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Abstract Statistical analysis of dynamic systems, such

as videos and dynamic functional connectivity, is often

translated into a problem of analyzing trajectories of

relevant features, particularly covariance matrices. As

an example, in video-based action recognition, a nat-

ural mathematical representation of activity videos is

as parameterized trajectories on the set of symmet-

ric, positive-definite matrices (SPDMs). The variable

execution-rates of actions, implying arbitrary param-

eterizations of trajectories, complicates their analysis

and classification. To handle this challenge, we repre-

sent covariance trajectories using transported square-

root vector fields (TSRVFs), constructed by parallel trans-
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lating scaled-velocity vectors of trajectories to their start-

ing points. The space of such representations forms a

vector bundle on the SPDM manifold. Using a natural

Riemannian metric on this vector bundle, we approx-

imate geodesic paths and geodesic distances between

trajectories in the quotient space of this vector bun-

dle. This metric is invariant to the action of the re-

parameterization group, and leads to a rate-invariant

analysis of trajectories. In the process, we remove the

parameterization variability and temporally register tra-

jectories during analysis. We demonstrate this frame-

work in multiple contexts, using both generative sta-

tistical models and discriminative data analysis. The

latter is illustrated using several applications involving

video-based action recognition and dynamic functional

connectivity analysis.

Keywords SPDM Riemannian Structure · SPDM

Parallel Transport · Invariant Metrics · Covariance

Trajectories · Trajectories on manifolds · Vector
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1 Introduction

The problem of studying of dynamical systems using

image sequences (such as videos) is both important and

challenging. It has applications in many areas includ-

ing video surveillance, lip reading, pedestrian tracking,

hand-gesture recognition, human-machine interfaces, brain

functional connectivity analysis and medical diagno-

sis. Since the size of video data is generally very high,

the task of video classification is often performed by

extracting certain low-dimensional features of interest

– geometric, motion, colorimetric features, etc – from

each frame and then forming temporal sequences of

these features for full videos. Consequently, analysis of
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videos get replaced by analysis of longitudinal obser-

vations in a certain feature space. (Some papers (e.g.

[13, 40]) discard temporal structure by pooling all the

feature together but that represents a severe loss of

information.) Since many features are naturally con-

strained to lie on nonlinear manifolds, the correspond-

ing video representations form parameterized trajecto-

ries on these manifolds. Examples of these manifolds

include unit spheres, Grassmann manifolds [16], Lie

groups [7], and the space of probability distributions.

One of the most common and effective features in

image analysis is a covariance matrix, as shown via ap-

plications in medical imaging [3, 31] and computer vi-

sion [15, 17, 23, 24, 39, 40]. These matrices are naturally

constrained to be symmetric positive-definite matrices

(SPDMs) and have also played a prominent role as re-

gion descriptors in texture classification, object detec-

tion, object tracking, action recognition and face recog-

nition. Tuzel et al. [40] introduced the concept of covari-

ance tracking where they extracted a covariance matrix

for each video frame and studied the temporal evolu-

tion of this matrix in the context of pedestrian tracking

in videos. Since the set of SPDMs is a well known set,

denoted by P̃ ( or P̃(n) when the dimension of the

SPDM manifold is specified as n), a video segment can

be represented as a (parameterized) trajectory in P̃ . In

the brain functional connectivity analysis, the instanta-

neous connectivity, extracted from functional magnetic

resonance imaging (fMRI) data, is typically represented

as a SPDM [8,9]. Therefore, a dynamic evolution of con-

nectivity can be naturally represented as a trajectory

on the set of SPDMs. In this paper we focus on the

problem of statistical analysis of actions and functional

brain connectivity by treating them as parameterized

trajectories in P̃ . Fig. 1 shows some examples of video

frames for the two applications studied in this paper:

visual-speech recognition and hand-gesture.

One challenge in characterizing activities as trajec-

tories comes from the variability in execution rates. The

execution rate of an activity dictates the parameteri-

zation of the corresponding trajectory. The execution

rates for different observations are quite different, even

if the activities belong to the same class. Different exe-

cution rate implies that the trajectories go through the

same sequences of points in P̃ but at different times.

Consequently, directly analyzing such trajectories with-

out temporal alignment, e.g. comparing the difference,

and calculating point-wise mean and covariance, can be

erroneous. This is because the mean may not be a rep-

resentative of individual trajectories, and the variance

is often artificially inflated.

To make these issues precise, we develop some no-

tation first. Let α : [0, 1] → P̃ be a trajectory and let

Fig. 1 Examples of video frames in visual-speech recognition
(first two rows) and hand-gesture classification (last two).

γ : [0, 1]→ [0, 1] be a positive diffeomorphism such that

γ(0) = 0 and γ(1) = 1. This γ plays the role of a time-

warping function, or a re-parameterization function, so

that the composition α ◦ γ is now a time-warped or

re-parameterized version of α. In other words, the tra-

jectory α ◦ γ goes through the same set of points as α

but at a different rate (speed). Some kind of tempo-

ral registration is necessary to deal with this so-called

phase variability.

There are two types of registration problems for tra-

jectories. Firstly, the pairwise registration defined as

follows. Let α1, α2 : [0, 1] → P̃ be two trajectories in

P̃ . The process of registration of α1 and α2 is to find a

time warping γ such that α1(t) is optimally registered

to α2(γ(t)) for all t ∈ [0, 1], with optimality defined

using an objective function. Another type is multiple

registration: let α1, α2, . . . , αn be n trajectories on P̃ ,

and we want to find out time warpings γ1, γ2, . . . , γn
such that for all t, the variables {αi(γi(t))}ni=1 are op-

timally registered. A solution for pairwise registration

can be used to solve the multiple registration problem

using an iterative solution – for the given trajectories,

first define a template trajectory and then align each

given trajectory to this template in a pairwise fashion.

One way of defining this template is to use the mean of

given trajectories under an appropriately chosen met-

ric.

Notice that the problem of comparisons of trajecto-

ries is different from the problem of curve fitting or tra-

jectory estimation from noisy data. Many papers have

studied spline-type solutions for fitting curves to dis-

crete, noisy data points on manifolds [20, 25, 30, 33, 37]

but in this paper we assume that the trajectories are

already available through some other means.

1.1 Past Work & Their Limitations

There are very few papers in the literature for analyz-

ing – in the sense of comparing, averaging or clustering
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– trajectories on nonlinear manifolds. What one may

consider a very natural approach actually has limita-

tions when seeking parametrization invariance. Let dP̃
denote the geodesic distance resulting from the chosen

Riemannian metric on P̃ . It can be shown that the

quantity
∫ 1

0
dP̃(α1(t), α2(t))dt forms a proper distance

on the set P̃ [0,1]
, the space of all trajectories on P̃ . For

example, [22] uses this metric, combined with the arc-

length distance on S2, to cluster hurricane tracks. How-

ever, this metric is not immune to different temporal

evolutions of hurricane tracks. Handling this variability

requires performing some kind of temporal alignment.

It may be tempting to use the following modification of

this distance to align two trajectories:

inf
γ∈Γ

(∫ 1

0

dP̃(α1(t), α2(γ(t)))dt

)
, (1)

but this can lead to degenerate solutions (also known

as the pinching problem, described for real-valued func-

tions in [32, 35]). Pinching implies that a severely dis-

torted γ is used to eliminate (or minimize) those parts

of α2 that do not match with α1, which can be done

even when α2 is significantly different from α1. While

this degeneracy can be avoided using a regularization

penalty on γ, some of the other problems remain, in-

cluding the fact that the solution is not symmetric.

A recent solution, presented in [38,39], develops the

concept of elastic trajectories to deal with the param-

eterization variability. It represents each trajectory by

its transported square-root vector field (TSRVF) de-

fined as:

hα(t) =

(
α̇(t)√
|α̇(t)|

)
α(t)→c

∈ Tc(P̃) ,

where c is pre-determined but arbitrary reference point

on P̃ and → denotes a parallel transport of the vector

α̇(t) from the point α(t) to c along a geodesic path.

A trajectory is mapped into a curve in the tangent

space Tc(P̃) and one can compare/align these curves

using the L2 norm, denoted by ‖ · ‖, on that vector

space. More precisely, the quantity infγ ‖hα1
− hα2◦γ‖

provides not only a criterion for optimality of γ but

also a proper metric for averaging and other statistical

analyses. This TSRVF representation is an extension

of the SRVF framework used for elastic shape analy-

sis of curves in Euclidean spaces [36]. There are two

main limitations of this mathematical representation.

One is that the choice of reference point, c, is left arbi-

trary. The results can potentially change with c, which

make it difficult to interpret the results. A bigger is-

sue is that the transport of tangent vectors α̇(t) to c,

along geodesics, can introduce large distortion, espe-

cially when the point α(t) is far from c on the manifold.

Since our original formulation [41], Brigant et al.

[5,6] have also used a similar Riemannian structure for

comparing trajectories. However, their representations

are based on a direct analysis of the vector fields α̇(t)√
|α̇(t)|

,

i.e. without any parallel translation, and the space of

such representations is the the space of trajectories in

full tangent bundle of the manifold. As described next,

the proposed representation in our paper is a curve in a

tangent space and, thus, the space of representations is

a vector bundle, a proper subset of the tangent bundle

used in [5, 6]. Consequently, the resulting Riemannian

metric and geodesic paths are different in the two sets

of works. A major limitation of [5,6] is that while they

use parametrization-invariant metrics, they do not ex-

plicitly solve for the temporal registration across tra-

jectories. This registration is, in fact, the main reason

for choosing invariant metrics in the first place, and is

a major contribution of the current paper.

