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Abstract 

When an isotropic hyperelastic unit cube subjected to dynamic tri-axial extension/compression dilates 

successfully beyond its elastic limit, namely into its work-hardening deformation regime, plastic flow 

transforms any kind of induced into permanent anisotropy. If, for instance, two pairs of forces are identical 

while the third pair is different, then the initially isotropic material properties will transform permanently into 

those of transverse isotropy. For this problem, a plasticity model is presented that enables the energy stored 

during the work-hardening deformation stage of the resulting cuboid to be influenced not only by a tensorial 

measure of the observed deformation, but also by a measure of the plastic flow that takes place 

simultaneously. The model considers that plastic flow still obeys conventional plastic yield criteria, but does 

not postulate a-priory a rule that splits the observed deformation into elastic and plastic parts. Derivation of 

constitutive equations is based instead on the postulate that the strain energy density of the material is a 

function of the deformation gradient tensor and either the rate-of-plastic-deformation tensor encountered 

during loading within the work-hardening deformation regime or the residual strain tensor encountered after 

unloading is completed from some relevant offset yield point. An example application presents a complete 

analytical solution to the deformation problem of a dynamically loaded Rivlin cube which is made initially of 

a compressible Rivlin-Mooney material.  

 

Keywords: Constitutive equations, Dilatation beyond elastic limit, Hyperelasticity, Induced anisotropy, 

Mooney-Rivlin material, Plasticity, Residual strain/stress, Rivlin’s cube, Work-hardening plasticity, Yield 

condition. 

 

 

1. Introduction 

 

The classical problem of the Rivlin cube [1] refers to the stability and uniqueness/non-uniqueness of the 

dilatation states of an isotropic, incompressible hyperelastic unit cube which is acted upon by three identical 

pairs of equal and oppositely directed forces, ±f, applied normally to its faces and distributed uniformly over 

them. The considerable number of relevant studies that followed [1] may be traced through a relatively 

smaller set of more recent publications [2-8], all of which dealt with stability and uniqueness/non-uniqueness 

of the dilatation states of a corresponding compressible hyperelastic cube.  

This investigation aims to initiate a study of the dilatation states of an initially isotropic, hyperelastic 

and compressible unit cube which (i) develop in a dynamic manner, and (ii) reach and exceed the elastic limit 

of the cube material before any kind of possible material instability interferes with the deformation. Such 

dilatation states are expected to remain intact even after initial yield of the cube material takes place, namely 

within the work-hardening dilatation regime where elastic deformation and plastic flow take place 

simultaneously.  
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Dilatation states of present interest are enforced on the cube through external action of appropriately 

developing dynamic, rather than dead loading conditions of the kind met in [1-8]. The aforementioned 

externally applied pairs of oppositely directed forces are still applied normally to the cube faces, over which 

they are still distributed uniformly, but are now not necessarily identical. They are, instead, expected to 

evolve through time in a manner that enables full control of the dilatation pattern of interest. 

In some detail (see also Figure 1 and Section 2), complete unloading before the elastic limit is 

reached will naturally enable the material to recover both its initial cubical shape and initial stress state (see 

Figure 2(a)). However, due to residual strain accumulation that takes place within a work-hardening 

deformation regime, complete unloading from a state that lies beyond the elastic limit is expected to reshape 

the cube into the form of a residually strained cuboid (e.g., Figure 2(b) with 0ˆ  ff ). The shape of the 

resulting cuboid, as well as its dimensional and material differences from the initial, non-loaded cube are 

expected to relate closely to the influence that plastic flow has previously exerted on the material. Moreover, 

interference of the anticipated plastic flow will naturally transform any kind of induced anisotropy, caused 

previously in elastic deformation regime (e.g., [6]), into permanent material anisotropy.  

Any induced anisotropy observed before initial yield is reached becomes thus part of the implied 

differences between the initial cubical and the final cuboidal shape of the deformable solid of interest. If, for 

instance, all three mutually perpendicular pairs of forces that cause dilatation of a compressible isotropic unit 

cube are unequal, then the degree of the permanent anisotropy observed within the work-hardening 

deformation regime will be that of an orthotropic material. If, on the other hand, only two of those pairs of 

forces are identical while the third pair of forces is different (e.g., Figure 2(b)), then the initial properties of 

material isotropy will transform permanently into those of transverse isotropy.       

The outlined general considerations are thus valid regardless of the degree that the externally applied 

pairs of forces fail to be identical. However, the deformation gradient tensor, F, attains a diagonal form, and 

retains that form throughout the implied deformation process. For the sake of simplicity though, the present 

study will develop around one of the simplest relevant problems. Namely (see Figure 2(b)), the problem in 

which (i) like in [6], two of the externally applied pairs of equal and oppositely directed forces are identical 

(±f say), but different from the third pair, f̂  ( ff ˆ ); and (ii) those forces evolve in a manner that enables 

the cube to undergo quasi-static uniform extension without lateral contraction.  

A proper description of this problem and the diagonal form attained by the deformation gradient 

tensor are provided in Section 2. That Section also describes in detail the fundamental features of the 

underpinning isothermal elastic and/or elastic-plastic material behaviour. In subsequent Sections, 

mathematical modelling always begins with a general, essentially arbitrary form of F, thus implying that the 

model can handle successfully more general dilatation problems. Nevertheless, each Section finally focuses 

on the aforementioned pilot problem of uniform cube extension, with the aim of describing a complete 

analytical solution. The latter refers to the particular case in which the initial isotropic hyperelastic cube is 

made of a certain type of compressible Rivlin-Mooney material.          

In this context, Section 3 provides details of the cube dilatation before initial yield is reached, while 

Section 4 describes the manner in which plastic flow is modelled during the work-hardening stage of loading. 

With the help of Appendix A, Section 5 then provides details of the appropriate constitutive modelling that 

combines the plastic flow and the elastic deformation processes observed during work-hardening. The 

previously induced properties of transverse isotropy are thus successfully incorporated into the permanent 

material properties of the evolving cuboid, while the resulting constitutive equations are found to be of a 

differential, rather than of a purely algebraic nature. Section 6 is devoted into modelling the manner in which 

unloading from some “offset yield point” attained within the work-hardening deformation regime enables the 

material to respond in a residually strained elastic manner. Prediction of the completely unloaded but, still, 

residually strained state that can finally be attained by the evolving cuboid is also among the aims of Section 

6.  

As is already mentioned, each of Sections 3-6 ends by providing details of a corresponding analytical 

solution achieved for the particular case that the initial isotropic hyperelastic cube is made of a certain type of 
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compressible Rivlin-Mooney material. Cases in which the initial hyperelastic cube is made of some different 

isotropic material can be treated in a similar manner. This is one of several important conclusions detailed in 

Section 7, which makes also reference to possible future research directions.         

      

 

2. Problem description  

 

Consider a Cartesian coordinate system Oxi having each one of its axes normal to a pair of faces of a unit 

cube made of compressible material; here and in what follows Latin indices take values 1, 2 and 3. At time t 

= t0 > 0, the cube is in an undeformed, unstrained and possibly unstressed state (Figure 2(a)), and has constant 

material density ρ0. The position vector of a generic point of its elastic and isotropic material is denoted by X 

= (XA), where |XA| ≤ 1/2. At t > t0, the cube is acted upon by a pair of equal and opposite forces, f̂ (t), 

applied normally to the faces which are normal to the x1-axis, and two more pairs of equal and opposite 

forces, f(t), applied along the transverse co-ordinate directions, normal to the cube faces which are parallel 

to the x1-axis (e.g., Figure 2(b)). Each of these forces is distributed uniformly over the corresponding cube 

face.  

