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Graphical abstract 

 

 

Highlights 

 BraA.cax1a mutants appear to be unhelpful to better Ca-deficiency tolerance 

 BraA.cax1a-4 and BraA.cax1a-7 showed stress symptoms in comparison to R-o-

18 

 Mutants are useful for biofortification as accumulated more Ca, Mg and Fe in 

leaves  

 BraA.cax1a-12 mutation allows a better growth under high Ca conditions 

 BraA.cax1a-12 could be useful in biofortification and phytoremediation 

programs 

 

Abstract 

Calcium (Ca) is an essential macronutrient for plants and its homeostasis is basic for many 

processes in plants. Therefore, both Ca deficiency and toxicity constitute potential issues 

for crops. CAX1 transporter is a potential target to obtain plants with better Ca 
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homeostasis and higher Ca concentration in edible parts. Three Brassica rapa mutants for 

CAX1 were obtained through TILLING. The objective of this work is to evaluate the 

growth, physiological state and nutrients concentration of these mutants grown with 

different Ca doses. The mutants and the parental line were grown under low, control and 

high Ca doses and parameters related to their oxidative stress, photosynthetic 

performance and nutrients concentration were determined. BraA.cax1a-4 and 

BraA.cax1a-7 mutants presented lower total Chl, an altered photosynthesis performance 

and higher ROS levels. BraA.cax1a-12 mutant grew better under high Ca conditions. All 

mutants accumulated more Ca and Mg in leaves under control and high Ca doses and 

accumulated more Fe regardless the Ca dose. The results obtained point to BraA.cax1a-

12 as a potential candidate for biofortification with Fe, Ca and Mg since it accumulate 

higher concentrations of these elements, do not present an altered growth and is able to 

tolerate higher Ca doses. 

Abbreviations: APX, ascorbate peroxidase; CaUpE, Ca uptake efficiency; CaUtE, Ca 

utilisation efficiency; CAX, cation/H+ exchanger; Chl, chlorophyll; DC, distribution 

coefficient; GMOs, genetically modified organisms; LOX, lipoxygenase; MDA, 

malondialdehyde; ROS, reactive oxygen species; TILLING, targeting induced local 

lesions in genomes. 

 

 

Key words: Brassica rapa, calcium, CAX1, Chl fluorescence, ionome, oxidative stress, 

physiological profile, TILLING. 

1. Introduction 

Calcium (Ca) is an essential macronutrient for plants that is present in membranes and 

cell walls playing a basic structure role, and in the cytosol being crucial in cell signalling 
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processes [1]. For this reason, Ca deficiency produces serious alterations in plants and it 

may cost losses in crop productions. Ca deficiency can occur even whether there is an 

adequate supply due to low redistribution or limitations in its transport [1, 2]. On the other 

side, Ca toxicity also reduces the plant growth rate and produce damages due to the 

formation of Ca oxalate crystals. Cytosolic Ca concentration must be maintained at 

submicromolar levels in the resting cell in order to allow rapid increases for cell 

signalling, which can be jeopardized by Ca toxicity [1]. Ca fluxes are also necessary in 

cell guards for stomata closure, so an elevated Ca concentration may promote this closure 

and thereby a reduction in internal CO2 concentration and a lower photosynthesis rate [2]. 

Both Ca deficiency and toxicity, constitute abiotic stresses that interfere with 

photosynthesis impairing electron transport, decreasing photosystems efficiency, 

reducing photosynthetic pigments, and promoting the formation of reactive oxygen 

species (ROS) [3]. In turn, ROS damage the photosynthetic apparatus through the 

disruption of thylakoid structures, inhibition of chloroplastic enzymes, and blocking PSII 

repair process [4]. 

 

Plants prevent Ca disorders through the regulation of plant cation/H+ exchangers (CAXs) 

[2]. CAXs are a family of Ca/H antiporters located on plasma and organelle membranes 

including vacuoles. Together with Ca-ATPases, CAXs are responsible of Ca homeostasis 

and Ca removal from the cytosol to generate different Ca profiles to respond 

environmental cues or in signalling processes [5]. CAXs are involved in several important 

aspects of plant growth and development playing a role in stomatal conductance and in 

pH regulation [6]. There is a strong correlation between CAXs expression and Ca 

accumulation. Thus, Brassica rapa plants have an enhanced Ca accumulation in palisade 

mesophyll cells [7] where CAX expression is higher [5]. Among CAXs, CAX1 is one of 

ACCEPTED M
ANUSCRIP

T



5 
 

the antiporters with greater Ca/H activity [6]. CAX1 was identified as an expression 

quantitative trait loci that is affected by external Ca concentration in B. rapa [8]. 

Therefore, CAX1 is a potential target to obtain plants with better Ca homeostasis or with 

higher Ca concentrations in edible parts [6]. This fact could be useful since Ca, as well as 

iron (Fe) and magnesium (Mg) are essential elements for human diet. Stein [9] reported 

that two-thirds of the human population have a deficient diet of at least one of these 

elements, increasing the risk of certain diseases. Crop nutrients can be improved through 

two ways: providing an adequate nutrient supply in the culture medium, considering 

interaction between nutrients, and the other way is through crop breeding (traditional 

breeding and by the use of genetically modified organisms (GMOs)) [10]. Experiments 

have already been carried out in this regard through the expression of Arabidopsis 

thaliana CAX1 (AtCAX1) that increased Ca concentration in vegetables such as carrots 

[11], and lettuce [12]. These vegetables are GMOs, i.e. they were obtained by genetic 

engineering techniques. A possible alternative to the use of GMOs would be the 

generation of mutants with a modification in CAX1 activity affecting its self-regulation 

or activity. 

