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Quantitative Methods to Monitor 
RNA Biomarkers in Myotonic 
Dystrophy
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Agnieszka Wojtkowiak-Szlachcic3, Karol Czubak2, Robert Markus1, Anna Lusakowska4,  
Anna Kaminska4 & J. David Brook1

Myotonic dystrophy type 1 (DM1) and type 2 (DM2) are human neuromuscular disorders associated with 
mutations of simple repetitive sequences in affected genes. The abnormal expansion of CTG repeats in 
the 3′-UTR of the DMPK gene elicits DM1, whereas elongated CCTG repeats in intron 1 of ZNF9/CNBP 
triggers DM2. Pathogenesis of both disorders is manifested by nuclear retention of expanded repeat-
containing RNAs and aberrant alternative splicing. The precise determination of absolute numbers of 
mutant RNA molecules is important for a better understanding of disease complexity and for accurate 
evaluation of the efficacy of therapeutic drugs. We present two quantitative methods, Multiplex 
Ligation-Dependent Probe Amplification and droplet digital PCR, for studying the mutant DMPK 
transcript (DMPKexpRNA) and the aberrant alternative splicing in DM1 and DM2 human tissues and 
cells. We demonstrate that in DM1, the DMPKexpRNA is detected in higher copy number than its normal 
counterpart. Moreover, the absolute number of the mutant transcript indicates its low abundance with 
only a few copies per cell in DM1 fibroblasts. Most importantly, in conjunction with fluorescence in-situ 
hybridization experiments, our results suggest that in DM1 fibroblasts, the vast majority of nuclear 
RNA foci consist of a few molecules of DMPKexpRNA.

Myotonic dystrophy type 1 (DM1) and type 2 (DM2) are adult onset muscular dystrophies leading to disability 
and shortened lifespan. Both belong to a larger group of human disorders associated with mutational expansions 
of simple repetitive sequences within specific genes. The mutation that causes DM1 results from the expansion 
of CTG repeats in the 3′-UTR of the DMPK gene; whereas DM2 is associated with intronic elongation of CCTG 
repeats in ZNF9/CNBP gene1,2. Pathogenesis of both diseases is mediated by a toxic RNA gain-of-function mech-
anism manifested by nuclear retention of expanded CUG- and CCUG-harboring RNAs which aggregate within 
nucleoprotein foci3. Their adverse effects are mediated through sequestration of various proteins including the 
muscleblind-like (MBNL) family of splicing factors. These proteins are functionally depleted by the expanded 
repeats in DM1 and DM2 which leads to abnormalities in many pathways of RNA metabolism including alterna-
tive splicing, a molecular hallmark of DM4–8.

In DM adult skeletal muscle abnormal expression of embryonic splicing isoforms has been reported for a 
few hundred genes4. Given the importance of alternative splicing as one of the biomarkers of disease severity 
and therapeutic response, accurate quantification of splicing variants could facilitate their refinement for clin-
ical applications. Specific oligonucleotide-based microarrays and next-generation sequencing have been used 
for profiling and identification of many aberrantly spliced transcripts. However, their routine application for 
precise quantification remains limited due to low quantitative parameters of these methods, restriction to highly 
expressed genes, high costs and the large amount of RNA required. On the other hand, traditional analysis of 
splicing isoforms via primer design, PCR and agarose gel visualization of PCR products shows low sensitivity, 
low repeatability and reproducibility between different laboratories. Thus, new methods of alternative splicing 
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analysis enabling robust and reliable quantification of splicing isoforms are needed for many aspects of DM 
research, and the first aim of this study is to optimize such new approaches.

Understanding the biology of mutant DMPK transcripts (DMPKexpRNA) associated with DM1 pathogenesis 
involves quantification of the toxic molecules per cell. Thus, selection of the most sensitive and reliable meth-
odologies is essential to compute the absolute number of disease-associated molecules. The most recent study 
measuring the abundance of endogenous DMPK transcripts revealed that in human DM1 myoblasts both normal 
(DMPKnormRNA) and mutant mRNAs are low-abundance species9. Several lines of evidence including Northern 
blotting, quantitative RT-PCR and RNA-sequencing showed that there are between one and a few dozen DMPK 
mRNAs per cell, half of which contain the repeat expansion. In a similar study looking at the abundance and 
processing of an antisense transcript across the DMPK repeat expansion, only a handful of repeat containing 
antisense transcripts were computed per cell10. Herein, we calculate concentration of DMPK mRNA in human 
DM1 samples using a novel ddPCR approach which is an absolute quantification method. Optimization of this 
technique to develop a further biomarker of DM1 is the second aim of this current work.

Two methods based on Multiplex Ligation-Dependent Probe Amplification (MLPA) and droplet digital PCR 
(ddPCR) were used herein for quantification of RNA biomarkers of DM pathogenesis, including aberrant alter-
native splicing and DMPKexpRNA copy number. MLPA and ddPCR are reliable dosage quantification methods 
and various applications include large mutation detection, genotyping of copy number variants, evaluation of 
NGS library exome enrichment efficiency, methylation analysis, and high-sensitivity gene expression studies11–18. 
MLPA is a multiplex method simultaneously utilizing multiple probes that allows quantification of different target 
sequences. Each probe is composed of two half-probes that hybridize to directly adjacent target sequences. Only 
half-probes specifically recognizing their targets undergo subsequent ligation and dosage-dependent amplifica-
tion with a pair of universal primers. The MLPA products consisting of a mixture of probe-specific PCR frag-
ments are separated by capillary electrophoresis and quantified. The normalized signals from MLPA probes are 
proportional to the dosage of their targets.

