9 3.36 0.006 9.99

SR-G Se(VI) Se-O 2.0 1.0 1.67 0.004 4.72 46 0.030

Se-C 1.0 1.0 2.87 0.002 4.72179
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Ca-humate

Ca-humate samples spiked with Se(IV) were completely described by a two-shell fit

including a C atom at 2.75Å in addition to O (Figure 5.18). Considering that Se-C direct

bonds tend to have a bond distance of ~1.97 Å (Weast, 1982), it’s likely that this path

represents a Se-O-C chain (Figure 5.19). The presence of this Se-O-C interaction is

evidence of an association with carboxyl or phenolic groups on the HA surface,

demonstrating direct association with Ca-humate. There is little previous evidence of the

association of Se with Ca-humate/HA using XAS; typically the association of Se with

HA/HS is demonstrated using sorption studies. For example, Gustafsson and Johnsson

(1994) described the association of Se with low molecular weight humic substances using

sequential extraction and chromatographic techniques, however direct Se-O-C

association could not be documented. This is the first study using spectroscopic

techniques to demonstrate this link between Se(IV) and the carboxyl/phenolic groups of

humic substances, without the need for ternary complex formation.

Although the association of Se with OM has been demonstrated without ternary complex

formation, it is believed that such complexes contribute significantly to Se interactions

(Fernández-Martínez and Charlet, 2009). Adding Fe(III) ions to Ca-humate was

1.
43

Å

Se
O

C
H

Figure 5.19. Schematic demonstrating the bond lengths (Å) and angles (o) formed
during Se(IV) association with Ca-humate (CH) carboxyl or hydroxyl groups.
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undertaken to allow the possibility of the formation of such complexes. It has previously

been demonstrated that when Fe(III) is combined with HS the principal binding form was

as FeOH2+ at all pH values in the range 4-9 (Tipping and Rey-Castro, 2002) thus reducing

the net negative surface charge of the HS whilst providing cations for interaction with

the Se oxyanions. This Se-Fe-HA interaction, via a chain containing O atoms, has been

demonstrated in the case of Se(IV) but not for Se(VI) (Martin et al., 2017). It is clear from

the EXAFS results presented here that in the case of both Se(IV) and Se(VI) added to Ca-

humate in combination with Fe(III), Fe atoms at 3.28-3.31Å (alongside O atoms at 1.66Å)

are required for a good fit to be achieved (Figure 5.18). These Fe interatomic distances

are consistent with those observed in the literature (Das et al., 2013; Manceau & Charlet,

1994) and although these papers tend to be studies of iron oxy-hydroxides, it still

provides strong evidence that both Se(IV) and Se(VI) can form ternary complexes with Ca-

humate in the presence of Fe(III) ions. Martin et al. (2017) using ICP-MS and UV

absorbance provide evidence that Fe(III) is capable of forming a cation bridge between

78Se(IV) and HA, however there is currently no literature proposing the formation of Se(VI)-

Fe-HA complexes observed here. The pH of the samples in the Martin et al (2017) study

were not reported, and reaction time was short (overnight) which, if in combination with

high pH, could explain the absence of a ternary Se(VI) species.

Selenium has a clear association with HA in the absence of Fe, and when Fe was present

cation bridging dominated. The sorption experiments presented earlier (Section 5.4.1.1)

demonstrated that Fe2+ did not increase the rate of Se reduction or incorporation as Org-

Se species, therefore it is suggested that Se-Fe-HA cation bridging is more

thermodynamically favourable and dominates when Fe is present, but in the absence of

Fe, Se remains capable of forming a direct bond with HA. However Fe concentrations
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used in this XAS investigation differ from those in the sorption study and further work

is necessary to enable direct comparison.

Goethite

The presence of iron in the fits indicates that both Se(IV) and Se(VI) bonding with goethite

are through the formation of inner-sphere complexes. Model fits for Se(IV) combined with

goethite required 2.5 O atoms at 1.69 Å and 1.5 Fe atoms at 3.34 Å. For Se(VI) 2.7 O

atoms at 1.65 Å and 2 Fe atoms at 3.33 Å were required (Figure 5.18). Again, these

interatomic Fe distances suggest that both Se(IV) and Se(VI) are forming inner-sphere

complexes with goethite. Using a Fe-O bond length of ~1.95 Å (Hayes et al., 1987) it

was possible to create schematic diagrams of two of the possible inner-sphere complex

structures formed (Figure 5.20). Some debate exists in the literature as to whether Se(VI)

forms outer- or inner-sphere complexes with goethite. Hayes et al. (1987) provided

evidence of weak outer-sphere association of Se(VI) with goethite, whereas Manceau and

Charlet (1994) demonstrated inner-sphere complexation. Peak & Sparks (2002)

concluded that Se(VI) was capable of forming a mixture of both depending on conditions

such as pH and ionic strength. As the EXAFS spectra collected here were for samples at

pH 4 it is likely that at a higher pH level neither species would show inner-sphere

complexation.
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Soils

The SRG soil proved much more complex to fit than other simpler systems. The SRG-

Se(IV) EXAFS spectra required a large O contribution, with smaller Se and Fe

contributions, the Se(VI) fit was described by the inclusion of O and Fe paths (Figure

5.18). The SRG soil spiked with Se(IV) showed a small Se-path contribution to the model

fitting, compared to when spiked with Se(VI) where no Se contribution was observed. This

could be explained by the greater reduction of Se(IV) to Se(0) in the soil. Significant

formation of Se(0) was also observed in the DYG soil and confirmed by both XANES and

LCF analysis. It was anticipated that the higher OM content and lower pH of the DYG

soil, would result in overall more complexation of Se than observed in the SRG soil,

however this does not appear to be the case. The oxide content of the two soils varies

greatly, indicating that the Fe-oxide content of the soils has a greater effect on Se

complexation within whole soil systems than OM content for these soils, indicated by

the significant Fe contribution in the SRG soil, and lack thereof in the DYG soil.