Under the assumption that ff ˆ , each pair of forces evolves in time in a prescribed manner, or in a 

manner that enables the corresponding cube edges to follow some prescribed dynamic deformation pattern 

that maintains cuboidal dilatation features. It is accordingly that the deformation gradient tensor, F, obtains 

and throughout time retains a diagonal form, such that F11 ≠ F22 = F33. In this context, discussion necessarily 

focuses on possible cube dilatation patterns that take place before any kind of material instability is observed.  

 Here as well as in what follows, loading is generally associated with increasing values of t > t0. 

Unloading generally takes place by decreasing the value of t > t0 associated with some previously attained 

state of deformation. Rather than strictly representing time, t is perceived as a parameter that accounts for a 

succession of deformation states.  

The implied loading and deformation conditions are consistent with well-known fundamental 

features of isothermal hyperelastic and/or elastic-plastic material behaviour of solid continua. These features 

are detailed, for instance, in the introduction of a seminal relevant paper [9], as well as in most plasticity and 

other continuum mechanics textbooks (e.g., [10-12]). For completeness of this investigation, they are briefly 

described with the help of Figure 1 as follows:  

 

(i) Response to increasing loading from the unstressed and unstrained configuration (t = t0) is and remains 

hyperelastic until an elastic limit point, A, that lies on the initial yield surface of the material is reached, 

at t = tA ≥ t0 say. This initial hyperelastic stage of deformation is represented by a monotonically 

increasing load-strain curve (Figure 1).  

(ii) With increasing loading beyond the recorded elastic limit, the material enters a work-hardening regime 

where, due to simultaneous action of elastic deformation and plastic flow, accumulation of increments of 

strain is enabled through application of progressively smaller increments of external loading. The load-

strain curve is still monotonically increasing but its slope is decreasing fast (Figure 1). Unloading cannot 

longer reverse the recorded yielding process. 

(iii) Unloading from some “offset yield point” B within the work-hardening regime (ii) enables the material 

to respond again hyperelastically by following a load-strain path which is generally different to the 

hyperelastic path OA (Figure 1). Complete unloading brings the material to a residually strained state C. 

Unloading towards, or loading from such a residually strained state C obeys again the rules (i)-(ii) above, 

with the initial yield point A being now replaced by the offset yield point B. Hence, work-hardening 

beyond B continues on the path shown in regime (ii) of the Figure 1.  

 

This known idealised deformation process neglects a small hysteresis loop that may be observed after the 

unloading attempted from B to C is initially fully completed, and afterwards completely reversed (e.g. [10-

12]). An interplay of the outlined unloading-reloading process with possible small creeping phenomena may 



 4 

not be negligible. It is, however, considered as a higher-order effect and, hence, of secondary importance in 

this investigation, which is principally interested to propose a predictive-, rather than prescribed-type of 

plasticity constitutive formalism.     

 It is re-emphasised in this context that the present discussion refers only to cases in which the initial 

yield point A of the cube material is reached before any kind of possible material instability, such as that 

discussed in [6], takes place. Initiation and, then, continuation of the work-hardening loading process within 

regime (ii) accumulates increasing amounts of residual strain. Unless that yielding process is ended through 

fracture or some other kind of material instability, many different unloading-loading elastic stages of the type 

(iii) may follow. In this context, any yield point B of the loading path that represents stage (ii) in Figure 1, 

including the initial yield point A, lies on the material yield surface which may evolve with time.   

These considerations can adequately be served by the assumption that the pair f̂  comprises either 

tensile or compressive forces and, hence, that   0ˆ tf  or   0ˆ tf , respectively, at all times. In dealing with the 

general description and analysis of the outlined problem, no other restrictions need to be imposed either on 

the sign and values of the applied forces f and f̂ or on the sign of their product ffˆ . The above criteria can be 

met by a large number of dilatation problems and an attempt is next made for the outlined theoretical analysis 

to be initially kept as general as possible.  

Associated theoretical concepts are better understood when directly applied to some specific, pilot 

problem. The outlined general theoretical analysis will be built around the simple dynamic dilatation pattern 

 03322

0

11    ,   ,   , ttXxXx
t

t
Xx  .                                                                                            (2.1) 

This describes a quasi-static uniform extension without lateral contraction (Figure 2(b)), and becomes 

feasible only if the longitudinally applied forces that drive the deformation, namely f̂ , are tensile (   0ˆ tf ). 

The magnitude of this pair of forces and its evolution needs to be determined, along with the magnitude of 

the transverse counterparts, f(t). The latter may be perceived as pairs of follower or reaction forces that 

enable the transverse edges of the deforming cuboid to maintain their unit length.   

The deformation gradient and the right Cauchy-Green deformation tensors associated with the 

dilatation pattern (2.1) attain the simple diagonal forms  

    1,1,/   ,1,1,/
2

00 ttdiagttdiag  CF ,                                                                                                   (2.2) 

respectively, and the corresponding velocity components, 
iii xdtdxv  / , are given explicitly as follows: 

0   ,// 211011  vvtxtXv ,                                                                                                                    (2.3) 

where a dot denotes differentiation with respect to time. Hence, the corresponding rate-of-deformation tensor, 

  2/,, ijjiij vvd  , involves only a single non-zero component,  namely td /111  .                                                                                                                                                     

It is recalled that the mass of the continuum is required to obey the standard continuity equation  

0,  iiv ,                                                                                                                                               (2.4) 

where ρ denotes the current mass density. In view of (2.1) and (2.3), (2.4) yields  

tt /00                                                                                                                                                   (2.5) 

within the dilatation stages (i) and (ii). 

It is also noted that the quasi-statically enforced deformation (2.1) is homogeneous and, hence, 

enables satisfaction of the relevant equations of motion, 

0, iij ,                                                                                                                               (2.6) 

at least as long as the material remains isotropic; here, σ represents the Cauchy stress tensor and body forces 

are neglected for simplicity. Nevertheless, the constitutive behaviour of the cube material needs to be 

resolved separately within each of the deformation regimes (i), (ii) and (iii). 

 It is emphasised that, regardless of whether the observed deformation is due to the particular 

dilatation pattern (2.1) or not, elastic deformation does take place in all three deformation regimes (i), (ii) and 

(iii). Within the work-hardening regime (ii), this is however evidently influenced by simultaneously occurring 
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plastic flow while, within the elastic deformation regime (iii), it is similarly influenced by previously created 

residual strain. The strain energy density associated with the observed elastic deformation is expected to 

acquire different forms within each of those three different stages of material behaviour, and will be denoted 

WI
, WII

 and WIII
, respectively.  

Appropriate continuity conditions should then hold at instances that two or possibly all three of those 

strain energy density branches merge. Those instances are represented in Figure 1 by the points A and B, and 

enable the implied continuity conditions to be symbolically represented as follows: 

 .   ,   , A

II

AB

I

AB

III

B

III

B

II

A

II

A

I WWWWWWW                                                        (2.7) 

An important feature of these continuity conditions is associated with the fact that the point B represents a 

generic deformation state which is simultaneously part of the work-hardening stage (ii) and its purely elastic 

counterpart (iii).   