ddPCR is a highly quantitative and precise method which enables absolute nucleic acid measurement based 
on the partitioning of individual molecules into many low-volume droplet reactions at limiting dilution, resulting 
in one or zero molecules in most reactions in individual droplets17,19,20. After endpoint PCR, the starting concen-
tration of template is determined by Poisson statistical analysis of the number of positive (containing amplified 
target) and negative (no amplified target detected) reactions. The creation of several thousands of droplets in 
one reaction means that a single sample can generate several thousands of data points rather than a single result, 
bringing the power of statistical analysis of ddPCR into practical application. Thus, the digital PCR procedure 
displays many potential advantages over real-time PCR, including the capability to obtain absolute quantification 
without external references and robustness to variation in PCR efficiency.

Knowing the precise number of disease-causing molecules is of high importance since it will allow a better 
understanding of DM pathology and successful drug discovery. Herein, we show that a robust and reliable quan-
tification of RNA biomarkers of DM pathogenesis can be achieved by using two medium-throughput methods 
based on MLPA and ddPCR. Both methods have proven to generate highly reproducible results allowing simul-
taneous quantification of splicing isoforms of many genes that are aberrantly spliced in DM. In addition, we 
provide a novel quantitative approach for computing the absolute number of DMPK transcripts in copies per cells 
using ddPCR. Most importantly, in conjunction with fluorescence in-situ hybridization experiments, our results 
suggest that in DM1 fibroblasts, the vast majority of nuclear RNA foci consist of a few molecules of mutant DMPK 
transcripts.

Results
Design of MLPA and ddPCR Assays for Quantitative Analysis of Alternative Splicing Profiles.  
Aberrant alternative splicing is a hallmark of DM pathogenesis and precise calculation of splicing isoforms 
remains challenging. The first aim of this work was to design sensitive, reproducible and highly quantitative 
methods to monitor alternative splicing changes in skeletal muscles of DM1 and DM2 patients which may serve 
as accurate biomarker of disease progression that could be used in clinical trials. For this purpose we selected 
eight alternative exons whose splicing profiles correlate well with disease severity measured as a loss of muscle 
strength4. We divided these exons into three categories according to the timing of alternative splicing origin 
(Fig. 1). The first category (early responding exons) comprised exons in two genes: INSR E11 and SOS1 E25, with 
decreased inclusion observed in all DM1 patients, including pre-mutation DMPK allele carriers. The second 
category (medium responding exons) consisted exons of four genes: CACNA1S E29, ANK2 E21, PHKA E28 and 
MBNL1 E7 with inclusion rates changed in all affected DM1 patients showing high correlation with disease sever-
ity. The third category (late responding exons) comprised exons in two genes: KIF13A E32 and ARHGEF7 3′UTR 
which are altered strongly in the most affected DM1 patients. We used several criteria to select these eight exons: 
(i) a high correlation between splicing changes and muscle strength index in DM1 patients, (ii) a low variance 
of exon inclusion rate in the muscles of healthy individuals, (iii) constitutive exons flanking exons of interest not 
affected by alternative splicing, and (iv) a similar expression level of genes carrying analyzed exons to allow for 
their simultaneous analysis. Among the eight genes, INSR E11 was the only exception where criteria (i) and (ii) 
were not fulfilled.

Using novel methodologies based on counting data from single MLPA21 and ddPCR17 reactions we show 
that simultaneous and accurate quantitation of two splicing isoforms either exon inclusion (ex-ON) or exclu-
sion (ex-OFF) can be achieved with both methods. First, for multiplex analysis of the exons, we designed a 
splicing-specific MLPA (ssMLPA) assay consisting of 16 MLPA probes (Supplementary Table S1). As shown 
in Fig. 2a, there are two probes designed for each of the alternatively-spliced exons: an ex-ON probe and an 
ex-OFF probe. Each pair of exon-specific probes shares one half that is specific for the exon preceding the alter-
native exon (flanking half-probe) and another half specific for either alternative or consecutive constitutive exon 
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(exon-specific half-probe). Additionally, the exon-specific part differs by the length of a stuffer sequence which 
allows ex-ON and ex-OFF probes to be distinguished in capillary electrophoresis (Fig. 2b). Because the target 
sequences of the exon-specific half-probes are directly adjacent to the exon-exon boundaries their ligation occurs 
only in the presence of cDNA corresponding to the particular transcript variant. Additionally, the assay consists 
of four control probes specific for different non-alternatively-spliced control transcripts for signal normalization. 
After MLPA reaction the products were size separated by capillary electrophoresis (Fig. 2c). The fluorescent signal 
of each probe was normalized against the signal of control probes and then the ratios of signals of each pair of 
exon-specific probes (i.e. ex-ON and ex-OFF) were measured to calculate the percent of spliced-in (PSI) values.