Fe Fe

Se

O

FeFe

a) b)

Figure 5.20. Two possible structures for inner-sphere complex formation on the oxide
surface for selenite (a) and selenate (b) adsorbed to goethite based on the bond distances
fitted here.
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However, considering the interactions between Fe-oxides and OM (Fernández-Martínez

and Charlet, 2009), it is likely that this is again evidence for the ability of Fe to assist in

complexation with OM via ternary complexes. The retention of Se oxyanions within soil

systems is likely dependent on multiple factors including Fe-oxide content, OM content

and pH.

5.4.7 Conclusions

The mechanisms of Se associations with soil geocolloids are highly dependent on Se

speciation, pH, the presence of microbial communities and iron. Humic acid can bind Se,

but the lack of an effect of HA concentration suggests that the OM content of a soil

doesn’t solely drive these reactions. Reduction of both Se(IV) and Se(VI) was significantly

influenced by pH, with decreasing pH resulting in an increased rate of reduction.

Specifically in the case of Se(VI) which was investigated in the range pH 4-7, a correlation

exists between decreasing pH and increased Se(VI) reduction (r=0.81). In sterilised

systems Se(IV) and Se(VI) reduction did not occur, indicating a biotic component. When

soil inoculum was added to HA at pH 4 increased Se(IV) and Se(VI) reduction was observed

but it is difficult to understand the mechanism responsible as bacterial reactions are

typically most effective at neutral/high pH. Further investigation of the role of microbial

reduction in the reaction of Se with HSs is suggested.

In the batch sorption experiments neither Fe2+ nor Mn2+ increased the rate of Se(IV) or

Se(VI) reduction and incorporation into HA. However, XAS results indicated that cation

bridging could occur. Analysis of Se spiked Ca-humate, Ca-humate plus Fe3+, goethite

and soils provided insights into the mechanisms involved in Se associations with soil

geocolloids and soils as a whole. Reduction of both Se(IV) and Se(VI) to Se(0) was observed
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in the presence of Ca-humate and the DY-G soil, with varying degrees of reduction

observed in other systems. Goethite demonstrated a significant capacity to bind Se(IV) and

Se(VI) (whilst preserving Se oxidation state) via inner-surface complexation at pH 4.

Selenite showed some capacity to associate with Ca-humate directly via carboxyl or

phenolic groups, and also via cation bridging with Fe. Although no spectra were collected

showing Se(VI) binding to Ca-humate directly, cation bridging with Fe was demonstrated

at pH 4. This is the first study to demonstrate ternary complex formation in a Se(VI) - Ca-

humate system. The SR-G soil demonstrated the complexity of Se incorporation into the

solid phase with Se-Se, Se-C and Se-Fe bonds being required to fit the EXAFS spectra.

Together this data demonstrates the complexity of Se reactions in soils. It is apparent that

no one abiotic factor drives incorporation rather that biological mechanisms such as

microbial reduction alongside pH, temperature, Fe-oxide and OM content significantly

influence the interaction. Consequently, modelling the interactions of Se within soils is

challenging and further work is necessary in order to successfully model these

interactions.
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6. TECHNETIUM INTERACTION WITH SOIL GEOCOLLOIDS

6.1 INTRODUCTION

Upon release into the environment, 99Tc entering the biologically active zone of soil

undergoes time-dependent transformation to relatively stable organic forms within

humus or is occluded within other phases (Abdelouas et al., 2005). These interactions

are likely to be very complex and affected by factors such as pH, temperature, Eh, metal

oxide content and OM content. Direct interaction between humic substances (HS) and

Tc has been demonstrated (Geraedts et al., 2002; Maes et al., 2004). However, these

investigations have predominantly been under anoxic conditions because, to interact with

soil phases, Tc(VII) must undergo reduction from a higher to a lower oxidation state before

association, predominantly as hydrous Tc(IV) phases (Boggs et al., 2011; Wildung et al.,

2004).

Reduction of Tc(VII) to Tc(IV) in soils can be significant under certain conditions, and

many studies have investigated the effects that metal oxides, metal ions, OM and

microbial communities have on this reaction (Section 1.5.2). There is significant

evidence for the incorporation of Tc into the organic phases of aerobic soils over time,

for example Abdelouas et al. (2005) demonstrated slow but significant reduction of

Tc(VII) in an aerobic soil with a high OM content, alongside minimal/no reduction in an

aerobic soil with a low OM content. However, the processes, and rate-determining

factors, that control the ‘transfer-to-sink’ of Tc under these conditions is poorly

understood. Here Tc(VII) will be combined with HA and FA systems under aerobic

conditions, alongside additions of Fe2+, Mn2+, and Fe(oxy)hydroxides and inclusion or

exclusion of microbial influence in order to try and elucidate the ongoing mechanism.
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6.2 AIMS

The aim of this work was to investigate the interactions of technetium with soil

geocolloids, including HA and FA alone, and HA in combination with metal ions and

oxides, to increase our understanding of Tc mobility within the soil environment.