 Similar continuity conditions should also be satisfied at the merging points A and B by the stress 

states in the three deformation regimes. In complete analogy with (2.7), the implied stress continuity 

conditions are symbolically denoted as follows:   

.   ,   , AB

II

AB

I

AB

III

B

III

B

II

A

II

A

I

  σσσσσσσ                                                            (2.8) 

Relevant continuity conditions should finally also be satisfied at A and B by the total deformation 

encountered in the three regimes. Such conditions will be considered separately, wherever it is necessary and 

appropriate in what follows.  

 

 

3. The elastic deformation stage (i)  

 

3.1 Constitution, stress and loading conditions 

                                                                                                   

In the hyperelastic deformation regime (i), where the strain energy density depends on the right Cauchy-

Green deformation tensor only,  

 C
II WW  ,                                                                                                                                           (3.1) 

material isotropy requires from WI
 to be a function of the principal deformation invariants  

   CCCC det   ,
2

1
   , 3

22

21  III ItrtrItrI .                                                                                        (3.2) 

Following the standard procedure, one then obtains the well-known constitutive equation: 

    PSRP

I

RS

III

RS

IIIII

jSiR

SR

I

RS

I

jSiR

I

ij CCWCWIWWIWIWFF
C

W

C

W
FF 331232211

00

2 


















 








 , (3.3) 

where 

 .3,2,1   , 



 



 I

I
I

I

W
W                                                                                                                               (3.4)  

This constitutive equation is valid for any finite elastic deformation, and its connection with the 

specific deformation (2.1) yields the non-zero stress components as follows:     

  
       ./1//2

,2/2

3

2

02

2

0103322

321011

IIIII

IIII

WttWttWtt

WWWtt








                                                                               (3.5) 

The external forces that maintain the dilatation (2.1) in stage (i) are  

   
          ,/1/2//

   ,2/2ˆ

2

03

2

02

2

01

2

0033

2

0022022

321

2

00

2

011

LWttWttWLttLttLLf

WWWLttLf

IIIIII

IIII








                                    (3.6) 

where  

  1   ,/ 000  LLttL                                                                                                                                 (3.7) 
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denote length of the longitudinally oriented edges of the cuboid in the current and the reference configuration, 

respectively (Figure 2(b)).  

It is observed that the forces (3.6) have initial values 

 
000 321

2

00 22ˆ
tt

III

tttt WWWLfff
  .                                                                                            (3.8) 

Unless 

 III WWW 321 2 
0tt =0,                                                                                                                             (3.9) 

the unit cube starts to experience the non-uniform dilatation (2.1) only after an appropriate level of pre-stress 

is reached. Strain energy densities expressible in the standard polynomial form, stemming from suitable 

truncation of the infinite power series proposed by Rivlin [13, 14], do indeed meet the initial condition (3.9), 

provided that their lowest degree terms are chosen to be at least quadratic in the strain invariants.  

If the linear terms are retained in such a polynomial form of the strain energy density, then (3.9) may 

be violated and, as happens with the simple example application employed next in this Section, zero strain 

may not necessarily correspond to strictly zero external loading conditions. A possible violation of the 

principal postulates detailed in Section 2 is, however, still avoided by defining the loading parameter 

appearing in Figure 1 as follows:  

    
00

3212232111 22  ,22max
tt

IIII

tt

IIII WWWWWWP


  .                                                     (3.10)   

 

3.2 Application: Compressible Mooney-Rivlin material  

                                                                                                   

The simplest possible form of a strain energy density of a compressible Mooney-Rivlin material, stemming 

from the afore-mentioned power-series truncation [13, 14], is as follows:   

       2332
2

1
1 13

2
3

2
 IIII IIIW 


C ,                                                                                   (3.11) 

where μ1, μ2 and μ3 are standard material moduli. It is noted that absence of a linear term in the third invariant 

enables equal amounts of volume change encountered under uniform compression and uniform extension to 

exert identical influence on WI
.  

Expression (3.11) can be implemented in this example application without essential difficulty. 

However, the choice  

03  ,                                                                                                                                                     (3.12) 

simplifies considerably formulas in subsequent Sections without invalidating any of the principal physical 

concepts of interest to this study. This choice of a value for μ3 reduces (3.11) into a form that resembles its 

counterpart associated with incompressible Mooney-Rivlin materials, but effects of material compressibility 

are still present as long as 13 II .  

The non-zero stress components (3.5) then simplify to  

  
     ,1//

,2/

2

2

0103322

21011









tttt

tt

II

I

                                                                                                     (3.13) 

and the external forces (3.6) that maintain the deformation (Figure 2(b)) are  

   
    .1/

   ,2/ˆ

2

02

2

01

21

2

00

Lttf

Lttf








                                                                                                                      (3.14) 

The unit cube can begin to experience the non-uniform dilatation (2.1) only after this set of forces enable the 

material to reach the pre-stress level  

21332211 2
000

   tt

I

tt

I

tt

I .                                                                                                    (3.15) 

It is noted that this result holds regardless of the value of the material parameter μ3. Nevertheless, in 

the particular case that (3.12) holds, (3.10) provides the loading parameter appearing in Figure 1 as follows:  

         20010210 2//1/  ,21/max   ttttttttP .                                               (3.16)  
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 The outlined results are valid until the transition instant, tA (≥ t0), that separates the elastic dilatation 

stage (i) from its work-hardening counterpart (ii) is reached, i.e. until the driving force of the deformation and 

the longitudinal dimension of the deforming cuboid reach the values   

  
./

,2/ˆ

00

2

0210

ttLL

Lttf

AA

AA



 
                                                                                                                           (3.17) 

However, the value of tA can be determined only after the plastic flow that emerges in region (ii) is properly 

accounted for.   

  

 

4. Plastic flow considerations  

 

Loading beyond the initial yield point level A (Figure 1) forces the deformation into the work-hardening stage 

(ii) where dilatation is due to combined action of elastic strain and plastic flow. In accordance with basic 

concepts of the theory of plasticity, it is postulated that there exists a yield function φ(σij), such that  

  0 ij
                                                                                                                                               (4.1) 

for all admissible stress states, where κ is a non-negative yield stress parameter.  

If φ <  , then the material responds elastically, as happens within the deformation regimes (i) and 

(iii) where 
I

ijij    and 
III

ijij   , respectively. Equality in (4.1) holds only under conditions of loading 

within the work-hardening regime (ii), where 
II

ijij   and the value of κ is expected to increase or stay 

unaltered. 

The non-negative parameter κ is thus regarded as a non-decreasing function of some hardening 

measure, q, which characterises plastic deformation that took place already at any instant t > tA within stage 

(ii) (e.g., [12]). The required non-decreasing form of κ(q) and its values beyond the initial value, 
AttA  , 

enable the yield function to expand with increasing loading, and, hence, to simulate satisfactorily the kind of 

proportional (often called “isotropic”) hardening pattern observed in experiments.  

The mathematical modelling approach adopted in the present analysis does not require a-priori 

specification of the parameter q or the form of a function κ(q). As is detailed in the example applications 

discussed later in Sections 4.3 and 5.2, these become known during the solution of particular problems. 

