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ABSTRACT 

BACKGROUND: The functions of many proteins are tightly regulated with a complex array 

of cellular functions including ubiquitination. In cancer cells, aberrant ubiquitination may 

promote the activity of oncogenic pathways with subsequent tumour progression. Kelch-like 

family member 7 (KLHL7) is involved in the regulation of ubiquitination and may play a role 

in breast cancer (BC). Present study aims to evaluate the biological and clinical usefulness of 

KLHL7 in BC utilising large well-characterised cohorts with long follow up term.  

METHODS: The relationships between KLHL7 gene copy number alteration (CNA) and 

mRNA expression and clinicopathological variables and clinical outcomes were evaluated in 

1980 patients from the METABRIC BC cohort. Prognostic significance of KLHL7 mRNA 

was validated using the Breast Cancer Gene-Expression Miner v4.0 datasets (n = 5206). 

KLHL7 protein expression was assessed using immunohistochemistry in a large annotated 

series of early-stage BC (n=917) with long-term follow-up.  

RESULTS: KLHL7 CNA was significantly correlated with its mRNA expression. KLHL7 

mRNA expression was higher in luminal B and basal-like molecular subtypes and in higher 

grade tumours. Increased KLHL7 protein expression was significantly correlated with 

features of aggressive phenotype including lymphovascular invasion, high histological grade, 

hormonal receptor negativity, high PIK3CA and p53 expression. Outcome analysis showed 

that high KLHL7 expression is an independent predictor of shorter survival (p = 0.0011).  

CONCLUSIONS: KLHL7 appears to play an important role in BC progression. High 

KLHL7 protein expression identified a subgroup of BC with aggressive behaviour and 

provided independent prognostic information. 

 

 

 



 

INTRODUCTION 

Advances in early detection, diagnosis and refinement of prognostic and therapy prediction 

have led to improvement of the outcome of invasive breast cancer however; approximately 

20% of early-stage breast cancer patients still experience recurrence and metastasis [1, 2]. 

Identification of genes significantly associated with tumour progression providing potential 

therapeutic values remains as one of the main goals of breast cancer research. The functions 

of many proteins are controlled by ubiquitination [3, 4], and in cancer cells, abnormal 

ubiquitination may promote the activity of oncogenic pathways [5, 6], enhance tumour 

proliferation, migration, invasion, angiogenesis, epithelial–mesenchymal transition and 

metastasis [7, 8]. Kelch-like family member 7 (KLHL7), which is a member of the Kelch 

protein family associated with the development of retinitis pigmentosa [9, 10], forms a 

ubiquitin ligase complex by binding to the BTB and BACK domains of Cullin3 (CUL3) [10, 

11]. This binding facilitates proteasome degradation of target proteins by enhancing E2 or E3 

ligase activity and polyubiquitination [10-12]. KLHL7 is considered to be crucial for 

regulating the protein homeostasis and its aberrant expression has also been associated with 

cancer cell proliferation [13-16]. However; the role of KLHL7 in breast cancer has not been 

established.  

In this study we investigated the biological and clinical significance of KLHL7 in breast 

cancer at the genetic transcriptomic and protein levels. KLHL7 copy number alterations 

(CNA) and mRNA expression as well as KLHL7 protein expression assessed using 

immunohistochemistry was correlated with clinicopathological features and outcome using 

large well-characterised cohorts of early-stage breast cancer. 

 

MATERIALS AND METHODS  



KLHL7 gene copy number and mRNA expression 

The Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) dataset, 

containing 1980 invasive breast cancers [17, 18], was explored for genomic/transcriptomic 

profiling of KLHL7. In the METABRIC study, DNA and RNA extracted from primary 

tumour samples were hybridised using Affymetrix SNP 6.0 arrays (Affymetrix, Inc., Santa 

Clara, USA) and Illumina Human HT-12 v3 platforms (Illumina, Inc., San Diego, USA) . All 

patients were treated uniformly. Oestrogen receptor (ER)-positive breast cancer patients with 

lymph node-negative were not offered adjuvant chemotherapy. ER-negative or lymph node-

positive patients were treated with adjuvant chemotherapy. No human epithelial growth 

factor 2 (HER2)-positive patients received therapy with trastuzumab. None of the patients 

included in the study received neoadjuvant treatment. 