Specific objectives included:

 Investigation of the dynamics of pertechnetate (99Tc(VII)), when combined with

HA alone and in combination with metal ions;

 Investigation of the dynamics and fate of Tc(VII) when added to a range of different

soil types;

 Determine the effect of temperature, pH and metal oxides on the formation of

organic technetium species;

6.3 MATERIALS AND METHODS

Most of the iodine and selenium mixed spike experiments described in Chapters 4 and 5

also contained 1 µg L-1 99Tc(VII), therefore the sections where the methods have been

described will be referenced.

6.3.1 Humic acid stock solution

The humic acid stock solution used throughout these experiments was prepared as

described in Section 4.3.1.

6.3.2 Interactions of Tc with HA

The range-finding experiment was as described in Section 4.3.3 and included a spike of

1 µg L-1 99Tc(VII).
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6.3.3 Interactions of Tc with FA

The fulvic acid experiment was designed according to Section 4.3.6 and included a spike

of 1 µg L-1 99Tc(VII).

6.3.4 Effect of microbes on Tc interactions with HA

Humic acid samples were prepared as described in Section 4.3.8 with an added spike of

1 µg L-1 99Tc(VII).

6.3.5 Speciation analysis

Chromatography to separate technetium species used an HPLC (Dionex ICS-3000)

coupled to ICP-MS and using 50 mM NaClO4 as eluent as described in Chapter 2

(Section 2.5.2). Each chromatographic run usually required 5 min per sample. Data

processing was carried out with Plasmalab software for all species, as described in

Chapter 2 (Section 2.5.2).

6.3.6 XAS experiment

6.3.6.1 Sample Spiking

The TREE soils selected were: BC-M, BY-M, DY-G, DY-M, F1-T, F2-T, IH-W, PE-W,

SB-G, TK-G and WK-W; the characteristics of each soil are provided in Table 6.1. Soils

were stored in the dark at 10oC. An aerobic environment was maintained with regular

agitation to try and prevent anaerobic microsites developing. Subsamples of each soil

were weighed in quadruplet, duplicate for soil samples and duplicate for HA extraction,

into centrifuge tubes to achieve ~5 g weight. A stock of 3.7 MBq in 5 ml solution (1172

mg L-1) was diluted to achieve 293 mg L-1 Tc. The diluted stock was used to spike



189

samples to achieve 11.73 mg kg-1 99Tc. It was assumed that HA may constitute 5% of the

soil so that if the HA adsorbed all of the added 99Tc then it would contain approximately

234 mg kg-1 99Tc. Samples were stored in the dark at room temperature for ~5 months

prior to preparation for analysis.

Table 6.1. Soil properties.

Major elements (mg kg-1)

Sample
Org-C (%) pH Al Mn Fe

Incubation moisture

content (% wt)

F1-T 0.7 3.32 2211 19 421 11
F2-T 42.6 3.42 7261 34 8427 41
BC-M 5.5 4.18 21124 77 16124 15
BY-W 10.6 3.41 30226 141 22966 21
DY-G 11.4 3.90 15841 43 6925 31
DY-M 38.6 3.46 10439 43 5759 36
IH-W 9.5 3.88 27554 185 18013 20
PE-W 7.1 3.82 18022 91 7655 12
SB-G 5.0 6.02 22103 460 13775 15
TK-G 6.3 5.32 40942 303 25256 20
WK-W 24.4 3.87 11025 233 13202 37

6.3.6.2 Preparation of soil and HA for XAS analysis

Soil samples spiked with Tc were washed thrice with Milli-Q water (resuspension

followed by centrifugation at c. 3000 g) to remove any excess Tc(VII) in solution prior to

analysis. To determine the concentration of Tc in the supernatant the washes were

acidified using 50% HNO3 ready for ICP-MS analysis. After washing the soil samples;

the duplicate samples to be kept as soils were ground into a homogenous paste (whilst

moist) using a pestle and mortar under a fume hood. The HA was extracted from the

second set of duplicate samples by titration to pH 10 using 0.1 M NaOH to extract the

HA from the soil, then centrifuged at c. 3000 g for 10 min. The soil plug was discarded

and the supernatant solution titrated to pH 2.0 using concentrated HCl before
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centrifugation once again at c. 3000 g for 15 min to recover the flocculated HA. All

samples were transferred into PCR tubes which were then placed inside a 2 ml capacity

Nalgene tube. The Nalgene tube was the correct size to fit directly into the XAS sample

holder with a drop of wax in the bottom to lift the sample so that it was positioned half

way up the tube and would intercept the X-ray beam. All samples were stored at 4oC

prior to transportation to the Diamond Light Facility and XAS analysis.

6.3.6.3 XAS Analysis

Technetium K-edge data was collected at the Diamond Light Source, UK, on Beamline

B18 (16-18th January 2017) using a double crystal (Si(111) and Si(311)) monochromator.

Calibration was achieved using TcO4
- solution. Samples were analysed in fluorescence

mode using a 9 element Ge detector, and were measured at liquid N2 temperatures (c. 77

K).