 

4.1 Development of the yield condition  

  

It is now recalled that φ is required to be a function of the stresses through an appropriate, complete, and 

preferably irreducible basis of stress invariants. The number of the elements of such a basis depends on the 

material symmetries of the non-uniformly dilated cube. However, in the present case, the initial material 

symmetries of isotropy change into those of transverse isotropy as soon as plastic flow is initiated at t = tA.  

It is then understood that in the deformation regime (i) the yield condition (4.1) should be represented 

as follows:  

AA

IIII ttJJJ   if  ,0), ,( 321  ,                                                                                                       (4.2) 

where  

   33

2

21    ,   , IIIIII trJtrJtrJ σσσ  ,                                                                                             (4.3) 

are the principal stress invariants in the case of isotropy. However, in the deformation regime (ii), where 

plastic flow gives rise to permanent transverse isotropy along the direction of the unit vector e1 = (1, 0, 0)
T
, 

the corresponding representation changes into the following:  

A

IIIIIIIIIIII ttJJJJJ   if  ,0),,, ,( 54321  ,                                                                                       (4.4) 

where,  
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   

      .  ,

  ,  ,  ,

2

4

2

1111511114

3

3

2

21

IIIIIITIIIIIITII

IIIIIIIIIIII

JJJ

trJtrJtrJ





 eσeeσe

σσσ

2
                                                                (4.5) 

It is observed that 
IIJ 4  and 

IIJ 5  are not independent in the present unidirectional cube dilation problem. For 

simplicity, direct involvement of 
IIJ 5  is thus hidden in what follows.  

 The fact that, at t = tA, 
I

ij  and (4.2) transform into 
II

ij  and (4.4), respectively, in a continuous 

manner, gives rise to the continuity conditions:    

,),, ,(), ,(lim   , 4321321 Att

IIIIIIIIIIIIII

tt
tt

II

ijtt

I

ij A
A

AA
JJJJJJJ   


                                   (4.6) 

the former of which is essentially an alternative representation of (2.8a). The corresponding deformation 

continuity condition associated with the pilot deformation pattern (2.1) is evidently satisfied by default.      

 

4.2 Plastic flow rule  

 

It is now postulated that the rate of the energy dissipation due to plastic flow,  
II

ij

p

ijd   ,                                                                                                                                               (4.7) 

is stationary; here d
p
 represents the rate-of-plastic-deformation tensor. This is adopted in classical plasticity 

(see page 51 of [10]), as well as in non-linear visco-plasticity [15] where the anticipated stationary point is 

expected to be a minimum. With the introduction of a Lagrange multiplier, λ, this postulate replaces (4.7) 

with the equivalent expression   

    II

ij

IIII

ij

p

ijd ,                                                                                                                 (4.8) 

whose minimisation leads to the well-known and relatively simple flow rule   

II

ij

II
p

ijd







 .                                                                                                                                           (4.9) 

With use of (4.4) and (4.5), (4.9) leads to 

 ,32 114321 ji

IIII

kj

II

ik

IIII

ij

II

ij

IIp

ijd                                                                                 (4.10) 

where,  

 4,3,2,1   , 



 



 II

II
II

J


 ,                                                                                                                        (4.11) 

and, as already mentioned, (4.5e) justifies an apparent exclusion of 
IIJ 5 . In case that Lagrangean rather than 

Eulerian description of the deformation is employed, (4.10) is replaced by its pull-back counterpart    

  II

SR

II

kj

II

ik

IIII

ij

II

SjRiRS

IIp

ijSjRi

p

RS FFFFCdFFD 4

1

1

1

132

111

1

11 32    .                                  (4.12) 

 Determination of the value of the Lagrange multiplier, λ, can become possible with the help of the 

continuity condition (4.6a) after the stress state is determined within the work-hardening stage (ii). The 

manner in which λ is to be determined is demonstrated later, in Section 5.2, with an example application. 

 

4.3 Example: Quadratic branches of the yield function  

 

By tradition, metal plasticity employs yield functions which are quadratic in the stresses. In the present case, 

this tradition transforms the general yield function branches (4.2) and (4.4) into the following 
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      

     .
2

1
2

2

1
)(

,
2

1

2

1
2/)(

112111

2

424112

2

33

2

22

2

112

II

ij

II

ij

IIII

ij

II

ij

IIIIIIIIII

ij

II

IIII

ij

I

ij

II

ij

I

JJJJ

J








                                 (4.13) 

The coefficients α1 and α2 may initially be regarded as additional material moduli. However, full 

consideration of the continuity condition (4.6b), with simultaneous use of (4.6a), leads to the relationship 











  AttI

I

11

22
12 21




 ,                                                                                                                        (4.14) 

so that the parameters α1 and α2 are not independent (see also (4.17) and (4.20) below). 

Connection of (4.10) and (4.12) with (4.13b) provides the flow rule in the following dual form: 

     
     ,

, 

11332211121111

11

11332211121111

ji

IIII

jiij

IIII

ijSjRi

p

RS

ji

IIII

jiij

IIII

ij

p

ij

FFD

d











                                                    (4.15)                                                                                                         

where (4.11) enabled use of the results IIII J 411   , 2/12 II , 03 II  and IIIIII JJ 42114 22   .  

The outlined observations become better understood in the particular case of the pilot deformation 

(2.1). Accordingly, upon inserting constitutive equation (3.5) into (4.13a) and making use of the first branch 

of the continuity conditions (4.6b), one finds that tA (≥ t0) should be sought from the positive real roots of the 

algebraic equation 

             0/1//22/2
2

3

2

02

2

01

2

0

2

321

2

0 
 Att

IIIIII

A
WttWttWttWWWtt  .                        (4.16) 

Hence, use of (4.15) yields the following relationship between the newly introduced parameters: 

  
































 Att

III

II

A

II

WWW

WWttWW

321

32

2

021

12
2

/
21 .                                                                       (4.17) 

Another equation, which involves partial derivatives of WII
 and may be considered as a second 

relationship between α1 and α2, will emerge later in Section 6.4, and with (4.17) are considered a pair of 

simultaneous algebraic equations for α1 and α2. This observation will make thus more generally understood 

that α1 and α2 are not new material parameters, but they both depend on their IW  and IIW  counterparts. 

Nevertheless, the specific manner in which tA enters (4.16) and (4.17) suggests further that the values of α1 

and α2 may depend not only on the chosen form of the strain energy density, but also on the manner in which 

time-depended dilatation is imposed on the deforming cuboid.  

 

4.4 Application: Compressible Mooney-Rivlin material  

 

In the particular case of the Mooney-Rivlin material considered in Section 3.2, (3.11) and (3.12) enable 

(4.16) to obtain the form of a biquadratic equation, namely 

          04/8/222
2

21

2

0212

4

0

2

2

2

21   tttt AAA
.                                       (4.18) 

It can be shown that real solutions of this equation are possible only if 

 2

21 2/121  A
.                                                                                                                        (4.19) 

Provided that this inequality is satisfied, then admissible values of tA (≥ t0) should be sought among the 

positive real roots of (4.18). 

