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Abstract

Identifying a peptide based on a scan from a mass spectrometer is an important yet highly challenging problem. To
identify peptides, we present a Bayesian approach which uses prior information about the average relative abundances
of bond cleavages and the prior probability of any particular amino acid sequence. The proposed scoring function is
composed of two overall distance measures, which measure how close an observed spectrum is to a theoretical scan
for a peptide. Our use of our scoring function, which approximates a likelihood, has connections to the generalization
presented by Bissiri et al. (2016) of the Bayesian framework. A Markov chain Monte Carlo algorithm is employed to
simulate candidate choices from the posterior distribution of the peptide sequence. The true peptide is estimated as
the peptide with the largest posterior density.

KEYWORDS: Stochastic Search, Bayesian Methods, Markov Chain Monte Carlo, Peptide Identification, Tandem
Mass Spectrometry

1 Introduction

Proteomics involves the analysis of proteins, particularly their structure, function, abundances, variations, and modifi-
cations. In proteomics, scientists begin with the protein and work backwards to determine the gene that is responsible
for its production. Proteins are constantly changing and vary with health or disease while a genome remains relatively
static. Issues arise in protein identification when an organism’s genome has not been sequenced, more specifically
in microbial samples. Only 1%-10% of microbes found in the ecosystem can be cultured. There are countless other
microbes that have not been identified and, of the microbes that have been cultured, some will show evidence of
post-translational modifications. These post-translational modifications cannot be calculated from the genome (Rose
et al., 2010). The area of environmental proteomics has not been fully developed and being able to correctly identify
these microbes via protein identification is of great importance especially in ecological samples such as soil and water
samples (Schulze, 2004). In clinical proteomics, scientists commonly search for proteins or groups of proteins to help
diagnose types of cancers, diseases, or viruses with the goal of early diagnosis. These proteins or groups of proteins
can be biomarkers for a disease; see Wulfkuhle et al. (2003), Diamandis (2004), and Visintin et al. (2008). Correctly
identifying proteins will also aid in the advance of clinical proteomics.

Current methods for identification of proteins have limitations. With a limited number of known genome sequences,
noisy data, and incomplete ion sequences, the accuracy of protein identification requires improvement. In this paper,
we describe a Bayesian approach, which aims to improve the identification of proteins.

We employ a Bayesian stochastic search approach to protein identification. We use the prior knowledge of abundances
of bond cleavages and the probability of any particular amino acid sequence. Our scoring function combines two
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measures of distance that measure the closeness of each observed mass-to-charge ratio (m/z) value from a sample to
an m/z value in a theoretical scan of a peptide. A Markov chain Monte Carlo (MCMC) scheme is utilized to simulate
candidate peptides from the posterior distribution, and the peptide with the largest posterior probability is estimated
as the true protein. Our approach also allows one to rank the top candidate peptides by their estimated posterior
probabilities.

The data come from the Pacific Northwest National Laboratory (PNNL) and can be publicly accessed online for
download (Ansong et al., 2011) and is produced by a LTQ Orbitrap yielding doubly charged tryptic peptides. For each
peptide, there is a set of m/z values with corresponding intensity values.

1.1 Mass Spectrometry

There are several methods for obtaining the proteomic profile of a sample. With technological advances, mass spec-
trometry methods are now more commonly used. Tandem mass spectrometry (MS/MS) is a two-stage mass spec-
trometry process that allows examination of individual ion fragmentation from a group of ions. Tandem mass spec-
trometry is used with an assortment of instruments and scan modes.

Peaks can be identified by plotting the intensities versus a horizontal index, which in proteomic analysis is the m/z
value. These peaks characterize the peptide in the sample. The final data spectrum is the line plot of pairs of intensities
and m/z values (Coombes et al., 2007). Figure 1 pictorially shows the spectrum for a given peptide by plotting the
intensity values versus their m/z values. [[Figure 1 goes here]]

1.2 Protein Identification Methods

Presently, there are few methods for identifying protein sequences. A popular approach searches through a database
of peptides and then matches the closest peptide using the observed spectrum. Some common algorithms for database
searches are MASCOT and SEQUEST (Xu and Ma, 2006). Another approach is de novo sequencing, in which
the peptide sequence is determined by recreating a spectrum using the observed spectrum. PepNovo and Peaks are
frequently used de novo algorithms (Frank and Pevzner, 2005; Frank, 2009; Ma et al., 2003). A more recent approach,
de novo sequencing via probabilistic network modeling, uses a mixture of the other two. In this approach, the de novo
method recaptures short peptide sequences and then the peptide sequences are used to refine the search in the database
approach (Frank and Pevzner, 2005).

A major concern of the database search and hybrid method is that they rely on the use of a database of peptides.
These methods cannot correctly identify the protein if it is not in the database. Some limitations of both the database
search and de novo peptide sequencing are lack of accuracy and certainty of the chosen peptides, chemical noise,
overly complex fragments, and incomplete ion sequences (Lubec and Afjehi-Sadat, 2007). We introduce a Bayesian
model that will aim to improve on the PepNovo approach by identifying the correct peptide without depending on the
database of peptides, but instead using more generic prior information.

2 Basic Concepts of Fragmentation

The basic idea of any protein identification method is to match an observed spectrum to a theoretical spectrum of the
proposed peptide. It is extremely difficult to identify intact proteins and so the proteins are broken into short peptides
and examined separately. A peptide is a sequence of amino acids, each of which is represented by one of 20 letters.
The theoretical spectrum of a peptide is a set of peaks with the location of each peak at the m/z value of each ion
type. There are spikes at each peak location and zeros everywhere else. The peptide is broken into pairs of ions, most
commonly b and y ions. It is the intensities of these ions that are detected in the mass spectrometer. We classify an
ion as a b ion if the charge is maintained on the N-terminus, where the N-terminus refers to the beginning of a peptide
that is terminated by an amino acid with a free amine group. In order for an ion to be detected, the ion must have a
charge of at least one. The y ion is the complement of the b ion. Thus, it is the end of the peptide where the charge is
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maintained on the C-terminus, where the C-terminus refers to the end of a peptide that is terminated by a free carboxyl
group (−COOH) (IUBMB, 1992, p. 48).

To find the theoretical spectrum, one must first split the true peptide sequence into all possible ion combinations. In
practice, we use only the b and y ions, although there are several other less common ions. After the b and y ions are
found, the mass of each ion is determined. The mass for any given ion is found by

∑K
i=1m(pi) + δ` where K is the

number of amino acids in the ion sequence, pi is the amino acid in the i th position, m(pi) is the mass of the amino
acid in the i th position, ` denotes the type of ion such that ` ∈ {b, y}, and δ` is the offset value for that particular ion
type. In tandem mass spectrometry, the peptide fragmentation is determined by offsets that correspond to ion types.
That is, the offsets match up to the peaks in a given spectrum, and thus denote the different ion types created in the
given mass spectrometer (Dančı́k et al., 1999). Since different types of mass spectrometers yield different spectra,
Dančı́k et al. (1999) developed an offset frequency function that does not depend on instrument type and allows one
to define the ion types produced by a given mass spectrometer. The offset value for a b ion is 0.85 Daltons (Da) and
18.85 Da for a y ion.

As an example, consider the peptide QVMELLQ. There are six b ions and six y ions. The first b ion, Q, has a mass
of 128.059 + 0.85 = 128.909 Da, and the first y ion, Q, has a mass of 128.059 + 18.85 = 146.909 Da. Continuing
with the splitting of the peptide, one obtains the following additional b ions: QV , QVM , QVME, QVMEL, and
QVMELL with masses 227.977, 359.017, 488.060, 601.144, and 714.228 Da, respectively. Similarly, we obtain the
following additional y ions: LQ, LLQ, ELLQ, MELLQ, and VMELLQ with masses 259.993, 373.077, 502.120,
633.160, and 732.228 Da, respectively. Therefore, the theoretical spectrum for the peptide QVMELLQ is the set of
masses: 128.909, 227.977, 359.017, 488.060, 601.144, 714.2284, 732.228, 633.160, 502.120, 373.077, 259.993, and
146.909 Da. Figure 2 shows the theoretical spectrum for the peptide QVMELLQ using only the b and y ions and the
positions found above are shown on the (m/z) axis. [[Figure 2 goes here]]

It is important to find the total mass of the peptide because a mass spectrometer will also measure the total mass of
the peptide being analyzed. We can use this weight restriction to eliminate peptides that do not have a total mass
within a tolerance of the measured mass. The total mass of the peptide is found by

∑K
i=1m(pi) + mass of H2O,

where the mass of the water molecule is 18.010565 Da. For data that are doubly charged, the total mass becomes∑K
i=1m(pi) + mass of H2O+H because of the second proton that is acquired. The mass of one hydrogen molecule

is 1.00794 Da. Thus the total mass for the peptide QVMELLQ is 860.456 Da assuming the data are doubly charged.

3 A Bayesian Model

We propose a Bayesian model with the goal of identifying the true peptide based on the observed spectrum. To identify
this true peptide, an MCMC algorithm is used to simulate candidate peptide sequences from an approximate posterior
distribution. The motivation will be discussed in Section 3.2.