The prognostic value of KLHL7 mRNA expression was further evaluated using the Breast 

Cancer Gene-Expression Miner v4.0 (bc-GenExMiner v4.0) database which includes 5861 

breast cancer patients [19].  

 

KLHL7 protein expression 

KLHL7 protein expression was assessed in large (n=917) cohort of early-stage breast cancer 

from surgically treated patients presented to Nottingham City Hospital, UK between 1989 

and 1998. Tissue microarray (TMA) sections were stained using specific anti-KLHL7 

antibody (see below). No patients underwent neoadjuvant treatment before initial breast 

surgery. In this study, 917 cases were informative for the biomarker expression. 

Lymphovascular invasion (LVI) was evaluated by haematoxylin and eosin staining and 

immunostaining for CD34 or D2-40 as previously described [20]. Patient characteristics were 

shown in Supplementary Table 1. Data on ER, progesterone receptor (PR), HER2, Ki67, 

phosphatidylinositol 3-kinase (PIK3CA), p53 and phospho-Akt1 (pAkt) were available and 



were assessed as previously described [21-26]. ER-positive/HER2-negative breast cancer 

patients with PR-positive and low Ki67 staining (labelling index of ≤ 10%) were classified as 

luminal A-like type; other ER-positive patients were classified as luminal B-like type. 

Patients who were ER-positive and/or PR-positive and HER2-positive were defines as 

luminal-HER2 [27].  

The specificity of KLHL7 antibody (HPA029491, Merck, Germany) was confirmed using 

Western blotting and MCF-7 and Jurkat cell lines (The American Type Culture Collection; 

Rockville, MD, USA).  This showed primary antibody specificity; with a single band 

observed at approximately 70 kDa in both cell lines (Supplementary Figure 2).  

KLHL7 protein expression was characterized immunohistochemically (IHC) in 15 full-face 

breast cancer tissue sections prior to TMA application. IHC assays were performed using 

Novolink Max Polymer Detection System (RE7280-k, Leica, Newcastle, UK). The anti-

KLHL7 primary antibody was diluted 1:100 in Bond Primary Antibody Diluent (Leica, 

Germany). A polyclonal rabbit anti-human beta-2-microglobulin antibody (diluted 1:2000; 

Dako, Glostrup, Denmark) was used as a positive staining control. Diaminobenzidine 

tetrahydrochloride (Novolink DAB substrate buffer plus) was used as the chromogen; 

sections were counterstained with Meyer’s haematoxylin for 6 min.  

Immunostained TMA sections were digitally scanned into high-resolution digital images 

(NanoZoomer, Hamamatsu Photonics, Tokyo, Japan) and viewed using Aperio Image Scope 

(Aperio Technologies, Milton Keynes, UK). KLHL7 expression was scored as none, weak, 

moderate or strong depending on the intensity of cytoplasmic staining (Figure 1). 

Cytoplasmic expression was assessed, and H-scores were calculated using the proportion of 

stained cells (0%–100%) and intensity scores (0, negative; 1, weak; 2, moderate; 3, strong) as 

previously described [28, 29].  

 



Statistical analysis 

Statistical analysis was performed with SPSS v22.0 (IBM Corp., Armonk, NY, USA). 

The association of KLHL7 mRNA expression and CNA was assessed using the Kruskal–

Wallis test. The significance of differences in CNA and mRNA expression in tumours 

stratified by PAM50 subtype, size, lymph node metastasis grade and histological grade was 

determined using the Chi-squared and Fisher’s exact tests. For analysis, tissue samples were 

assigned to high- and low-expression groups using the median mRNA expression level as the 

cut-off. For KLHL7 expression, the cut-off was an H-score of 90 determined by X-Tile 

plotting (X-Tile Bioinformatics Software, Yale University, version 3.6.1), with the samples 

stratified to high and low groups based on patient outcome. For the association between 

KLHL7 and prognosis, Kaplan–Meier survival curves of 10-year breast cancer specific 

survival (BCSS) were plotted, and significance was determined by the log-rank test. As the 

patients in the Nottingham primary series were followed-up for at least 10 years, BCSS was 

defined as the interval from surgery to death from breast cancer. In univariate and 

multivariate analyses of clinicopathological factors and KLHL7 expression and prognosis, 

95% confidence interval (CI) values were determined using the Cox proportional hazards 

regression model.  