6.3.6.4 Chemical analysis of XAS samples

The concentration of Tc in the soils solid phase was determined by hot plate acid

digestion. This was not undertaken on HA extracts, only intact soil pastes. Since this is a

destructive method this was performed following XAS analysis. Soil samples were dried

and 0.2 g was weighed into digestion tubes. Both nitric acid reflux digestion and

hydrofluoric acid (HF) evaporative digestion were used to dissolve the soil samples for

determination of the Tc concentration. Nitric acid reflux involved adding 10 ml

concentrated HNO3 to each Digitube, with watches on top, and heated at 95oC for 2 hours.

After allowing the samples to cool, each sample was made up to 50 mL volume with

Milli-Q water before a 1-in-10 dilution (with Milli-Q) for ICP-MS analysis. The HF

digestion involved adding 2 ml HNO3 alongside 1 ml HClO4, and heating at 80oC for 8
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hr and then 100oC for 2 hr. Following this 2.5 ml HF was added and then heated at 120oC

for 1 hr, 140oC for 3 hr and then 160oC for 4 hr. Once finished the temperature was

reduced to 50oC, 2.5 ml HNO3 and 2.5 ml Milli-Q water was added and the sample heated

for 1 hr. Following cooling the volume was made up to 50 mL and diluted (both in Milli-

Q water) for analysis by ICP-MS. Alongside each of the samples, 3 soils were added with

a known spike of 99Tc (5 μg L-1) in order to check that all Tc was recovered by both

methods.

6.4 RESULTS AND DISCUSSION

6.4.1 Interactions of Tc(VII) with HA

Pertechnetate (99Tc(VII)O4
-) was added to the same HA systems as 129IO3

- and 77Se(VI)

(Section 4.3.3). Pertechnetate in combination with HA showed no change in speciation,

in almost all cases, over the course of 581 days (pH 4) or 622 days (pH 6) at either HA

concentration, pH level or temperature (Figure 6.1). However, in the HA-only samples
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Figure 6.1. Humic acid suspensions at 0.2 g L-1 (a) and 0.05 g L-1 (b). HA was spiked
with 1 µg L-1 99TcO4

- with additions of Fe2+ (triangle) and Mn2+ (circle) at pH 4 (black)
and pH 6 (white). Samples were stored at 20oC for 581 days (pH 4) and 622 days (pH 6).
Error bars are the standard error of two replicates.
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(0.05 g L-1), and samples containing Mn2+, at pH 4 and 20oC a small concentration

(<0.005 ppb) of Tc was eluted as an unidentified peak near the start of the chromatogram

(30 seconds) (Figure 6.2). The peak first appeared at around 125 d of incubation but the

species of 99Tc that this represents is not known.

Sequential extractions of soils have shown significant removal of Tc from solution, and

incorporation into the organic phase (Abdelouas et al., 2005; Keith-Roach et al., 2003;

Sheppard et al., 1990; Stalmans et al., 1986; Uchida et al., 1999). Therefore, it was

expected that abiotic reduction and interaction of Tc might occur in the presence of HA,

either alone or in combination with potential reducing agent Fe2+ or Mn2+. A few studies

have been able to demonstrate an interaction of Tc with humic substances directly (Boggs

et al., 2011; Geraedts et al., 2002; Maes et al., 2004), however always in the presence of

a strong reducing agent. For example, Sekine et al. (1993) added Tc(VII) to HA

suspensions containing Sn2+ and demonstrated co-precipitation of Tc-HA complexes,

likely as Tc(IV), at pH 4 alongside a corresponding reduction in Tc(VII) concentration in

solution. In the absence of Sn2+ no interaction was observed. Boggs et al. (2011)
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demonstrated significant association of Tc(IV) with HS as TcO(OH)-HA at the same pH

range as investigated here. However, since Tc(VII) was added reduction must occur prior

to this interaction. It was also expected that HA samples containing additions of Fe2+ and

Mn2+ might encourage the reduction of Tc(VII) to Tc(IV). However, no reduction was

observed here either.

No reduction or association of Tc(VII) with goethite in HA suspensions was observed

(Figure 6.3). Iron (hydro)oxides under reducing conditions have demonstrated a

significant capacity in associating Tc(IV) on surfaces thus reducing Tc mobility

(Druteikiene et al., 2014; Li and Kaplan, 2012). A study performed by Um et al. (2011)

showed that Fe2+ in combination with a goethite suspension significantly reduced Tc(VII)

mobility. It was considered that Fe2+ incorporation into goethite was capable of

catalyzing the reduction of Tc(VII) to Tc(IV) prior to incorporation into the goethite

structure. The systems investigated here likely didn’t demonstrate any reduction since

the goethite suspensions lacked a strong electron donor to encourage reduction. Humic
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acid has been shown to behave as an electron donor under certain conditions, however it

was not observed here. No associations of Tc(VII) with HA alone or in combination with

metal ions or oxides was observed in this study.

6.4.2 Interactions of TcO4
- with FA

Fulvic acid suspensions (0.2 g L-1) containing 1 µg L-1 Tc(VII) also showed no change in

Tc speciation. It was important to investigate FA as well as HA, as it constitutes the more

soluble fraction of HS thus has greater implications for Tc transportation. The interaction

between Tc and FA might also be expected to be affected by the greater degree of oxy-

acid substitution in FA and the lower level of condensed aromatic structures when

compared to HA (Gondar et al., 2005). This could potentially result in an increased

reactivity of FA towards Tc when compared to HA. However once again no interaction

was observed, likely due to the absence of a strong electron donor and reducing

conditions capable of inducing reduction from Tc(VII) to Tc(IV).