 

A successful approach to obtain CAX1 variants is TILLING (Targeting Induced Local 

Lesions In Genomes). TILLING make possible the generation and the study of allelic 

series of mutations in order to evaluate their effects on gene expression and in protein 

structure and function [8]. TILLING was used to generate and identify three missense 

mutations in B. rapa ssp. trilocularis ’R-o-18’ Ca transporter; BraA.CAX1a: BraA.cax1a-

4 (A-to-T change at amino acid 77), BraA.cax1a-7 (R-to-K change at amino acid 44), and 

BraA.cax1a-12 (P-to-S change at amino acid 56) [13]. These mutations affect AAs 

upstream of the N-terminal autoinhibitory domain, but that could change protein 
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conformation and thereby affecting CAX1 function or activity [8]. The genotyping and 

characterization of these mutants has been started. BraA.cax1a-4 and BraA.cax1a-7 lines 

presented paler/yellow leaves than parental line R-o-18 and in BraA.cax1a-7 and 

BraA.cax1a-12 lines was detected a variation in Ca concentration with respect their 

segregant wild types [8]. The species chosen for this study presents a rapid cycle, is self-

compatible  and include vegetable crops such as Chinese cabbage, turnip and some oil-

seed crops [13]. Therefore, the working hypothesis to test is that CAX1a mutations will 

cause changes in growth, physiological state and nutrients accumulation and these 

changes will be influenced by Ca dose applied. The results could be useful to make an 

initial evaluation in order to improve B. rapa and other related crop species. 

 

2. Material and methods 

2.1. Plant material, growth conditions, and treatments 

Three B. rapa ssp. trilocularis ’R-o-18’ mutants (BraA.CAX1a: BraA.cax1a-4, 

BraA.cax1a-7, and BraA.cax1a-12) and the parent line R-o-18 were employed as plant 

material for the experiment [13]. Seeds were sown on filter paper moistened with milli-

Q water (18.2 MV cm) in 9 cm Petri dishes. The dishes were sealed with plastic film, and 

incubated in the dark for 1 d at 4ºC before transferring to pots filled with vermiculite. 

These pots where placed in a growth chamber under controlled environmental conditions 

with a relative humidity of 60-80%, temperature of 22/18ºC (day/night) and 14/10-h 

photoperiod at a photosynthetic photon flux density of 350 µmol m-2 s-1 (measured at the 

top of plants with a 190 SB quantum sensor, LI-COR Inc., Lincoln, NE, USA). 

Throughout the experiment the plants received a growth solution composed of 4 mM 

KNO3, 3 mM NH4NO3, 2 mM MgSO4 • 7 H2O, 6 mM KH2PO4, 1 mM NaH2PO4 • 2 H2O, 

2 μM MnCl2 • 4 H2O, 0.25 μM CuSO4 • 5 H2O, 0.1 μM Na2MoO4 • 2 H2O, 5 µM Fe-
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chelate (Sequestrene; 138FeG100) and 10 µM H3BO3. This solution, with a pH of 5.5–

6.0, was renewed every three days.  

 

2.2. Experimental design and treatments 

Treatments were started 30 days after germination and were kept for 21 days. Plants were 

grown with different Ca doses: 0.4 mM of CaCl2 as low Ca dose, 4 mM of CaCl2 as control 

Ca dose, and 40 mM of CaCl2 as high Ca dose. The two factors involved in the experiment 

were the Ca dose applied (D) and the mutant employed (M). The experimental design 

consisted of randomized complete block with 12 treatments, arranged in individual 

benches with eight plants per treatment and three replications each.  

 

2.3. Plant sampling 

Fully expanded leaves were washed with distilled water, dried on filter paper, and 

weighed for fresh weight (FW). Half of the leaves from each treatment were frozen at 

−30ºC for later biochemical assays and the other half of the plant material was lyophilized 

to measure dry weight (DW) and nutrient concentrations. 

 

2.4. Analysis of mineral nutrients 

Sulphur (S), phosphorus (P), potassium (K), Ca, Mg, Fe, copper (Cu), manganese (Mn), 

zinc (Zn) and boron (B) were determined after a sample of 150 mg dry material was 

subjected to a process of mineralization by wet digestion [14]. To carry out this assay, 

dry leaves were ground and mineralized with a mixture of nitric acid (HNO3)/perchloric 

acid (HClO4) (v/v) and H2O2 at 30%. From the resulting mineralization, and after the 

addition of 20 ml of mili-Q H2O, elements concentrations were determined by ICP-MS 

(X-Series II; Termo Fisher Scientific Inc., Waltham, MA, USA). Internal standards 
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included Sc (50 ng ml-1) and Ir (5 ng ml-1) in 2% TAG HNO3. External multi-element 

calibration standards (Claritas-PPT grade CLMS-2, SPEX Certi-Prep Ltd, Stanmore, 

Middlesex, UK) included Al, As, Ba, Bi, Cd, Co, Cr, Cs, Cu, Fe, Mn, Mo, Ni, Pb, Rb, Se, 

Sr,U, V, and Zn, in the range 0–100 μg l-1, and Ca, Mg, K, and Na in the range 0–100 mg 

l−1. 

 

Total nitrogen (N) concentration was calculated as the sum of NO3
- and total reduced N. 