RESULTS 

KLHL7 Copy number aberration and mRNA expression 

A total of 150 of 1980 patients (7.6%) had a copy number gain whereas 23 (1.7%) had a loss 

of KLHL7. KLHL7 mRNA expression was significantly higher in samples with CNA gain 

than in CNA-neutrals (p < 0.0001). The expression was significantly lower in tumours with 

CNA loss than in CNA-neutral tissues (p = 0.042). KLHL7 CNAs were significantly 

correlated with molecular subtype (p < 0.0001); KLHL7 gain was higher in HER2-enriched 

tumours, whereas KLHL7 loss was more frequent in basal-like tumours than in other subtypes 



(Table 1). High KLHL7 mRNA expression was significantly related with high histological 

grade (p = 0.010) and molecular subtypes (p < 0.0001); high expression in HER2-enriched 

tumours and low in basal-like tumours (Table 1).  

Although the association between KLHL7 CNA and mRNA expression and outcome was not 

significant in the METABRIC series (Supplementary Figure 3), it was significant in the 

larger series of the Breast Cancer Gene-Expression Miner v4.0 with an association between 

high KLHL7 mRNA expression and shorter survival (hazard ratio (HR) =1.3; p<0.0001; 

Figure 2-a).  

 

KLHL7 protein expression 

In full-face sections, the expression of KLHL7 protein was variable in the different 

components of tissues with increased expression in invasive tumours cells than DCIS and 

normal parenchymal cells (Figure 3). Fibroblasts and lymphocytes in the mammary stroma 

adjacent to the cancer cells showed negative to weak staining. In normal glandular 

epithelium, the reactivity of IHC was absent to weak and the reactivity of myoepithelial cells 

tended to be higher than those of glandular cells. The reactivity of myoepithelial cells 

surrounding DCIS was higher compared to the intraductal malignant epithelial cells. KLHL7 

positivity was recognised in the cytoplasm of invasive cancer cells and the reactivity in both 

was substantially stronger compared to normal mammary gland cells if positive. Focal weak 

to moderate nuclear immunoreactivity was seen in the tumour cells simultaneously with 

cytoplasmic staining. 

 

Clinicopathological and prognostic significance of KLHL7 protein expression 

Of the 917 patients, 407 (44.4%) had tumours with low KLHL7 expression whereas 510 

(55.6%) had tumours with high expression (H-score > 90). KLHL7 expression was positively 



correlated with histological grade (p = 0.0002) and LVI status (p = 0.030) but inversely 

correlated with ER status (p = 0.015, Table 2). High KLHL7 expression was significantly 

related with molecular subtypes (p = 0.026), especially HER2-positive and triple-negative 

breast cancer (TNBC) classes (Table 2). High KLHL7 expression was significantly 

associated with high expression of PIK3CA (p = 0.044) and p53 (p = 0.002), but not pAkt 

expression (Table 2). 

The 10-year BCSS of the subgroup with KLHL7 high expression was significantly shorter 

than that of the subgroup with KLHL7 low expression (HR = 9.1; p = 0.0025; Figure 2-b). 

Univariate analysis identified high KLHL7 expression (HR = 1.5; p = 0.003), ER negativity 

(HR = 1.9; p < 0.0001), PR negativity (HR = 2.3; p < 0.0001), HER2 positivity (HR = 2.3; p 

< 0.0001), large tumour size (HR = 2.3; p < 0.0001), positive nodal status (HR = 2.6; p < 

0.0001), histological grade 3 (HR = 3.3; p < 0.0001), positive LVI (HR = 2.4; p < 0.0001) 

and high p53 expression (HR = 1.9; p < 0.0001) as poor prognostic factors.  

In multivariate analysis including other prognostic variables, KLHL7 expression remained 

independently associated with poor prognosis (HR = 1.3; p = 0.042; Table 3). 

 

DISCUSSION 

KLHL7 forms a ubiquitin ligase complex and regulates ubiquitination [9, 10]; however, 

there is a critical lack of knowledge of the targets of KLHL7 ubiquitination in breast cancer. 