6.4.3 Effect of microbes on Tc interactions with HA

Pertechnetate was added to systems that were filter-sterilized, and not filter-sterilized,

irradiated and not irradiated, and with additions of soil inoculum (filtered and un-filtered)

alongside glucose additions to encourage microbial growth (Section 6.3.4; Chapter 4

Section 4.3.8). No reduction and consequent change in speciation was observed in any

of the described systems (Figure 6.4). Both iron-reducing and sulfate-reducing microbes

have previously demonstrated an ability to reduce Tc(VII) (Lloyd et al., 2000, 1999)

immobilizing the mobile radionuclide usually as insoluble Tc(IV). Escherichia coli,

Desulfovibrio desulfuricans, Geobacter sulfurreducens, Geobacter metallireducens and

Shewanella putrefaciens have all been shown to reduce TcO4
- to insoluble species (Lloyd
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et al., 2000, 1999; Wildung et al., 2000). Burke et al. (2010) demonstrated 99% removal

of TcO4
- from solution in microcosms containing sediments undergoing active microbial

Fe(III)-reduction, with the end product being hydrous Tc(VI)O2
- like phases. It was found

that 70% of the Tc ended up in the SOM fraction, with 28-30% of that being associated

with humic substances. Fredrickson et al. (2004) also demonstrated the same interaction

in the case of S. putrefaciens added to sediments, resulting in >99% reduction of TcO4
-

in <2 days when the system was bio-reduced for just 17 days. No effort was made to

identify the species found in the HA systems investigated here or the soil inoculum,

therefore no conclusions about the species present was possible. The inoculated systems

demonstrated visible growth of microbial species, and alongside this significant

reduction of selenium oxyanions, but clearly no reduction of TcO4
- or incorporation into

HA by the species present was seen.
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6.4.4 XAS results

Spectra were collected for a Tc(VII) aqueous standard, however all other samples failed to

provide any spectra. Upon further investigation it became evident that the 99Tc stock

solution used to spike the samples had been labelled incorrectly and the samples had been
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Figure 6.4. Non-irradiated (a, b) and irradiated (c, d) HA systems (0.2 g L-1) spiked with 1 µg
L-1 99TcO4

-. Samples were either filter sterilised (a, c) or non-filtered (not sterile) (b, d).
Systems were set up alone and in combination with a range of treatments: glucose (G),
filtered soil inoculum (no microbes), un-filtered soil inoculum (microbes present), filtered
inoculum with glucose and un-filtered inoculum with glucose. Error bars are ±standard error
of two replicates.
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spiked at a lower activity than planned. The intention was to produce a final concentration

of 11.7 mg kg-1 Tc in 5 g of soil. When concentrated into the HA and flocculated could

result in as much as 240 mg kg-1 Tc in the soils with high HA concentrations for analysis.

However, measurement of the actual concentration of the stock solution suggested that

the actual spike concentration was ~0.629 mg kg-1 Tc in 5 g of soil. Even if all of this

was concentrated into the HA and flocculated for analysis the highest possible

concentration would be ~12.58 mg kg-1 for analysis.

The soils were spiked 5 months prior to the diamond experiment which was deemed long

enough for >70% of the 99Tc to be incorporated into the organic phase, based on results

from the long-term soils incubation experiment (to be published). However, given that

the spiked activity was much less than expected, this time frame was not sufficient for

enough Tc to be incorporated to a high enough concentration for reliable measurement

by XAS. The samples were washed multiple times, prior to analysis, with Milli-Q water

in order to remove any remaining Tc from solution to enable measurement of organically-

bound Tc without interference from entrained Tc(VII) in solution. From the analysis of

both the sample washes and the acid digests of the soil samples by ICP-MS it transpired

that the stock used was in fact 0.0397 MBq ml-1 given that the soils had 0.91-0.60 mg kg-

1 99Tc in total. The data from this analysis also indicates that 29-72% of the added Tc was

not associated with the soils, depending on the soil type, and so a large proportion of the

added Tc was washed out prior to XAS analysis, indicating that a longer contact time

was necessary (Table 6.2). Acid digestion of the soils indicated that a few i.e. BY-M,

DY-G and DY-M, had retained a significant proportion of the Tc added (67.8-72.9%).

However given the low concentration of 99Tc and the high detection limit of XAS, this

was insufficient to achieve any successful scans. Based on the data collected here and
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given the detection limits of the instrument, the interaction of Tc with soil or HA would

need to be encouraged by using a strong reducing agent in order to get any usable data.

However, the aim of this experiment was to investigate the interactions of Tc with soils

under realistic aerobic soil conditions. There has already been considerable work

examining changes in redox speciation of Tc in anaerobic systems, often involving added

reducing agents.
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Table 6.2. Technetium concentration in XAS sample washes and in soils after acid
digestion.