For quantitative measurement of alternatively spliced products via ddPCR we designed two types of TaqMan 
hydrolysis probes (ZEN™ Double-Quenched Probes) specific to transcripts with (ex-ON) or without (ex-OFF) 
an alternative exon, and labeled at the 5′ end with either FAM or HEX fluorophore (Fig. 3a). Additionally, the 
probes are 3′-end modified with Iowa Black FQ quencher, and an internal ZEN quencher between the 9th and 
10th bases from the 5′ end (Supplementary Table S2). For the purpose of assay reproducibility we designed two 
different sets of probes to measure ex-ON transcripts (Fig. 3a) (for details, please see Methods). ddPCR reactions 
consisted of ex-ON and ex-OFF probes and a set of primers were used for PCR amplification to generate products 
in independent droplets that were then analyzed via droplet reader (Bio-Rad). Eventually, depending on droplets’ 
fluorescence signals, they were clustered as FAM-, HEX- or double-positive, whereas droplets with no amplicons 
were considered negative (Fig. 3c). Using the assays outputs as copies/µl for FAM and HEX-labeled products from 
the Bio-Rad reader software, the PSI values were calculated for each alternative exon.

Aberrant Alternative Splicing Analysis via MLPA and ddPCR in Human Skeletal Muscle. We 
compared two quantitative approaches to evaluate the extent of changes in alternative splicing in DM human 
skeletal muscles and in non-DM samples. We selected a representative group of samples derived from either dis-
tal (tibialis anterior) or proximal (quadriceps and biceps bronchi) muscles of DM1 (n = 7) and DM2 (n = 5) and 
control biopsies from the same muscles of non-DM individuals (n = 7) (Supplementary Table S3). The template in 
both approaches was cDNA obtained by reverse transcription reaction using random hexamers and 1 μg of total 
RNA. For each gene we calculated the percent spliced in (as described above) and normalized it to the average PSI 
value for non-DM samples, resulting in a delta PSI (|ΔPSI|) value for each DM sample.

As illustrated in Fig. 4a, both MLPA and ddPCR methods show strong homogeneity of splicing pattern in the 
healthy controls, while both DM1 and DM2 samples vary within each exon analyzed. In all DM1 samples, both 
methods of analysis showed statistically significant differences in comparison to healthy controls (p < 0.0001, 
for MLPA and ddPCR, Welch’s t test). Interestingly, DM2 samples also diverged significantly from the controls, 

Figure 1. Targets Selected for Analysis of Aberrant Alternative Splicing. Three categories of alternative exons 
selected are shown: early responding exons (INSR E11 and SOS1 E25); medium responding exons (CACNA1S 
E29, ANK2 E21, PHKA E28 and MBNL1 E7), and late responding exons (KIF13A E32 and ARHGEF7 3′UTR). 
N, normal samples; PM, samples from pre-mutation carriers and DM patients with increasing disease severity. 
The agarose gel separation of representative RT-PCR products for alternative exon inclusion and exclusion in 
non-DM (sample 6A, female, tibialis anterior) and DM1 (sample 3A; adult onset, male, tibialis anterior; 390 
CTG repeats) is shown.
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Figure 2. MLPA Assays Designed. (a) Schematic representation of the ex-OFF probe (left panel) and the 
ex-ON probe (right panel) specifically hybridized to the cDNA of a transcript, respectively, without and 
with the alternative exon B. Exons A and C are constitutive exons flanking the alternative exon B. Each of 
the exon-specific probes is composed of a 5′ half-probe and a 3′ half-probe (5′ half-probe is shared by both 
ex-OFF and ex-ON probes). Each half-probe is composed of a target-specific sequence (indicated by a color 
corresponding to targeted exon), stuffer sequence (gray), and sequence specific to either F (labeled) or R 
universal primers. Note that stuffer sequence in 3′ half-probe is different in size in the ex-OFF and ex-ON 
probes allowing differentiating the signal of probes in capillary electrophoresis. (b) Comparison of ssMLPA 
signals (electropherogram peaks) of the hypothetical exon-specific pair of probes (shown in panel a) in non-DM 
and DM1 samples (note, different ratio of signals of ex-ON and ex-OFF probes in compared samples). The 
ratio of signals from both peaks was used to calculate the PSI value for each sample. (c) Representative ssMLPA 
results (electropherograms) of non-DM and DM1 samples. Blue peaks represent signals of MLPA probes used 
for indicated genes. The color rectangles indicate the pairs of exon-specific probes. The signals outside the 
rectangles represent control probes. Red peaks denote GS Liz600 DNA size standard.
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although to a lesser extent (with one exception, KIF13A E32, for which MLPA did not show any difference), 
(p = 0.0064, MLPA; p = 0.0044, ddPCR). For most exons analyzed statistically significant differences were found 
between DM1 and DM2 samples with both methods, except for ANK2 E21 and PHKA1 E28. For all splicing 
events, there was strong correlation between the results of the MLPA and ddPCR analyses and Pearson corre-
lation coefficient varied between R = 0.628 (p-value = 0.003988) and R = 0.937 (p-value < 1E-05), respectively, 
for PHKA1 E28 and for MBNL1 E7. Average values of cumulative |ΔPSI| (Fig. 4b) confirm different inclu-
sion rates of alternative exons between DM1 and DM2 samples which differ significantly (p = 0.0110, MLPA; 
p = 0.0204, ddPCR). The sequence of templates binding ddPCR probes was found not to affect the quantification 
of aberrant alternative splicing as determined with two alternative sets of ex-ON probes for PHKA1 E28 (Fig. 3a, 
Supplementary Table S2). Regardless of whether the inclusion probe binds in the alternative exon or at the bound-
ary between exon 27 and 28 of PHKA1 the results were not statistically different and Pearson correlation coeffi-
cient R = 0.990 (p-value < 1E-05) (Supplementary Fig. S1a).