In the present study, we revealed the significant association of KLHL7 expression with p53 

suggesting that aberrant KLHL7 ubiquitination may be responsible for decreased p53 

function. Several E3 ubiquitin ligases are thought to regulate p53 expression in cancer [30, 

31]. The function of p53 have been known to play important role in genomic stability, cell 

cycling and apoptosis [32,33] with p53 suppressing cell proliferation in breast cancer cells 

[34-36]. The function of p53 is also associated with activation of PI3K/Akt signalling 



pathway [37]. In a previous study, high p53 protein expression significantly correlated with 

high PIK3CA protein expression [24]. Activation of PI3K pathway is regulated by growth 

factors through transmembrane receptor [38]. The breast cancer with PIK3CA mutations 

have frequently aberrant activation of PI3K pathway [38]. Approximately 20-25% of breast 

cancer have PIK3CA mutations [39]. Previous studies suggest that breast cancer become 

resistant to treatment by activating the PI3K/Akt signalling pathway [40, 41]. Recent clinical 

trials indicated that PI3K inhibitor [42] and mTOR inhibitor [43], which inhibit the activity of 

PI3K/Akt signalling pathway, were useful for the treatment of metastatic breast cancer 

patients. The current study indicates the positive relationship between KLHL7 and PIK3CA 

expression. Further functional studies are necessary to explore the association of aberrant 

ubiquitination caused by KLHL7 overexpression with PI3K/Akt signalling pathway activity 

in breast cancer.       

LVI is involved in breast cancer metastasis and is a recognised prognostic factor [44-47]. In 

this study, KLHL7 expression was significantly associated with positive LVI status, negative 

ER status and TNBC. KLHL7 is located at 7p15, which shows frequent copy number 

alteration in basal-like subtype [48]. A recent genetic analysis of TNBC cases identified 

mesenchymal and mesenchymal stem-like subtypes to be high expressers of epithelial 

mesenchymal transition (EMT) - and cancer stem cell-related genes [49, 50]. Ubiquitination 

is thought to influence cancer stem cell-like properties in breast cancer, and E3 ligases may 

be active in cancer stem cell growth [8].  A recent study reported that the C-terminus of heat 

shock cognate 71 kDa (HSC70) interacting protein (CHIP), a ubiquitin ligase present in the 

cytoplasm, inhibits cancer stem-like cell activity in breast tumours and suppresses 

proliferation and metastasis of cancer cells [51]. Reduced CHIP expression has also been 

associated with high histological grade, hormonal receptor negativity and poor prognosis in 



breast cancer [52]. Aberrant ubiquitination may be responsible for enhanced cancer stem cell-

like functions and EMT of breast cancer cells underlying LVI and metastasis.   

KLHL7 positivity was recognised in the cytoplasm of invasive cancer cells. Although 

occasional cases showed nuclear staining the number was small for reliable statistical 

analysis and the expression was weak to moderate and seen simultaneously with cytoplasmic 

staining. High cytoplasmic staining of KLHL7 was associated with poor outcome in breast 

cancer patients. Importantly, the association with poor outcome was independent of other 

prognostic variables. Although no association between KLHL7 CNA and outcome was 

identified in the METABRIC cohort, the number of cases with CNA was limited with less 

than 2% showing copy number loss. Using the large cohort of Breast Cancer Gene-

Expression Miner, the association between KLHL7 mRNA expression and outcome was 

highly significant.   

 

CONCLUSIONS 

KLHL7 expression was related with molecular subtypes of breast cancer at genomic, 

transcriptomic and proteomic levels, and was strongly correlated with poorly differentiated 

tumours with LVI and with expression p53 and PIK3CA. KLHL7 may be released into the 

cytoplasm and ubiquitinates proteins involved in oncogenic pathways with the other factors 

involved in PI3K pathway. This may explain at least in part why the cytoplasmic expression 

of KLHL7 is an indicator of aggressive features and poor outcome in breast cancer.  
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Figure legends 

Figure 1. Immunohistochemical staining of KLHL7 to assay protein expression in breast 

cancer tissue showing (a) no staining, (b) weak staining, (c) moderate staining and (d) strong 

staining in the cytoplasm of cancer cells. 