Tc in washes Tc in solid Total Tc Tc in washes Tc in solids

Soil mg kg-1 mg kg-1 mg kg-1 % %

BC-M a 0.29 0.32 0.60 47.4 52.6

BC-M b 0.27 0.33 0.60 45.1 54.9

BY-M a 0.20 0.45 0.65 31.1 68.9

BY-M b 0.23 0.45 0.68 33.2 66.8

DY-M a 0.19 0.55 0.74 26.0 74.0

DY-M b 0.20 0.52 0.72 28.1 71.9

DY-G a 0.17 0.54 0.71 24.2 75.8

DY-G b 0.30 0.61 0.91 32.7 67.3

F1-T a 0.37 0.30 0.67 55.1 44.9

F1-T b 0.34 0.31 0.65 52.7 47.3

F2-T a 0.40 0.35 0.76 53.3 46.7

F2-T b 0.39 0.36 0.75 51.5 48.5

IH-W a 0.34 0.37 0.71 48.3 51.7

IH-W b 0.32 0.37 0.69 46.0 54.0

PE-W a 0.27 0.38 0.65 41.5 58.5

PE-W b 0.25 0.35 0.59 41.5 58.5

SB-G a 0.57 0.20 0.77 74.2 25.8

SB-G b 0.47 0.20 0.67 69.6 30.4

TK-G a 0.40 0.29 0.70 57.8 42.2

TK-G b 0.37 0.35 0.72 51.5 48.5

WK-W a 0.36 0.40 0.77 47.4 52.6

WK-W b 0.39 0.39 0.78 49.8 50.2
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6.5 CONCLUSIONS

There is significant evidence of Tc interaction with the organic phase of soils, and even

with HA and FA directly under reducing conditions. However, in the HA and FA systems

investigated here, no Tc(VII) reduction and association with HA/FA was observed. The

aerobic suspensions of isolated geocolloids showed little or no interaction of Tc with HA

(± Fe2+ or Mn2+) and goethite or soil inoculum did not encourage reduction and

interaction of Tc with the absorbent phases studied. Although the XAS soil samples did

not provide any usable XAS data, it was clear that there was significant incorporation

into the solid phase in samples with relatively high humus contents and low pH values.

Consequently, it is apparent that Tc reduction and incorporation into the organic-phase

can occur to a significant degree in soils which are aerobic in terms of bulk redox

characteristics. However, since no interaction with isolated HA or FA was seen under

aerobic conditions there is a missing (soil) factor necessary to drive the reduction of

Tc(VII). It is possible that these interactions are biotic or abiotic but the experiments

described in this chapter were unable to elucidate the mechanisms involved.
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7. SUMMARY, CONCLUSIONS AND FUTURE WORK

7.1 IODINE

7.1.1 Summary and conclusions

Iodine added to HA systems reacts rapidly with the rate of reaction being dependent on

speciation, pH, Fe content and OM content. Speciation largely determines the rate of

transformation from inorganic species to organically-bound species. Iodate is rapidly

transformed to Org-I species with some reduction to I- with HA and FA. The similarities

observed between the HA and FA systems suggest a similar reaction mechanism. The

rate of IO3
- reduction was quicker at low pH, higher temperature and greater HA

concentrations. Modelling of IO3
- reduction in the presence of HA demonstrated a

significant negative relationship between pH and the rate of IO3
- reduction, and a positive

(non-linear) relationship with HA concentration.

In addition to IO3
- reduction and formation of Org-I, re-release of I- from Org-I species

was observed, complicating prediction of Org-I formation. The rapid formation of Org-I

at low pH followed by a decrease in its concentration as I- was released was successfully

modelled. It has been previously thought that Org-I species are relatively stable (Schlegel

et al., 2006; Xu et al., 2012), however the results presented here indicate that Org-I

species undergo some reduction to I- in almost all of the systems investigated. The

conditions that determine the release of I- from Org-I are not well understood and appear

highly variable and complex.

When I- was added to HA systems the rate of oxidation to reactive intermediates, and

subsequent formation of Org-I was slow compared to the IO3
- spiked systems. The
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oxidation reactions that transform I- to I2 or HOI before formation of Org-I are

microbially driven and therefore more complex than the IO3
- reduction reaction.

When Fe was present in combination with HA there was a slight reduction in the rate of

IO3
- reduction compared to systems without Fe, with significantly more I- formed.

Modelling of this interaction demonstrated that the pathway transforming Org-I to I- was

increased when Fe was present in the systems, i.e. a positive relationship exists between

Fe concentration and the rate of Org-I transformation to I-. When I- was added in the

presence of Fe instantaneous association of I- with the HA occurred, possibly by cation

bridging with Fe, followed by gradual re-release as I- over time. This re-release is likely

to be a consequence of ongoing Fe hydrolysis in the system. This is probably not a

process occurring in soil systems, as the Fe is likely to have been associated with the HA

for extended periods of time, and therefore less likely to be undergoing hydrolysis.