3.1 Pre-Processing

Data that are produced from mass spectrometry methods include a lot of noise. Noise is produced from the oscillation
of the instrument (Poisson noise), electrical system (Johnson noise), and matrix ions (chemical noise) (Du et al.,
2008). Noise can greatly hinder the identification of peptides in samples. Therefore, the observed spectrum first will
be thresholded. Peaks with intensity values below a threshold level will be ignored, and our attention will be focused
on the m/z values having intensities above the threshold. A distinct threshold value for each integer m/z value,
denoted by T = (T1, T2, . . . , Tq?), is computed. Here q? denotes the total number of m/z values. We define signal
peaks as the m/z values corresponding to the b and y ions for a candidate peptide, and we define noise peaks broadly
as all other m/z values in the data. The mass spectrometer does not always capture all peaks at the beginning and the
end of the spectrum. Thus using only a constant threshold could remove peaks that are truly signal (not noise) peaks.
Therefore, we threshold using a weighted average of constant and moving thresholds. The data used in our method
consist of the retained m/z values. We will be assuming a Laplace noise structure with details in Section 5.1, which
motivates the following approximate model.
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3.2 Scoring Function

For our approximate Bayesian model, we first specify a scoring function, which gives a measure of how well the
observed spectrum and theoretical spectrum agree. If a candidate peptide’s theoretical spectrum does not align well
with the observed spectrum, an overall goodness of fit measure will penalize the candidate peptide. Even after thresh-
olding, we still expect there to be noise peaks in the data set and therefore, we incorporate another overall goodness of
fit measure that will penalize a candidate peptide when the observed spectrum shows many noise peaks which do not
correspond to the m/z values of the candidates theoretical spectrum. We do know that the mass spectrometer does not
always capture every signal peak. Hence, we include an indicator function in our scoring function that signifies the
presence or absence of a peak. Our scoring function is an approximation to a generative likelihood with details found
in Section 5.1. Our method involves treating the scoring function as if it was a likelihood, even though it is actually an
approximate likelihood.

We propose a scoring function of the form

L(X|θ,η, κ1, κ2) ∝ κ2p1 exp(−κ1S1)κ
t−s
2 exp(−κ2S2) (1)

where our parameter is vector θ = (τ b1 , . . . , τ
b
p , λ

b
1, . . . , λ

b
p, τ

y
1 , . . . , τ

y
p , λ

y
1, . . . , λ

y
p), X contains the observed set of

m/z values for a particular spectrum, and η represents the string of amino acids for the candidate peptide. S1 and S2

are functions of θ andX that are defined below. The other parameters are defined as

• s is the combined number of b and y ions for the candidate peptide

• p is the number of b ions (or equivalently the number of y ions)

• t is the number of peaks in a given candidate peptide

• τ bi and τyi are the m/z values for the b and y ion of the candidate peptide

• λbi and λyi ∈ {0, 1} are indicator functions that signify whether the i th b or y ion has a corresponding observed
peak, where i = 1, . . . , p

• κ1 and κ2 represent weights, which play the role of concentration parameters that control how tightly concen-
trated the observed peaks are around their corresponding true peaks (see Section 5.1 for more details).

Here, λbi = 1 denotes the presence and λbi = 0 denotes the absence of a b ion at position i. Similarly, λyi = 1 denotes
the presence and λyi = 0 denotes the absence of a y ion at position i.

Let xj , j = 1, . . . , nT be the observed peaks that are above the threshold T where nT represents the number of peaks
that are above the threshold T . We will partition these observed peaks into two sets of signal and noise peaks. In
particular let S denote the set of observed peaks above the threshold T which are each closest to one of the peaks τki
of the candidate peptide spectrum, i = 1, . . . , p and k ∈ {b, y}. We call S the set of observed signal peaks. Let N be
the remaining observed peaks above the threshold T that are not in S, and we call N the set of observed noise peaks.
The goodness of fit measures of the candidate spectrum relative to the observed spectrum are

S1 =

p∑
i=1

(
λbi min

j∈S
d(xj , τ

b
i ) + λyi min

j∈S
d(xj , τ

y
i )

)
(2)

S2 =
∑
j∈N

min
i,k
|xj − τki | (3)

and d(xj , τki ) = min{|xj − τki |, δ}. We believe that (even allowing for a cushion beyond the usual 0.5 Da threshold,
discussed further in Sections 4 and 6, for classifying an observed peak as a true peak) no observed peak will lie beyond
3 Da from the corresponding observed peak. Hence, we choose δ = 3. This choice works well in practice; note that
choosing δ much larger than this would inflate S1 and worsen the performance.

If λyi = 1, then S1 measures the sum of minimum absolute distances between the closest observed m/z above a
threshold and each m/z peak value of the candidate peak value, while S2 measures the sum of minimum absolute
distances between each observed m/z value above a threshold and the closest candidate peak m/z values. That is, S1

measures the closeness of the nearest observed peak to each candidate b ion or y ion, and S2 measures the closeness
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of the nearest candidate peak to each observed peak. Note S1 is low when the candidate peaks are close to observed
peaks, and S2 is low when the noise peaks are close to the candidate peaks or if there are fewer noise peaks. When all
peaks for the candidate peptide are very close to observed peaks that are above the threshold, then exp (−S1) is high.
When all the observed peaks are close to candidate peaks, exp (−S2) will be high, so that exp (−S1) and exp (−S2)
represent sensitivity and specificity.

Our method has some interesting connections to other Bayes-like approaches. Although our procedure is different
from approximate Bayesian computation (ABC), the fact that we are attempting to get close to the similarity scores in
the true unobtainable likelihood has similarities with ABC, although there is no simulation in our procedure but rather
just a single evaluation of the approximate similarity scores.

An appealing recent work by Bissiri et al. (2016) presents an innovative idea for generalizing the Bayesian paradigm
of updating prior beliefs based on observed data. That article gives a framework in which the role of the data is
characterized by a loss function involving the data and the parameters (akin to the loss function considered in decision
theory). This loss function could be a negative log-likelihood as in the traditional Bayesian setup, but it also could take
other forms, so that the practitioner need not specify a formal likelihood as a model for the data. Using this general
loss function along with the prior, the prior beliefs are updated to posterior beliefs after the data are observed.

Our method can be connected to this general updating framework nicely, since our scoring function often will not
correspond to a generative data model (except in the special case of Laplace noise, when our scoring function in
Equation 1 approximates the generative model given later in Equation 10). The negative logarithm of our scoring
function in Equation 1 can, however, be viewed as a loss function that measures the closeness of the observed data
to a proposed parameter structure. Based on this closeness, the prior belief about the parameter structure (which
characterizes the true nature of the peptide) is updated over the steps of the MCMC process, with our eventual goal
being the selection of the “best” parameter structure given the posterior belief, which corresponds to the goal in the
Bissiri et al. (2016) framework.

3.3 Priors

Huang et al. (2004) estimated the average bond cleavage abundance for each amino acid pair for both the b and y ions
for gas-phase dissociation spectra. Collision-induced dissociation (CID) fragments the peptides even further during
the gas phase in the mass spectrometry process. A cleavage occurs when the peptide bond fragments during collision
induced dissociation, and a cleavage pair is the b and y ion pair that are present in the peptide. For example, take
the peptide QVMELLQ. Recall from Section 2 that QV is one of the six b ions of the peptide QVMELLQ and
the complement to that b ion is the y ion MELLQ. These complementary ions are a result of the cleavage between
the amino acids V and M . This information from Huang et al. (2004) will give us insight about when we expect to
see cleavages in the pairs of amino acid residues, and thus we use this information to develop prior information about
cleavage pair abundance for our Bayesian approach to identify the true peptide.

3.3.1 Cleavage Prior

The cleavage pair abundance prior, denoted π(λ|β,γ) ≡ π(λ) is defined as:

π(λ) =

p∏
i=1

P (λbi , λ
y
i ) (4)

with

P (λbi = λyi = 1) = ρbyi × γi × βi
P (λbi = 1, λyi = 0) = ρbyi × (1− γi)× βi
P (λbi = 0, λyi = 1) = ρbyi × γi × (1− βi)

P (λbi = λyi = 0) = 1− ρbyi + [ρbyi × (1− γi)× (1− βi)]

5



where λ = (λb,λy) = (λb1, . . . , λ
b
p, λ

y
1, . . . , λ

y
p), ρ

by
i is the geometric mean of the average relative abundance of bond

cleavages of b and y ions for a particular amino acid pair for i = 1, . . . , p derived from Huang et al. (2004), γi is the
probability of the presence of a y ion, and βi is the probability of the presence of a b ion. Here, p represents the number
of cleavage pairs. As a matter of notation, note that our parameter vector θ (= θγ,β) depends on the values of γ and β,
but our notation will suppress this dependency since γ and β will remain fixed throughout the algorithm. Note that the
λbi ’s are modeled as having random marginal Bernoulli distributions with probabilities ρbyi βi and the λyi s are modeled
as having random marginal Bernoulli distributions with probabilities ρbyi γi, and λbi , λ

y
i are all mutually independent for

i = 1, . . . , p. The proof of the λbi ’s and λyi ’s having a marginal Bernoulli distribution can found in the supplementary
material. Figure 3 shows the geometric mean of the average bond cleavage abundance for all cleavage pairs of the
b and y ions using Figure 1 in Huang et al. (2004). Note that probabilities for a particular amino acid cleavage pair
that are too close to zero may force the algorithm to exclude reasonable peptides. In order for our prior to be more
inclusive, we use a linear transformation of the scale used in Huang et al. (2004), of the form ρ = 0.49x+ 0.67. Our
rescaled distribution has probabilities that range from 0.67 to 1.00. [[Figure 3 goes here]]