 

Figure 2. Cumulative survival of breast cancer patients stratified by KLHL7 expression in 

breast tumours. (a) Significant differences were noted in survival of patients with high and 

low KLHL7 mRNA expressions using Breast Cancer Gene Expression Miner v4.0 [19] (p < 

0.0001). (b) Ten-year breast cancer specific survival was significantly worse in the KLHL7 

protein expression-positive group than in the expression-negative group (p = 0.0011). 

 

Figure 3. Morphological characteristics of KLHL7 immunohistochemistry in breast cancer 

tissue. (a) The immunohistochemical expression of KLHL7 was different between invasive 

carcinoma, intraductal cancer cells, and normal mammary gland adjacent to the tumour 

(Black arrow: invasive carcinoma, Grey arrow: intraductal cancer cells and white arrow: 

normal mammary gland). (b) Normal mammary gland cells showed absent or weak KLHL7 



staining. The reactivity of normal myoepithelial cells around epithelium (Black arrow) tended 

to be higher than those of normal epithelium. (c) Invasive cancer cells showed strong KLHL7 

staining. The reactivity was mainly recognized in the cytoplasm. (d) The degree of KLHL7 

immunohistochemical expression in invasive cancer cells was stronger than those of 

intraductal cancer cells. 

 

 

 

 

 

 

 

 

 

 

 



Table 1. Association of KLHL7 copy number and KLHL7 mRNA expression with clinicopathological characteristics 

Characteristic 
Expression of KLHL7 (Copy number) 

p Characteristics 
Expression of KLHL7 (mRNA) 

p 
Loss  Neutral  Gain Total >Median <Median Total 

Tumour size 

> 2 cm 
16 

(1.2%) 

1208 

(90.4%) 

113 

(8.5%) 
1337 

0.13 Tumour size 

> 2 cm 
670 

(50.0%) 

668 

(50.0%) 
1338 

0.72 

< 2 cm 
7 

(1.1%) 

573 

(93.0%) 

36 

(5.8%) 
616 < 2 cm 

303 

(49.3%) 

313 

(50.7%) 
616 

Nodal status 

Positive 
8 

(0.9%) 

846 

(90.3%) 

83 

(8.9%) 
937 

0.069 Nodal status 

Positive 
462 

(49.3%) 

476 

(50.7%) 
938 

0.51 

Negative 
15 

(1.4%) 

953 

(92.1%) 

67 

(6.5%) 
1035 Negative 

525 

(50.7%) 

510 

(49.3%) 
1035 

Histological 

grade 

Grade 3 
14 

(1.5%) 

865 

(90.9%) 

73 

(7.7%) 
952 

0.45 
Histological 

grade 

Grade 3 
445 

(46.8%) 

507 

(53.3%) 
952 

0.010* 

Grade 1, 2 
8 

(0.9%) 

860 

(91.6%) 

71 

(7.6%) 
939 Grade 1, 2 

495 

(52.7%) 

445 

(47.3%) 
940 

Molecular 

subtype 

Luminal A 
5 

(0.7%) 

665 

(92.6%) 

48 

(6.7%) 
718 

<0.0001* 
Molecular 

subtype 

Luminal A 
396 

(55.2%) 

322 

(44.8%) 
718 

<0.0001* 

Luminal B 
8 

(1.6%) 

446 

(91.4%) 

34 

(7.0%) 
488 Luminal B 

223 

(45.7%) 

265 

(54.3%) 
488 

HER2-

enriched 

0 

(0.0%) 

205 

(85.4%) 

35 

(14.6%) 
240 

HER2-

enriched 

133 

(55.4%) 

107 

(44.6%) 
240 

Basal-like 
10 

(3.0%) 

296 

(90.0%) 

23 

(7.0%) 
329 Basal-like 

130 

(39.5%) 

199 

(60.5%) 
329 

Normal-like 
0 

(0.0%) 

189 

(95.5%) 

9 

(4.5%) 
198 Normal-like 

104 

(52.3%) 

95 

(47.7%) 
199 

Some variables do not add up to 1980 for all patients due to missing data.                                                                                                                                                                                                                                                                                                                                    

* Significant difference p<0.05. 