NO3
- was analysed from an aqueous extraction of 0.1 g of DW in 10 ml of Millipore-

filtered water. A 100 µl aliquot was taken and added to 10% (w/v) salicylic acid in sulfuric 

acid at 96%, measuring the NO3
- concentration by spectrophotometry as performed by 

Cataldo et al. [15]. For total reduced N determination, a sample of 0.1 g DW was digested 

with sulfuric acid and H2O2 [14]. After dilution with deionized water, a 1-ml aliquot of 

the digest was added to the reaction medium containing buffer (5% potassium sodium 

tartrate, 100 µM sodium phosphate, and 5.4% w/v sodium hydroxide), 15%/0.03% (w/v) 

sodium silicate/sodium nitroprusside, and 5.35% (v/v) sodium hypochlorite. Samples 

were incubated at 37ºC for 15 min, and total reduced N was measured by 

spectrophotometry using spectrophotometer (Infinite 200 Nanoquant, Tecan, 

Switzerland) according Baethgen and Alley [16]. 

 

2.5. Ca efficiency parameters (CaUE) and distribution coefficient (DC) 

CaUE parameters were calculated as follow: 

Ca uptake efficiency (CaUpE) was calculated as total Ca accumulation divided by root 

DW (mg Ca g−1 RDW) [17]. 
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Ca utilisation efficiency (CaUtE) was calculated as leaf tissue DW divided by Ca 

concentration (g2 LDW mg−1 Ca) [17]. 

 

Distribution coefficient (DC) was calculated as the quotient between Ca concentration in 

leaves and Ca concentration in roots [18].  

 

2.6. Pigment concentrations and SPAD value 

Total chlorophyll (Chl) and carotenoid were extracted in methanol and centrifuged at 

5000 × g for 5 min. Thereafter, the absorbance of the supernatant was measured at 664, 

648, and 470 nm. The chlorophyll a (Chl a), chlorophyll b (Chl b), and carotenoids were 

estimated by using the equation of Lichtenthaler [19]. Total Chl was calculated as the 

sum of Chl a and Chl b.  

 

SPAD value was measured using meter SPAD-502 (Konica Minolta Sensing Inc., Japan). 

Three measurements were made in each leaf and average was calculated. 

 

2.7. Chl a fluorescence analysis 

Plants were adapted to dark for 30 min before measurements using a leaf clip holder that 

was allocated in each fully expanded leaf. Chl a fluorescence kinetics was determined 

using the Handy PEA Chlorophyll Fluorimeter (Hansatech Ltd., King’s Lynn, Norfolk, 

UK); the OJIP transients were induced by red light (650 nm) with 3000 µmol photons m-

2s-1 light intensity and recorded by the instrument. OJIP transients data were analysed 

using the JIP-test [20]. Measurements were conducted with six plants of fully expanded 

leaves at midstem position. Parameters employed to study the energy flow and 

photosynthetic activities by JIP-test were: initial fluorescence (Fo), maximum 
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fluorescence (Fm), variable fluorescence (Fv = Fm – Fo), maximum quantum yield for 

primary photochemistry (ΦPo = Fv/Fm), performance index (PIABS), proportion of active 

reaction centres (RCs) (RC/ABS), efficiency/probability with which a PSII trapped 

electron is transferred from QA to QB (Ψo), maximum quantum yield of electron transport 

(ΦEo = ETo/ABS) and fluorescence value at 300 µs (K step) [20]. 

 

2.8. Malondialdehyde (MDA), O2
.−, and H2O2 concentrations 

Determination of O2
.− in leaf extracts was based on the ability to reduce nitroblue 

tetrazolium (NBT) [21]. Absorbance was measured at 580 nm and the O2
.− concentration 

was expressed as μg g−1 DW. 

 

For H2O2 determination leaf samples were extracted with cold acetone and the intensity 

of yellow colour of the supernatant was measured at 415 nm. The result of H2O2 

concentration was expressed as μg g−1 DW [21]. 

 

For MDA assay, 0.1 g of leaves was homogenized in 1 ml of a 0.25% thiobarbituric acid 

solution in 10% trichloroacetic acid. The mixture was heated at 95 °C for 30 min and then 

cooled in an ice bath. Subsequently samples were centrifuged at 9500 rpm for 10 min. 

MDA concentration in the supernatant was quantified by measuring absorbance at 532 

nm. The non-specific absorbance value at 600 nm was obtained to correct the turbidity. 

MDA concentration was calculated using 155 mM-1 cm-1 as extinction coefficient [22]. 

 

2.9. Lipoxygenase (LOX) and ascorbate peroxidase (APX) activities 

LOX activity in leaf extracts was measured according to Minguez-Mosquera et al. [23] 

using 50 mM K–phosphate buffer (pH 6.0) containing 5 mM EDTA and 1% PVP for 
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extraction. LOX activity was calculated following the rise in the extinction at A234 using 

an extinction coefficient of 25,000 M−1cm−1. 

 

APX activity in leaf extracts was determined by registering the absorbance change at 

290 nm for 3 min of a reaction mixture containing 100 mM K-phosphate buffer (pH 7.5), 

0.5 mM ascorbic acid, and 0.2 mM H2O2 [24]. 

 

The protein concentration of extracts was determined according to the method of 

Bradford [25], using bovine-serum albumin as the standard. 

 

All spectrophotometry determinations were carried out employing spectrophotometer 

(Infinite 200 Nanoquant, Tecan, Switzerland). 

 

2.10. Statistical analysis 

Data were subjected to a simple ANOVA at 95% confidence, using the Statgraphics 

Centurion XVI program. A two-tailed ANOVA was applied to ascertain whether the 

doses of Zn, the species, or the interaction (D * M) significantly affected the results. 