Moreover, (4.14) or, equivalently, (4.17) reduces to 

 
  




















21

2

2

021

12
2

/
21




 Att

.                                                                                             (4.20) 

This shows that the values of α1 and α2 are interrelated, and are also dependent on the values of the material 

moduli involved in the hyperelastic deformation stage (i) of the material. Nevertheless, the more general 

observations detailed earlier (see last paragraph of Section 4.3) still apply in this particular case. 
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In the pilot case of present interest, where F is given by (2.2), the non-zero components of the rate-

of-plastic-deformation tensors (4.17) are found to be (t > tA) 

  
    

 . 
, 221/

,221

1112233223322

2211121

2

011

221112111

IIIIpppp

IIIIp

IIIIp

ddDD

ttD

d













                                                                                              (4.21) 

Here, (4.20) still holds, while use is also made of the expectation that 

2233                                                                                                                                                      

(4.22) 

in all three deformation stages (i), (ii) and (iii); see also (3.5).   

It is emphasised that a constitutive equation that provides the stress components appearing in (4.21) 

is currently still unavailable. This will be sought and determined next in Section 5, with the help of a more 

general relevant development detailed in Appendix A. After inserted into (4.13b), the stress components 

sought will enable (4.4) to take the form of the aforementioned rule, κ(q), that describes the expansion of the 

yield surface within the work-hardening deformation stage. The currently unknown hardening parameter, q, 

will naturally be involved in that expression, and will thus reveal itself at the same time.     

 

 

5. The work-hardening deformation stage (ii)  

 

During work-hardening, plastic flow transforms the direction e1 = (1, 0, 0)
T
 into a direction of permanent 

transverse isotropy. Relevant constitutive equations in the deformation stage (ii) are sought by initially 

replacing the unit vector A appearing in (A.11), (A.12a) and (A.16) with e1, thus leading to  

    

      ,  2                                                      

2 

11115411

0

331232211

0
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ijRjiRSjSi

IIII
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II
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IIIIIIIIII

jSiR

II
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ΦΘCFFCFFWWFF
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
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


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         (5.1)  

where 

  

  ,/2 

,222 
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0
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II
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p

S

II

jSiPS

p
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IIp
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IIp
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IIp
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II

jSiR

II
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EDCFFΦ

DWFFCDDWDWDDWDWFFΘ


















                  (5.2) 

and 

 
   .3222           

2

13129876

1411111151101
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QNPQ
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IIp
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IIp
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IIpIIp
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p
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WDWDDWCWDED








        (5.3) 

This constitutive equation is valid regardless of the form of the imposed deformation but, in the present case 

of interest, the deformation pattern (2.1) simplifies the analysis considerably.  

Use of the particular deformation characteristics detailed in (2.2) and (2.5) leads to 

 0 ,0 ,/2 2

0ttdiagC ,                                                                                                                              (5.4)                                                                                                                        

and enables the deformation invariants (A.8) to simplify as follows:  
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                              (5.5) 

A specific choice of the yield function can similarly facilitate analytical progress by allowing the rate-of-

plastic-deformation tensor to attain a corresponding specific form.     

 

5.1 Association of the dilatation pattern (2.1) with a quadratic yield function 

 

Association of (2.2) with the quadratic form (4.13b) of 
II thus enables direct use of the non-zero 

components (4.21) of the rate-of-plastic-deformation tensor. Corresponding non-zero components of p
D  are 

then found to be 

       
 ,

,/2/221

111223322

22221111121

2

011

IIIIpp

IIIIIIIIp
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tt/ttD


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


                                                            (5.6) 

where (4.17) still holds and use is made of (4.22). The diagonal form of all tensors involved in the analysis 

thus makes it evident that the constitutive equation sought in the work-hardening regime becomes available as 

soon as the corresponding normal stress components are fully determined. 

Consideration of (5.1) and (5.2b) reveals that determination of II

22  or, equivalently, II

33  implicates 

into the analysis the factor 
22/1 C  or, respectively, 

33/1 C  which is singular in the present case; see (5.4). 

However, either of the observed singularities is removed with use of the self-evident relations   

    0. limlim 3333
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2222
0 3322
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
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II

C
CC  


                                                                                                           (5.7)  

When connected with (5.1), these lead to 

    0lim lim 3333
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2222
0 3322




NM

p

MN

II

C

II

C
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,                                                                                      (5.8) 

and, by virtue of (5.3), to   
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     (5.9) 

The quantity 
IIII ΦΦ 3322    remains thus undetermined but further use of (4.21) and (5.6) can transform (5.9) 

into a differential constitutive equation for the unknown normal stress components. The manner in which this 

becomes possible is demonstrated with a particular example application in Section 5.2 below. 

When combined with (5.8), (5.2b) reveals that 0 11 
IIΦ . Hence, (5.1) provides the longitudinal 

normal stress component in the following form: 

    ,  22 1154321011 σ
IIIIIIIIIIIIII ΘWWWWWt/t                                                                                (5.10) 

where, 

      pIIIIIIpIIIIII DWWt/tWDWWt/tΘ 1198

2

0101176011 22  .                                                                      (5.11) 

Connected with (4.21b), (5.11) makes clear that, unlike (5.9), (5.10) emerges in the form of a purely 

algebraic constitutive equation which, however, is still implicit in the unknown normal stress components. 

For further development, the set of constitutive equations (5.9) and (5.10) requires specification of the form 

of 
IIW .  

 

5.2 Application: Work-hardening and fracture of a compressible Mooney-Rivlin cuboid  
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Consider a compressible Mooney-Rivlin material which, in the work-hardening regime, is represented by the 

following extension of the strain energy density employed in Section 3.2: 

         
AA tt

IIII

tt
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C ,                                   (5.12) 

where 1
~  and 2

~  are suitable material moduli, additional to those appearing in (3.11). It is noted that the 

adopted choices of WII
 and WI

 do satisfy the strain energy density continuity condition (2.7a).    

 In the case of uniaxial deformation pattern (2.1), the form (5.5) of the deformation invariants enables 

(5.12) to convert into the following: 
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where the appearing components of the rate-of-plastic-deformation tensor are generally given according to 

(4.12).  

In the particular case of the quadratic yield function (4.13), (4.12) reduces to (4.21b, c) and, hence, 

(5.6) hold in association with (4.20). It is also seen that     
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where a combination of the stress continuity conditions (2.8a) with (3.13) also enables the use of 
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The constitutive equation (5.8) or, equivalently, (5.9) then reduces to                                                                                                

        ,02/2/2212 111222222111112122221111  IIIIIIIIIIIIpp ttCDCD    

which can be rearranged into the following form of a differential equation:  

         021/21241 22111212211121  IIIIIIII t   .                                             (5.16) 

In a similar manner, the constitutive equation (5.10) takes initially the form 

          IIII /ttt/t/tt 220211210212011
~2 ~2 21~1   .                                                (5.17) 

This can further simplify into the following: 
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where  
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 ,                                                                  (5.19) 

and (4.22) is also accounted for. Subsequent combination of (5.15) with the value of (5.18) at Att   yields 

the Lagrange multiplier λ as 

        
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2

01

0320121
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

tt

tt/tttt

A

AAA .                                                                                 (5.20) 

 Explicit constitutive equations, equivalent to their implicit counterparts (5.17) and (5.18), are next 

obtained, by initially differentiating (5.18) and, hence, arriving at the intermediate result      

    32

03

1

01

1

11201

1

1122 /2 tt/tt/t IIIIII     .                                                                        (5.21) 

Appropriate combination of (5.18) and (5.21), thus enables (5.16) to obtain the following form of a first 

order linear ordinary differential equation:  

   tqtp IIII  1111  ,                                                                                                                           (5.22a) 

where 
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                                                                                          (5.22b) 

When subjected to the initial condition (5.15a), the general solution of (5.22) yields explicitly the 

longitudinal normal stress component in the form 
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tK

t

t
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II
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exp  , )(2/
1

21011  .                                              (5.23) 

Corresponding closed forms of the transverse normal stresses are finally obtained in a straightforward 

manner, by directly substituting (5.23) into (5.18). The stress components thus obtained are still functions of 

time only and, hence, satisfy the quasi-static equations of motion (2.6) identically.   