Thus, within each of the methods used there was high reproducibility among independent measurements 
and for vast majority of samples analyzed both MLPA and ddPCR showed high correlation of data. Dispersion 
of the variable of at least three replicates for calculated |ΔPSI| expressed as the coefficient of variation (CV) was 
0.052 (for MLPA), and 0.072 (for ddPCR). We conclude that both of the methods are equally reliable and sensitive 

Figure 3. ddPCR Probes Used. (a) An alternative exon exclusion probe (FAM-labeled) and two alternative exon 
inclusion probes (HEX-labeled) used in alternative splicing assays; the probes have ZEN-Iowa Black as the dual-
quencher. An alternative exon (exB) is indicated in red, and it’s flanking exons (exA and exC) in blue and green. 
Location of primers (F and R) is shown by arrows and ZEN probes are displayed in their binding exons. (b) Dual-
quencher probes used in DMPK copy number quantification in cDNA (upper part) and gDNA (lower part). The 
rs527221 SNP in exon 10 of DMPK was used to distinguish normal-size and mutant alleles. Position of primers 
(F and R) is shown by arrows and probes are displayed in their binding sites. (c) Representative 2-dimensional 
scatter plot displaying droplet populations in separate clusters depending on their fluorescence amplitude 
following ddPCR for CACNA1S exon 29 (DM2 sample). FAM-positive droplets (FAM+/HEX−), HEX-positive 
(FAM−/HEX+), double-positive (FAM+/HEX+), and negative droplets (FAM−/HEX−) are shown.
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enough to generate accurate and reproducible results when used separately. Thus, we believe that there is no need 
to use them simultaneously.

Design of ddPCR Assay for Quantitative Analysis of Absolute Copy Number of DMPK Transcripts.  
We designed and optimized ddPCR assays for computing the absolute cellular copy number of DMPK transcripts. 
For this purpose, we selected a representative group of DM1 samples derived either from proximal (quadriceps) 
human skeletal muscles (n = 7) or from proliferating fibroblasts (n = 5) (Supplementary Table S4). All the samples 
were informative for the rs527221 G > C single nucleotide polymorphism (SNP) located in exon 10 of DMPK 
which in DM1 is linked to its mutant allele (known as BpmI polymorphism)22. To distinguish normal and mutant 
DMPK alleles, the FAM and HEX-labeled ZEN probes were designed to bind within the SNP site (Fig. 3b). They 
had the same nucleotide composition except for the single nucleotide difference (C or G) present in the middle 
of each probe (Supplementary Table S2). For assay reproducibility and to exclude any potential effect of probe 
labeling on transcripts quantification we designed two alternative sets of probes (variant 1 shown in Fig. 3b, 
and variant 2 with reversal of the fluorophores on the 5′-end of ZEN probes) (for details, please see Methods). 
Supplementary Figure S2 shows selectivity of the FAM and HEX probes designed to recognize the SNP within 
DMPK.

Quantification of DMPK Transcripts via ddPCR. To characterize cellular abundance of DMPK tran-
scripts in DM1 we calculated absolute copy number/cell of normal and mutant DMPK mRNAs in proliferating 
fibroblasts, and determined the fraction of DMPKexpRNA in skeletal muscles and fibroblast cells.

Because ddPCR does not directly provide insights into the quantity of RNA molecules per cell, we counted 
the number of cells prior to harvesting RNA to determine DMPK mRNA copy number. Total RNA isolated from 
one million fibroblast cells was converted to cDNA using random hexamers and subjected to ddPCR with FAM 
and HEX-labeled probes (Fig. 3b). To test for reverse transcriptase efficiency we used different concentrations of 
input RNA (125 ng, 250 ng, 500 ng and 1000 ng) in cDNA synthesis (Supplementary Fig. S3). For further analysis 

Figure 4. Aberrant Alternative Splicing Analysis with ddPCR and MLPA Assays. (a) MLPA and ddPCR results 
of aberrant alternative splicing for three categories of exons in DM1, DM2 and non-DM samples of human 
skeletal muscles. For each gene, exon inclusion rate (PSI, the percent of splice in) was calculated and normalized 
to the average PSI value for non-DM samples, resulting in the delta PSI value for each DM sample. (b) Average 
cumulative results of |ΔPSI| values for DM1, DM2 and non-DM human skeletal muscles (shown in panel a) 
obtained with MLPA and ddPCR are shown. For two (6B and 10B) out of twelve samples the |ΔPSI| showed 
some discrepancy between MLPA and ddPCR methods what was correlated with poor RNA quality of these 
samples.
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we selected samples prepared with 250ng RNA since ddPCR output of DMPK mRNA was found to be the highest 
with this concentration across all fibroblast cell lines used. To validate the accuracy of cell counts we calculated 
the DMPK alleles/cell in gDNA extracted from the aliquots of input cells. Following ddPCR amplification the 
quantity of DMPK alleles was calculated by “equations (1–3)” using the assay output in copies/µl (Supplementary 
Table S5). As shown in Fig. 5a the number of alleles was about 2 copies per cell in all cell lines analyzed which 
confirmed the accuracy of cells counts. Two different sets of probes for DMPK DNA were used for this calculation 
and results were not statistically different (p > 0.05) (Supplementary Fig. S4). Next, we computed the number 
of DMPK transcripts/cell using “equations (4–7)” (Supplementary Table S6). As shown in Fig. 5a, the five DM1 
fibroblast cell lines had between 15 and 20 molecules of DMPK per cell. Because ddPCR probes discriminate 
between DMPKnormRNA and DMPKexpRNA due to the SNP in exon 10, we estimated the proportion of expansion 
transcripts in the DMPK total population. There were between 9 and 11 molecules of DMPKexpRNA present per 
cell of DM1 fibroblasts. The proportion of the mutant RNA ranged from 54 to 65% (Fig. 5b). In comparison, there 
was approximately a one-to-one correspondence between normal and mutant DMPK alleles in DNA.