Means were compared by Fisher’s least significant differences (LSD). The significance 

levels for both analyses were expressed as * P<0.05, ** P<0.01, *** P<0.001, or NS (not 

significant). 

 

3. Results and discussion 

3.1. Plant biomass and Ca concentration 

The cause-effect link between plant biomass and Ca homeostasis may be explained 

through modifications in CAX1 activity. For instance, studies with A. thaliana cax1 
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knockout mutants showed an altered plant growth and a lower foliar Ca concentration [5, 

6]. In comparison, although the experiments employing plants with higher CAX1 activity 

expressing AtCAX1 showed more shoot Ca, biomass can be reduced e.g. in tobacco [26] 

or not altered e.g. in carrot [11] and lettuce [12]. The results in the present work showed 

that BraA.cax1a mutations did not negatively affect to foliar biomass regardless of the Ca 

dose applied. However, mutants roots biomass were lower at low Ca dose and in 

BraA.cax1a-4 and BraA.cax1a-7 grown under high Ca dose (Table 1), suggesting that 

mutant roots are more sensitive to Ca concentration changes in the medium. Focusing on 

high Ca dose, BraA.cax1a-12 mutation allowed a better growth with an 82% more leaf 

DW than R-o-18 plants. In the rest of lines, the application of 40 mM CaCl2 caused Ca 

toxicity symptoms since plants showed lower foliar biomass than in control conditions 

(Table 1). These results coincides with the results observed by Blasco et al. [27] in which 

R-o-18 B. rapa plants also presented lower DW under high Ca dose than under a low 

dose. The biomass reduction may be due to Ca toxicity produces damages by the 

formation of Ca-oxalate crystals and interfere with Ca fluxes needed for stomata closure, 

causing a lower photosynthesis rate, and thereby reducing plant growth [1, 2]. 

 

All BraA.cax1a mutations allowed a higher Ca accumulation in leaves but only when 

plants were grown under control and high Ca doses (Table 1). Graham et al. [8] grew 

BraA.cax1a mutants with compost in a glasshouse and also observed higher Ca 

concentration in BraA.cax1a-12 mutants but not in BraA.cax1a-4 and in BraA.cax1a-7 

mutants. These differences may be due to the different culture conditions employed. In 

the present experiment, under low Ca dose, mutants showed higher Ca accumulation in 

roots (Table 1) and a better Ca uptake capacity (Fig. 1A), although this did not result in a 

higher foliar Ca concentration (Table 1) since they presented a lower DC value (Fig. 1C). 
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Therefore, mutations could enhance Ca uptake in roots but this extra Ca is not efficiently 

transported to the shoot. BraA.cax1a-7 mutation reduced foliar Ca concentration but it 

did not decrease its foliar DW (Table 1) because it presented a higher CaUtE (Fig. 1B), 

i.e. this mutant may be able to improve CaUE under low Ca supply. Under control Ca 

supply mutant plants increased shoot Ca concentration from 8% to 16% in comparison to 

R-o-18 plants (Table 1) and this is due to the higher CaUpE (Fig. 1A) and higher DC 

values (Fig. 1C). On the other hand, BraA.cax1a mutations enhanced Ca uptake when 

high Ca dose was applied (Fig. 1A) and a great increase in its DC and foliar Ca 

concentration was observed (Fig. 1C; Table 1). Nevertheless, this increase in Ca 

concentration was moderate in BraA.cax1a-12 (Table 1) due to a lower CaUpE (Fig. 1A) 

and a better CaUtE (94% higher than R-o-18; Fig. 1B) in comparison with the other 

mutants. This could mean that BraA.cax1a-12 may limit Ca uptake and accumulation in 

order to prevent Ca toxicity which resulted in an increased leaf biomass (Table 1). 

Besides, BraA.cax1a-12 CAX1 might store the Ca excess more efficiently than other 

mutants as it was proved that CAX1 can help to avoid Ca toxicity by storing it in vacuoles 

[6]. 

 

3.2. Pigments concentration and photosynthetic performance  

Under stress, chlorophyll content usually decreases and one method to indirectly estimate 

it is through SPAD meters that determine the greenness and interaction of thylakoid 

chlorophyll with incident light [28]. In this work, BraA.cax1a-4 and especially 

BraA.cax1a-7 mutants presented lower SPAD and total Chls values in all Ca treatments 

in comparison to R-o-18 plants. However, total Chls concentration was slightly affected 

in BraA.cax1a-12 (Table 2) but SPAD value was not altered (table 2). In agreement with 

our results, Graham et al. [8] observed leaf chlorosis in BraA.cax1a-4 and BraA.cax1a-7 
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mutants and Hirschi [26] in tobacco plant expressing AtCAX1. Therefore, it appears that 

BraA.cax1a mutations caused alterations in Ca homeostasis that could affect to Chls 

biosynthesis, chloroplast ultrastructure or photo deterioration [29]. Meanwhile Chl a is 

mainly associated with RCs and core antenna proteins of PSII, Chl b is mainly present in 

light-harvesting complexes (LHCII). Thus, Chl a/b ratio is a suitable indicator of RC/ 

LHCII proportion. When Chl a/b is higher, this might indicate a conversion of Chl b to 

Chl a in order to maintain Chl a levels and thereby active RCs [30]. This could be occurring 

in mutants because they presented higher Chl a/b ratios (Table 2) suggesting a role of Ca 

homeostasis in Chl a/b ratio adjustment. Another important type of chloroplastic pigments 

are carotenoids. They are components of thylakoids that play a role as accessory light-

harvesting pigments helping in the dissipation of excess energy [31]. Our results showed 

that BraA.cax1a-7 mutation reduced carotenoids content especially under low and control 

Ca dose (Table 2), which might affect to photosynthetic process in this mutant.  