1.2 Our Approach

We introduce a novel mathematical representation of

trajectories that does not require a choice of c. In this

representation, the trajectories are still represented by

their transported vector fields but not at the global ref-

erence point. For each trajectory αi, the reference point

is chosen to be its starting point αi(0), and the trans-

port is performed along the trajectory itself. In other

words, for each t, the velocity vector α̇i(t) is trans-

ported along α to the tangent space of the starting

point αi(0). As a consequence, the trajectory α gets

mapped into a curve in the tangent space Tα(0)(P̃).

This idea has been used previously in [25] and others,

for some shape manifolds, and results in a relatively

stable curve with smaller distortions than the TSRVFs

of [38]. However, these previous papers do not provide

re-parameterization invariance in their analysis. In con-

trast, we develop a metric-based framework for compar-

ing, averaging, and modeling such curves in a manner

that is invariant to their re-parameterizations. Conse-

quently, this framework provides a natural solution for

removal of rate, or phase, variability from trajectory

data.

The main contributions of this paper are:

1. Provides a novel representation for parametrization-

invariant analysis of trajectories on manifolds. It

results in a significant improvement over [38, 39]

in the sense that the new representation forms a

vector bundle of the manifold, rather than a pre-

determined tangent space.
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2. Introduces a re-parameterization invariant metric

on the vector bundle and uses that metric to gener-

ate temporal alignments, and rate-invariant sample

summary of trajectories on manifolds.

3. Provides efficient algorithms for computation of geodesic

paths under the chosen metric.

4. Demonstrates these ideas by successfully analyzing

covariance trajectories, using data from video-based

action recognition and dynamic brain functional con-

nectivity analysis. In the process, it utilizes a non-

standard metric on SPDMs that provides all neces-

sary tools in P̃ for this framework.

The rest of this paper paper is organized as follows.

In Section 2, we introduce our framework for aligning,

averaging and comparing of trajectories on a general

manifold M . Since we mainly focus on covariance tra-

jectories as an application, in Section 4, we introduce

a Riemannian structure on the set P̃ of SPDMs. Sec-

tions 5 and 7 provide some illustrations of the proposed

framework seeking statistical summaries and generative

modeling of 3× 3 SPDM trajectories. In Section 8, we

demonstrate the proposed work with real-world data

involving video-based action recognition and dynamic

functional brain network analysis.

2 Analysis of Trajectories on Manifolds

In this section we derive a framework for comparing

trajectories on a general Riemannian manifold M .

2.1 Representation of Trajectories

Let α denote a piecewise C1 trajectory on a Rieman-

nian manifold M . That is, α : [0, 1] → M such that

there are finitely many points 0 = t0 < t1 < ... < tn = 1

such that on each [ti−1, ti] α is a C1 curve (one-sided

derivatives at each end). Let Fp be all such piecewise

C1 trajectories starting at p, and let F =
∐
p∈M Fp.

Define Γ to be the set of all orientation preserving

diffeomorphisms of [0, 1]: Γ = {γ : [0, 1]→ [0, 1]|γ(0) =

0, γ(1) = 1, γ is a diffeomorphism}. Γ forms a group

under the composition operation. If α is a trajectory

on M , then α ◦ γ is a trajectory that follows the same

sequence of points as α but at the evolution rate gov-

erned by γ. More technically, the group Γ acts on F ,

F × Γ → F , according to (α, γ) = α ◦ γ.

We introduce a new representation of trajectories

that will be used to compare and register them. We

assume that for any two points α(τ1), α(τ2) ∈ M, τ1 6=
τ2, we have a mechanism for parallel transporting any

vector v ∈ Tα(τ1)(M) along α from α(τ1) to α(τ2),

denoted by (v)α(τ1)→α(τ2).

Definition 1 Let α : [0, 1] → M denote a piecewise

C1 trajectory starting with p = α(0). Given a trajec-

tory α, and the velocity vector field α̇, define its trans-

ported square-root vector field (TSRVF) to be a scaled

parallel-transport of the vector field along α to the start-

ing point p according to: for each τ ∈ [0, 1], q(τ) =

( α̇(τ)√
|α̇(τ)|

)α(τ)→p ∈ Tp(M) , where | · | denotes the norm

that is defined through the Riemannian metric on M .

This representation is motivated from some similar but

distinct ideas used in the past literature. Firstly, it re-

lates to the notion of unrolling introduced by Jupp and

Kent [20] for spherical manifolds. Starting with a piece-

wise C1 curve α on a sphere, they constructed a curve in

R2, called the unrolling of α as follows. They define the

unrolled curve as the integral of the curve in Tp(M)

generated by the parallel translation of α̇(t) along α

to p. That is, ν : [0, 1] → Tp(M) is the unrolling of

α, where ν(t) =
∫ t
0
(α̇(s)α(s)→p) ds. The difference be-

tween unrolling and TSRVF is the use of
√
|α̇(t)| in the

denominator of TSRVF and the extra integral present

in unrolling. Secondly, it is similar to the TSRVF in

[38] with the difference that in [38] the transport was

along geodesics to a reference point c, but here the

parallel transport is along α (to the starting point p).

This reduces distortion in representation relative to the

parallel transport of [38] to a faraway reference point.

This TSRVF representation maps a trajectory α on

M to a curve q in Tp(M). For any point p ∈ M ,

let Bp be the set of functions on the tangent space

Tp(M) of the type: v : [0, 1] → Tp(M) is in Bp if

there are finitely many points 0 = t0 < t1 < ... <

tn = 1 such that, on each [ti−1, ti), v is continuous, and

limt→ti− exists. The space of interest, then, becomes

an infinite-dimensional vector bundle B =
∐
p∈M Bp,

which is the indexed union of Bp for every p ∈ M . We

note in passing that Bp is a subspace of the Hilbert

space L2([0, 1], Tp(M)), the set of all square-integrable

curves in Tp(M).

There is a bijection between Fp and Bp. This re-

sult is straightforward except for the following point.

If α ∈ Fp has a bend at t0, then α̇(t0) does not ex-

ist. To define the corresponding TSRVF q, we can take

q(t0) = limt→t0+

(
α̇(t)/

√
|α̇(t)|

)
α→p

, and the resulting

q ∈ Bp. As a corollary to this result, the TSRVF repre-

sentation is bijective: any α ∈ F is uniquely represented

by a pair (p, q(·)) ∈ B, where p ∈ M is the starting

point, q ∈ Bp is its TSRVF. We can reconstruct the

trajectory from (p, q) using the covariant integral (see

Algorithm 3 for a numerical implementation).
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2.2 Riemannian Structure on B

In order to compare trajectories, we will compare their

corresponding representations in B and that requires a

Riemannian structure on B. Let α1, α2 be two trajecto-

ries on M , with starting points p1 and p2, respectively,

and let the corresponding TSRVFs be q1 and q2. Now

α1, α2 are represented as two points in the vector bun-

dle (p1, q1), (p2, q2) ∈ B over M . This representation

space is an infinite-dimensional vector bundle, whose

fiber over each point p in M is Bp.
We impose the following Riemannian structure on

B. For an element (x, v(·)) in B, where x ∈ M , v ∈
Bx, we naturally identify the tangent space at (x, v)

to be: T(x,v)(B) ∼= Tx(M) ⊕ Bx. To see this, suppose

we have a curve in B given by (x(s), v(s, τ)), s, τ ∈
[0, 1]. The velocity vector to this curve at s = 0 is given

by (xs(0),∇xs
v(0, ·)) ∈ Tx(M)⊕ Bx, where xs denotes

dx/ds, and ∇xs denotes covariant differentiation of

tangent vectors. The Riemannian inner product on B is

defined in an obvious way: If (u1, w1(·)) and (u2, w2(·))
are both elements of T(x,v)(B) ∼= Tx(M)⊕ Bx, define

〈(u1, w1(·)), (u2, w2(·))〉 = (u1·u2)+

∫ 1

0

(w1(τ)·w2(τ)) dτ,

(2)

where the inner products on the right denote the orig-

inal Riemannian metric in Tx(M).

For given two points (p1, q1) and (p2, q2) on B, we

want to find the geodesic path connecting them. Let

(x(s), v(s, ·)), s ∈ [0, 1] be a path with (x(0), v(0, ·)) =

(p1, q1) and (x(1), v(1, ·)) = (p2, q2). We have the fol-

lowing characterization of geodesics on B.

Theorem 1 A parameterized path [0, 1] → B given by

s 7→ (x(s), v(s, τ)) on B (where the variable τ corre-

sponds to the parametrization in Bx), is a geodesic in

B if and only if:

∇xs
xs +

∫ 1

0
R(v,∇xs

v)(xs)dτ = 0 for every s,

∇xs
(∇xs

v)(s, τ) = 0 for every s, τ.

(3)

Here R(·, ·)(·) denotes the Riemannian curvature ten-

sor, xs denotes dx/ds, and ∇xs denotes the covari-

ant differentiation of tangent vectors on tangent space

Tx(s)(M).

Proof: We will prove this theorem in two steps.