It was previously reported, that normal and mutant DMPK transcripts are equally expressed when analyzed in 
proliferating human DM1 myoblasts9. Because our results in fibroblasts indicated otherwise, we set up additional 
analyses and determined the fraction of DMPKexpRNA in human DM1 skeletal muscle. As shown in Fig. 5c, the 
ddPCR results unequivocally indicate the predominance of DMPKexpRNA (from 53 to 71%) in all DM1 samples 
tested. We confirmed this result with two other assays including Sanger sequencing and capillary electrophoresis 
of BpmI digested RT-PCR products (Supplementary Fig. S5). In all gDNA samples from peripheral blood, normal 
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Figure 5. ddPCR-based Quantification of the Absolute DMPK Copy Number per Cell and a Fraction of Mutant 
DMPK Transcript. (a) The absolute DMPK copy number per cell in cDNA (black bars) and gDNA (blue bars) 
from proliferating human DM1 fibroblasts (lines F1-F5). The cells were semi-confluent at the moment of RNA 
harvest and their passage numbers were between 20 and 37. All the cell lines were immortalized. Bar graphs 
represent results from at least three independent culture series per line and data are presented as mean ± SD. 
(b) A fraction of mutant DMPK transcript and allele in DM1 fibroblasts shown in panel (a). The mean values 
of independent ddPCR measures performed with DMPK probes indicated as variant 1 and 2 are shown. (c) A 
fraction of mutant DMPK transcript and allele in, respectively, human DM1 skeletal muscles and peripheral 
blood. The fraction was determined with: ddPCR (probe variant 1 and 2), capillary electrophoresis (CE) and 
Sanger sequencing (Seq.). (d) The correlation between a fraction of mutant DMPK RNA (shown in panel c) and 
CTG repeats number (~130–1500) in DMPK gene is plotted.
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and mutant DMPK alleles were about equal which supports our results obtained in gDNA from proliferating 
fibroblasts (Fig. 5b,c). When analyzing the correlation between the fraction of DMPKexpRNA in DM1 skeletal 
muscle and the CTG repeat lengths (assessed from peripheral blood), there was no link between these two vari-
ables and the sample from a patient with over 1400 CTG repeats had a comparable fraction of DMPKexpRNA as 
those with shorter repeats (Fig. 5d).

In summary, the ddPCR estimated number of cellular DMPK mRNA molecules indicates high methodologi-
cal sensitivity and accurate quantification of low copy targets. High reproducibility of independent measures was 
indicated by SD ranging from 0.089 to 0.266, whereas strong positive correlation between measures of DMPK 
molecules with probe variant 1 and 2 was shown by Pearson coefficient correlation (R = 0.7508).

Estimation of Mutant DMPK RNA in situ via Fluorescence Hybridization. Mutant DMPK mRNAs 
containing the CUG expanded repeats are retained in the nucleus, where they form foci, a molecular hallmark 
of DM1 pathology3,23. It remains an open question, whether foci are composed of multiple aggregating mutant 
RNAs or whether each focus equals a single RNA molecule. To get an insight into this issue, we applied standard 
FISH23 and compared signals from single molecules of fluorescently labeled probes with signals in repeat expan-
sion DNA (CAGexpDNA) and RNA (CUGexpRNA) foci. In the five DM1 fibroblasts cell lines (the same as used for 
DMPK quantification via ddPCR assay) there was only one or occasionally two CAGexpDNA foci per nucleus, but 
different numbers of CUGexpRNA foci (1–12/nucleus) (Fig. 6a). This result remains in agreement with an earlier 
report23. Measurements of the absolute FISH signal intensity of individual RNA and DNA nuclear foci show that 
the former represent a very heterogeneous population and higher fluorescence intensity values while signals 
of the latter were lower and consistent within each group of cells (Fig. 6b,c). To find out whether these features 
were correlated with different numbers of probes bound in each mutant target (i.e. DMPK gene and transcript) 
or rather with different quantity of the mutant molecules present in these foci, we set up a confocal microscopy 
analysis and determined fluorescence intensity of single molecules of Alexa 488-labeled probes (Supplementary 
Figure S6). These values were then used to estimate number of probes in fluorescence signals of DNA and RNA 
foci (Fig. 6) as well as in random regions outside of the clusters of mutant DMPK (Supplementary Figure S7). 
As shown in Supplementary Figure S8a the lowest number of Alexa 488 probes was consistently detected in 
regions outside of nuclear foci (about 1–2 probes) which reflects the probes binding to various targets harboring 
short CUG and CAG repeats24. Significantly higher quantities of probes were estimated in nuclear DNA and 
RNA foci of all DM1 fibroblasts (Supplementary Figure S8a), however on average there were from two to four 
times more probes detected in RNA foci. Of note, within each DM1 cell line there was a prominent homogeneity 
in terms of number of probes in different DNA foci while CUGexpRNA foci were more diverse for this feature 
(Supplementary Figure S8a). Eventually, we computed the relative number of CUGexpRNA per nuclear RNA focus 
(Supplementary Figure S8b) and per nucleus (Supplementary Figure S8c) using median values of DNA foci for 
each cell line. This estimation of the number of mutant DMPK transcripts in situ was based on the notion that in 
diploid DM1 fibroblasts, which are heterozygous for the CTG repeat mutation, each CAGexpDNA focus contains 
one copy of the mutant allele. If we assume that intensity of FISH signal measured for a given DNA focus reflects 
the presence of one molecule, it should be possible to compute the relative number of expanded CUG repeat 
DMPK transcripts in RNA foci. However, it was taken into account that in an in situ hybridization the incorpora-
tion of probes used to label RNA or DNA molecules is most likely stochastic process. As shown in Supplementary 
Figure S8b, the median numbers of mutant CUG repeat transcripts per RNA foci varied between 2 and 4. In each 
cell line, foci of single CUGexpRNA molecules remain in the minority (10–20%) and co-exist with those composed 
of two to eight molecules. Interestingly, for a subset of foci (5–10%) there appeared to be less than one molecule 
of mutant RNA per focus. The relative number of CUGexpRNA molecules per focus was used to calculate their 
amount per nucleus. As illustrated in Supplementary Figure S8c, nuclei of each cell line varied in their numbers of 
CUGexpRNA and contained from one to over two dozen of the molecules. While there were on average 4 to 6 RNA 
foci per nucleus in the fibroblast cells, the estimated median numbers of mutant transcripts ranged from 8 to 17 
(Fig. 7a). We found the relative quantities of CUGexpRNA per nucleus calculated via FISH not to be significantly 
different from the absolute values estimated by ddPCR (Fig. 7b).