  

Chl a fluorescence reflects the photosynthesis status and the effects on this due to stress. 

When plant metabolism is disturbed, fluorescence dissipates redundant energy in order to 

avoid damage. Fluorescence can be quantified using the JIP test (data provided by 

fluorimeter) that offers parameters indicating the in vivo PS II performance [20]. 

According JIP test results, under all Ca doses BraA.cax1a-12 and R-o-18 plants presented 

similar values of fluorescence parameters except for PIABS and Ψo, ΦEo under control and 

high Ca conditions that were higher in R-o-18 plants (Table 3). These results indicated 

that BraA.cax1a-12 mutation only caused slight effects on photosynthesis. On the other 

hand, under low and control Ca dose BraA.cax1a-4 and BraA.cax1a-7 presented similar 

parameters and their values indicate an altered photosynthetic performance (Table 3). 

Under high Ca dose BraA.cax1a-7 showed lower Fv/Fm, PIABS, RC/ABS, and ΦEo and 
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higher Fo, Fm, and K step values. PIABS shows the plant capacity to resist external 

pressures and is a combined index that depends on RC/ABS, Fv/Fm, and Ψo [20]. Among 

these factors, RC/ABS was significantly reduced in BraA.cax1a-4 and BraA.cax1a-7 

mutants (Fig. 2). RC/ABS determines how much energy is emitted as fluorescence and 

how much is usable for photosynthesis [20]. Therefore, the results for Fo, Fv/Fm and 

RC/ABS in BraA.cax1a-4 and BraA.cax1a-7 suggest that an impairment in Ca 

homeostasis caused a loss of active RCs which reduce the energy that reach to the PS II 

[20]. Regarding Ψo and ΦEo parameters in BraA.cax1a mutants, their reduced values 

indicate a decrease in the electron flux through the PSII that could be caused by a decrease 

in quinones receptors or an accumulation of reduced quinones as suggested also by the 

higher Fo values (Fig. 2) [32]. Another parameter that usually increases under stress is K 

step. The higher value observed in BraA.cax1a-4 and BraA.cax1a-7 (Fig. 2) could 

indicate an uncoupling between oxygen-evolving complex (OEC) and the rest of FSII 

[20]. Ca is part of Mn4-Ca cluster in OEC, [33], so in these mutants, an altered Ca 

homeostasis might lead to the lack of Ca for OEC and thereby affecting water oxidation 

and increasing K step (Table 3). 

 

Lang et al. [34] observed that the reduction in Chl a and carotenoids concentration 

affected negatively photosynthesis and promoted a Chl fluorescence rise. This was 

observed especially in BraA.cax1a-7 grown under high Ca conditions (Table 2 and Fig. 

2C). In this case, light energy is emitted as fluorescence instead of being absorbed in RCs 

and light-harvesting complexes could be reorganized in order to maximize the dissipation 

of excess energy produced by stress [34]. Tan et al. [32] observed that exogenous Ca 

application can protect photosynthesis against stress improving Ψo and PIABS parameters. 

Ca helps to repair the PSII complex, maintain photosynthesis and activates antioxidant 
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enzymes. The latter is important since ROS cause photodamage to PSII and inhibits its 

reparation [4]. Besides, Ca can directly active antioxidant enzymes to eliminate ROS 

dissipating excess energy and preventing photodamage [32]. 

 

3.3. Oxidative stress 

In the present study MDA, O2
-, H2O2 concentrations and LOX activity were analysed as 

oxidative-stress indicators. The higher MDA and O2
- concentrations and LOX activity in 

BraA.cax1a-4 and BraA.cax1a-7 plants indicated that they were the mutants that showed 

higher oxidative stress (Table 4). In these mutant plants, ROS could react especially with 

unsaturated fatty acids producing MDA as a subproduct of lipid peroxidation. Likewise, 

this could be strengthened by the increase in LOX activity that, in turn, promotes O2
- 

formation [35]. Pokotilo et al. [36] showed that an altered CAX1 expression can lead to a 

higher oxidative stress as observed in cax1 tobacco mutants that presented higher MDA 

levels and lower activities of antioxidant enzymes. Therefore the higher oxidative stress 

in BraA.cax1a-4 and BraA.cax1a-7 probably was caused by alterations in Ca homeostasis 

and because Ca affects ROS concentration since both are involved in cell signalling to 

stress [37]. On the other hand, Gururani et al. [4] observed that ROS adversely affect the 

photosynthetic system and total Chl reduction can be an indicator of damage caused by 

ROS. Accordingly, the higher oxidative stress observed in BraA.cax1a-4 and 

BraA.cax1a-7 mutants (Table 4) might be responsible for their altered photosynthetic 

performance (Fig. 2). To prevent the oxidative damage, antioxidant compounds in 

chloroplasts such as carotenoids prevent and eliminate ROS accumulation [31]. Thus, in 

our study, the results for O2
- (Table 4), total Chls and carotenoids (Table 2) suggested that 

BraA.cax1a-7 mutant presented the higher oxidative stress and lower antioxidant capacity 

under low and control conditions. In contrast, under high Ca conditions, BraA.cax1a-7 
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registered lower MDA and LOX levels (Table 4). Hence, in this mutant high Ca dose 

might not affect to the antioxidant machinery that protect against MDA formation.  