Iodate and I- removal from soil solution differs from that observed in HA systems and is

highly dependent on the soil type. Kodama et al. (2006) who investigated the reaction of

IO3
- and I- with soil phases, observed increased sorption of IO3

-, due to its higher affinity

for solid phases. However only one soil type was investigated here, a light clay soil from

a paddy field (pH 5.7; Org-C 1.86%) and therefore only provides a snapshot of I

interactions in soils. Shetaya et al. (2010) investigated the changes in iodine speciation

and solubility across a wide range of soils with differing OM contents, Fe/Mn oxide

contents, and pH properties. They demonstrated that the rate of conversion of 129I- to Org-

129I species was more rapid than that of 129IO3
-, the opposite of what is observed in HA

systems. The removal of 129I- from solution was most significant in soils with high pH

and OM contents, where complete transformation to Org-129I species could occur within



203

8 hours. This indicates that the oxidation of I- to Org-I species requires a further

component and is likely biotic rather than abiotic (Seki et al. 2013). Although I-

behaviour in HA systems differs from that in soils, IO3
- interactions with soils correlate

well with the observed interactions with HA alone. Steinberg et al. (2008) investigated

IO3
- interactions with a peat soil (high OM content), and the reactions observed

(accounting for the systems being run at a significantly higher temperature) agree with

the results observed here for pure HA systems. The modelled data for IO3
- interactions

with HA will likely be able to predict a large amount of the interactions determining IO3
-

reduction and association within organic soils, since this interaction appears to be entirely

abiotic. However elucidating the mechanisms associated with I- incorporation within soil

OM appears to be much more complex.

7.1.2 Implications

The investigations of I with HA and FA, alone and in combination with metal ions, has

furthered our understanding of the interactions of I within the natural environment. The

data generated here will inform assemblage models accounting for the complex

interactions within soils, developing our knowledge of I geochemistry. This data has

implications for radioactive waste disposal of 129I, accidental aerial releases of 129I into

the environment, and interactions of 127I as an agricultural fertiliser. Reliably modelling

the mechanisms of I within soil systems is vital in terms of understanding and predicting

its environmental transfer. The final pathway that determines the breakthrough of 129I

species into the biosphere from a GDF is transfer from groundwater to soils. Therefore,

understanding how I interacts with different soil conditions is vital in order to build a

reliable post-closure safety assessment for GDF’s. For example, in the event of

radionuclide release from a GDF located under a predominantly organic soil
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environment, 129I is likely to be immobilised rapidly and thus limit soil-plant transfer to

a significant degree. In terms of iodine biofortification; different fertiliser application

techniques must be considered in order to determine the most efficient and cost-effective

method of increased iodine intake (Cakmak et al., 2017). Speciation determines the

bioavailability of I added as either a soil-application or foliar-application, therefore the

mechanisms described within this thesis could be vital in determining the most effective

fertilisation method.

The mechanistic information gained here in combination with the data collected during

the TREE soil incubation study will dramatically improve the understanding of I mobility

in soils. The short-term modelling of the soils (2.5 years) alongside the mechanistic

modelling demonstrated here will enable the development of long-term models to predict

biosphere transfers of I depending on the soil properties and conditions.

7.1.3 Future work

This study has made significant progress in understanding the fate of I in soils, specific

through interactions with SOM, however further investigations are necessary given the

complexity of soil systems. Further investigation of the remobilization of Org-I as I- is

necessary to fully understand the interactions between I and Fe2+/Fe3+ and HA. There is

also a lack of information on redox coupling of IO3
- and I- in HA and FA systems.

Increasing the complexity of HS systems through the addition of microbes, metal

oxides/ions and other soil constituents, with analysis by HPLC-ICP-MS, SEC-ICP-MS

and XAS, would enable a more mechanistic understanding of I behavior to be elucidated.
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7.2 SELENIUM

7.2.1 Summary and conclusions

Speciation has a significant effect on the rate and extent of Se reduction in the presence

of HA. Selenite is more rapidly reduced than Se(VI). This confirms our current

understanding of Se interactions within the terrestrial environment; where Se(VI) is

considered the most mobile and therefore bioavailable species (Zawislanski et al., 2003).

Both Se(IV) and Se(VI) reacted with HA, with faster reaction at low pH and higher

temperature. Unlike IO3
-, Se(IV) and Se(VI) were not influenced by HA concentration

suggesting that the availability of binding sites on the HA is not rate limiting. Low pH

increased the rate of both Se(IV) and Se(VI) reduction in HA systems at 20oC. This agrees

with literature demonstrating that an increase in pH results in less Se sorption within

soils, resulting in increased Se plant uptake (Goh and Lim, 2004). Interaction of Se(VI)

with HA has not previously been observed but has been demonstrated in this work. This

is likely to be a consequence of the time scale and pH range over which these reactions

have been investigated; other studies have only investigated reactions over very short

time-scales at neutral pH. Selenate reduction in the presence of HA has a lag time of up

to 10 days, thought to be due to the involvement of microbial activity, hence studies

performed over hours/days would not observe reaction between Se(VI) and HA.

Filtration of HA systems prevented reduction of Se(IV) or Se(VI), whereas both species

were reduced in unfiltered systems. This indicates microbial activity within the HA

which was confirmed by experiments including soil inoculum and glucose additions with

and without γ-sterilization.  Selenate especially became more reduced in systems with 

added microbes suggesting that the interaction is biotic. A confounding factor however,
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is that most reduction was observed at pH 4 and bacterial activity tends to be more

predominant at neutral-high pH.

Varying degrees of reduction were observed by XAS in HA samples spiked with Se(IV)

and Se(VI). In HA and in soil reduction of Se(IV) and Se(VI) to Se(0) was observed, whereas

goethite bonded Se without reduction. Selenite association with HA was via a Se-O-C

chain, with a Se-C interatomic distance of 2.75Å. When Fe3+was present cation bridging

to Fe atoms at 3.28-3.31Å was observed which has not previously been demonstrated.