It is noted with interest that the presented closed form solution of (5.22), namely (5.23), is exact for 

the stresses. However, some of the integrations noted in (5.23) have to be performed numerically, and this 

can become possible in practical applications only after numerical values are specified for the material 

parameters. The analytical part of the outlined solution can however still develop by initially observing that 

the external forces that maintain the assumed deformation within the work-hardening stage (Figure 2(b)) are 

obtained by inserting (5.23) into the right hand sides of  

            .////
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                                        (5.24) 

 Moreover, by inserting (5.18) and (5.23) into (4.13b) and, then, combining the obtained result with 

the yield condition (4.4), one obtains the expansion rule of the yield surface in the following form: 

      IIIIIIIIIIII

111222211112111 21
2

1
  .                                                                        (5.25) 

In view of (5.18) or (5.24a), (5.25) thus reveals that 
II

11  or f̂ , respectively, represents the aforementioned 

hardening measure, q, that characterises plastic deformation that took place at any t > tA in stage (ii) [12].  

 Determination of the non-zero components of the plastic flow tensor now becomes possible through 

direct use of (4.21). Time integration of the resulting forms of 
pd11  and 

pd 22  yields thus the plastic 

deformation during work-hardening of the undeformed (0 < XA ≤ 1/2)-part of the cube as follows: 
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                                                                                       (5.26) 

 The elastic deformation in that part of the work-hardening material of the cube, namely 
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                                                                    (5.27) 

is finally obtained by subtracting (5.26) from the total deformation (2.1). The discussed symmetries of the 

problem make evident the manner in which (5.26) and (5.27) can be generalised and, after suitable 

modification, produce their counterparts within the remaining three parts of the deforming cuboid.                              

  Apart from obeying the relationship (4.14), the material parameters 1  and 2  should also be such 

that both inequalities (5.27) hold simultaneously within a time interval [tA, tF), where tF ≥ tA represents the 
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time instant that fracture takes place. That instant is thus specified as the first instant of time within the work-

hardening deformation stage (ii) at which  

  0,min 321  eee xxx ,                                                                                                                                (5.28) 

for some 0 < XA ≤ 1/2. A search for the range and/or combination of the values of 1  and 2  that fulfil the 

outlined conditions requires a substantial amount of numerical work, which is however beyond the principal 

aims and objectives of this investigation.                             

 

 

6. The residually strained elastic deformation stage (iii)  

 

Unloading from any yield point B (tB > tA) within the work-hardening stage (ii) forces the deformation to 

follow some different stress-strain path on which the material again behaves elastically. Continuation or 

partial reversal of the implied unloading process leaves unaltered the observed material response, which 

remains elastic and, therefore, completely reversible within that newly developing deformation stage (iii). 

However, unloading commencing from B is commonly associated with evidence of an existing state of pre-

strain. That pre-strain state becomes evident, and, hence, measurable in the form of residual strain as soon as 

loading is completely removed at some subsequent material configuration, C (Figure 1).  

Mathematical modelling is simplified if C, rather than B, is temporarily considered as the point of 

principal reference of the elastic deformation stage (iii). Indeed, in a limiting situation where the points C and 

B shown in Figure 1 approach simultaneously the points O and A, respectively, the elastic deformation stage 

(iii) degenerates into the initial elastic stage (i) discussed previously in Section 3. Stage (i) is accordingly 

perceived as a particular case of the more general elastic deformation stage (iii), in which the completely 

unloaded deformation state, O, is free of residual strain. 

Most of the definitions and equations associated with the pilot problem introduced in Section 2 are 

thus seen still valid in stage (iii), as soon as all symbols representing time, position and deformation are 

generalised by adding upon them a so-called “hat”. An adequate notation extension of all equations and 

relevant relations met previously in the elastic stage (i) can accordingly be summarised as follows:     
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LXLLttL

XxXx
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







CF

                                                                                                (6.1) 

where,  

I
 00

ˆˆ
ˆˆ

tttt
 CF ,                                                                                                                                       (6.2) 

and a suffix “ 0̂ ” indicates quantities measured/determined at Cttt ˆˆˆ
0  . 

In this context, the anticipated residual strain observed at 0̂t  will be represented by the tensor 

quantity 
0̂

Ĉ  (
0

ˆ
ˆ

tt



 C ). The relevant residual stress tensor that may also be encountered at 0̂t  will be 

denoted with 
0̂

T̂ . These tensor quantities are determined in the manner detailed in Section 6.3 below. Their 

involvement in the observed deformation is regarded as a manifestation of the fact that, at 00̂
ˆ ttt  , the 

material of interest is not expected to recover  its initial cubic shape.  
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The currently unknown cuboidal shape emerging at 0̂t  is accordingly regarded as a new (or updated) 

initial configuration, described in the new (or updated) Cartesian co-ordinate system RX̂ . 
0̂

Ĉ  is then 

regarded as the right Cauchy-Green deformation tensor that relates, in a static deformation manner, the initial 

unit cube form ( 0tt  ) with that cuboid deformation state encountered at 0̂
ˆ tt  . Consideration of the 

particular case tt ˆ  leads then to the following initial conditions: 

.1ˆ

ˆ   ,ˆ

0ˆ0̂

ˆ0̂ˆ0̂









LL

,

tt

tttt
0I TC

                                                                                                                            (6.3) 

It is emphasised (see also Section 6.3 below) that Btt ˆˆ   is regarded as the end of continuous loading 

from, rather than the beginning of continuous unloading towards 0̂
ˆ tt   only for mathematical modelling 

purposes. In fact, continuous loading from 0̂
ˆˆ ttt C   brings the material back to the deformation state 

encountered previously at BB ttt ˆ . Further loading will then direct the assumed deformation back into its 

work-hardening track (ii), where the generalised time parameter, t̂ , is naturally replaced by t. In accordance 

with an earlier relevant argument (see Section 2), t̂  is thus also perceived, along with t, as a parameter that 

accounts for succession of events, rather than, strictly, as a parameter that represents real time. 

It is worth noting that the quantities appearing in (6.1) have all obtained particular forms that serve 

the pilot problem introduced in Section 2. However, the general notation and relevant concepts employed in 

this Section are applicable more generally, regardless of particularly adopted forms of the imposed 

deformation pattern.  

