CRISPR/Cas9 editing in human pluripotent stem cell-cardiomyocytes highlights arrhythmias, hypocontractility, and energy depletion as potential therapeutic targets for hypertrophic cardiomyopathy

Mosqueira, Diogo and Mannhardt, Ingra and Bhagwan, Jamie R. and Lis-Slimak, Katarzyna and Katili, Puspita and Scott, Elizabeth and Hassan, Mustafa and Prondzynski, Maksymilian and Harmer, Stephen C. and Tinker, Andrew and Smith, James G.W. and Carrier, Lucie and Williams, Philip M. and Gaffney, Daniel and Eschenhagen, Thomas and Hansen, Arne and Denning, Chris (2018) CRISPR/Cas9 editing in human pluripotent stem cell-cardiomyocytes highlights arrhythmias, hypocontractility, and energy depletion as potential therapeutic targets for hypertrophic cardiomyopathy. European Heart Journal . ISSN 1522-9645

[img]
Preview
PDF - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
Available under Licence Creative Commons Attribution.
Download (3MB) | Preview

Abstract

Aims: Sarcomeric gene mutations frequently underlie hypertrophic cardiomyopathy (HCM), a prevalent and complex condition leading to left ventricle thickening and heart dysfunction. We evaluated isogenic genome-edited human pluripotent stem cell-cardiomyocytes (hPSC-CM) for their validity to model, and add clarity to, HCM. Methods and results: CRISPR/Cas9 editing produced 11 variants of the HCM-causing mutation c.C9123T-MYH7 (p.R453C-βMHC) in 3 independent hPSC lines. Isogenic sets were differentiated to hPSC-CMs for high-throughput, non-subjective molecular and functional assessment using 12 approaches in 2D monolayers and/or 3D engineered heart tissues. Although immature, edited hPSC-CMs exhibited the main hallmarks of HCM (hypertrophy, multi-nucleation, hypertrophic marker expression, sarcomeric disarray). Functional evaluation supported the energy depletion model due to higher metabolic respiration activity, accompanied by abnormalities in calcium handling, arrhythmias and contraction force. Partial phenotypic rescue was achieved with ranolazine but not omecamtiv mecarbil, while RNAseq highlighted potentially novel molecular targets. Conclusion: Our holistic and comprehensive approach showed that energy depletion affected core cardiomyocyte functionality. The engineered R453C-βMHC-mutation triggered compensatory responses in hPSC-CMs, causing increased ATP production and αMHC to energy-efficient βMHC switching. We showed that pharmacological rescue of arrhythmias was possible, while MHY7:MYH6 and mutant:wild-type MYH7 ratios may be diagnostic, and previously undescribed lncRNAs and gene modifiers are suggestive of new mechanisms.

Item Type: Article
Keywords: Hypertrophic cardiomyopathy; Disease modelling; CRISPR/Cas9; Genome-edited human pluripotent stem cell-cardiomyocytes; R453C-βMHC
Schools/Departments: University of Nottingham, UK > Faculty of Medicine and Health Sciences > School of Medicine > Division of Cancer and Stem Cells
University of Nottingham, UK > Faculty of Science > School of Pharmacy
Identification Number: https://doi.org/10.1093/eurheartj/ehy249
Depositing User: Denning, Chris
Date Deposited: 12 Apr 2018 08:32
Last Modified: 02 Jul 2018 08:30
URI: http://eprints.nottingham.ac.uk/id/eprint/51099

Actions (Archive Staff Only)

Edit View Edit View