(1) First, we consider a simpler case where the space of

interest is the tangent bundle TM of the Riemannian

manifold M . An element of TM is denoted by (x, v),

where x ∈ M and v ∈ Tx(M). It is natural to identify

T(x,v)(TM) ∼= Tx(M) ⊕ Tx(M). The Riemannian inner

product on TM is defined in the obvious way: If (u1, w1)

and (u2, w2) are both elements of T(x,v)(TM), define

〈(u1, w1), (u2, w2)〉 = u1 · u2 + w1 · w2

and, again, the inner products on the right denote the

original Riemannian metric on M . Suppose we have a

path in [0, 1] → TM given by s 7→ (x(s), v(s)). We

define the energy of this path by

E =

∫ 1

0

(xs · xs +∇xs
v · ∇xs

v)ds.

The integrand is the inner product of the velocity vec-

tor of the path with itself. It is a standard result that

a geodesic on TM can be characterized as a path that

is a critical point of this energy function on the set

of all paths between two fixed points in TM . To de-

rive local equations for this geodesic, we now assume

we have a parameterized family of paths denoted by

(x(s, t), v(s, t)), where s is the parameter of each indi-

vidual path in the family (as above) and the variable

t tells us which path in the family we are in. Assume

0 ≤ s ≤ 1 and t takes values on (−δ, δ) for some small

δ > 0. We want all the paths in this family to start

and end at the same points of TM , so assume that

(x(0, t), v(0, t)) and (x(1, t), v(1, t)) are constant func-

tions of t. The energy of the path with index t is given

by:

E(t) =

∫ 1

0

(xs · xs +∇xsv · ∇xsv)ds .

To simplify notation in what follows, we will write ∇s
for ∇xs and ∇t for ∇xt . To establish conditions for

(x, v) to be critical, we take the derivative of E(t) with

respect to t at t = 0:

E′(0) = 2

∫ 1

0

[(∇txs · xs) + (∇t(∇sv) · ∇sv)]ds .

We will use two elementary facts: (a) ∇t(xs) = ∇s(xt)
and (b) R(xt, xs)(v) = ∇t(∇sv) − ∇s(∇tv), without

presenting their proofs. Plugging these facts into the

above calculation, we get E′(0) to be:

2

∫ 1

0

[∇sxt · xs +R(xt, xs)(v) · ∇sv +∇s(∇tv) · ∇sv]ds

=2

∫ 1

0

[(−∇sxs · xt) +R(xt, xs)(v) · ∇sv + (−∇s(∇sv) · ∇tv)]ds.

The second equality comes from using integration by

parts on the first and third term, taking into account

the fact that xt and∇tv vanish at s = 0, 1, (since all the

paths begin and end at the same point). Now, using the
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standard identities R(X,Y )(Z) ·W = R(Z,W )(X) · Y
and R(X,Y )(Z) ·W = −R(X,Y )(W ) · Z, we obtain:

E′(0)=2

∫ 1

0

[(−∇sxs · xt) + (−R(v,∇sv)(xs) · xt)

+(−∇s(∇sv) · ∇tv)]ds

=−2

∫ 1

0

[(∇sxs +R(v,∇sv)(xs)) · xt + (∇s(∇sv) · ∇tv)]ds

=−2

∫ 1

0

(∇sxs +R(v,∇sv)(xs)) · xt ds

−2

∫ 1

0

∇s(∇sv) · ∇tv ds .

Now, (x(s), v(s)) is critical for E if and only if E′(0) =

0 for every possible variation xt of x and ∇t(v) of v,

which is clearly true if and only if

∇sxs +R(v,∇sv)(xs) = 0 and ∇s(∇sv) = 0.

Thus we have derived the geodesic equations for TM .

(2) Now we consider the case of the infinite dimen-

sional vector bundle B → M whose fiber over x ∈ M
is L2(I, Tx(M)), I = [0, 1]. A point in B is denoted by

(x, v(τ)), where the variable τ corresponds to the I-

parameter in L2(I, Tx(M)). The tangent space to B at

(x, v(τ)) is Tx(M)⊕L2(I, Tx(M)). Suppose (u1, w1(τ))

and (u2, w2(τ)) are elements of this tangent space and

we use the Riemannian metric:

〈(u1, w1(τ)), (u2, w2(τ))〉 = u1 ·u2+

∫ 1

0

w1(τ)·w2(τ) dτ.

Now we want to work out the local equations for

geodesics in B. A path in B is denoted by (x(s), v(s, τ)).

The energy calculation is basically the same as above

but surround everything with integration with respect

to τ . So, it starts out with

E=

∫ 1

0

(
xs · xs +

∫ 1

0

∇sv · ∇sv dτ
)
ds

=

∫ 1

0

∫ 1

0

(xs · xs +∇sv · ∇sv) dsdτ.

(Of course xs ·xs does not involve the parameter τ , but

surrounding it with
∫ 1

0
. . . dτ does not change its value!)

In order to perform variational calculus, we now

consider a parametrized family of such paths, denoted

by (x(s, t), v(s, t, τ)) where we assume that x(0, t) and

x(1, t) are constant functions of t, and for each τ , v(0, t, τ)

and v(1, t, τ) are constant functions of t, since we want

every path in our family to start and end at the same

points of B.

Then, following through the computation exactly as

in earlier case, we obtain

E′(0)=−2

∫ 1

0

(
∇sxs +

∫ 1

0

R(v,∇sv)(xs) dτ

)
· xt ds

−2

∫ 1

0

∫ 1

0

∇s(∇sv) · ∇tv dτds.

Fig. 2 Examples of geodesic between two trajectories on S2.
The yellow solid line denotes the baseline x(s) and yellow
dash line shows the geodesic on S2 as a comparison.

In order for our path (x(s), v(s, τ)) to be critical for E,

E′(0) must vanish for every variation xt(s) of x(s) and

∇t(v(s, τ)) of v(s, τ), which is clearly true if and only

if

∇sxs +

∫ 1

0

R(v,∇sv)(xs) dτ = 0, for every s

∇s(∇sv) = 0, for every s and every τ .

Q.E.D

The geodesic path (x(s), v(s, τ)) can be intuitively

understood as follows: (1) x(s) is a baseline curve on

M connecting p1 and p2, and the covariant differentia-

tion of xs at the tangent space of Tx(s)(M) equals the

negative integral of the Riemannian curvature tensor

R(v(s, τ),∇xsv(s, τ))(xs) with respect to τ . In other

words, the values of v at each τ equally determine the

geodesic acceleration of x(s) in the first equation. (2)

The second equation leads to a fact that v is covari-

antly linear, i.e. v(s, τ) = a(s, τ) + sb(s, τ) and ∇xsa =

∇xs
b = 0 for every s and τ . For a geodesic path con-

necting (p1, q1) and (p2, q2), it is natural to let a(s, τ) =

q1(τ)x(0)→x(s) and b(s, τ) = w(τ)x(0)→x(s), where q1(τ)x(0)→x(s)
and w(τ)x(0)→x(s) represent the parallel transport of
q1(τ) and w(τ) along x from x(0) to x(s), and w is the

difference between the TSRVFs q2 and q1 in Tx(0)(M),

defined as (q2)x(1)→x(0) − q1. In Fig. 2, we illustrate

geodesic paths between some arbitrary trajectories on

M = S2. In each case, the yellow solid line denotes the

baseline x(s) and the intermediate lines are the covari-

ant integrals (in Algorithm 3) of v(s, ·) with starting

point x(s). As comparison, the dash yellow line shows

the standard geodesic curve between starting points p1
and p2 in S2.

Theorem 1 is only a characterization of geodesics

but does not provide explicit expressions for computing

them. In the following section, we develop a numerical

solution for constructing geodesics in B.

2.3 Numerical Computations of Geodesics in B

Here we develop a numerical approach for computing

geodesic paths in the representation space. To simplify
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discussion, we will assume that the original trajecto-

ries on M are not only piecewise C1 but also piecewise

geodesic. This implies that the corresponding TSRVFs

are piecewise constant. (This restriction was also dis-

cussed for unrolling of spherical curves in [20].) There-

fore, our focus in this section will be on piecewise con-

stant TSRVFs.

There are two main approaches in numerical con-

struction of geodesic paths on manifolds. The first ap-

proach, called path-straightening, initializes the search

with an arbitrary path, between the given two points on

the manifold, and then iteratively “straightens” it until

a geodesic is reached. The second approach, called the

shooting method, tries to “shoot” a geodesic from the

first point, iteratively adjusting the shooting direction,

so that the resulting geodesic passes through the sec-

ond point. In this paper, we use the shooting method

to construct geodesic paths in B.

In order to implement the shooting method, we need

the exponential map on B. Given a point (p, q) ∈ B
and a tangent vector (u,w) ∈ T(p,q)(B), the exponential

map exp(p,q) (s(u,w)) for s ∈ [0, 1] gives a geodesic path

(x(s), v(s)) in B (for notational simplicity, we will use

(x(s), v(s)) to denote (x(s), v(s, ·))). Equation 3 helps

us with this construction as follows. The two equations

essentially provide expressions for second-order covari-

ant derivatives of x and v components of the path.

Therefore, using numerical techniques, we can perform

covariant integration of these quantities to recover the

path itself.

Note that we assume that v and w are piecewise

constant over the same partition of [0, 1]. Furthermore,

using the re-parameterization group introduced later,
we can also assume that this partition is a uniform par-

tition of [0, 1]. Note that addition and subtraction of

piecewise constant functions with identical partitions

simplify to these operations restricted to only the mid-

points of the intervals.

In this setup, Algorithm 1 corresponds to the Eu-

ler’s method for numerical integration of an ordinary

differential equation and, thus, follows a standard con-

vergence analysis.

Once we have a procedure for the exponential map,

we can establish the shooting method for finding geodesics.