3.3.2 Sequence Prior

We now want to specify a prior distribution for a particular sequence (or string) of amino acids in a peptide. The prob-
ability of any particular amino acid sequence is represented by the string prior, π(η), which quantifies the probability
of a sequence of amino acids appearing consecutively in a peptide sequence. For each amino acid pair in the candidate
peptide under consideration, we count how often the pair occurs in the set of known peptides from the same species.
Then we find the empirical probability of each amino acid pair using our large database of peptides. Note that one
could use other databases that do not contain the current peptide to calculate the empirical probability. The string prior
is defined as proportional to the geometric mean of π(ηF ) and π(ηR),

π(η) ∝
√
π(ηF )× π(ηR), (5)

where π(ηF ) is the joint probability of any particular amino acid sequence calculated from left to right while π(ηR)
is the joint probability of any particular amino acid sequence calculated in the reverse direction. Note that this is the
geometric mean of π(ηF ) and π(ηR). Here η is the ordered sequence of the amino acids in the current peptide under
consideration where the length of η is the number of amino acids in the candidate peptide, and π(η) is a probability for
this particular sequence. Denote a generic peptide sequence by A1A2 · · ·Am−1, where m− 1 is the number of amino
acids in the peptide sequence, A0 denotes the beginning of the sequence, and Am denotes the end of the sequence.
For example, consider the peptide TGMSNV SK. For this candidate peptide having 8 amino acids, m = 9. π(ηF )
is calculated by

π(ηF ) = P (A1 = a1)×
m−1∏
i=1

P (Ai+1 = ai+1|Ai = ai) (6)

with P (A1 = a1) = p1, P [(Ai, Ai+1) = (ai, ai+1)] = pi,i+1, and therefore P (Ai+1 = ai+1|Ai = ai) =
pi,i+1∑

j P [(Ai, Ai+1 = (ai, j)]
for j ∈ {A,C, . . . , Y, } where ai represents the amino acid in the i th position in the

peptide sequence and am = signifies the termination of a sequence. In a similar manner, π(ηR) is computed by

π(ηR) = P (Am−1 = am−1)×
m−2∏
i=0

P (Ai = ai|Ai+1 = ai+1) (7)

withP (Am−1 = am−1) = pm−1, P (Ai = ai|Ai+1 = ai+1) =
pi,i+1∑

j P [(Ai, Ai+1 = (j, ai+1)]
for j ∈ {A,C, . . . , Y, }

where a0 = signifies the beginning of a peptide sequence. Note that we assign a minimum non-zero probability,
0.000001, for each pair, so that all peptide sequences have a strictly positive probability. Figure 4 shows the joint
empirical probabilities for all pairs of amino acids. An example demonstrating the calculation of this type of prior
probability can be found in the supplementary material. [[Figure 4 goes here]]
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3.3.3 Prior for κ1, κ2

The concentration parameters, κ1 and κ2, are assumed to have independent Gamma(a1, b1) and Gamma(a2, b2) prior
distributions respectively, which are independent of the other parameters.

3.4 Posterior

Treating the scoring function as an approximate likelihood, using Bayes’ Theorem, the approximate posterior density
can be written as

π(η,λ, κ1, κ2|X) ∝ L(X|λ, τ ,η, κ1, κ2)× π(λ)× π(η, τ )× π(κ1, κ2) (8)
= L(X|θ,η, κ1, κ2)× π(λ)× π(η)× π(κ1, κ2), (9)

where λ, η, and κ1, κ2 are assumed independent. The set of m/z locations given by τ = (τ b1 , . . . , τ
b
p , τ

y
1 , . . . , τ

y
p )
T is

determined by the sequence η, and so P (τ |η) = 1. Note that this posterior density is only known up to a constant and
the actual form of the posterior density is complicated. Therefore, to obtain the posterior probabilities we use MCMC
simulation. Our Bayesian method incorporates prior information about the chance of seeing particular cleavage pairs,
and also quantifies the prior probability of any particular specific amino acid sequence. We use this posterior density
to estimate the true peptide, with candidate peptides having high posteriors being judged more likely to be the true
peptide. Our point estimate of the true peptide is the posterior mode, that is, the candidate peptide (among those
visited by the search algorithm) with the highest posterior probability, and the posterior distribution variance provides
information about the uncertainty of the estimate. Now and henceforth, when we refer to the “posterior,” note that this
is an approximation to the true posterior, since our scoring function is an approximation to a true generative likelihood
(see Section 5.1 for details).

4 A Markov Chain Monte Carlo Algorithm

Our posterior is complicated and so we employ Markov chain Monte Carlo (MCMC) methods to sample the parameters
(Tierney, 1994; Robert and Casella, 1999; Andrieu et al., 2003; Sorensen and Gianola, 2002).

4.1 Initialization

To find a starting peptide for the MCMC algorithm, we only consider candidates with the overall correct mass (within
a tolerance). One option is to use an initial iterative sub-algorithm to obtain a starting peptide. Note the actual mass of
the true peptide is available to us from the mass spectrometry data, and so we can dramatically reduce the parameter
space by searching for peptides with a mass within a specific tolerance (0.5 Da) of the actual mass. To obtain a random
starting point, amino acids are randomly added or removed until a peptide is found that has a mass within a tolerance
of the mass of the true peptide.

While using the method above will reduce the space of initial peptides, it may still yield a starting peptide far from
the truth if the peptide sequence is long, which could result in our method taking a long time to search for the true
peptide. Another option for finding a starting peptide is to use the results from PepNovo (Frank and Pevzner, 2005).
PepNovo yields a list of the top 2000 best estimated peptides for the true peptide. We can use a peptide from this list
as our starting peptide; still ensuring it will have the correct total mass within a tolerance.

4.2 Posterior Simulation

Once the starting peptide is generated, the log of the scoring function value of that peptide is calculated. Call the
current peptide ηcurr (initially this will be the starting peptide). The β and γ vectors are pre-determined at the
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beginning of the algorithm and are constant throughout the algorithm. Before the algorithm begins, a vector λcurr is
generated using the β and γ vectors.

MARKOV CHAIN MONTE CARLO ALGORITHM

1. A new peptide is created by randomly replacing one, two, or three amino acids of the current peptide with one,
two, or three amino acids. This implies the next candidate peptide will be of the same length or length 1 or 2
shorter or 1 or 2 longer than the current peptide, but will still have a total mass within the tolerance of 0.5 Da of
the true mass.

2. Generate a vector λnew using the β and γ vectors.

3. Generate κ1 and κ2 from their full conditional distribution: gamma distributions with the shape parameter
α1 = a1 + s and scale parameter β1 = S1 + b1 and shape parameter α2 = a2 + (t − s) and scale parameter
β2 = S2 + b2, respectively. Note that the values of S1 and S2 are based on the current peptide.

4. Compute the unnormalized posterior probability for both the new and current peptide, computed based on the
new and current λ vectors, respectively. Denote these as ζ1 and ζ2, respectively.

5. Generate U ∼ U(0, 1). If U <

(
ζ1
ζ2
× q(λcurr|λnew)
q(λnew|λcurr)

× q(ηcurr|ηnew)
q(ηnew|ηcurr)

)
, then the new peptide becomes the

current peptide, and λnew becomes λcurr. Otherwise, both the current peptide and λcurr remain unchanged.

6. Go to 1.

When exploring large state spaces stochastically, it is important that the algorithm be irreducible: that is, it may visit
every potential state with positive probability (Tierney, 1994). To ensure irreducibility, every 1000 steps we generate
an entirely new peptide that is independent of the current state. Note that any sequence with the correct mass has
positive probability of being generated in this step (Tierney, 1994).

Steps 1 - 6 are repeated for a large number of iterations. The peptide with the largest posterior density is selected as the
estimate of the true peptide, and we retain all generated peptides along with their approximate posterior probabilities
(up to a constant).

Trace plots of the log posterior and parameters are used to monitor convergence of the algorithm to determine whether
the chain has converged to its stationary distribution and whether the chain is mixing well. Examples of these plots
are are shown in Lewis (2013) in Figures 7.4 - 7.6.

To calculate the first proposal densities we need to calculate q(λcurr|λnew) and q(λnew|λcurr). Note that q(λcurr|λnew) =
q(λcurr) and q(λnew|λcurr) = q(λnew) since the new λ is generated independently of the current λ from the prior
distribution, as described in Section 3.3.1.

To calculate the second set of proposal densities we need to calculate q(ηcurr|ηnew) and q(ηnew|ηcurr). Recall from
step 1 of the MCMC algorithm, we always replace either one, two, or three amino acids of the current peptide with
either one, two, or three amino acids. Hence there is a 1/3 chance of choosing either one, two, or three amino acids
to be replaced. If only one amino acid is chosen to be replaced, then there is a 1/n chance that any particular amino
acid will be chosen (n represents the total number of amino acids in the peptide sequence). If a pair of amino acids
is chosen to be replaced, then there is a 1/(n − 1) chance that a consecutive pair of amino acids will be chosen. If
three consecutive amino acids are chosen to be replaced, then there is a 1/(n− 2) chance that any particular triplet of
consecutive amino acids will be chosen.

