Robust hydrophobic surfaces from suspension HVOF thermal sprayed rare-earth oxide ceramics coatings

Bai, Mingwen and Kazi, H. and Zhang, X. and Liu, J. and Hussain, Tanvir (2018) Robust hydrophobic surfaces from suspension HVOF thermal sprayed rare-earth oxide ceramics coatings. Nature, 8 . 6973/1-6973/8. ISSN 1476-4687

Full text not available from this repository.

Abstract

This study has presented an efficient coating method, namely suspension high velocity oxy-fuel (SHVOF) thermal spraying, to produce large super-hydrophobic ceramic surfaces with a unique micro- and nano-scale hierarchical structures to mimic natural super-hydrophobic surfaces. CeO2 was selected as coatings material, one of a group of rare-earth oxide (REO) ceramics that have recently been found to exhibit intrinsic hydrophobicity, even after exposure to high temperatures and abrasive wear. Robust hydrophobic REO ceramic surfaces were obtained from the deposition of thin CeO2 coatings (3–5 μm) using an aqueous suspension with a solid concentration of 30 wt.% sub-micron CeO2 particles (50–200 nm) on a selection of metallic substrates. It was found that the coatings’ hydrophobicity, microstructure, surface morphology, and deposition efficiency were all determined by the metallic substrates underneath. More importantly, it was demonstrated that the near super-hydrophobicity of SHVOF sprayed CeO2 coatings was achieved not only by the intrinsic hydrophobicity of REO but also their unique hierarchically structure. In addition, the coatings’ surface hydrophobicity was sensitive to the O/Ce ratio, which could explain the ‘delayed’ hydrophobicity of REO coatings.

Item Type: Article
RIS ID: https://nottingham-repository.worktribe.com/output/930974
Keywords: Suspension HVOF; Rare Earth Oxide; Hydrophobic; Nano-structure; Robustness
Schools/Departments: University of Nottingham, UK > Faculty of Engineering > Department of Mechanical, Materials and Manufacturing Engineering
Identification Number: https://doi.org/10.1038/s41598-018-25375-y
Depositing User: Eprints, Support
Date Deposited: 08 May 2018 14:53
Last Modified: 04 May 2020 19:35
URI: http://eprints.nottingham.ac.uk/id/eprint/51325

Actions (Archive Staff Only)

Edit View Edit View