 

6.1 Constitutive equations 

 

At 0̂
ˆ tt  , when the initial conditions (6.2) hold, 

0̂
Ĉ  and 

0̂
T̂  are still related directly through the constitutive 

equations sought; namely (6.8) below. The strain energy density of the material may be represented in stage 

(iii) in the following dual form:   

   10̂10̂
,ˆ,ˆ~

,ˆ,ˆ eTCeCC
IIIIII WW  .                                                                                                          (6.4) 

This implies that, for mathematical modelling purposes, the material can be considered in stage (iii) as either 

residually strained or residually stressed. Moreover, (6.4) implies that, unless tt ˆ , 1e  still defines a 

material direction of permanent transverse isotropy. 

Application of the power balance procedure outlined in Appendix A again leads to the standard 

hyperelasticity constitutive equation. In the light of (6.4), this is expressed in a dual form as follows:   
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 ,                                                               (6.5)                                                                                                        

where either of WIII
 and 

IIIW
~

 is required to be a function of the components of a corresponding complete set 

of relevant deformation invariants.  As WIII
, for instance, is a function of the agents appearing in the left hand 

side of (6.4), such a set is obtained in a straightforward manner by replacing the tensors C, 
p

D  and A 

appearing in (A.8) with Ĉ , 
0̂

Ĉ  and 1e , respectively, thus leading to  
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Further development of (6.5a) becomes then possible by expanding that form of the constitutive 

equation as follows: 
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Through a process similar to that outlined in Appendix A, this finally leads to 
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where  
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When connected with (6.2) at 0̂
ˆ tt  , (6.8) leads to  
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which is the previously implied relation that underpins the dual representation (6.4) of the strain energy 

density. Use of (6.4b) may accordingly lead to an alternative form of the constitutive equation (6.8), in which 

0̂
Ĉ  will essentially be replaced by 

0̂
T̂ .  

 

6.2 Compatibility with the elastic deformation stage (i) 

 

In the particular case that stage (iii) degenerates to its isotropic elastic counterpart (i), e1 does not anymore 

represent a preferred material direction, and, because (6.3a) also holds, it is seen that  
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                                                                    (6.11) 

The deformation invariants Î   15,...,5,4  become redundant in stage (i), where the first part of the 

continuity condition (2.7c) imposes the requirement 
I

tt

III WW 
ˆ

.                                                                                                                                         (6.12) 

 Moreover, connection of (6.11) with the constitutive equation (6.8) leads to 



 17 

 

   

     ,2                       

2                                

2 

ˆ1111510411

0

ˆ398312

7632211

0

ˆ

ttRjiRSjSi

IIIIIIIII

ji

ttPSRP

III

RS

IIIIIIIIIIIII

RS

IIIIIIIIIIIIIIIII

jSiRtt

III

ij

CFFCFFWWWFF

CCWCWWWIW

WWWIWIWFF























                                          (6.13) 

which, by virtue of the first part of (2.8c), is required to be identical with its stage (i) counterpart, namely 

(3.3). Hence, a comparison of (6.13) and (3.3) provides the following compatibility conditions:  
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The last two of (6.14) reveal that WIII
 should be independent of 

IIII5 , and such that IIIIII WW 410  . The 

constitutive equations (6.8) and (6.10) can thus slightly simplify, and become 
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where the compatibility conditions (6.12) and (6.14a-c) are still required to hold. These suggest that there still 

exists considerable mutual dependency between the forms of WIII
 and WI

.   

 

6.3 Compatibility with the work-hardening stage (ii) – Determination of residual strain  

 

Because continuous reloading from 0̂
ˆ tt   brings the material back into the state encountered previously at 

Btt ˆˆ   where (6.3) holds, the stress continuity condition (2.8b) obtains the following alternative form, 
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III
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  .                                                                                                                        (6.16) 

The right hand side of this condition is considered known from the analysis detailed previously in Section 5. 

Connection of (6.16) with (6.8) leads then to 
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     (6.17) 

which represent six simultaneous algebraic equations for the same number of unknown components of the 

residual strain tensor 
0̂

Ĉ .  

For dilatational type deformations, the diagonal form of all tensor quantities involved in the analysis 

reveals that three of these equations refer to non-diagonal components of 
0̂

Ĉ , and are thus satisfied 

identically. The remaining three equations are obtained by allowing both free indices appearing in (6.17) to 
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acquire simultaneously the values 1, 2 or 3. These are generally adequate for the determination of all three 

diagonal components of 
0̂

Ĉ . Nevertheless, due to the symmetries of the deformation considered in this 

investigation, it is anticipated that 
330̂220̂

ˆˆ CC   and, hence, that the last two of the implied algebraic equations 

are equivalent.  

Moreover, in the particular case of the present pilot problem, the transverse edges of the deforming 

cuboid remain unstrained. Hence, a comparison of the deformation states attained at 0t  and 0̂t  reveals that  

  1ˆˆ   ,/ˆˆ
330̂220̂

2

00̂110̂
 CCLLC .                                                                                                        (6.18) 

Because 
220̂

Ĉ  = 
330̂

Ĉ  is thus prescribed in this case, the aforementioned couple of equivalent algebraic 

equations are either satisfied identically or unable to provide some additional information regarding the 

cuboid material response. It follows that the last remaining algebraic equation, obtained by setting both free 

indices appearing in (6.17) equal to 1, suffices for the determination of 
110̂

Ĉ  or, equivalently, 
0̂

L̂ .  

Validity of (6.1b, c) and/or (6.18b, c) makes it clear that, in this particular case, the conditions of 

deformation continuity mentioned after (2.8) degenerate into the single equation 

BBBB tttttt
LL
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ˆ .                                                                                                                                  (6.19) 

By virtue of (3.7) and (6.1d), it is also 

0000̂
/ˆ/ˆ ttLL  ,                                                                                                                                       (6.20) 

and, because 0t  is considered known, determination of 
0̂

L̂  also provides the value of the parameter 0̂t  at 

which the deforming cuboid is unloaded in stage (iii).   

The externally applied forces that maintain the implied deformation within the elastic deformation 

regime (iii) can thus be determined as follows  
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6.4 Application: Residually strained deformation of a compressible Mooney-Rivlin cube  

 

One of the simplest possible extensions that the the Mooney-Rivlin strain energy density considered earlier in 

Section 3.2 can attain during the deformation stage (iii) is as follows: 
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C .                                           (6.22) 

This form of 
IIIW  does satisfy the compatibility conditions (6.12) and (6.14) and involves a new material 

parameter, μB. As is implied by the associated suffix, the value of this parameter may depend on deformation 

characteristics related to the offset yield point B, including the value of the parameter Bt .When connected 

with the deformation pattern (6.1) of the present pilot dilatation problem, (6.22) reduces to 

      1ˆ1ˆ
2

1ˆ
2 110̂11112

1 







 CCCW BIII 



C ,                                                                          (6.23) 

which evidently holds in connection with (6.18).  

Connection of (6.22) with the algebraic equations (6.17) enables the latter to simplify as follows:  
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If the appearing free indices, i and j, are set simultaneously equal to either 2 or 3, then (6.24) returns  
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where (5.18) is also accounted for, and  
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by virtue of (5.23) and (5.22). 