Also, note that the current and new peptide must have a total mass that is within a tolerance of the total mass of the
true peptide. After the number of amino acids to be replaced is fixed, a list of single, pairs, and/or triplets of amino
acids is generated such that each has a mass within a tolerance of the mass of the amino acid(s) that is to be replaced.
Therefore, the probability that a particular single, pair, or triplet is chosen is 1/m where m is the number of singles,
pairs, and/or triplets in the list of amino acids that satisfy the weight tolerance. If a pair or triplet is selected from the
list, then we must consider all permutations of the pair or triplet. For example, if the pair AK is selected from the list,
we then randomly select whether AK or KA is chosen. The probability for choosing a particular permutation of a set
of amino acids is 1/v where v is the number of permutations of the set of amino acids.

Examples of the calculations of both proposal densities can be found in the supplementary material.
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Since the parameter space is quite large, simulated annealing is performed to help further explore the parameter space.
Simulated annealing incorporates a temperature parameter in the algorithm to allow one to better search the parameter
space for the true peptide. High temperature values allow more exploration of the parameter space. Lower temperature
restricts the exploration of the parameter space (Kirkpatrick et al., 1983). A large temperature parameter is set for the
first 95% of iterations and a small temperature parameter is set for the last 5% of iterations. The small temperature
is set to 1 to ensure we sample from the posterior and we use L(X|θ,η, κ1, κ2)1/T in replace of L(X|θ,η, κ1, κ2)
where T is the temperature parameter.

Stochastic search algorithms with finite state spaces typically satisfy certain theoretical properties more readily than
those with an infinite number of states (Tierney, 1994). We fix the size of our state space, because for any given
spectrum, the peptide cannot be arbitrarily long. A mass spectrometer always accurately measures the total weight of
the true peptide and there is a finite number of residues that produces a peptide of that weight.

Since the number of amino acids in the candidate peptides changes across iterations, at first glance it seems as if
the dimensionality of our stochastic search is changing. However, we can consider each candidate peptide as one
realization from a very large (but finite) sample space. Since the overall mass of the observed peptide is fixed and
known, the longest candidate peptide satisfying this overall mass constraint must contain a fixed, finite number of
amino acids. There are a finite number of amino acid sequences that combine to yield this overall mass, and our
method searches among this large finite set.

5 Simulation Study

In this section, we simulate data based on our scoring function in order to get a better understanding of the tuning
parameters, with the goal of recovering the theoretical spectrum more often. Since our algorithm uses only the m/z
values that have intensities above a threshold, we generate a spectrum with signal and noise peaks that are already
assumed to be above a threshold. For a given peptide, we will know the locations of the true peaks. Denote the true
set of peak locations as τ = (τ1, . . . , τs), where s represents the total number of true peaks. Each true peak will then
generate a signal peak and a random number of noise peaks that are above the threshold. We use two different noise
structures, one using the Laplace distribution and the other using a Poisson process.

5.1 Laplace Noise Structure

We first employ the Laplace distribution to simulate noise peaks (Damsleth and El-Shaarawi, 1989; Kemp, 2003).
Using the Laplace distribution ensures that we have a generative model, allowing us to generate spectra approximately
using our model that is defined in Section 3.2.

Mass spectrometers do not always capture peaks that appear at the beginning or end of the spectrum, causing the rate
of noise peaks per signal peak to vary over an observed spectrum. Therefore, before we generate a spectrum, we
first split the observed spectrum into three sections. Each section will contain a number of signal peaks, determined
to be a percentage of the total signal peaks. Then for each signal peak in each section, a random number of noise
peaks will be generated. To explain how to find the number of signal peaks for each section, consider a peptide with
s = 20 true peaks. The first section will contain s1 = 20 × 0.1 = 2 signal peaks and the third section will contain
s3 = 20 × 0.1 = 2 signal peaks. Thus the middle section will contain s2 = 20 − 2 − 2 = 16 signal peaks. The
proportions of 0.1 for each boundary section reflect the characteristics of the data sets we have studied. For each
section of the spectrum, we use a discrete uniform with parameters a = 0 and b to determine the number of noise
peaks per signal peak to be generated. The values of b depend upon the section of the spectrum. Lower values of b will
be chosen for the beginning and ending sections and a higher value of b will be chosen for the middle section. Note
that increasing b for each section will cause our data to become noisier. For the first section, the value of b, denoted
as b1, will be b1 = 3. For the middle and third section the value of b will be b2 = 10 and b3 = 5, respectively. These
values work well and tend to generate a moderate number of noise peaks.

We then simulate from a Laplace distribution to generate the locations of both the signal peak and noise peaks with
fixed parameters κ1 and κ2. Increasing κ2 causes the location of the generated noise peaks to be tightly centered on
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the signal peaks. Decreasing the value of κ2 causes the location of the generated signal peaks to be shifted from their
location on the theoretical spectrum and thus be spread out far from the signal peaks.

The steps to generate a spectrum with Laplace noise structure is as follows:

1. Determine the total number of true peaks, s, and compute τ by finding the b and y ions, based on the given
peptide.

2. Simulate signal peaks from a density f(xj) ∝ κ1e
−κ1|xj−τj | for j = 1, . . . , s, where τj are the elements of

τ = (τ b1 , . . . , τ
b
p , τ

y
1 , . . . , τ

y
p )
T . Note s = 2p is the number of peaks and p is the number of b-ions (or y-ions).

3. Use an indicator function λi with probability function P (λ) =
∏p
i=1 P (λ

b
i , λ

y
i ), where p = s/2 is the total

number of b ions (or, equivalently, the number of y ions) to determine the presence or absence of each signal
peak. P (λ) was given in Section 3.3.1.

4. For each of the three sections in the spectrum, the number of noise peaks for each signal peak in the section is
generated using a discrete uniform.

5. Simulate noise peaks from a density f(xj) ∝ κ2e−κ2|xj−τj |, for j = s+1, . . . , nT , where τj are peak locations
chosen at random from τ .

The likelihood for the generated set of peaks is of the form

L ∝ κs1e−κ1
∑

j∈S λj |xj−τj |κt−s2 e−κ2
∑

j∈N |xj−τj |. (10)

Note the similarity of this expression with the previous scoring function in Equation 1 discussed in Section 3.2,
although it is not exactly the same. The first component in the scoring function defined in Section 3.2 sums over the
minimum absolute distances between the closest observed peak to a candidate peak and the second component sums
over the minimum absolute distance between the nearest candidate peak to each observed noise peak. In Equation 10,
the first component just sums over the absolute distances between the closest observed peak to a candidate peak and
the second component sums over the absolute distance between the nearest candidate peak to each observed peak. We
use the scoring function in Equation 1 instead of Equation 10 because we do not know which observed m/z values
will match up with the true m/z values. Although it may be possible to estimate, combinatorically it is not sensible.
We do not know which observed peak will match up with the theoretical peak but it is practical to assume the closest
m/z value.

In the following simulations, we use the previous scoring function in Equation 1, not Equation 10, for inference.

5.2 Poisson Noise Structure

To study the robustness of the method to departures from Laplace noise, we may generate noise peaks using a Poisson
process. With this process we can generate noise peaks that are independent of the signal peak locations. As with the
Laplace noise structure, the spectrum is split into three sections. To determine the number of noise peaks needed for
each section, the total number of m/z values, denoted as q, that have intensity values above a specific threshold is first
found from the observed spectrum of the true peptide. Then q is split into three values, (q1, q2, and q3), where these
values will determine the number of noise peaks needed for each section. Reflecting the processing of the spectrum
by the mass spectrometer, the first section of the spectrum will have the fewest noise peaks and the middle section will
have the most noise peaks. To illustrate how to find the number of peaks needed for each section, consider a peptide
whose spectrum contains 100 m/z values. For the first section of the spectrum, there will be q1 = 100 × .25 = 25
noise peaks that are generated. The third section of the spectrum will have q3 = 100 × .25 = 25 noise peaks. The
middle section will then have q2 = 100−25−25 = 50 noise peaks. The proportions 0.25 and 0.75 for each boundary
section reflect the characteristics of the data sets we have studied. The peptides ranged in mass from 200 to 2000
Da.To obtain the locations for the noise peaks for each section, the cumulative sum of randomly generated values from
an exponential distribution, shifted by a specified value c, are found by the following algorithm:

1. Initialize t = 0.

2. Generate x ∼ Exp(θ)
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3. Set t = t+ x.

4. Store t in t.

5. Repeat qi times.

6. Compute t+ c,

where t is the vector of noise peaks for section i for i = 1, 2, 3. In order for the generated noise peaks to have m/z
values in the same range as the observed spectrum, we must set an initial value c to be added to the Poisson process.
Recall the amino acid G has the smallest mass of 57.0215 Da. Let maxmz be the largest m/z value for the observed
spectrum. For the first section, the value of c (denoted as c1) is found by c1 = 57 + (maxmz − 57)× 0.1. The value
for c for the middle section (denoted as c2) is found by c2 = c1 + (maxmz − 57) × 0.2 and for the last section c
(denoted as c3) is found by c3 = c1 + c2 + (maxmz − 57)× 0.3. The proportions 0.1, 0.2, and 0.3 were chosen after
experimentation. To demonstrate how to find c, consider a peptide whose maximum m/z value is 1150. The values of
c for each section would be the following: c1 = 57+(1150− 57)× 0.1 = 166, c2 = 166+ (1150− 57)× 0.2 = 385,
and c3 = 166 + 385 + (1150− 57)× 0.30 = 879.