 

Plants possess mechanisms to eliminate ROS through antioxidant enzymes such as APX 

activity that is an efficient H2O2 scavenger [38]. In the present work, under low and 

control Ca doses mutants registered lower H2O2 values and higher APX activity in 

comparison to R-o-18. Blasco et al. [27] in B. rapa plants submitted to Ca toxicity 

observed also observed an increase in APX activity. These results suggest that APX is an 

important enzyme in ROS elimination in this species. On the other hand, some studies 

proved that Ca applied at the proper dose can be beneficial to reduce oxidative stress [32]. 

Likewise, in the present study BraA.cax1a mutations produced an improved H2O2 

detoxification through APX enzyme. One exception is BraA.cax1a-7 plants submitted to 

high Ca dose where the higher APX activity was not efficient enough to reduce H2O2 

concentration because its concentration was higher than in R-o-18 plants. Nevertheless 

BraA.cax1a-4 and BraA.cax1a-7 presented higher O2
- levels than R-o-18 (Table 4) and 

this could explain the altered photosynthesis performance (Fig. 2) since O2
- is the ROS 

with the highest oxidant power and thereby more dangerous than H2O2 [35]. 

 

3.4. Nutrient concentrations 

Several studies carried out on plants with modified CAX1 expression reported altered 

accumulations of mineral nutrients [5, 26]. In the present study, BraA.cax1a-12 mutation 

caused a higher N and S accumulations regardless the Ca dose applied (Fig. 3A-B). N has 

a direct relationship with plant biomass [39] and S is an important component of 

glutathione, hormones, and certain amino acids [40]. Therefore, this higher N and S 

concentrations may help BraA.cax1a-12 to maintain growth, especially when high Ca 
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doses are applied (Table 1). In addition, S deficiency limits yield in crops all over the 

world [40], so BraA.cax1a-12 mutation could be useful under S deficiency conditions 

(Fig. 3C). With respect P concentration, only slight differences were found between 

mutants and R-o-18 plants, highlighting a higher P accumulation in mutants under control 

Ca dose (Fig. 3C). This may be due to the relationship between CAX1 activity and P 

absorption observed by Liu et al. [41]. Regarding Mg, its concentration increased when 

both low and high Ca dose were applied in mutant plants in comparison to control Ca 

dose; whereas in comparison to R-o-18 all mutants accumulated more Mg under control 

and high Ca doses (Fig. 3E). In previous experiments in B. rapa plants authors observed 

the well-known negative interaction between Ca and Mg [7, 27]. Nevertheless, in the 

present work this relation was not observed in BraA.cax1a mutants when high Ca dose 

was applied (Fig. 3E). One possibility is that the extra Ca is being stored in vacuoles. The 

higher Mg accumulation may be beneficial to counteract the higher Ca concentration that 

could be toxic especially in high Ca treatment.  

 

Micronutrients are required in lower concentrations but play a key role in numerous 

processes in plants [42]. In the present study, BraA.cax1a mutations enhanced Fe 

accumulation disregarding the Ca dose applied (Fig. 3F) while the accumulation of Cu, 

Mn and B generally decreased in comparison to R-o-18 plants (Fig. 3G-J). A higher Fe 

accumulation might explain the higher APX activity in BraA.cax1a mutants (Table 4) 

since Vansuyt et al. [43] proved that this element is necessary for APX activation. On the 

other hand, the antagonistic relationship between Ca and B [44] might be boosted in 

BraA.cax1a mutants and reduce B accumulation in leaves (Fig. 3J). Finally, regarding 

Mn, BraA.cax1a-4 and BraA.cax1a-12 reduced its accumulation in leaves (Fig. 3H). 

Conn et al. [5] observed that besides Ca, CAX1 can also transport Mn. Therefore, the 
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CAX1 transporter of BraA.cax1a-4 and BraA.cax1a-12 mutants might have a lower Mn 

transport capacity that may limit its accumulation in leaves. 

 

In addition to the importance of nutrients for the normal plant growth and development, 

it is interesting to study its accumulation from the human nutrition point of view [10]. 

Thus, the results suggest that BraA.cax1a mutants could be employed in Fe 

biofortification programs regardless the Ca dose applied, especially BraA.cax1a-12 that 

reached increases in its Fe concentration around double of R-o-18 (Fig. 3F). However, in 

the case of other nutrients, their accumulation depends on the Ca dose applied, so 

biofortification programs efficiency could be enhanced through Ca managing. Thereby, 

Ca and Mg only are accumulated under control and high Ca doses (Table 1 and Fig. 3E), 

whereas Zn only is accumulated under low Ca dose (Fig. 3I). Therefore, the Ca dose 

supplied to the plant is a key factor to be considered in biofortification program with 

BraA.cax1a mutants. 

 

4. Conclusions 

The results obtained proved the working hypothesis because CAX1a mutations caused 

changes in growth, physiological state and nutrients accumulation and these changes were 

influenced by Ca dose applied. BraA.cax1a mutants appear to be unhelpful to better Ca-

deficiency tolerance since they did not improve plant growth neither foliar Ca 

accumulation under low Ca application. In addition, regardless the Ca dose applied, 

BraA.cax1a-4 and BraA.cax1a-7 showed stress symptoms such as lower total Chl, an 

altered photosynthesis performance and higher ROS levels. However, BraA.cax1a-12 did 

not affect negatively to plant vitality. Indeed, this mutation allows a better growth under 

high Ca conditions. All mutants accumulated more Ca and Mg in leaves when Ca is in 
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adequate concentration in the medium and accumulated more Fe regardless the Ca dose. 