Let (p1, q1) be the starting point and (p2, q2) be the tar-

get point. The shooting method iteratively updates the

tangent or shooting vector (u,w) on T(p1,q1)(B) such

that exp(p1,q1) ((u,w)) = (p2, q2). Then, the geodesic

between (p1, q1) and (p2, q2) is given by (x(s), v(s)) =

exp(p1,q1)(s(u,w)), s ∈ [0, 1]. The key step here is to

use the current discrepancy between the point reached,

exp(p1,q1) ((u,w)), and the target, (p2, q2), to update

the shooting vector (u,w), at each iteration. There are

Algorithm 1 Numerical Implementation of Exponen-

tial map on B
Let the initial point be (x(0), v(0)) ∈ B and the tangent vector
be (u,w) ∈ T(x(0),v(0))(B). We have xs(0) = u, ∇xsv(s)|s=0 =

w. We will approximate this map using n steps and let ε = 1
n

.
Then, for i = 1, · · · , n the exponential map (x(iε), v(iε)) =
exp(x(0),v(0)) (iε(u,w)) is given as:

1. Set x(ε) = expx(0)(εxs(0)), where xs(0) = u, and v(ε) =

(v‖+εw‖), where v‖ and w‖ are parallel transports of v(0)
and w along path x from x(0) to x(ε), respectively.

2. For each i = 1,2,...,n-1, calculate

xs(iε) = [xs((i− 1)ε) + ε∇xsxs((i− 1)ε)]x((i−1)ε)→x(iε) ,

where ∇xsxs((i − 1)ε) =
−R (v((i− 1)ε),∇xsv((i− 1)ε)) (xs((i− 1)ε)) is given by
the first equation in Theorem 1. It is easy to show that
R (v((i− 1)ε),∇xsv((i− 1)ε)) = R

(
v‖ + ε(i− 1)w‖, w‖

)
=

R
(
v‖, w‖

)
, where v‖ = v(0)x(0)→x((i−1)ε), and

w‖ = wx(0)→x((i−1)ε).
3. Obtain x((i + 1)ε) = expx(iε) (εxs(iε)), and v((i + 1)ε) =

v‖ + (i+ 1)εw‖, where v‖ = v(0)x(0)→x((i+1)ε), and w‖ =
wx(0)→x((i+1)ε).

several possibilities for performing the updates and we

discuss one here. Since we have two components to up-

date, u and w, we will update them separately: (1)

Fix w and update u. For the u component, the incre-

ment can come from parallel translation of the vector

exp−1p̃ (p2) (the difference between the reached point p̃

and the target point p2) from p̃ to p1, where p̃ is the

first component of reached point exp(p1,q1)((u,w)). (2)

Fix u and update w. For the w component, we can take

the difference between q2 and the second component of

the point reached (denoted as q̃) as the increment. This

is done by parallel translating q̃ to Tp2(M) (the same

space as q2) and calculate the difference, and then par-

allel translate the difference to Tp1(M) to update w.

Once again we will assume that the TSRVFs q1 and

q2 are piecewise constant curves on a uniform parti-

tion of the interval [0, 1]. Numerical accuracy of this

shooting algorithm naturally depends on the numerical

accuracy of Algorithm 1.

Recall that trajectories on M and their representa-

tions in B are bijective. For each pair (p, q) ∈ B, one can

reconstruct the corresponding trajectory α using co-

variant integration. A numerical implementation of this

procedure is summarized in Algorithm 3. Similar to

Algorithm 1, Algorithm 3 is also an Euler’s method for

numerical integration of an ordinary differential equa-

tion and, thus, follows a standard convergence analysis.

Algorithm 2 allows us to calculate the geodesic be-

tween two points in B. So, for each point along the

geodesic (x(s), v(s)) in B, one can easily reconstruct

the trajectory on M using Algorithm 3. Here, one sets
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Algorithm 2 Shooting algorithm for calculating

geodesic on B
Given (p1, q2), (p2, q2) ∈ B, select one point, say (p1, q1),
as the starting point and the other, (p2, q2), as the target
point. The shooting algorithm for calculating the geodesic
from (p1, q1) to (p2, q2) is:

1. Initialize the shooting direction: find the tangent vector
u at p1 such that the exponential map expp1(u) = p2
on the manifold M . Parallel transport q2 to the tangent
space of p1 along the shortest geodesic between p1 and

p2, denoted as q
‖
2. Initialize w = q

‖
2 − p1. Now we have a

pair (u,w) ∈ T(p1,q1)(B).
2. Construct a geodesic starting from (p1, q1) in the direction

(u,w) using the numerical exponential map in Algorithm
1. Let us denote this geodesic path as (x(s), v(s)), where
s is the time parameter for the geodesic path.

3. If (x(1), v(1)) = (p2, q2), we are done. If not, measure
the discrepancy between (x(1), v(1)) and (p2, q2) using a
simple measure, e.g. the L2 distance.

4. Iteratively, update the shooting direction (u,w) to reduce
the discrepancy to zero. This update can be done using a
two-stage approach: (1) fix u and update w until converge;
(2) fix w and update u until converge.

Algorithm 3 Covariant integral of q along α
Given a piecewise constant TSRVF q sampled at a uniform
partition of size T , {tδ|t = 0, 1, . . . , T − 1}, δ = 1/T , and the
starting point p:

1. Set α(0) = p, and compute α(δ) = expα(0)(δq(0)|q(0)|),
where exp denotes the exponential map on M .

2. For t = 1, 2, . . . , T − 1
(a) Parallel transport q(tδ) to α(tδ) along the current tra-

jectory from α(0) to α(tδ), and call it q‖(tδ).
(b) Compute

α((t+ 1)δ) = expα(tδ)(δq
‖(tδ)|q‖(tδ)|).

x(s) as the starting point and v(s) as the TSRVF of the

trajectory.

2.4 Geodesic Distance on B

Using the chosen Riemannian metric on B (defined in

Eqn. 2), the geodesic distance between any two points

in B is defined as the following.

Definition 2 Given two trajectories α1, α2 and their

representations (p1, q1), (p2, q2) ∈ B, and let (x(s), v(s)) ∈
B, s ∈ [0, 1] be the geodesic between (p1, q1) and (p2, q2)

on B, the geodesic distance is given as:

dc((p1, q1), (p2, q2)) =

√
l2x +

∫ 1

0

|q‖1(τ)− q2(τ)|2dτ .

(4)

This distance has two components: (1) the length be-

tween the starting points on M , lx =
∫ 1

0
|ẋ(s)|ds; and

(2) the standard L2 norm on Bp2 between the TSRVFs

of the two trajectories, where q
‖
1 represents the parallel

transport of q1 ∈ Bp1 along x to Bp2 . Since we have

a numerical approach for approximating the geodesic,

the same algorithm can also provide an estimate for the

geodesic distance.

3 Analysis of Trajectories Modulo

Re-Parameterization

The main motivation of using TSRVF representation

for trajectories on M and constructing the distance dc
to compare two trajectories comes from the following.

If a trajectory α is warped by γ, resulting in α◦γ, what

is the TSRVF of the time-warped trajectory? The new

TSRVF is given by:

qα◦γ(t)=

(
(α̇(γ(t))γ̇(t))√
|α̇(γ(t))γ̇(t)|

)
α(γ(t))→p

=

(
(α̇(γ(t)))

√
γ̇(t)√

|α̇(γ(t))|

)
α(γ(t))→p

=qα(γ(t))
√
γ̇(t) ≡ (qα ∗ γ)(t) .

Theorem 2 For any two trajectories α1, α2 ∈ F and

their representations (p1, q1), (p2, q2) ∈ B, the metric dc
satisfies dc((p1, qα1◦γ), (p2, qα2◦γ)) = dc((p1, q1), (p2, q2)),

for any γ ∈ Γ

Proof: First, if a trajectory is warped by γ ∈ Γ , the

resulting trajectory is α◦γ, i.e. γ acts on the space B by

(p, q)∗γ = (p, q∗γ). The differential of this action is the

map T(p,q)(B) → T(p,q∗γ)(B) given by (u,w) 7→ (u,w ∗
γ). We prove that this differential preserves our Rie-

mannian inner product (Eqn. 2) as follows: let (u1, w1)

and (u2, w2) be two tangent vectors on T(p,q)(B); it fol-

lows that

〈(u1, w1 ∗ γ), (u2, w2 ∗ γ)〉
= u1 · u2 +

∫ 1

0
w1(γ(t))

√
γ̇(t)w2(γ(t))

√
γ̇(t)dt

= u1 · u2 +
∫ 1

0
w1(γ)w2(γ)dγ

= u1 · u2 +
∫ 1

0
w1(s)w2(s)ds

= 〈(u1, w1), (u2, w2)〉 ,

(5)

Since Γ acts on B by isometries, i.e. preserving the Rie-

mannian inner product, it follows immediately that it

takes geodesics to geodesics, and preserves geodesic dis-

tance. Q.E.D.

Theorem 2 reveals the advantage of using TSRVF

representation: the action of Γ on B under the metric dc
is by isometries. The isometry property of time-warping
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action under the metric dc allows us to compare tra-

jectories in such a manner that the resulting compar-

ison is invariant to the time warping. This is achieved

through defining a distance in the quotient space of re-

parameterization group.