The full algorithm for obtaining the signal and noise peaks using a Poisson process with a parameter θ is defined as

1. Determine the total number of true peaks, s, and compute τ by finding the b and y ions, based on the given
peptide.

2. Simulate signal peaks from a density f(xj) ∝ κ1e−κ1|xj−τj | for i = j, . . . , s.

3. Use an indicator function λi with probability function P (λ) =
∏p
i=1 P (λ

b
i , λ

y
i ), where p = s/2 is the total

number of b ions (or, equivalently, the number of y ions) to determine the presence or absence of each signal
peak.

4. For each of the three sections in the spectrum, compute the number of noise peaks for each section of the
spectrum.

5. Simulate noise peaks from the algorithm described above.

When using a Poisson process to simulate the location of the noise peaks, we need to choose the value of the fixed
parameter θ. Increasing θ causes clusters of tightly spaced noise peaks. Decreasing the value of θ produces fewer
noise peaks in the generated spectrum and thus it does not imitate the observed spectrum as well.

5.3 Example 1

Before simulating the spectrum, we must specify the parameters. We set κ1 and κ2 to be 50 and 0.10, respectively. We
also set θ = 1/15. For the indicator function λ, we set the first elements of β and γ to be pb1 = 0.05 and py1 = 0.10.
We set these probabilities to be low because the mass spectrometer rarely captures the first b ion and first y ion. We
set all other elements of β and γ to be 0.8.

First consider a peptide with a short amino acid sequence. Consider the peptide TGMSNV SK whose observed
spectrum contains m/z values that range from 123 to 749 Da. The total number of true peaks is s = 14 and so
s1 = 1, s2 = 12, and s3 = 1 using boundary section proportions 0.1. The total number of m/z values in the observed
spectrum with intensity values above the threshold is q = 75 and so q1 = 19, q2 = 37, and q3 = 19.

For each example shown, a table of the 5 best estimated peptides is given along with their corresponding log posterior
value. The breakdown of the log posterior is also given to show why the true peptide does not have the highest posterior
probability (when that is the case).

We simulate a spectrum with minimal noise and one with substantial noise. For the Laplace case, to decrease the
number of noise peaks, we set the values of b for each section of the spectrum to be b1 = b2 = b3 = 2. To increase the
number of noise peaks, we set the values of b for each section to b1 = b2 = b3 = 10. For the Poisson case, to decrease
the number of noise peaks, we decrease the values of q1, q2, and q3 by 15 and to increase the number of noise peaks
in the generated spectrum, we increase the values of q1, q2, and q3 by 15.
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After the spectrum is generated, our method described in Section 3.2 is then applied to the simulated spectrum. The
starting peptide is GTMSGRSQ, which was obtained from the results from PepNovo when applied to the real data.
The algorithm was run for 10000 iterations.

Table 1 shows the posterior mode for the TGMSNV SK example using the simulated spectrum for each of the three
noise levels using a Laplace noise structure. Table 2 shows the posterior mode for the TGMSNV SK example using
the simulated spectrum for each of the three noise levels using a Poisson noise structure. Both tables provide the
estimated log posterior densities with the breakdown of the log posterior. The true peptide is highlighted in bold. Both
tables show that when using minimal noise, the true peptide is the top estimated peptide, which ensures our method is
performing well in both the Laplace and Poisson case. In cases when the spectrum has more noise, our method was
still able to identify the true peptide as among the best choices using either noise structure. With moderate noise, the
true peptide is estimated as the best peptide under the Laplace noise structure. Under the Poisson noise structure with
moderate noise, the true peptide is estimated as the second best peptide, but notice that the log posterior for the best
estimate and the log posterior for the true peptide are quite similar. [[Table 1 goes here]] [[Table 2 goes here]]

5.4 Example 2

Here we set the parameters to be the same as in Section 5.3. We now generate a spectrum for a peptide with a longer
amino acid sequence. The generated spectrum is based on the peptide Y HFEQSTV TSQPAR whose observed
spectrum contains m/z values that range from 235 to 1634 Da. The total number of true peaks is s = 26 and so
s1 = 3, s2 = 20, and s3 = 3 using boundary section proportions 0.1. The total number of true peaks is s = 26 and so
s1 = 3, s2 = 20, and s3 = 3. The total number of m/z values in the observed spectrum with intensity values above a
threshold is q = 157 and so q1 = 39, q2 = 79, and q3 = 39 (up to a constant).

As in Example 5.3, we also simulate spectra with minimal and substantial noise. After the spectrum is simulated,
we applied our method to the simulated spectrum. The starting peptide is HY FETDQATSKPVK, which was
obtained from the results from PepNovo when applied to the real data. The algorithm was run for 10000 iterations.

Table 3 shows the posterior mode for the Y HFEQSTV TSQPAR example using the simulated spectrum for each
of the three noise levels under a Laplace noise structure, and Table 4 shows the posterior mode for the
Y HFEQSTV TSQPAR example using the simulated spectrum for each of the three noise levels using Poisson
noise. Both tables provide the corresponding estimated log posterior densities with the breakdown of the log posterior.
The true peptide is highlighted in bold. Table 3 shows when minimal noise is applied, the true peptide again is the
top estimated peptide, which shows our method is performing well. When moderate noise is applied, the true peptide
is identified as the best estimated peptide. When substantial noise is applied, we see that the true peptide was not
identified in the top estimated peptides, because of the additional noise added into the spectrum. Table 4 shows when
minimal noise is applied, the true peptide again is the best estimated peptide, confirming that our method is performing
adequately well. With moderate noise, the true peptide is estimated as the second best peptide. With substantial noise,
the true peptide is among the top estimated peptides. Although the spectrum has more noise, our method was still able
to identify the true peptide as being among the best choices in this example. [[Table 3 goes here]] [[Table 4 goes here]]

5.5 Comparison of Noise Structures

With moderate noise, our method performed equally well under both noise structures for peptides with both short and
long amino acid sequences. With minimal noise, once again our method performed equally well under both noise
structures for peptides with short and long amino acid structures. With minimal noise, the true peptide was identified
in all cases.

For peptides with short and long amino acid sequences, using either noise structure, our method performed well for
all levels of noise tried. The noise generated in the spectrum is not completely realistic since certain peak features like
isotopic peaks, adducts, and post-translational modifications are not included in the noise and so the noise generated is
somewhat artificial. Although the noise generated in the spectrum may not be realistic, the methods are promising. An
advantage of assuming a Laplace noise structure is that our model would be an approximation to a generative model.
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Unlike a discriminative model, a generative model allows one to generate samples from the joint distribution. Genera-
tive models are more flexible since they are full probabilistic models of all variables and can be used to simulate values
of any variable in the model (Singla and Domingos, 2005). Note our function in Equation 1 used is an approximation
to the Laplace model.

6 Real Data Application

Most peptides in the PNNL dataset described in Section 1 are of length 8 to 20 amino acids. Our data include some
relatively longer peptides due to the type of equipment used to process the data. Recall the equipment used was a
LTQ Orbitrap mass spectrometer, which is a hybrid machine composed of a linear ion trap mass spectrometer and the
Orbitrap mass analyzer that uses a fast Fourier transform algorithm (Yates et al., 2009). The dataset contains 1,206
peptides with lengths ranging from 7 to 31 amino acids and an average length of 15.16. The data are doubly charged
and the total mass for each peptide is given. The dataset contains a set of masses and corresponding intensities with
an average intensity value of 50.7.

We first process the data. We choose to remove the doubly charged parent ion from the dataset. A parent ion is the
fragment ion generated in mass spectrometry before the ion is broken apart into further ions. The m/z value of the

doubly-charged ion is
∑K
i=1m(pi) + 1

2
. Therefore, we remove the peak at that m/z value. Our proposed method

works for pre-processed data. After extensive numerical experimentation, we found that using the 75th percentile to
calculate the constant and moving threshold works well. This means we use the observed m/z values in the data that
have corresponding observed intensity values above the threshold value in T . We looked at several other threshold
values to see which optimized the results. As the threshold is decreased, the estimated peptides become less similar
to the true peptide. This happens because as we lower the threshold, more noise enters the observed spectrum and
the value of S2 in the likelihood is greatly increased. Therefore, our algorithm cannot find the true peptide. As the
threshold is increased, at a certain point the estimated peptides become less similar to the true peptide. Although there
is less noise in the observed spectrum when the threshold is increased, signal peaks may be removed from the observed
spectrum with a large threshold. Thus, our algorithm will not be able to correctly to identify the true peptide. Using a
threshold of 75% removes many noisy peaks while still retaining the signal peaks. Tables 7.17 - 7.20 in Lewis (2013)
illustrate these results.