These results obtained point to BraA.cax1a-12 as a potential candidate for biofortification 

with Fe, Ca and Mg since it accumulates these elements to a greater extent than R-o-18, 

does not present an altered growth and is able to tolerate higher Ca doses. Besides this 

mutant might be employed for phytoremediation purposes in soils with toxic 

concentrations of these elements, although specific studies are required. 
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Tables 

Table 1 Leaf and root biomass and Ca concentration in BraA.cax1a mutants and R-o-18 plants 

submitted to three Ca doses 

 

Values are means (n=9) and differences between means were compared by Fisher’s least-significance test 

(LSD; P=0.05). Values with different letters indicate significant differences. The levels of significance were 

represented by p>0.05: NS (not significant), p<0.05 (*), p<0.01 (**) and p<0.001 (***). 

 

 

 

 

 

 

 

  Leaf 

biomass 

(g DW 

plant-1) 

Root 

biomass 

(g DW 

plant-1) 

Foliar Ca 

concentration 

(mg Ca g-1 

DW) 

Root Ca 

concentration 

(mg Ca g-1 

DW) 

0.4 mM R-o-18 0.63ab 0.20a 10.05a 7.71b 

 BraA.cax1a-4 0.61b 0.14b 9.37ab 15.05a 

 BraA.cax1a-7 0.76ab 0.11c 8.98b 8.22b 

 BraA.cax1a-12 0.77a 0.14b 10.03a 14.71a 

 p-value NS *** NS *** 

 LSD0.05 0.15 0.03 0.94 1.11 

4 mM R-o-18 0.87a 0.21a 15.20c 20.91a 

 BraA.cax1a-4 0.69b 0.22a  16.44b 25.24a 

 BraA.cax1a-7 0.87a 0.17b 17.71a 15.34b 

 BraA.cax1a-12 0.85ab 0.18b 17.29a 14.84b 

 p-value NS ** *** ** 

 LSD0.05 0.17 0.03 0.79 4.72 

40 mM R-o-18 0.34b 0.18a 28.69c 24.38a 

 BraA.cax1a-4 0.40b 0.07b 40.30a 15.34b 

 BraA.cax1a-7 0.37b 0.06b 43.53a 10. 05c 

 BraA.cax1a-12 0.62a 0.16a 35.37b 13.48b 

 p-value *** *** *** *** 

 LSD0.05 0.12 0.05 4.30 2.65 

Analysis of variance 

Doses (D)  *** *** *** *** 

Mutation (M)  *** *** *** *** 

D x M  * *** *** *** 

LSD0.05  0.08 0.02 1.33 1.65 
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Table 2 SPAD chlorophyll, total Chls concentration, Chl a/b ratio, and carotenoids concentration 

in BraA.cax1a mutants and R-o-18 plants submitted to three Ca doses 

  SPAD value Total Chls  

mg g-1 FW  

Chl a/b Carotenoids 

μg g-1 FW 

0.4 mM R-o-18 39.45a 0.41a 1.85c 34.47a 

 BraA.cax1a-4 34.51b 0.30c 2.39a 32.34b 

 BraA.cax1a-7 25.57c 0.22d 2.32b 23.23c 

 BraA.cax1a-12 39.79a 0.37b 2.30b 33.52ab 

 p-value *** *** *** *** 

 LSD0.05 3.60 0.01 0.06 1.19 

4 mM R-o-18 44.77a 0.41a  2.01c 36.25a 

 BraA.cax1a-4 39.43b 0.34b 2.24b 29.71ab 

 BraA.cax1a-7 37.16b 0.27c 2.44a 29.35b 

 BraA.cax1a-12 45.27a 0.34b 2.29b 33.15ab 

 p-value *** *** *** ** 

 LSD0.05 4.30 0.02 0.09 3.87 

40 mM R-o-18 54.07a 0.41a  1.93c 32.32a 

 BraA.cax1a-4 45.32b 0.34b 2.24b 31.24ab 

 BraA.cax1a-7 44.77b 0.27c 2.38a 29.43b 

 BraA.cax1a-12 52.21a 0.33b 2.32b 30.90ab 

 p-value ** *** *** NS 

 LSD0.05 5.73 0.02 0.15 2.40 

Analysis of variance  

Doses (D)  *** *** * NS 

Mutation (M)  *** *** *** *** 

D x M  NS *** *** *** 

LSD0.05  2.60 0.01 0.05 1.53 
 

Values are means (n=9) and differences between means were compared by Fisher’s least-significance test 

(LSD; P=0.05). Values with different letters indicate significant differences. The levels of significance were 

represented by p>0.05: NS (not significant), p<0.05 (*), p<0.01 (**) and p<0.001 (***). 
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Table 3 Values of Chl a fluorescence parameters derived from the JIP test in BraA.cax1a mutants and R-o-18 plants submitted to three Ca doses 

 

 

 

Values are means (n=9) and differences between means were compared by Fisher’s least-significance test (LSD; P=0.05). Values with different letters indicate significant 

differences. The levels of significance were represented by p>0.05: NS (not significant), p<0.05 (*), p<0.01 (**) and p<0.001 (***). 