Discussion
The selection of the most reliable methods for counting RNA molecules is of paramount importance for under-
standing the mechanism of pathogenesis of non-coding repeat expansion disorders such as DM1 and DM23. 
Here, we demonstrate that two quantitative methods, MLPA and ddPCR, can be successfully applied to accurately 
measure RNA biomarkers of DM pathogenesis which are mechanistically very informative.

Aberrant alternative splicing is a key feature of DM1 and DM2 pathogenesis4,5. In DM adult skeletal mus-
cle abnormal expression of embryonic splicing isoforms has been reported for a number of genes4. The timing 
of appearance of certain mis-spliced events correlates well with disease severity measured as a loss of muscle 
strength4 which makes them very useful biomarkers. This hallmark of DM pathogenesis is most informative 
when the efficacy of investigated compounds is measured to demonstrate their therapeutic value25–27. Thus far, 
profiling of aberrantly spliced transcripts has been performed with high-throughput methods such as specific 
oligonucleotide-based microarrays and next-generation sequencing, or with traditional RT-PCR and agarose 
gel quantification of PCR products. Neither method provides both highly reproducible and low cost analyses. 
We show that MLPA and ddPCR overcome this problem. Our results demonstrate a robust and reliable quanti-
fication alternative to calculate splicing isoforms of many genes that are a hallmark of different stages of muscle 
deterioration in DM.

Mutant DMPK mRNAs containing the expanded CUG repeats are retained in the nucleus as distinct 
foci3,23,28,29. While the vast majority of published data have documented the presence and number of CUG foci via 
FISH (reviewed in3) there is still a gap in precise determination of the quantity of DMPKexpRNA per cell and per 
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Figure 6. Detection of Mutant CUG Repeat RNA and Mutant CAG Repeat DNA in Nuclear Foci via FISH. (a) 
Representative FISH images of mutant DMPK RNA and DNA foci in DM1 human fibroblasts. CUG repeat RNA 
foci were detected with (CAG)10 probe, whereas CAG repeat DNA foci with (CTG)10 probe, both labeled with 
Alexa 488. The nuclear area was identified by Hoechst stain. The arrowheads indicate dim DNA foci. Scale bar, 
2 µm. (b) 16-bit FISH images (raw data) of RNA and DNA foci and their fluorescence intensity in green channel 
determined by masks with the outline of recognized foci. Scale bars, 2 µm (left panels) and 0.5 µm (middle 
panels). (c) Maximum values of FISH intensity for RNA and DNA foci from line profiles (as shown in panel b) 
for randomly selected nuclei of VRS fibroblast cell line. Each plotted color line represents one focus.
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nuclear RNA focus. To tackle this issue, we used ddPCR which is an absolute quantification method and we deter-
mined DMPK copy number in a well-defined quantity of input cells in several human DM1 fibroblast cell lines. In 
a similar study by Gudde et al.9, DMPK mRNA molecules were calculated in proliferating human DM1 myoblasts 
using Northern blotting, qPCR and RNA-seq data. Although both the studies indicate a low abundance of DMPK 
transcripts, higher numbers were found in myoblast cells (respectively, 15–20 and 2–50 DMPK RNA). Similarly, 
in human fibroblasts from frontotemporal degeneration (FTD) and amyotrophic lateral sclerosis (ALS) (FTD/
ALS)30,31, the absolute copy number of c9orf72 mRNA was estimated at about 15 molecules/cell when measured 
by ddPCR and qPCR32. Interestingly, the intronic part of the transcript containing expanded GGGGCC repeats 
found in nuclear RNA foci in patients’ cells was detected in only single copy/cell. Thus, in FTD/ALS fibroblasts 
it appears the mutation-containing intron is degraded more rapidly than the mature transcript is processed. Our 
ddPCR data suggest that in DM1, the CUG mutation-harboring DMPK transcript is turned over slower than its 
normal-sized counterpart. In patients’ cells and skeletal muscles we consistently detected a higher number of 
copies of DMPKexpRNA reaching up to 70% of its entire population. However, except for the differences in RNA 
processing (i.e. maturation and degradation) variations in expression levels of mutant DMPK transcript may also 
be attributed to differences in RNA synthesis rate as a result of repeat-related chromatin effects.