  



Table 2. Correlation between KLHL7 expression and clinicopathological characteristics 

Characteristic 
Expression of KLHL7 

p 
Low High Total 

ER 
Positive 306 (46.9%) 346 (53.1%) 652 

0.015* 
Negative 101 (38.1%) 164 (61.8%) 265 

PgR 
Positive 244 (47.2%) 273 (52.8%) 517 

0.051 
Negative 163(40.8%) 237 (59.3%) 400 

HER2 
Positive 48(37.2%) 81 (62.8%) 129 

0.077 
Negative 359 (45.6%) 429 (54.4%) 788 

Tumour size 
> 2cm 219 (42.4%) 297 (57.6%) 516 

0.18 
< 2cm 188 (46.9%) 213 (53.1%) 401 

Nodal status 
Positive 160 (42.3%) 218 (57.7%) 378 

0.29 
Negative 247 (45.8%) 292 (54.2%) 539 

Histological grade 
Grade 3 193 (38.7%) 306 (61.3%) 499 

0.00015* 
Grades 1, 2 214 (51.2%) 204 (48.8%) 418 

Lymphovascular invasion 
Positive 157 (40.3%) 233 (59.7%) 390 

0.030* 
Negative 250 (47.4%) 277 (52.6%) 527 

Intrinsic Subtype 

Luminal A-like 117 (52.2%) 107 (47.8%) 224 

0.026* 

Luminal B-like 166 (45.1%) 202 (54.9%) 368 

HER2 (non Luminal)  24(35.3%) 44 (64.7%) 68 

Luminal-HER2 24 (39.3%) 37 (60.7%) 61 

Triple negative 76(38.8%) 120 (61.2%) 196 

PIK3CA 

Low 81 (52.3%) 74 (47.7%) 155 

0.044* Moderate 87 (47.8%) 95 (52.2%) 182 

High 156 (41.1%) 224 (58.9%) 380 

pAKT 
Low 65 (43.3%) 85 (56.7%) 150 

0.82 
High 206 (42.3%) 281 (57.7%) 487 



p53 
Low 294 (47.5%) 325 (52.5%) 619 

0.0015* 
High 102 (36.2%) 180 (63.8%) 282 

The variables of PIK3CA, pAKT and p53 do not add up to 917 for all patients due to missing data.                                                                                                                                                                                                                                                                                                                                    

* Significant difference p<0.05. 

 

 

  



Table 3. Survival analysis based on clinicopathological characteristics, including KLHL7 expression 

Characteristics 
Univariate analysis  Multivariate analysis  

Hazard Ratio 95% CI p Hazard Ratio 95% CI p 

KLHL7 
Low Reference Reference 

High 1.53 1.18–1.99 0.0011* 1.32 1.02–1.71 0.037* 

ER 
Positive Reference Reference 

Negative 1.97 1.53–2.54 <0.0001*  0.83 0.59–1.18 0.30 

PR 
Positive Reference Reference 

Negative 2.33 1.81–3.01 <0.0001*  1.80 1.27–2.53 0.00085* 

HER2 
Negative Reference Reference 

Positive 2.27 1.69–3.04 <0.0001*  1.44 1.06–1.96 0.019* 

Tumour size 
< 2cm Reference Reference 

> 2cm 2.34 1.77–3.08 <0.0001*  1.62 1.22–2.16 0.00085* 

Nodal status 
Negative Reference Reference 

Positive 2.59 2.01–3.34 <0.0001* 2.31 1.79–3.00 <0.0001* 

Histological grade 
Grade 1-2 Reference Reference 

Grade 3 3.37 2.51–4.52 <0.0001* 2.28 1.64–3.15 <0.0001* 

* Significant difference p<0.05. 

 

 

 



Supplementary File 1. Characteristics of the Nottingham primary cohort patients 

 

Age range (years) Patients (n) 

24–40 104 

41–59 535 

60 and over 278 

Menopausal status 

Pre 393 

Post 524 

Tumour size 

< 2.0cm 401 

> 2.0 cm 516 

Nodal status 

Negative 539 

Positive 378 

Lymphovascular invasion 

Negative 527 

Positive 390 

Type of breast surgery 

Breast-conserving surgery 372 

Mastectomy 545 

Axillary surgery 

Sampling alone 500 

Axillary lymph node dissection 351 

No surgery 5 

Unknown 61 

Chemotherapy 

Yes 199 

No 671 

Unknown 47 

Endocrine therapy 

Yes 337 

No 533 

Unknown 47 
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Figure 1
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Figure 3