3.1 Theoretical Setup

To form the quotient space of B modulo the reparame-

terization group, we take the approach presented in sev-

eral previous papers, including [27]. While [27] consid-

ers shapes of curves in Euclidean domains, these ideas

naturally extend to the nonlinear manifolds also. The

approach is to introduce a set Γ̃ as the set of all non-

decreasing, absolutely continuous functions γ on [0, 1]

such that γ(0) = 0 and γ(1) = 1. This set is a semi-

group with the composition operation (it does not have

a well-defined inverse). It can be shown that Γ is a

dense subset of Γ̃ . For any q ∈ L2([0, 1], Tp(M)), let

[q]Γ̃ denote the set {(q ∗ γ)|γ ∈ Γ̃}. This is a closed set

[27, 38], while the orbit of q under Γ is not, and there-

fore we choose to work with the former, at least for the

formal development. (However, in practice, we approx-

imate solutions using the elements of Γ .) Note that the

actions of Γ and Γ̃ on q are exactly same as if α was a

Euclidean curve, as the kind studied in [27]. Therefore,

borrowing results from [27], the closure of Γ -orbit of q

is equal to the Γ̃ -orbit of q. Consequently, will call the

set [q]Γ̃ a closed-up orbit of q. We define the quotient

space B/Γ̃ as the set of all closed-up orbits, with each

orbit being:

[(p, q)] ≡ (p, [q]) = {(p, (q ∗ γ))|γ ∈ Γ̃} .

To understand the concept of a closed-up orbit, one

can view it as an equivalence class under the follow-

ing relation. For any two trajectories α1, α2 and their

representations in B, (p1, q1), (p2, q2), we define them

to be equivalent when: (1) p1 = p2; and (2) there ex-

ists a sequence γi ∈ Γ̃ such that qα2◦γi converges to q1.

In other words, if two trajectories have the same start-

ing point, and the TSRVF of one can be time-warped

into the TSRVF of the other, using a sequence of time-

warpings, then these two trajectories are deemed equiv-

alent to each other. Theorem 2 states that if two trajec-

tories are warped by the same γ function, the distance

dc between them remains the same. In other words, the

closed-up orbits in B are “parallel” to each other.

The main reason for introducing the quotient space

B/Γ̃ is to define a proper distance on it and to com-

pute geodesic paths between its elements with respect

to this distance for the purposes of statistical analysis.

We define a metric on the quotient space B/Γ̃ using the

inherent Riemannian metric from B, as follows.

Definition 3 The geodesic distance dq on B/Γ̃ is the

shortest distance between two closed-up orbits in B,

given as

dq((p1, [q1]), (p2, [q2]))

= inf
γ1,γ2∈Γ̃

dc((p1, (q1 ∗ γ1))), (p2, (q2 ∗ γ2))) (6)

For a similar representation, [38] established that the

induced distance is a proper distance on the set of

closed-up orbits and that same proof applies to the

current context also. It is also similar to the theory

described for Euclidean curves in [27].

In order to compute geodesics paths in B/Γ̃ , one

can solve for the optimization problem stated in Eqn.

6 and use the optimal points to form geodesics in the

upper space B. That is, for any α1, α2 ∈ B, and the

corresponding representations (p1, q1), (p2, q2), we first

solve for

(γ̂1, γ̂2) = argmin
γ1,γ2∈Γ̃

dc((p1, (q1 ∗ γ1))), (p2, (q2 ∗ γ2))) . (7)

Then, we simply compute a geodesic path between (p1, q1∗
γ̂1), and (p2, q2 ∗ γ̂2) in B, as described in the previous

section.

3.2 Numerical Approximations

Conceptually, the geodesic and the geodesic distance

between closed-up orbits (p1, [q1]) and (p2, [q2]) are de-

fined by optimizing over geodesics between all possible

cross pairs in sets (p1, [q1]) and (p2, [q2]). This, in turn,

requires a double optimization on the set Γ̃ , as stated in

Definition 3. We now look at the computational aspects

of this definition and seek some faster approximations.

Firstly, since Γ is dense in Γ̃ , we can compute the

geodesic distance dq((p1, [q1]), (p2, [q2])) using only a

single optimization on the group Γ . This is because:

argmin
γ1,γ2∈Γ̃

dc((p1, (q1 ∗ γ1))), (p2, (q2 ∗ γ2)))

= argmin
γ1,γ2∈Γ

dc((p1, (q1 ∗ γ1))), (p2, (q2 ∗ γ2)))

= inf
γ∈Γ

dc((p1, q1), (p2, (q2 ∗ γ))) . (8)

There is no approximation here and the infimum on a

single Γ is much faster compared to the double opti-

mization on Γ̃ .

If we further assume that the trajectories α1, α2 are

piecewise geodesic and, thus, their TSRVFs are piece-

wise constants, then some additional results hold. The

paper [27] provided an exact approach for optimal align-

ment of SRVFs of piecewise linear curves in Euclidean

spaces. Since TSRVFs are Euclidean curves, that ap-

proach can be easily adapted to solve for the optimal
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alignment in Eqn. 7. This would provide optimal align-

ment and consequently a precise geodesic path between

(p1, [q1]) and (p2, [q2]).

However, this approach can be slow in practice, and

once can speed the implementation using a single opti-

mization according to Eqn. 8. That is, we can solve for a

single γ̂ and match the point α1(t) to the point α2(γ̂(t)).

While this approach is much faster than the joint opti-

mization, a drawback here is that there is no guarantee

that we are close to an optimal matching. However, in

practice, we have found that matchings and geodesic

paths obtained this way are quite similar to the opti-

mal solutions in most real data. To solve Eqn. 8, it is

equivalent to optimize the following equation:

min
(x,v),γ

(
l2x +

∫ 1

0

‖q‖1,x(t)− (q2 ∗ γ)(t)‖2dt
)

, (9)

where (x, v) is the path between (p1, q1) and (p2, qα2◦γ),

and q
‖
1,x means parallel transport q1 along x to Bp2 .

Note that the time-warping γ acting on α2 changes the

underlying geodesic (x, v) between two trajectories. Al-

gorithm 4 describes a numerical solution for optimizing

Eqn. 9 on a general manifold M .

Algorithm 4 Pairwise registration of two trajectories

on M
Represent two trajectories α1, α2 by their TSRVFs, (p1, q1)
and (p2, q2). Initialize γ∗ = γid, and set itermax = K (a large
integer), iter = 1 and a small ε > 0.

1. Select one point, say (p1, q1), as the starting point and
the other, (p2, q̃2), as the target point, where q̃2 denotes
(qα2 ∗ γ), for γ ∈ Γ . In this step, let γ = γid.

2. Obtain (u,w) ∈ T(p1,q1)(B) such that exp(p1,q1)
(s(u,w)) =

(x(s), v(s)), s ∈ [0, 1] and (x(1), v(1)) = (p2, q̃2).
3. Parallel transport q̃2 to the tangent space Tp1(M) along

x(s), denoted as q̃
‖
2. Align q̃

‖
2 to q1 using Dynamic Pro-

gramming Algorithm and obtain the optimal warping
function γ.

4. Update γ∗ = γ∗ ◦ γ by composition. If ‖γ − γid‖ < ε or
iter > itermax stop. Else, set q̃2 = (q̃α2 ∗γ), iter = iter+1
and go back to step 3.

Note that in Algorithm 4, Step 2 corresponds to

the first argument (x, v) and Step 3 corresponds to the

second argument γ in Eqn. 9, respectively. The opti-

mization over the warping function in Step 3 is achieved

using the Dynamic Programming Algorithm (page 435-

436 in [35]). Here one samples the interval [0, 1] using N

discrete points and then restricts to only piecewise lin-

ear γ’s that pass through that N ×N grid. In practice,

Algorithm 4 typically takes a few iterations to converge.

Since Algorithm 4 involves multiple evaluations of

the exponential map and dynamic programming align-

ment, it is still not computationally very efficient. We

further speed up this computation as follows: find the

baseline x(s) connecting two trajectories first (using

geodesic between α1(0) and α(1) on M) and then align

their TSRVFs accordingly. This substantially speeds up

the solution albeit at the cost of diverging from the op-

timal solution stated under the theoretical formulation.

In the experimental results presented later, we use this

method to speed up registration and comparison.

4 Riemannian Structure on P̃

Next we discuss the geometry of P̃ and impose a Rie-

mannian structure that facilitates our analysis of tra-

jectories on P̃ . Several past papers have studied the

space of SPDMs as a nonlinear manifold and have im-

posed metric structures on that manifold [3, 12, 19, 31,

34]. While they mostly seek to define distances on this

set, a few of these distances originate from a Rieman-

nian structure with expressions for geodesics and expo-

nential maps. However, the most common Riemannian

framework [31] does not provide expressions for all de-

sired items that are needed in our context, especially

expressions for parallel transport and Riemannian cur-

vature tensor. Therefore, we choose a more recent Rie-

mannian structure that was introduced in [37], and sub-

sequently used in [38]. We will summarize the main re-

sults here and refer the reader for more details to these

papers and two supplementary files.

Let P̃ be the space of n × n SPDMs, and let P
be its subset of matrices with determinant one. The

idea is to first identify the space P with the quotient

space SL(n)/SO(n) and borrow the Riemannian struc-

ture from the latter directly. Then, one can straightfor-

wardly extend the Riemannian structure on P to P̃ .

The process starts by choosing a Riemannian metric

on G as follows: for any point G ∈ SL(n) the metric

is defined by pulling back the tangent vectors under

G−1 to I, and then using the trace metric ( see more

details in the Section 1 of Supplementary Material I ).