During sorption experiments Fe additions did not increase the rate of Se(IV) or Se(VI)

reduction suggesting that although it is involved in bonding it is not acting as reductant.

Inner-sphere complexation of Se(IV) and Se(VI) on goethite agreed well with existing

literature.

It is difficult to compare Se behaviour in HA systems with behaviour in soils. Se

reduction was greatest in acidic HA systems and this has also been demonstrated in soils

where a higher pH results in lower soil Se adsorption (Goh and Lim, 2004). Soil OM his

an important sink for Se in the environment (Di Tullo et al., 2016; Li et al., 2017; Tolu

et al., 2014), however no link between HA concentration and Se reduction was observed.

This suggests that HA/OM can be a sink for Se but that it doesn’t necessarily drive the

reduction. Microbial reductive incorporation of Se into organic phases has been

suggested as the method of Se association (Lusa et al., 2015), and this is suspected to

have played a role here. The work in this thesis complements the information available

for Se within whole soil systems, but continues to highlight the complexity surrounding

modelling its environmental behavior.
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7.2.2 Implications

Selenium is not only an essential element for humans and animals, but also an

anthropogenic contaminant from coal combustion, oil refinery discharge and radioactive

waste (Section 1.4.2). Understanding Se mobility and bioavailability is vital for

environmental risk assessments and in managing, for example, Se biofortification. The

interactions of Se(IV) and Se(VI) with HA, alone and in combination with metal ions,

furthers our understanding of Se in whole soil systems and will contribute to the

development of models predicting Se behavior in the terrestrial environment. A similar

discussion applies here as given for iodine in Section 7.1.2; Selenium-79 has a long half-

life and could contribute significant dose rates to human and wildlife populations if

released. It is therefore of high importance with regards to GDF safety assessments. Both

speciation and microbial activity have a significant influence on the mobility and

bioavailability of Se within the terrestrial environment. Therefore, understanding how

these mechanisms are interlinked within whole soils systems, and modelling these under

different conditions is especially important in order to understand movement into the

biosphere and soil-plant transfer. Although no modelling was performed here this data

will complement and advise on the interpretation of TREE soil incubation modelling,

with the goal of developing complex and reliable biosphere models able to predict Se

behavior over long-time scales.

7.2.3 Future work

Although this work has improved understanding of Se reaction with OM, and

consequently whole soil, the interactions and mechanisms remain incompletely

understood. Further work is required to build a comprehensive understanding of the

mechanisms controlling the fate of Se especially the role of microorganisms. Further
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investigation of the role of bridged cations in binding Se in soils is also recommended,

over a range of pH and Fe and Mn additions.

7.3 TECHNETIUM

7.3.1 Summary and conclusions

Pertechnetate added to HA and FA systems demonstrated no reduction or incorporation

into HA or FA alone or in combination with Fe2+, Mn2+ or goethite. This is likely due to

the lack of a reducing environment or reductant capable of catalysing Tc(VII) reduction to

Tc(IV) prior to incorporation. Gu et al. (2011) demonstrated that HA could in fact increase

the oxidation and oxidative dissolution of reduced Tc(IV) solids under oxidizing

conditions. This is in contrast to reactions observed in some soil and sediment systems

where rapid reduction of Tc has been observed followed by incorporation into the organic

phase (Abdelouas et al., 2005; Keith-Roach et al., 2003; Stalmans et al., 1986). Soils

can’t truly be considered as aerobic systems, since anaerobic ‘pockets’ will likely exist

in areas where oxygen is depleted by microbial activity (Stalmans et al., 1986), therefore

although Tc(VII) reduction is observed in “aerobic” soils it’s most likely occurring in areas

where Eh is lower and conditions more reducing. Abdelouas et al. (2004) discussed the

role of microbes in the reduction of Tc(VII) into the organic phases of soils and

demonstrated that the growth of Fe-reducing bacteria, as indicated by an increase in Fe3+

reduction to Fe2+, corresponded with a drop in Eh and consequently an increase in Tc(VII)

reduction to Tc(IV). Reduction of Tc in the presence of HA was not observed here as the

systems are aerobic and although not sterile, they likely don’t contain the “right”

microbial community under the best conditions to encourage Tc reduction. Reduction

and incorporation into HA is possible and has been demonstrated under many different

conditions (Boggs et al., 2015, 2011; Geraedts et al., 2002; Maes et al., 2004), however
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this study is no closer to elucidating the mechanisms involved in surface soils. Given that

soils systems are significantly more complex than the HA systems here, there is likely a

missing factor that determines significant incorporation into HA in soils.

7.3.2 Implications

Although unable to identify Tc reduction in the presence of HA alone and in combination

with metal ions, this work has developed our understanding of the mechanisms within

whole soil systems. It is reasonable to conclude that incorporation of Tc into humus is

not driven by reduction from HA, and that a factor, or multiple factors, are missing from

pure HA systems responsible for this reaction. The information gained here will inform

discussions of Tc reduction and bioavailability within soils since it eliminates the abiotic

reduction of Tc by HA as a mechanism.

7.3.3 Future work

It is apparent from this work that Tc does not interact with aerobic HA or FA systems,

regardless of Fe additions, therefore more studies investigating Tc interactions in whole

soil systems are recommended.
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