The mass spectrometer is not always accurate and this can cause the ion fragments that are detected to be slightly
shifted from their theoretical position. Therefore, we use a tolerance level of 0.5 Da. That is, we allow the ion
peak locations to be up to ±0.5 Da from their theoretical positions. We set the initial components of β and γ to be
pb1 = 0.05 and py1 = 0.10. We set these probabilities low because the mass spectrometer rarely captures the first b
and y ion. Table 1 in Dančı́k et al. (1999) provides prior probabilites for observing a b or y ion based on experimental
spectra. We used those prior probabilities as initial starting values for pbi and pyi. After varying the values of pbi and
pyi based on extensive experimentation, setting pbi and pyi to equal 0.80 worked well. Therefore, we set all other pbi
and pyi to equal 0.80 for i = 2, . . . , p.

We must also specify the hyperparameters, the most critical, in the Gamma prior distribution for κ1 and κ2. After
extensive numerical experimentation, the values of a1, b1, a2, and b2 were set to be 5.5, 0.1, 3, and 100, respectively.
From further experimentation, the large temperature parameter was set to 500 and the small temperature parameter is
1. We believe these values work well for the peptides of moderate size peptides studied in this paper. For extremely
large peptides, the values of the hyperparameters may need to be adjusted to higher values. Based on experimenta-
tion, a general criterion for large peptides (i.e., comprising roughly 30 or more amino acids) is to use values for the
hyperparameters that are 5 times larger than those used for moderately sized peptides.

Different tolerances affect the performance of the method. Using a small tolerance like 0.1 Da hardly allows for
any error in the mass spectrometer, so that the observed spectrum would need to be aligned almost perfectly with the
theoretical spectrum. A large tolerance like 1.0 Da would allow more room for error but it would expand the parameter
space that needs to be searched, which could prevent the algorithm from finding the true peptide in an efficient manner.

Starting from a completely random place is idealistic, but it may not be best in practice since the state space is so large,
which would cause the algorithm to run for a much longer number of iterations. Running the algorithm for a large
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number of iterations increases the running time of estimating the peptide. Thus, the results from PepNovo should be
used to obtain a starting peptide. We then refine the estimated peptide using our proposed method.

6.1 Example 3

Figure 5 is a plot of the observed spectrum for the peptide TGMSNV SK. The theoretical spectrum aligns nicely
with the observed spectrum, although there is quite a bit of noise in the center of the graph even after thresholding.
[[Figure 5 goes here]]

Using the results from PepNovo, we obtain a starting peptide, TGFAGGV SGA, which has a total mass that is
within 0.5 Da of the weight of the true peptide. After 100,000 iterations, our best estimate for the true peptide is
TGMSNV SK with a log posterior density of −15.16 (up to a constant). Table 5 shows the top estimated peptides
for the TGMSNV SK example, with their corresponding estimated log posterior densities and the breakdown of the
log posterior (log of the scoring function valueand log priors). The true peptide is estimated as the best having the
largest log posterior density. [[Table 5 goes here]]

To ensure our method is obtaining similar results for various starting peptides, consider results from using different
starting peptides that we obtain from PepNovo: SAMYHSK, TGAFGRSK, and GTFANEGK. Table 6 shows
the top estimated peptides along with their corresponding log posterior densities for the above starting peptide values.
The results are similar and that the true peptide (highlighted in bold in the table) is captured as the best estimated
peptide in all three cases. The log posterior densities are also similar in the three cases. [[Table 6 goes here]]

6.2 Example 4

Figure 6 is a plot of the observed spectrum for the peptide DLV ESAPAALK. The theoretical spectrum aligns
nicely with the observed spectrum. [[Figure 6 goes here]]

Using an initial peptide of DLV ESY FLK from the PepNovo results and 100,000 iterations, we obtain our estimate
DLV ESAPAALK with a log posterior density of 42.90 (up to a constant). We see that the true peptide is estimated
as the best. Table 7 shows the top estimated peptides for the DLV ESAPAALK example along with the breakdown
of the log posterior. [[Table 7 goes here]]

Consider the results from using different starting peptides that we obtain from PepNovo: DLV TDAPAAIQ,
LDV TDAPAALK, and LDV ETGPAAIQ. Table 8 shows the top estimated peptides along with their correspond-
ing log posterior densities for the above starting peptide values. Again the true peptide (highlighted in bold in the table)
is the best or is among the best choices in each case, and the log posterior densities are also similar in the three cases.
[[Table 8 goes here]]

6.3 Result Comparisons

To quantify objectively how our method improves relative to its current estimation, we compare our results with those
using the PepNovo rank score and the PepNovo score. The comparison is only made in the accuracy of the predicted
peptide and not in the speed of the computation. Since our method can identify peptides that are not found in a peptide
database, we make no comparisons with SEQUEST and MACSOT. We will not make a distinction between the amino
acids I and L because they have identical masses of 113.084. Although PepNovo does not make a distinction between
the amino acids K and Q because the difference in their masses is only a minute difference of 0.04 Da, we will make
the distinction.

Our comparison method uses the minimum number of switches in the amino acid sequence of the peptide needed
to obtain the true peptide. Switches are only considered if the total mass remains within 0.5 Da of the total mass
of the true peptide. If the best estimated peptide is the truth, then minimum number of switches would be zero. To
illustrate this comparison method, consider the true peptide V SEGQTV R with the estimate WEGQTV R. One can
see the only difference from the true peptide is that the estimate begins with W while the true peptide begins with
V S. Note that the mass of W (186.079 Da) is within 0.5 Da of the mass of V S (186.1) and so the minimum number
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of permissible switches is 1. If more than 3 switches are needed to obtain the true peptide, we denote the minimum
number of switches as 4+. In both the PepNovo rank score and PepNovo score, the best estimated peptide might
not have the same mass as the true peptide. PepNovo does provide the N − Gap, which is the mass gap from the
N-terminal to the start of the de novo sequence and the C − Gap, which is the mass gap from the C-terminal to the
end of the de novo sequence. While it does provide those mass values, it does not detect the amino acid residues that
should correspond to the mass gaps. For example, consider the true peptide DLV ESAPAALK with a total mass
of 1113.616 Da. Using the PepNovo rank score, the best estimated peptide is DNV ESLEV , which has a mass of
885.4088 Da. Note that this mass is the sum of masses of each amino acid residue in the sequence and does not include
the mass of a water molecule and hydrogen molecule. That is accounted for in the mass gap. The C − Gap value
given is 229.029 Da implying there are amino acid residues missing from the end of the de novo sequence whose mass
should total 229.029 Da. We cannot look at the minimum number of switches; however, we do know that a peptide
with a total mass less than the total mass (outside of the tolerance) of the true protein cannot be the true peptide.

Table 9 displays the best estimated peptides for the PepNovo rank score, the PepNovo score, and our method along
with the corresponding true peptide. The minimum number of switches is in parentheses. One can see that in most
cases when using the PepNovo rank score, the best estimated peptide does not have the correct total mass. Thus,
refining the results of PepNovo, our method allows our estimated peptides to have the correct total mass (within a
tolerance). Comparing the results from the PepNovo score and our method of using the Bayes log posterior, the
PepNovo score tends to do slightly better for peptides with shorter amino acid sequences. However, for peptides
with longer amino acid sequences, our method tends to do better. PepNovo produces very quick (seconds) results but
the MCMC algorithm is slower (several minutes). However, we do not see our method as a competitor but more as a
refinement. Note that one method does not necessarily work best in every case, yet a combination of two good methods
can produce an even better method. Therefore, an avenue to explore in the future is developing a rank score method
that will combine our method with PepNovo’s method. It would be interesting to compare the number of switches
for peptides in order to gauge both the false positive and false negative error rates, although this is an enormous
computation. [[Table 9 goes here]]

7 Discussion

Proteomics produces large amounts of spectra from mass spectrometry. Issues such as post-translational modifica-
tions (PTMs), mutations, and contaminants can cause the spectra to fail to match peptides from a database. Also,
there are copious microorganisms such as bacteria and protists that have not been identified and therefore, using a
database search to identify these peptides is of very limited use in the case of non-homologous proteins. Of those
microorganisms that have been identified, some show evidence of PTMs, which can create complications in the de
novo sequencing when comparisons are made between the theoretical spectrum and the observed spectrum. Thus the
need for a method of identifying peptides that does not rely on a known database and is not is affected by PTMs is
evident.

Another reason for the need for accurate peptide identification is protein sequencing, the method of identifying the
true amino acid sequence of a protein. Identifying an entire protein is almost impossible, and so the protein is split
into short peptides. Ergo, being able to correctly identify the amino acid sequence of a peptide will aid in identifying
the true protein sequencing.

There are limitations in the current methods for protein identification. Our method aims to alleviate such drawbacks of
de novo sequencing and database searches. By using a Bayesian approach, we allow prior knowledge of the peptides
to help us to find the best estimate of the true peptide. Due to the complexity of our posterior density, we use MCMC
simulation to obtain the posterior probabilities. This allows one to approximate the target distribution, in our case the
posterior distribution of the unknown peptide sequence. One advantage of our method is that it is not dependent upon
known peptides. We hope that our method will obtain more accurate estimates of the true peptide, helping researchers
in the field of proteomic research and potentially aiding in identifying microbes. With the study of proteins becoming
more important in identifying early stages of diseases (most commonly cancer), it is of great importance to be able
to correctly identify these proteins. Conceivably, use of these peptides as biomarkers for diseases could aid in the
diagnosis of types of cancers or find better patient treatments.
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Cleveland and Rose (2012) developed a method to identify better peaks using a neural network, which can be used
to construct a predictive model that does not require an extensive understanding of peptide fragmentation. Like our
method, Cleveland and Rose (2012) concentrate on identifying signal peaks corresponding to b and y ions; they also
employ a leveraged neural network (LNN), which is composed of two neural networks used in order to classify peaks.
In the first neural network, peak features, such as isotopologues and neutral losses, are found from the data in the
spectrum. Then in the second neural network, the results from the first neural network are leveraged as extra features
in the second neural network. This process selects peaks with higher precision and reduces the number of peaks in
the spectrum, which could make identifying the true peptide more efficient. Recall from Section 2 that other ions
can produce peaks in the observed spectrum. Therefore, employing this method could lead to better identification of
peaks, and thus will lead to a more accurate theoretical spectrum and ultimately better identification of peptides. For
additional information about the LNN, see Cleveland and Rose (2012).