This definition leads to expressions for the exponential

map, its inverse, parallel transport of tangent vectors,

and the Riemannian curvature tensor on SL(n). It also

induces a Riemannian structure on the quotient space

SL(n)/SO(n) in a natural way because the chosen met-

ric is invariant to the action of SO(n) on SL(n). Finally,

these results are transferred to P using the mapping

π : SL(n)/SO(n)→ P, π([G]) =
√
G̃G̃t ,

for any G̃ ∈ [G]. One can check that this map is well

defined and is a diffeomorphism, by letting G̃ = PS

(polar decomposition), and then π([G]) =
√
G̃G̃t =
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√
PSStP = P . This square-root is the symmetric, positive-

definite square-root of a symmetric matrix. The in-

verse map of π is given by: π−1(P ) = [P ] ≡ {PS|S ∈
SO(n)} ∈ SL(n)/SO(n). This establishes a one-to-one

correspondence between the quotient space SL(n)/SO(n)

and P . In turn, this correspondence is used to derive re-

quired expressions for geodesics, exponential map, cur-

vature tensor, etc, on P . We refer the reader to the

supplementary material I for more details.

These results are then extended to the set P̃ using

a product map. Since for any P̃ ∈ P̃ we have det(P̃ ) >

0, we can express P̃ = (P, 1
n log(det(P̃ ))) with P =

P̃
det(P̃ )1/n

∈ P . Thus, P̃ is identified with the product

space of P × R. To define a metric on this product

space, we can use the square-root of sum of squares of

the individual metrics but with arbitrary weights. Here

we use the weight 1/n for the determinant term. We

summarize expressions for the required mathematical

tools on P̃ :

1. Exponential map: Give P̃ ∈ P̃ and a tangent vec-

tor Ṽ ∈ TP̃ (P̃). We denote Ṽ = (V, v), where V ∈
TP (P), P = P̃ /det(P̃ )1/n and v = 1

n log(det(P̃ )).

The exponential map expP̃ (Ṽ ) is given as ev expP (V ),

where expP (V ) =
√
Pe2P−1V P−1P .

2. Geodesic distance: For any P̃1, P̃2 ∈ P̃ , the squared

geodesic distance between them is : dP̃(P̃1, P̃2)2 =

dP(I, P12)2+ 1
n (log(det(P̃2))−log(det(P̃1)))2, where

P12 =
√
P−11 P 2

2P
−1
1 and dP(I, P12) = ‖A12‖ for

eA12 = P12 ∈ P .

3. Inverse exponential map: For any P̃1, P̃2 ∈ P̃ ,

the inverse exponential map exp−1
P̃1

(P̃2) = Ṽ ≡ (V, v),

where V = P1 log(
√
P−11 P 2

2P
−1
1 )P1 and

v =
1

n
log(det(P2))− 1

n
log(det(P1)) .

4. Parallel transport: For any P̃1, P̃2 ∈ P̃ and a

tangent vector Ṽ = (V, v) ∈ TP̃1
(P̃), the parallel

transport of Ṽ along the geodesic from P̃1 to P̃2

is: (P2T
T
12BT12P2, v), where B = P−11 V P−11 , T12 =

P−112 P
−1
1 P2 and P12 =

√
P−11 P 2

2P
−1
1 .

5. Riemannian curvature tensor: For any P̃ ∈ P̃ ,

and tangent vectors X̃ = (X,x), Ỹ = (Y, y) and

Z̃ = (Z, z) ∈ TP̃ (P̃), the Riemannian curvature ten-

sor is given by R(X̃, Ỹ )(Z̃) = −P [[A,B], C], where

A = P−1XP−1, B = P−1Y P−1, C = P−1ZP−1

and [A,B] = AB −BA.

Remark 1 The Riemannian structure used here and the

one used previously [31] are both derived from the same

induced structure on the quotient space SL(n)/SO(n).

The difference lies in the mapping used to map the met-

ric from SL(n)/SO(n) to P . In [31], the mapping from

the quotient space P is GGT , leading to the relation-

ship:

SL(n)

��
SL(n)/SO(n)

π1([G])=GGT

π−1
1 (P )=[

√
P ]

// P

√
P

ll

while in our approach, this mapping is
√
GGT , leading

to the picture:

SL(n)

��
SL(n)/SO(n)

π2([G])=
√
GGT

π−1
2 (P )=[P ]

// P

P
ll

The main motivation for the current choice of mapping,

and the resulting Riemannian metric onP , is as follows.

Consider any G ∈ SL(n). It is an important fact that√
GGT is the only element in [G] that is also in P . So, it

is a very natural idea to represent the equivalence class

[G] with
√
GGT giving a represention of SL(n)/SO(n)

using P . Note that GGT , used in [31], is generally not

an element of [G]. In view of this simplification, i.e. the

identity mapping from P to SL(n), P can be viewed as

a subset of SL(n). Thus, all the relevant expressions can

be derived under this identification rather than treat-

ing P as a separate space. Specifically, we have readily

available expressions for geodesic, geodesic distance, ex-

ponential map and its inverse, parallel transport, and

Riemannian curvature tensor on P viewed as a subset

of SL(n).

5 Demonstration of Numerical Procedures

In this section, we demonstrate the numerical proce-

dures of the proposed framework on simulated covari-

ance trajectories. We used M = P(3), the set of 3 ×
3 SPDMs with determinant one. Extension to P̃ is

straightforward.

Geodesic computation: As a first example, we

compute the geodesic between two arbitrary trajecto-

ries using the numerical method in Algorithm 2. Fig. 3

shows the result. In this plot, each matrix is visualized

by an ellipsoid and a trajectory inP(3) by a sequence of

ellipsoids. The top row shows two original trajectories

α1 and α2 with representations (p1, q1) and (p2, q2)).

The next row shows the baseline path x(s) associated

with the geodesic between α1 and α2, and the end point
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Original trajectories: (𝑝1, 𝑞1)

Shot trajectory: exp(𝑝1,𝑞1)((𝑢, 𝑤))Baseline path: 𝑥(𝑠)

(𝑝2, 𝑞2)

Iteration 

E
nergy 

Fig. 3 Example of calculating geodesic using shooting
method for trajectories on P. The first row shows the origi-
nal trajectory (p1, q1) and the target trajectory (p2, q2). The
second and third row show some results obtained from Algo-
rithm 2: baseline curve x(s) connecting p1 and p2 on P, the
final shot trajectory exp(p1,q1)

(u,w) and the L2 discrepancy

between the shot trajectory and the target trajectory (p2, q2)
v.s. number of iterations.

Before: α1 and α2 After: α1 and α2 ◦ γ∗

0 0.2 0.4 0.6 0.8 1
0
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0.4

0.6

0.8

1

γ∗

Fig. 4 Pairwise registration of two trajectories α1 (first row)
and α2 (second row). The bottom panel shows the warping
function γ to warp α2 to α1

of the geodesic, i.e. exp(p1,q1)(u,w)). Here we selected

(p1, q1) as the starting point and computed the shoot-

ing direction (u,w) such that exp(p1,q1)(u,w) ≈ (p2, q2).

The bottom panel shows the evolution of L2 norm be-

tween the shot trajectory and the target (p2, q2) during

the shooting algorithm.

Temporal alignment: Next, we present an exam-

ple of aligning two trajectories α1 and α2 in P(3) in

Fig. 4. This alignment is based on particularization of

Algorithm 4 to M = P(3). As the figure shows, the two

trajectories are very well aligned as a result.

Computation of summary statistics: Finally,

we focus on the problem of generating statistical sum-

maries of covariance trajectories. Since dq defines a met-

ric in the quotient space B/Γ̃ , this framework allows us

to perform statistical analysis of multiple trajectories in

B/Γ̃ . Given a set of trajectories {αi, i = 1 . . . k}, we are

interested in computing the average of these trajectories

and using it as a template for registering these trajec-

tories. The sample mean can be approximated through:

(µp, [µq]) = argmin
(p,[q])∈B/Γ̃

n∑
i=1

dq((p, [q]), (pi, [qαi ]))
2 . (10)

Note that (µp, [µq]) is an orbit (equivalence class of tra-

jectories) and one can select any element of this orbit

as a template to align multiple trajectories.

Algorithm 5 Calculation of Mean Trajectory

For each αi, compute its mathematical representation (pi, qi).

Let (µjp, µ
j
q), j = 0 be the initial estimate of the mean (e.g.

we can choose one of the trajectories). Set small ε, ε1, ε2 > 0.

1. For i = 1 to n, align each trajectory (pi, qi) to (µjp, µ
j
q)

according to Algorithm 4, denoted as (pi, q̃i). Algorithm
4 also gives us the inverse exponential map: (ui, wi) =
exp−1

(µ
j
p,µ

j
q)

(pi, q̃i).

2. Compute the average direction: ū = 1
n

∑n
i=1 ui, w̄ =

1
n

∑n
i=1 wi.

3. If ||ū|| < ε1 and ||w̄|| < ε2, stop. Else, update
(µjp, µ

j
q) in the direction of (ū, w̄) using exponential map:

(µj+1
p , µj+1

q ) = exp
(µ

j
p,µ

j
q)

(εū, εw̄), where ε is the step size.

We suggest using ε = 0.5.
4. Set j = j + 1, return to step 2.

For discussions on existence of this Riemannian sam-

ple mean and convergence of Algorithm 5 to a limit, we
refer the reader to [1, 21].