 

  Fo Fm Fv Fv/Fm PIABS RC/ABS Ψo ΦEo K step 

0.4 mM R-o-18 249b 1615ab 1366a 0.85a 8.68a 0.85a 0.66a 0.56a 394c 

 BraA.cax1a-4 299a  1690a 1390a 0.82b 5.11c 0.67b 0.60b 0.50bc 499a 

 BraA.cax1a-7 273ab 1473b 1200b 0.82b 4.27c 0.64b 0.60b 0.49c 453ab 

 BraA.cax1a-12 252b 1582ab 1330a 0.84a 7.15b 0.78a 0.63ab 0.53ab 408bc 

 p-value NS * ** ** *** *** ** ***  *** 

 LSD0.05 43 140 104 0.01 1.46 0.08 0.03 0.03 48 

4 mM R-o-18 252b 1660b 1408b 0.85a 10.30a 0.89a 0.69a 0.59a 382b 

 BraA.cax1a-4 329a 1800a 1471a 0.82b 6.27c 0.73b 0.62bc 0.51bc 517a 

 BraA.cax1a-7 343a 1841a 1498a 0.81b 5.49c 0.73b 0.59c 0.48c 558a 

 BraA.cax1a-12 262b 1683b 1421b 0.84a 8.77b 0.84a 0.64b 0.54b 416b 

 p-value ** ** ** *** *** ** *** *** ** 

 LSD0.05 52.46 92 50 0.01 1.76 0.09 0.04 0.04 94 

40 mM R-o-18 250b 1668b 1418ab 0.85a 15.72a 1.02a 0.73a 0.63a 344c 

 BraA.cax1a-4 294b 1675b 1381b 0.82b 7.27c 0.85b 0.65c 0.53c 452b 

 BraA.cax1a-7 422a 1965a 1544a 0.79c 5.33d 0.77c 0.63c 0.49d 607a 

 BraA.cax1a-12 264b 1702b 1438ab 0.85a 12.53b 1.06a 0.68b 0.57b 365c 

 p-value *** ** NS *** *** *** *** *** *** 

 LSD0.05 55 182 131 0.01 1.50 0.07 0.02 0.02 51 

Analysis of variance       

Doses (D)  ** ** ** NS *** *** *** *** NS 

Mutation (M)  *** *** *** *** *** *** *** *** *** 

D x M  *** *** ** *** *** * NS NS *** 

LSD0.05  28 76 56 0.01 0.87 0.05 0.02 0.02 37 ACCEPTED M
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Table 4 Values of O2
-, H2O2, and MDA concentrations, and APX and LOX activities in 

BraA.cax1a mutants and R-o-18 plants submitted to three Ca doses 

 

Values are means (n=9) and differences between means were compared by Fisher’s least-significance test 

(LSD; P=0.05). Values with different letters indicate significant differences. The levels of significance were 

represented by p>0.05: NS (not significant), p<0.05 (*), p<0.01 (**) and p<0.001 (***). 

  MDA 

(μM g-1 

FW) 

LOX 
(ΔAbs mg 

prot-1min-1) 

O2
- 

(μg g-1 

FW) 

H2O2  

(μg g-1 

FW) 

APX 
(ΔAbs mg 

prot-1min-1) 

0.4 mM R-o-18 10.64b 7.74b 6.08bc 0.41a 0.23c 

 BraA.cax1a-4 12.49a 7.66ab 6.30b 0.34b 0.37b 

 BraA.cax1a-7 12.65a 8.36a 7.68a 0.29c 0.50a 

 BraA.cax1a-12 11.94ab 6.18b 5.56c 0.29c 0.55a 

 p-value NS * *** *** *** 

 LSD0.05 1.63 1.62 0.66 0.03 0.09 

4 mM R-o-18 19.14c 6.07b 3.67 c 0.34a 0.20c 

 BraA.cax1a-4 28.64a 10.85a 4.66b 0.28b 0.36b 

 BraA.cax1a-7 22.77b 10.90a 6.67a 0.26b 0.48a 

 BraA.cax1a-12 18.92c 7.82 b 3.76c 0.27b 0.41ab 

 p-value *** *** *** * *** 

 LSD0.05 1.36 1.89 0.42 0.06 0.10 

40 mM R-o-18 19.59b 10.43b 3.78b 0.37b 0.35c 

 BraA.cax1a-4 32.85a 13.41a 4.80a 0.32c 0.60a 

 BraA.cax1a-7 10.49d 7.08c 4.72a 0.42a 0.57a 

 BraA.cax1a-12 12.24c 8.18c 3.88b 0.28d 0.49b 

 p-value *** *** *** *** *** 

 LSD0.05 1.22 1.87 0.33 0.03 0.08 

Analysis of variance 

Doses (D)  *** *** ** *** *** 

Mutation (M)  *** *** *** *** *** 

D x M  *** *** *** *** *** 

LSD0.05  0.79 1.05 0.28 0.02 0.05 
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Figure legends  

Fig. 1.  Ca efficiency parameters (A and B) and DC (C) in BraA.cax1a mutants and R-o-18 plants 

submitted to three Ca doses. Values are expressed as means ± standard error (n=9). Column 

marked with the same letters were not significantly different based on the LSD test (P < 0.05). 

Fig. 2.  Values of Chl a fluorescence parameters derived from the JIP test in BraA.cax1a mutants 

and R-o-18 plants submitted to 0.4 mM CaCl2 (A), 4 mM CaCl2 (B), and 40 mM CaCl2 (C). 

Values are expressed as means ± standard error (n=9). Column marked with the same letters were 

not significantly different based on the LSD test (P < 0.05). 

Fig. 3. Nutrient concentrations of BraA.cax1a mutants and R-o-18 plants submitted to three Ca 

doses. Values are expressed as means ± standard error (n=9). Column marked with the same 

letters were not significantly different based on the LSD test (P < 0.05). 
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