An important aspect for the future development is to refine the Bayesian model. The model can be refined by including
more signal peaks: b −H2O, b − NH3, y −H2O, y − NH3, y

2, isotopic peaks, etc, which could aid in identifying
which are signal peaks and which are noise peaks. Adapting the prior to assign probabilities to the length of the peptide
is another avenue one could explore. The current prior favors shorter peptide sequences. Peptides with shorter amino
acid sequences have higher prior probabilities than peptides with longer amino acid sequences.

There are a few other possibilities for future work: Exploration of the sequence prior distribution could be conducted,
although a full exploration would be a massive undertaking since the number of sequences is so vast. The calculated
priors could be compared with the observed frequencies to gain an idea of how closely the prior distribution reflects the
empirical distribution. A sensitivity analysis in the simulations could be explored. Possible approaches to sensitivity
analyses would be using a different linear transformation in the cleavage prior, and using π(ηF ) or π(ηR) rather than
π(η) in the sequence prior, and seeing whether the results changed much.

Our method is a promising addition to the peptide identification methodological toolbox.
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Table 1: The top estimated peptides from the MCMC algorithm along with their corresponding log posterior densities,
log of the scoring function value, log cleavage prior, log sequence prior, log κ1 prior, and log κ2 prior for the peptide
TGMSNV SK when using a simulated spectrum for each of the three noise levels using a Laplace noise structure.

Noise Peptide Log Posterior Log Log Cleavage Log Sequence Log κ1 Log κ2

Level Densities Scoring Function Value Prior Prior Prior Prior

Minimal

TGMSNVSK -42.58 -12.84 -8.03 -25.62 5.30 -1.40
TGMYHSK -47.51 -20.86 -7.51 -22.00 4.37 -1.51
FADTIEK -49.95 -25.52 -6.41 -20.21 3.35 -1.15
WIFSDR -50.66 -28.08 -4.84 -20.35 3.82 -1.20

FVNNSDK -54.76 -26.37 -6.98 -22.18 2.15 -1.39

Moderate

TGMSNVSK -27.82 0.98 -8.94 -25.62 6.08 -0.32
AEPTDYK -47.97 -24.68 -5.39 -21.15 3.76 -0.50
DEMLTSK -49.36 -24.43 -5.85 -22.76 4.17 -0.49
ASAYQQR -49.39 -22.53 -8.26 -21.49 3.37 -0.48
APNLAIPK -51.56 -22.29 -8.97 -22.70 2.94 -0.54

Substantial

TGMPFDR 27.89 47.60 -4.20 -21.79 5.94 0.34
TGMSNVTGG 26.22 63.06 -11.25 -31.85 6.00 0.25
TTSSNVASG 16.59 49.34 -7.83 -31.11 6.00 0.19
TGMSNVSQ 14.27 41.50 -5.23 -28.29 6.04 0.25
TGMSNVSK 7.23 37.53 -10.95 -25.62 6.06 0.21

Table 2: The top estimated peptides from the MCMC algorithm along with their corresponding log posterior densities,
log of the scoring function value, log cleavage prior, log sequence prior, log κ1 prior, and log κ2 prior for the peptide
TGMSNV SK when using a simulated spectrum for each of the three noise levels using a Poisson noise structure.

Noise Peptide Log Posterior Log Log Cleavage Log Sequence Log κ1 Log κ2

Level Densities Scoring Function Value Prior Prior Prior Prior

Minimal

TGMSNVSK -2.03 25.19 -6.57 -25.62 5.78 -0.81
TGMSRGSK -24.68 8.33 -6.50 -31.16 5.33 -0.67
SVFNKTQ -31.30 -1.63 -5.75 -28.69 5.22 -0.45

TGMSRGSQ -36.43 0.58 -8.07 -33.83 5.47 -0.58
NSVAAHPQ -54.21 -22.24 -7.99 -29.14 5.38 -0.22

Moderate

SAMSNVSK 12.60 40.61 -7.14 -25.66 5.41 -0.62
TGMSNVSK 11.30 43.79 -11.66 -25.62 5.33 -0.55
GTMSNVSK 9.79 40.27 -8.84 -26.39 5.35 -0.60
SAFANVSK 9.30 37.84 -8.20 -24.92 5.13 -0.54

TGMSNVSGA -61.57 -21.87 -9.56 -31.08 2.11 -1.16

Substantial

SAMSGGVSK 17.97 49.44 -7.79 -28.35 5.01 -0.34
TGMSGGVSK 14.31 46.91 -8.81 -28.31 4.85 -0.34
TGMSNVSK 0.55 29.41 -7.56 -25.62 4.86 -0.55
TGMSNVSAG -3.03 33.35 -8.72 -31.85 4.76 -0.57
TMGSNVSK -7.21 21.85 -7.56 -25.62 4.82 -0.70

18



Table 3: The top estimated peptides from the MCMC algorithm along with their corresponding log posterior densities,
log of the scoring function value, log cleavage prior, log sequence prior, log κ1 prior, and log κ2 prior for the peptide
Y HFEQSTV TSQPAR when using a simulated spectrum for each of the three noise levels using a Laplace noise
structure.

Noise Peptide Log Posterior Log Log Cleavage Log Sequence Log κ1 Log κ2

Level Densities Scoring Function Value Prior Prior Prior Prior

Minimal

YHFEQSTVTSQPAR 6.21 55.98 -10.29 -47.30 5.99 0.22
YHFSEGSSVVSQPAR 4.40 62.07 -16.64 -47.08 5.86 0.19
YHFSEKTVTSQPAR 3.60 55.12 -10.29 -47.30 5.82 0.25

YHFSEGATTVSQPAR 2.45 60.22 -16.64 -47.08 5.79 0.16
LIAFFNGGGATCHEVD -41.45 29.23 -16.33 -59.10 4.72 0.04

Moderate

YHFEQSTVTSQPAR 88.52 141.08 -13.57 -44.63 5.44 0.19
YHFEQSTVTNTPVQ 86.87 145.87 -17.28 -47.56 5.67 0.16

GDKFEQSTVTSQPAR 85.00 147.05 -18.65 -49.15 5.62 0.14
YHFEQSTVTNTPAR 84.01 134.36 -12.12 -43.85 5.53 0.09
YHFAWSTVTSQPAR 41.81 102.71 -18.84 -46.80 4.63 0.11

Substantial

YHFEQSTVTQSPLN 180.51 241.92 -18.71 -49.14 5.75 0.68
YHFEKSTVTQSPAR 163.42 220.25 -14.52 -48.20 5.16 0.73
YHFEKSTVTSKPAR 157.52 218.14 -16.35 -50.41 5.45 0.69
YHFEQSTVTQSPAR 154.39 206.48 -13.09 -44.69 5.02 0.67
YHFEQSTSISQPAR 116.96 169.27 -12.00 -45.25 4.39 0.55

Table 4: The top estimated peptides from the MCMC algorithm along with their corresponding log posterior densities,
log of the scoring function value, log cleavage prior, log sequence prior, log κ1 prior, and log κ2 prior for the peptide
Y HFEQSTV TSQPAR when using a simulated spectrum for each of the three noise levels using a Poisson noise
structure.

Noise Peptide Log Posterior Log Log Cleavage Log Sequence Log κ1 Log κ2

Level Densities Scoring Function Value Prior Prior Prior Prior

Minimal

YHFEQSTVTSQPAR 48.16 101.54 -14.20 -44.63 4.96 0.49
YHFEQSTVTSKPAR 44.39 100.61 -14.65 -46.89 4.88 0.44
YHFEQSTVTSKPNL 41.20 103.98 -16.84 -50.91 4.55 0.41

YHFEQSTPCSPAGAR -9.05 58.66 -14.34 -58.55 4.78 0.39
YHFEKSPTSSSGPAR -68.16 0.13 -15.63 -57.43 4.33 0.45

Moderate

YHFQTFAVEGQPAVG 8.55 74.36 -17.51 -52.15 3.76 0.10
YHFEQSTVTSQPAR 6.41 77.81 -20.77 -54.41 3.67 0.10

YHFGATMEGEGQPAVG -3.28 67.19 -20.01 -53.99 3.40 0.11
YHFGAGMETEGQPAVG -9.41 59.44 -18.46 -53.92 3.48 0.05
YHFGATFAVEGQPAVG -47.16 18.95 -20.45 -48.14 2.67 -0.17

Substantial

YHFEQSTVTSGAPAR 140.22 192.03 -17.16 -47.31 5.92 0.40
YHFEAGSTVTSGAPAR 135.46 190.34 -17.10 -49.72 5.58 0.41
YHFEAGSTVTSKPAR 133.49 183.83 -13.50 -49.31 5.87 0.36
YHFEQSTVTSQPAR 128.28 173.90 -13.44 -44.63 5.86 0.37
YHFEQSTVMGQPAR 116.28 165.56 -15.99 -45.28 5.66 0.33

Table 5: The top estimated peptides from the MCMC algorithm along with their corresponding log posterior densities,
log of the scoring function value, log cleavage prior, log sequence prior, log κ1 prior, and log κ2 prior for the peptide
TGMSNV SK. The true peptide is in bold.