In DM1, in situ hybridization has mostly been used to determine CUG RNA foci numbers3. A further appli-
cation of the technique for more detailed characterization of foci is rather limited due to random incorporation 
of probes and a lack of tools allowing precise quantification of hybridized molecules. Nonetheless, FISH remains 
the only method to look at deposits of mutant molecules of DMPK transcripts in their natural environment. Here, 
we applied this technique to get an insight into a problem about quantity of DMPK mutant transcripts in nuclear 
CUG RNA foci. Our estimations based on normalization of fluorescence signals of RNA foci using values of 
single molecules of Alexa 488 probes led to the conclusion that in DM1 proliferating fibroblasts the vast majority 
of foci (~80%) consists of a few molecules of mutant DMPK transcripts. Importantly, FISH-estimated quantity of 
DMPKexpRNA per cell was convergent with what we computed based on ddPCR absolute quantification (Fig. 7b).

Clearly there are important caveats to this work, most notably variability of repeat length estimates and the 
relationship of probe hybridization to DNA and RNA in RNA FISH experiments. Repeat expansions are highly 
variable in length and heterogeneous within individuals. Repeat length variability is also manifested in cultures 
of patient cells. Thus, it is important to point out that the size estimates for repeat lengths in this study are based 
on the most prominent size of repeat detected. It will not be a uniform length in all cells. In terms of RNA FISH 
an underlying assumption of our analysis is that the probes hybridize similarly to DNA and RNA. If the probe 
is binding less well to RNA than to DNA our transcript numbers will be underestimated. Conversely if the CAG 
probe binds less well to DNA than to RNA our transcript numbers will be overestimated. Furthermore, it is not 
surprising that we do not see a strict relationship of fluorescence intensity and estimated repeat length in these 
experiments. In addition to the difficulties estimating precise repeat length in each cell, repeat expansion foci are 
dynamic structures, continually turning over within cells to reflect the balance between transcription and degra-
dation. Thus, fluorescence intensity will vary accordingly. Nevertheless, our results obtained with two quantitative 
methods, MLPA and ddPCR, introduce a new important value to the research on DM1 pathogenesis. Knowledge 
of the precise number of disease-causing RNA molecules could have a broad implication in helping define the 
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Figure 7. Comparative Analysis of Mutant DMPK mRNA Copy Numbers in Human DM1 Fibroblasts via 
ddPCR and FISH. (a) The absolute numbers of mutant DMPK mRNA based on ddPCR results are presented in 
comparison with FISH estimated relative numbers of the transcript in five DM1 fibroblast cell lines. Plotted are 
also the numbers of CUGexpRNA foci per nucleus. The median values ± SD for each data set are shown.  
(b) The average numbers of mutant DMPK RNA and CUGexpRNA foci in five DM1 fibroblast cell lines. Data are 
presented as mean ± SD.
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limits of the number of MBNL proteins that are sequestered by the expanded repeats and thus the extent of aber-
rant alternative splicing which results from the depletion.

Methods
Samples Used. RNA samples from human skeletal muscles of DM1, DM2 and non-DM were used for splicing  
analysis (Supplementary Table S3). For DMPK allele and transcript quantification lymphocyte DNA and quadri-
ceps RNA samples originated from the same DM1 patients. In addition, human DM1 fibroblasts (immortal-
ized) (Supplementary Table S4) were used and were grown in Dulbecco’s modified eagles medium (DMEM) with 
penicillin and streptomycin, and 10% fetal calf serum (FCS) (Sigma). The samples, experimental protocols and 
methods reported in this study were carried out in accordance with the approval of the local ethics committee 
(NRESCommittee.EastMidlands-Nottingham2). Informed consent was obtained from all subjects.

Reverse Transcription. Total RNA was extracted with TRIzol (Invitrogen) according to manufacturer’s 
instruction. Extracted RNA was treated with DNase I (Invitrogen) at 37 °C for 30 min followed by enzyme inac-
tivation at RT for 10 min. Reverse transcription reactions were performed using a SuperScript® III First-Strand 
Synthesis System (Invitrogen). Briefly, after DNase I treatment, random primers and dNTPs were added to 1 µg of 
RNA to make volume of 13 µl and heated at 65 °C for 5 min. Then 7 µl of RT mixture (containing 4 µl 5× RT buffer, 
1 µl of 0.1 M DTT, 1 µl of RNase OUT, 1 µl of SuperScript® III) was added and RT reaction was performed at 50 °C 
for 50 min followed by enzyme inactivation at 70 °C for 10 min. cDNA synthesis (as RT+) was accompanied by 
RT- controls lacking the reverse transcriptase. GoTaq Flexi DNA Polymerase (Promega) and 0.1 mM dNTP mix, 
1.5 mM MgCl2, and 0.8 μM of each primer were used for any RT-PCR assays to validate primers specificity. To 
account for any differences in the efficiency of reverse transcriptase in cDNA synthesis, the templates for DMPK 
mRNA quantification were prepared with different concentrations of input RNA i.e. 125 ng, 250 ng, 500 ng and 
1000 ng.