After Algorithm 5 coverages, one can compute the

covariant integral of (µp, µq) using Algorithm 3, de-

noted by µ, which is the mean of {α1, α2, ..., αn}. Fig. 5

shows an example of calculating the mean of given tra-

jectories. The upper part of the figure shows four sim-

ulated trajectories. The bottom part shows the mean

trajectory in two situations: in B using dc (without tem-

poral alignment) and in B/Γ under dq (with alignment).

One can see that under dq the structures along the tra-

jectories are better preserved.

6 Comparison with Previous Work

The proposed framework is an improvement of [38] in

the following sense. It preserves the invariance proper-

ties achieved in [38], but does not require choosing a

global reference point. Also, this framework naturally

includes the difference between the starting points of
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Simulated trajectories:

Mean before registration Mean after registration

Fig. 5 Example of calculating the mean trajectory. The up-
per panel shows simulated trajectories, and the bottom panel
shows means before and after alignment.

two trajectories that was ignored in [38]. Since the ve-

locity vectors here are transported to the starting point

of a trajectory, along that trajectory, as opposed to a

transport to an arbitrary reference point in [38], this

representation is more stable.

To quantitatively compare with [38,39], we performed

the same visual speech recognition task utilizing the

same subset of OuluVS dataset [39,42]. Here, we briefly

introduce the experiment setup and more details can

be found in [39]. OuluVS dataset includes 20 speakers,

each uttering 10 everyday greetings five times: Hello,

Excuse me, I am sorry, Thank you, Good bye, See you,

Nice to meet you, You are welcome, How are you, Have

a good time. Thus, the database has a total of 1000

videos. All the image sequences are segmented, hav-

ing the mouth region determined by manually labeled

eye positions in each frame [43]. Some examples of the

segmented mouth images are shown in Fig. 6. We per-

formed the experiment on a subset of the dataset, which

contains 800 video sequences by removing some short

videos [39]. The same covariance matrix features as [39]

were extracted to represent each video. The resulting

trajectories in P̃(7) are aligned using Algorithm 4 and

compared using distance dq defined in Eqn. 6.

In Fig. 7 (a), we show some optimal γ’s obtained

to align one video of phrase (“excuse me”) to other

videos of the same phrase spoken by the same per-

son. One can see that there exist temporal differences

in the original videos and they need to be aligned be-

fore further analysis. In (b), we show the histogram of

(dc − dq)/max(dc, dq)’s (the relative distance changes

before and after alignment). In this case, each person

has 50 videos, and we can calculate (50 × 49)/2 pair-

wise distances before and after alignment, and their

differences. For all 20 persons in this dataset, we have

Fig. 6 Examples of down sampled video sequences in OuluVS
dataset. The first and second row show one person’s two
speech samples of the phrase “Nice to meet you”; the third
and fourth row show the phrases “How are you” and “Good
bye” uttered by different persons.
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(a) γ∗ (b) Hist of (dc − dq)/max(dc, dq)’s

Fig. 7 (a) shows the optimal γ’s obtained to align one video
of phrase (“excuse me”) to the other four videos of the same
phrase spoken by the same person. (b) shows the histogram of
(dc − dq)/max(dc, dq)’s (The relative distance changes before
and after alignment).

Table 1 Comparison of SDT performance on OuluVS.

Method 1NN Rate

Su et al. [39]
before alignment 33.8%
after alignment 70.5%

Our method
before alignment 41.0%
after alignment 78.6%

20×(50×49)/2 = 24500 such differences. From the his-

togram of the relative changes, one can see that after

our alignment, the distances (dq’s) consistently become

smaller.

Table 1 shows the average first nearest neighbor

(1NN) classification rate of our method and [39]. Our

method has the classification rate of 78.6%, which is

8.1% better than [39]’s. These results indicate that the

new representation of trajectories and analysis frame-

work have better discriminative power even before align-

ment comparing with the reference point based method

in [38, 39]. In addition, there is a 37.6% improvement

due to alignment (registration), which demonstrates the

importance of removing temporal difference in compar-

ing of the dynamic systems in computer vision.
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7 Application 1: Generative Modeling of

Trajectories

Algorithm 5 results in several quantities of interest: (i)

the mean trajectory (µp, [µq]), (ii) the aligned trajecto-

ries (pi, q̃i), and (iii) the shooting vectors from the mean

to (pi, q̃i), denoted as (ui, wi). Since our representation

is invertible, one can develop generative models of given

trajectories using these quantities. For example, we can

use advanced statistical methods to infer the distribu-

tion of a set of trajectories, draw random samples and

perform statistical inference. We illustrate these ideas

using a simple example on P(3), as it is easier to visu-

alize.

As described in the supplementary material I, the

tangent elementX ∈ Tµp
(P) can be identified as µpBµp,

where B ∈ TI(P) = {A|At = A and tr(A) = 0}. For

matrix size three, elements of TI(P(3)) has only five

degrees of freedom. Let φ : TI(P(3)) 7→ R5 be an em-

bedding given by φ(A) = [a11, a12, a13, a22, a23]T . Given

tangent vectors (ui, wi) for i = 1, ..., n in T(µp,µq)(B), we

have ui ∈ Tµp
(P(3)) and wi ∈ L2([0, 1], Tµp

(P(3))). We

transform (ui, wi) into (u0i , w
0
i ) such that u0i ∈ TI(P(3))

and w0
i ∈ L2([0, 1], TI(P(3))) according to

ui = µpu
0
iµp and wi(s) = µpw

0
i (s)µp, for s ∈ [0, 1],

and perform the statistical modeling in TI(P(3)). These

elements are further mapped into R5 and functions in

R5, respectively, using φ. Statistical modeling of the

trajectories in P(3) becomes of modeling points in R5

and L2 functions in R5.

Next, we consider the problem of fitting a distri-
bution to the given sample trajectories. For the first

component ui, we use a simple multivariate Gaussian

distribution. For the second component wi, we follow a

similar procedure as [26] to define a Gaussian distribu-

tion in a principal subspace and then map it back to

the trajectory space. Let the trajectory αi be sampled

with a finite number of points, say m, we then calculate

the the sample covariance matrix K ∈ R5m×5m similar

to [26]. Let K = UΣUT be the singular value decom-

position of K, and let Ur, the first r columns of U,

span the principal subspace of the observed data. The

principal scores of each data can be calculated by pro-

jecting each φ(w0
i ) to this principal subspace, and we

apply a Gaussian distribution to model the variation of

these principal scores. Actually, U1 describes the first

principal direction (PC), together with the variation

S(1, 1), and one can visualize the variability of trajec-

tories along the first PC U1.

In this simulation study we generate 50 random tra-

jectories in P(3), some of them are shown in Fig. 8(a).
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Fig. 8 Example of simulated trajectories.
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Fig. 9 Statistical modeling on the tangent space of the mean
trajectory. (a) shows the FA curves of the aligned trajectories
to the mean; (b) shows the mean trajectory and its FA curve;
and (c) shows the first PC direction.

To give an idea about variability along these trajec-

tories, we compute the fractional anisotropy (FA) [4]

value of each SPDM in a trajectory, and visualize it

as a scalar function of time. FA is a scalar value be-

tween zero and one that describes the anisotropy of the

given SPDM. In Fig. 8 (b), we show FA curves of the 50

simulated trajectories. We can see that the bump’s dif-

fer in locations and heights across the 50 trajectories.

Using Algorithm 5, we calculate the mean trajectory,

the aligned trajectories (pi, q̃i), and the shooting vec-

tors (ui, wi). Fig. 9 (a) shows FA curves of the aligned

trajectories, and (b) shows the mean trajectory and its

FA curve. A PCA of shooting vectors leads to dimen-

sion reduction of data, which is necessary for reaching

an efficient statistical model on trajectories. Fig. 9 (c)

shows the variability of trajectories along the first PC

of the given data.

Next we demonstrate a potential approach for im-

posing stochastic models on the space of trajectories.

Since our representation of trajectories has two compo-

nents, p and q, we impose individual stochastic mod-

els on the corresponding tangent representations u and

w. We choose a simple univariate Gaussian model on u

and similar multivariate Gaussian model on four princi-
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Fig. 10 Randomly sampled trajectories from the fitted
model. (a) shows the FA curves of the 200 simulated tra-
jectories and (b) shows 9 example trajectories.

pal components of w. We randomly sample (u,w) from

the fitted distributions and utilize the exponential map

defined in Algorithm 2 to map (u,w) to a random tra-

jectory α in P(3). Fig. 10 shows some random samples

from the Gaussian models discussed above. In (a), we

show the FA curves of the 200 sampled trajectories and

in (b) we show 9 random trajectories. Notice that, the

statistical model is in B/Γ̃ , so we do not consider the

variation of the wrapping functions γ. To build a more

complex model that considers the variation of γ, we

refer the reader to Chapter 7 in [35].

8 Application 2: Discriminative Analysis of

Trajectories

Now we turn to evaluation of the framework developed

for discriminative pattern recognition. We try two ap-

plications here: (1) action recognition using videos: a

hand-gesture recognition application, and (2) dynamic

functional brain connectivity study.

8.1 Hand Gesture Recognition

Hand gesture recognition using videos is an important

research area since gesture is a natural way of communi-

cation and expressing intentions. People use gestures to

depict sign language for deaf, convey messages in loud

environment and to interface with computers. In this

section, we are interested in applying our framework

in video-base (dynamic) hand gesture recognition. We

use the Cambridge hand-gesture dataset [24] which has

900 video sequences with nine different hand gestures:

100 video sequences for each gesture. The nine gestures

result from 3 primitive hand shapes and 3 primitive

motions, and as collected under different illumination

conditions. Some example gestures are shown in Fig.