Peptide Log Posterior Log Log Cleavage Log Sequence Log κ1 Log κ2

Densities Scoring Function Value Prior Prior Prior Prior
TGMSNVSK -15.16 12.87 -8.17 -25.62 6.36 -0.60
TMGSNVSK -44.00 -16.19 -7.18 -25.75 5.91 -0.79
TWSNSTK -47.16 -21.11 -6.02 -23.96 4.47 -0.54
FDIGDTR -49.74 -24.43 -6.94 -21.34 3.61 -0.64
WEMDDK -49.76 -26.55 -6.42 -19.54 3.36 -0.61
VYTLSLK -52.27 -27.88 -4.70 -22.09 2.90 -0.50
YLTGLEK -56.91 -32.42 -6.32 -21.32 3.59 -0.43
FFPAVSR -56.95 -30.52 -7.87 -20.88 3.06 -0.74

TMEEVSK -57.88 -35.85 -4.69 -22.42 5.67 -0.60
VSTYLLK -58.16 -31.97 -7.13 -21.46 3.11 -0.71
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Table 6: The top estimated peptides from the MCMC algorithm along with their corresponding log posterior densities
for the peptide TGMSNV SK for three different starting peptides. The true peptide is in bold.

Starting Peptide
SAMYHSK TGAFGRSK GTFANEGK

Peptide Log Posterior Peptide Log Posterior Peptide Log Posterior
TGMSNVSK -14.31 TGMSNVSK -17.95 TGMSNVSK -14.67
SMTQTQK -49.50 ITLYADK -27.54 MGSNVSQ -22.76
TMTLETQ -50.12 TGMVTTTL -31.73 TFQSQWK -36.20
SLSIYLK -52.39 MGAITMSI -41.43 VMDPFSK -40.15

GYDNLNK -54.01 CGMEAANK -44.11 AYIISEK -41.73
EATFDLK -55.05 FLVDAMK -44.76 YGPETEK -47.05
HFPIPGR -55.601 TGMSDVLT -51.78 TWYVVR -48.64
YDQPATE -56.13 FFGLIAR -51.88 DVFDSLK -48.89

GAQYGEAK -57.43 TGMSLTTL -52.84 WHLPDR -49.39
WTYLLQ -58.16 -ITLYVSK -52.10 TGAFNWK -57.68

Table 7: The top estimated peptides from the MCMC algorithm along with their corresponding log posterior densities,
log of the scoring function value, log cleavage prior, log sequence prior, log κ1 prior, and log κ2 prior for the peptide
DLV ESAPAALK.

Peptide Log Posterior Log Log Cleavage Log Sequence Log κ1 Log κ2

Densities Scoring Function Value Prior Prior Prior Prior
DLVESAPAALK 42.90 78.94 -11.25 -31.26 6.31 0.15
AVQIEQVQAQ 8.56 47.48 -8.57 -33.83 3.51 -0.03
DLVESPAAAIK 2.63 40.03 -11.28 -31.69 5.435 0.14
LTELASPAALQ -0.94 38.74 -10.70 -34.13 4.92 0.23
DLVESAPAAIK -1.65 35.86 -11.28 -31.69 5.38 0.07
QVDIVLGDVR -7.24 30.33 -11.50 -29.70 3.42 0.21
QVDIIVDGVR -14.54 23.36 -12.99 -29.67 4.61 0.16

EVPATTGGVGPE -16.30 29.28 -12.53 -37.61 4.52 0.04
QVDIPDDGVR -16.89 21.68 -12.99 -29.67 4.15 -0.04

EVPTATGGVGPE -17.22 27.76 -12.53 -37.61 4.89 0.27

Table 8: The top estimated peptides from the MCMC algorithm along with their corresponding log posterior densities
for the peptide DLV ESAPAALK for three different starting peptides. The true peptide is in bold.

Starting Peptide
DLVTDAPAAIQ LDVEYYALK LDVETGPAALK

Peptide Log Posterior Peptide Log Posterior Peptide Log Posterior
DDLTVAAPAIK 30.35 DLVESAPAALK 31.51 DLVDTAAPALK 35.76

DLVESAPAALK 21.05 VADPANGQLTQ 11.97 DLVESAPAALK 29.99
AVSPAWGNLAK 14.49 SPFSISYANK -5.26 LDVDVAGAPEK 7.25
MVIVTAAPLAK 3.01 DQSNDYDEK -8.41 LDVTIAGAPEK -5.06
DLTPVSVSPAK -1.97 DLVESAPIAAK -8.81 APVDIIQDDK -7.49
DDLLGTAPALK -4.03 DAEDMYLK -9.49 DLVDTAPAALK -9.00
NNVEASPAALK -5.12 ELEGNEPMPVK -9.64 MDMMEDLTK -15.49
DPVDWVAALK -6.57 VFPLSPDNPK -16.21 DLLTTAPAALK -19.25
DDLVTAAPAIK -15.07 DVLASEPASPK -23.99 DLLATTPAALK -20.61
DIVDENPLAK -15.66 DISIDPALGGR -24.47 EYTIEFIAK -21.00
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Table 9: The best estimated peptides using the PepNovo Rank Score, PepNovo Score, and our method (Bayesian
posterior) . The last column is the true peptide. The number of switches it takes to obtain the true peptide is in
parentheses. (0) denotes the estimated peptide is the true peptide. (*) denotes that the minimum number of switches
cannot be found since the estimated peptide does not have the correct total mass.

Best Estimated Peptides
PepNovo Rank Score PepNovo Score Bayes Log Posterior True Peptide

DNVESLEV (*) DLVESAPAALK (0) DLVESAPAALK (0) DLVESAPAALK
AQLQNQAQTK (1) VVLQELAQTK (1) AQLQEIAQTK (0) AQLQEIAQTK
SVANAEQMDR (0) WANAQEMDR (2) SVANAEQMDR (0) SVANAEQMDR

AELSELV (*) VTLSELVR (1) SIISELVR (0) SILSELVR
TGMSNVSK (0) TGMSNVSK (0) TGMSNVSK (0) TGMSNVSK
VSEGQTVR (0) VSEGQTVR (0) VSEGQTVR (0) VSEGQTVR

QASEVVSLNK (*) FEHAAASEVVSLGGK (3+) SGPLAGYPVVDIGVR (0) SGPLAGYPVVDLGVR
SQESTVTSQPAR (*) YHFEQESATSQVPK (2) YHFEQSTVTSQAPR (1) YHFEQSTVTSQPAR
MPPTEGETNQVL (*) MPPTEGETNQVLGSK (1) MPPTEGETGGQVLGSK (0) MPPTEGETGGQVLGSK
GYAGDTATTSEVK (0) GYAGDTATTSEVK (0) GYAGDTATTSEVK (0) GYAGDTATTSEVK

NPSSPSDVLSS (*) VLSSPSDPDSPVQEK (3+) LVSSPSTLNPGTNVAK (0) LVSSPSTLNPGTNVAK
LPDVGVVLTK (*) NTVFALVLVLAALTK (3+) QWFSPPLVTGVITK (3+) AFNEALPLTGVVLTK
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Figure 1: Line plot of pairs of intensities and m/z values for a given peptide.
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Figure 2: Theoretical spectrum for the peptide QVMELLQ using only b and y ions. Here 1 represents the presence
of an ion and 0 represents the absence of an ion. The b ion is denoted by solid lines and the y ion is denoted by dashed
lines.

21



A C D E F G H I K L M N P Q R S T V W Y

Y

W

V

T

S

R

Q

P

N

M

L

K

I

H

G

F

E

D

C

A

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

Figure 3: A display of the geometric mean of average relative abundances of bond cleavages of b and y ions for any
particular amino acid pair using Figure 1 in Huang et al. (2004). The y-axis is the single letter code of the amino acid
on the N-terminal amino acid and the x-axis is the single letter code of the amino acid on the C-terminal amino acid.
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Figure 4: The joint empirical probabilities for all pairs of amino acids. For ease of identifying the different joint
empirical probabilities, the figure is shown on the log-scale. The y-axis is the single letter code of the amino acid for
the first amino acid in the pair and the x-axis is the single letter code of the amino acid for the second amino acid in
the pair. The darker the square, the less probable the pair.
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Figure 5: The observed spectrum plotted against the theoretical spectrum for the peptide TGMSNV SK. The theo-
retical spectrum is plotted below the zero axis and the observed spectrum is plotted above the zero axis.
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Figure 6: The observed spectrum plotted against the theoretical spectrum for the peptide DLV ESAPAALK. The
theoretical spectrum is plotted below the zero axis and the observed spectrum is plotted above the zero axis.
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