MLPA. MLPA analysis was performed using the in-house designed assays. The probe-set layout was designed 
according to a previously validated strategy14,15. As opposed to commercial tests, this strategy exclusively utilizes 
short oligonucleotide probes. Each probe consists of two half-probes (each 3′half-probe was phosphorylated 
at the 5′-end to enable ligation with its sister half-probe); between-probe distance equals 3–5 bp; and the total 
probe length ranges from 93 to 128 nt. The sequences and detailed characteristics of all probes are shown in 
Supplementary Table S1. The MLPA probes were synthesized by IDT (Holland). All reagents except for probe-set 
mix were purchased from MRC-Holland, Amsterdam, Netherlands. The MLPA reactions were run according to 
the manufacturer’s recommendations and as previously described11,14 using 50× diluted cDNA samples and a 
mixture of 1 nM half-probe oligonucleotides. The products of the MLPA reactions were then diluted 20× in HiDi 
formamide containing GS Liz600, which was used as a DNA sizing standard, and were separated by size with cap-
illary electrophoresis (POP7 polymer; ABI Prism 3130XL apparatus; Applied Biosystems, Carlsbad, CA, USA). 
The electropherograms were analyzed using GeneMarker software (version 2.2.0; SoftGenetics, State College, 
PA, USA). The fluorescent signal of each probe was normalized against the average signal of control probes and 
then the ratios of signals for each pair of exon-specific probes representing alternative exon inclusion in analyzed 
samples were calculated.

ddPCR. Primers and probes used in ddPCR assays were manually designed and synthetized in Integrated 
DNA Technologies, Inc. (IDT, Belgium). Sequences of primers and probes are listed in Supplementary Table S2. 
All reactions were prepared using BioRad reagents and assays performed with BioRad equipment. After reverse 
transcription, ddPCR reaction solution was prepared to a final volume of 25 μl containing 1× ddPCR supermix 
for probes, 250 nM gene specific primers, 125 nM probes (for ex-ON and ex-OFF), and cDNA (diluted from 20× 
to 40×). No template control and no reverse transcriptase control (RT-) were included in each ddPCR run to 
detect possible contaminations. Then, the ddPCR reactions were loaded to a DG8 cartridge and along with 70 μl 
of droplet generation oil were used to form droplets in a QX100 droplet generator. 40 μl of partitioned emulsion 
containing droplets was then slowly transferred to 96-Well twin.tec™ Semi-Skirted PCR Plate (Eppendorf). After 
heat-sealing with foil, the plate containing the droplets was PCR cycled to the final point under conditions at 
95 °C, 10 min, 95 °C 30 s and 60 °C for 60 s for 40 cycles, 98 °C for 10 min, then held at 4 °C (for details about 
annealing temperature for each gene, please see Supplementary Table S2). Following PCR, samples were read on 
a droplet reader which automatically reads the droplets from each well of the plate. Finally, data were analyzed 
using QuantaSoft software to determine the number of positive droplets. Instead of using auto-analysis after data 
acquisition, a manual selection of “+/−,” “−/+,” “+/+” and “−/−” counts was done using the Lasso function in 
the 2-D plots. The counts were then used by the software to calculate the copy numbers of FAM-positive droplets, 
HEX-positive, FAM- and HEX-double positive and negative droplets in the four quadrants. For each ddPCR 
assay serial dilutions of cDNA were used to obtain the lowest number of double-positive droplets; annealing 
temperature gradients were ran to optimize PCR conditions and to determine the best separation between neg-
ative and positive reactions (Supplementary Fig. S1b). Two different sets of probes for measurements of ex-ON 
transcripts in splicing assay were designed. The target sequence for the first set of probe was the alternative exon, 
whereas the second type of ex-ON probe was annealing at the boundary of alternative exon and its preceding 
exon (Fig. 3a). Also, for DMPK quantifications two alternative sets of probes were designed (variant 1 shown 
in Fig. 3b, and variant 2 with reversal of the fluorophores on the 5′-end of ZEN probes) in order to exclude any 
potential effect of probe labeling on quantifications.

Quantification of Splicing Isoforms. MLPA and ddPCR results of splicing assays for selected genes were 
used to compare “percent spliced in” (PSI) values of alternatively spliced cassette exons between non-DM and 
DM1 as well between non-DM and DM2 (changes in splicing denoted as |ΔPSI|).
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Determination of Absolute Copy Number of DMPK per Cell in Genomic DNA and Total RNA 
from Human Fibroblasts. Cultured human fibroblasts were detached by trypsin solution and cell pellet 
was washed with ice cold PBS. Then, cell numbers were counted for at least three times by hemocytometer and 
obtained cell numbers were averaged and then divided into aliquots containing on average one million cells. For 
further RNA extraction, cells were mixed with Trizol (Invitrogen), whereas gDNA was column isolated (Qiagen). 
RNA and DNA concentrations were measured by NanoDrop 2000 Spectrophotometer. 250 ng of total RNA was 
used for cDNA synthesis as described above. Eventually, gDNA and cDNA from corresponding samples were 
used in ddPCR assays to quantify concentration of DMPK (copies per µl) and converted to copies per cell (for 
details, please see Supplementary Tables S5 and S6).

Statistical analysis. All experiments were performed at least three times, and the representative results are 
shown. The data are presented as the mean or median ± SD (as indicated in Figures Legends).

Statistical significance of results of aberrant alternative splicing was determined by the Welch’s unpaired 
two-tailed t test, whereas significance of DMPK quantifications via ddPCR and FISH was determined by unpaired 
two-tailed t test; P values of <0.05 were considered to be statistically significant in all tests.
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