11. The gestures are imaged under five different illumi-

nations, labeled as Set1, Set2, . . . , Set5.

In addition to the illumination variability, the main

challenge here comes from the fact that hands in this

database are not well aligned, e.g. the proportion of a

(a) Examples of gestures 

(b) Different illumination conditions 

Fig. 11 (a) shows three examples of gestures in the Cam-
bridge hand-gesture database. (b) shows the five different il-
lumination conditions in the database.

hand in an image and the location of the hand are differ-

ent in different video sequences. To reduce these effects

we evenly split one image into four quadrants (upper-

left, upper-right, bottom-left, bottom-right) with some

overlaps. Each of the four quadrants is represented by

a sequence of covariance matrices in P̃ . In this exper-

iment, we use HOG features [10] to form a covariance

matrix per image quadrant as follows. We use 2 × 2

blocks of 8× 8 pixel cells with 7 histogram channels to

form HOG features. Those HOG features are then used

to generate a 7×7 covariance matrix for each quadrant

of each frame. Thus, our representation of a video is

now given by t 7→ α(t) ∈ P̃(7)4.

Since we have split each hand gesture into four dy-

namic parts, the total distance between any two hand

gestures is a composite of four corresponding distances.

For each corresponding dynamic quadrant, e.g. the upper-

left part, we first align a pair of videos (using Algo-

rithm 4) and then compare them using the metric dq,

denoted by dqupl. The final distance is obtained using

an weighted average of the four parts: d = λ1d
q
upl +

λ2d
q
upr + λ3d

q
downl + λ4d

q
downr and

∑4
i=1 λi = 1. For an

unsupervised study, we set λi = 1/4 for i = 1, ..., 4.

In another setting, we learn a different weight for each

illumination to make d be more robust to the regis-

tration and illumination issues. In our experiment, we

randomly selected half of the data (90 video sequences)

as the training data, and the other half of the data are

used for the testing. Table 2 shows our results using the

nearest neighbor classifier on all five sets. One can see

that the alignment can significantly improve the clas-

sification rate on every illumination condition in both

supervised and unsupervised settings. We also reported
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Table 2 Recognition results on the Cambridge Hand-Gesture
dataset. AA represents after alignment and BA represents
before alignment.

Method Set1 Set2 Set3 Set4 Set5
TCCA [23] 81% 81% 78% 86% -
RLPP [17] 86% 86% 85% 88% -

PM 1-NN [29] 89% 86% 89% 87% -
PMLSR [28] 93% 89% 91% 94% -

kgLC [16] 96% 94% 96% 98% -

Our
BA 94% 91% 90% 88% 77%

AA (unsup.) 98% 95% 93% 97% 94%
AA (sup.) 99% 97% 97% 96% 98%

the state-of-the-art results on this database [16,28,29].

One can see that with only a 7×7 covariance feature per

quadrant per frame, we are able to achieve a classifica-

tion result that is equivalent or better than the state-of-

the-art results. The classification result may further be

improved using a more discriminative feature or better

classifier.

8.2 Dynamic Functional Connectivity Study

Another interesting application of the proposed frame-

work is in analyzing functional brain connectivity using

functional magnetic resonance imaging (fMRI) data.

Functional Connectivity (FC) is defined as statistical

dependencies among remote neurophysiological events.

These dependencies are expressed as quantifications of

similarity, or correlations, between simultaneous func-

tional measurements of neuronal activities across re-

gions in human brain. The short-term FC is often rep-

resented as a covariance or correlation matrix of fMRI

data over a small time window, with the matrix size be-

ing the number of brain regions. In the early studies, FC

associated with individual tasks or stimuli was treated

as fixed or static over time. However, later studies [18]

revealed that FC is a dynamic process and evolves over

time. Therefore, it is natural to represent FC observed

over a long interval as an indexed sequence of covariance

matrices, or as a covariant trajectory. Consequently, we

can use the method developed in this paper for com-

paring and analyzing such FC.

We present some experimental results using data

from the Human Connectome Project (HCP). For the

first experiment, we select fMRI data for 20 subjects

during resting state and during performances of var-

ious other tasks. The data are aligned and denoised

using HCP data preprocessing pipeline [14], and the

Destrieux atlas [11] is used to parcellate cortical re-

gions into 74 nodes per hemisphere. We choose 10 re-

gions, including the inferior frontal gyrus and sulcus,

0 10 20 30 40 50
6

6.5

7

7.5

8 Gambling
Resting

5 10 15 20

5

10

15

20 1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

Resting fMRI Gambling task

(a) Determinant part (b) Pairwise distances based on dq

0.62 0.63 0.64 0.65 0.66
0

5

10

0.62 0.63 0.64 0.65 0.66
0

5

10

Resting

Gambling

5 10 15 20

5

10

15

20 10

11

12

13

14

15

16

17
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Fig. 12 (a) shows the determinant part ( 1
n

log(det(P̃ )) ) of
the 20 dynamic brain subnetworks. (b) shows the pairwise
distances between the 20 subnetworks after alignment. (c)
shows the histogram of (dc − dq)/max(dc, dq). (d) shows the
pairwise distances calculated based on log-E metric.

and transverse temporal sulcus, that are related to the

go/no tasks [2]. The connectivity of these regions is rep-

resented as a trajectory of covariance matrices between

the regions. We use a sliding window [18] to calculate

a covariance trajectory. For comparisons, we have se-

lected two tasks: resting state fMRI and gambling task

fMRI, and 10 trajectories for each task.

The results are shown in Fig. 12. In panel (a), we

show the determinant ( 1
n log(det(P̃ (t)))), as function of

t, of these 20 covariance trajectories. We can clearly see

fluctuations in the dynamics of the determinant part

over time. Since the gambling task is carefully designed

to repeat the reward, neutral and loss blocks, we see

similar periodic fluctuations for different subjects (but

there are some temporal misalignment due to inter-

subject variability). This dynamic pattern seems dif-

ferent from that for the resting state fMRI. Fig. 12 (b)

shows the pairwise distances dq between the 20 trajec-

tories. The block pattern in this distance matrix is an

evidence that the resting state are very different from

the gambling task state. The dynamic FC trajectories

are more homogeneous in the gambling task (after tem-

poral alignment). The temporal alignment plays an im-

portant role in studying dynamic FC. Panel (c) shows

the histograms of percentages of distance changes be-

fore and after alignment for resting and gambling task.

We see a significant reduction in distances in both cases,

but the percentage reduction for task trajectories is

more than that of the resting ones. This is due to the
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Fig. 13 The pairwise distances (based on dq) between co-
variance trajectories generated from different set of nodes.
(a) shows the distance in the motor task for 20 trajectories
after the alignment. (b) shows the distance in the gambling
task.

fact that the gambling task is performed under a well

designed rule, and although there are some temporal

misalignment, everyone in the experiment exhibits sim-

ilar dynamic FC among the selected ROIs. For compar-

ison, we also compute pairwise trajectory distances un-

der the log-Euclidean distance [44]. That is, for any two

trajectories α1, α2, the distance between them is calcu-

lated as dlogE
(α1, α2) =

∫ 1

0
‖ log(α1(t))− log(α2(t))‖dt.

Panel (d) shows the pairwise distance matrix calculated

using dlogE
for the same data. One can see that there

is no block pattern there, indicating the lack of power

of this metric in dynamic FC study.

In the previous experiment, the 10 selected regions

are marked as “Set1 ROIs”. We take another set of 10

regions (postcentral and precentral gyrus, and central

and precentral sulcus, that are part of the motor cor-

tex) to generate another set of covariance trajectories.

These 10 regions are denoted as “Set2 ROIs”. We com-

pare the dynamic FC generated by these two sets of

ROIs under different tasks, and the results are shown

in Fig. 13. The results show that while the dynamic

FC are very different for the two sets of ROIs for the

motor task, the connectivities are not that well sepa-

rated for the gambling task. More importantly, these

experiments demonstrate the potential of the proposed

framework in performing statistical analysis of the dy-

namic functional connectivities and in linking dynamic

connectivity to specific tasks, for example, for predic-

tion purposes. There are many other interesting and

critical problems that can be explored using the devel-

oped framework.

9 Conclusion

In summary, we have proposed metric-based approach

for simultaneous alignment and comparisons of trajec-

tories on P̃ , the Riemannian manifold of covariance ma-

trices (SPDMs). In order to facilitate our analysis, we

impose a Riemannian structure on this manifold that

facilitates explicit expressions for geometric quantities,

such as parallel transport and Riemannian curvature

tensor. For analyzing covariance trajectories, the ba-

sic idea is to represent each trajectory by a starting

point P̃ ∈ P̃ and a TSRVF which is a curve in the

tangent space TP̃ (P̃). The metric for comparing these

elements is a composite of: (a) the length of the path

between the starting points and (b) the difference in-

troduced by the TSRVFs. The search for optimal path,

or a geodesic, is based on a shooting method, that in

itself uses geodesic equations for computing the expo-

nential map. Using a numerical implementation of the

exponential map, we derive numerical solutions for pair-

wise alignment of covariance trajectories and to quan-

tify their differences using a rate-invariant distance. We

have applied this framework to two scenarios: (1) co-

variance tracking in video data, with an application to

the hand-gesture recognition, and (2) dynamic func-

tional connectivity study in fMRI data. The advantages

and potential applications of the proposed framework

have been demonstrated in these experiments.
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