 Consideration of (5.19) and (5.20) then reveals that, unless it is satisfied identically, (6.25) emerges 

as a second equation, along with (4.20), that relates all the material parameters appearing in the particular 

forms of IW , IIW  and II employed in this pilot application. It follows that, after (5.19) and (5.20) are 

inserted into (6.25), the resulting equation and (4.20) form a pair of simultaneous algebraic equations for a 

particular pair of the involved parameters; such as the pair α1 and α2 involved in the yield function.  This 

observation makes it more generally understood that the form that the yield function attains within the work-

hardening stage (ii) is indirectly connected with its IW  and IIW  counterparts. 

Moreover, by setting the value of both free indices appearing in (6.24) equal to 1, one obtains  
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ˆ12ˆ/  ,                                                                                        (6.27) 

which, with use of (6.18a) reduces to the quadratic equation 
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Solution of this equation will provide the unknown length of the longitudinal edges of the cuboid after 

unloading is completed in stage (iii). Appendix B outlines some interesting observations that relate the roots 

of (6.28) with the material moduli involved in this application.  

 With 
0̂

L̂  and, hence, 0̂t  being thus determined, a combination of (6.15a) with (6.1) and (6.22) 

provides the stress state in stage (iii) as follows:  
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This depends only on time and, hence, still satisfies identically the quasi-static equations of motion (2.6). The 

external forces that maintain the assumed deformation in stage (iii) are thus found to be 
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A final observation refers to the fact that, at 0̂
ˆ tt  , (6.29) returns  
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which suggest that the externally unloaded cuboid seems to be controversially at a state of residual stress. It 

is, however, also observed that in the particular case that 1/ˆ  ,ˆ
00̂00  LLtt , and, hence, stage (iii) 

coincides with stage (i), the stresses (6.29) reduce naturally into their stage (i) counterparts (3.15). 

It is thus concluded that, in analogy with the observations detailed in Section 3.2, the completely 

unloaded, but residually strained elastic cuboid can begin to experience again the non-uniform dilatation (6.1) 

only after re-loading in stage (iii) allows the material to reach the pre-stress level (6.31). The loading 

parameter appearing in Figure 1 should accordingly be redefined as follows: 

 ,  ,max
220̂22110̂11 TTP IIIIII                                                                                                      (6.32) 

thus leading to the following generalisation of (3.16): 
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7. Conclusions  

 

The analytical solution of the particular application introduced in Section 3.2, and continued afterwards in 

Sections 4.4, 5.2 and 6.4, demonstrated comprehensively most of the principal features of the presented 

plasticity model, which emerges as a powerful new mathematical tool in theoretical solid mechanics. Dealing 

with a deformable isotropic cube whose initial elastic behaviour is characterised by the strain energy density 

of a compressible Rivlin-Mooney material, that pilot application met no difficulty to identify compatible 

strain energy density branches that make accountable either the plastic flow emerging during loading beyond 

initial yield, or the residual strain encountered after unloading from an offset yield point is completed. Cases 

in which the initial hyperelastic cube is made by some different isotropic material can be handled in a similar 

manner, as soon as a corresponding strain energy density is identified.  

The outlined analytical solution is in agreement with, and, hence, supports the observation that the 

initial, pre-strain free, elastic deformation stage (i) is a particular case of any of the subsequent pre-strained 

elastic deformation stage (iii). Moreover, this solution deals successfully with the physical observation that 

induced anisotropy caused by large elastic deformation in stage (i) is necessarily converted into irreversible 

permanent anisotropy when loading continues beyond the initial yield point within the work-hardening stage 

(ii).  

It is thus verified that the proposed plasticity model does not contradict or dismiss any of the known, 

fundament concepts and features observed in isotropic plasticity. The model is accordingly still based on 

standard yield function concepts and yield condition postulates. The latter are however properly modified in a 

manner that enables permanent anisotropy observed beyond initial yield to be accounted for. This is achieved 

by appropriately refining the complete set of stress invariants that enter the form of the yield function 

employed in the initial deformation stage (i) and, hence, by enabling stage (ii) to use a compatible, properly 

modified branch of that yield function. Plastic flow and the corresponding flow rule encountered in the work-

hardening stage (ii) are thus also affected by the proposed refinement of the initial set of the stress invariants. 

In a similar manner, the model considers that the elastic parts of material behaviour are governed by a 

strain energy density that consists three mutually compatible branches. The basic branch underpins standard 

hyperelastic material behaviour observed before initial yield is reached. The complete and irreducible set of 

deformation invariants entering the strain energy density in that stage (i) is, however, properly modified 

beyond initial yield. Along with the encountered deformation induced permanent anisotropy, this 

modification takes thus also into consideration the plastic flow and the state of pre-strain observed in the 

deformation stages (ii) and (iii), respectively. 

At this early stage of development, the presented plasticity model refers only to behaviour and 

response of solid materials which are initially isotropic. For the purpose of relative simplicity, discussion was 

also restricted to basic dilatational deformations that generate initially induced, and afterwards permanently 

imposed anisotropy of the type observed in transversely isotropic materials. Nevertheless, the hyperelasticity 

based background of the model allows it to extend and, hence, to embrace plastic behaviour modelling of 

materials that exhibit properties of more advanced initial anisotropy. The main alterations required in such 

cases are essentially those referring to the manner in which initial (induced) and final (permanent) anisotropy 

influences different branches of the involved yield function and strain energy density. Formation and proper 

implementation of relevant complete sets of deformation and stress state invariants should then, inevitably, be 

expected to exert additive influence on the resulting analytical and, possibly, computational/numerical 

relevant efforts.  

The complete analytical solution achieved for the pilot application introduced in Section 3.2 made 

also clear that the presented plasticity model does not require a-priori specification of a work-hardening 

parameter that characterises plastic progression. Instead, a parameter that describes the manner in which the 
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yield function expands during the work-hardening stage emerges naturally during the solution of the 

particular problem of interest. Hence, the fact that, in the present pilot example, that work-hardening 

parameter is essentially the magnitude of the externally applied longitudinal force does not come as a 

surprise. This is, instead, just a natural consequence of the material and geometrical symmetries that 

characterise this particular cube dilatation problem. 

Most importantly, the part of the analytical solution detailed in Section 5.2 verifies another 

innovative feature of the proposed model. Namely, its ability to determine the required stress and 

deformation characteristics without a-priori postulation of the manner in which elastic and plastic parts of 

strain are assembled and produce the total elastic-plastic type of deformation observed. Instead, the amount 

of strain associated with plastic flow that emerges during the work-hardening stage is determined, in a-

posteriori manner, through direct time integration of formulas that represent corresponding components of 

the rate-of-plastic-deformation tensor. In this manner, an estimate is also provided of the time instant that 

continuing loading within the work-hardening deformation stage (ii) may end through fracture.     
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Appendix A: Constitution during work-hardening of a transversely isotropic material  

 

The elastic part of deformation that takes place during work-hardening of a deformable solid is initially 

considered indistinguishable from its plastic counterpart. Regardless of the kind or the degree of material 

anisotropy involved in the continuum, this is however still considered governed by the usual rate-of-energy 

equation  

 
SV

II dSdVW
dt

d
vt ,                                                                                                                            (A.1) 

where V is an arbitrary volume of the material in the deformed configuration, surrounded by a closed surface 

S having outward unit normal n. The components of the appearing traction vector, t, are given by the 

Cauchy’s formula 
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jii nt  .                                                                                                                                                (A.2) 

Applying Reynold’s transport theorem and the divergence theorem, one thus obtains   
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0
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where use is made of the quasi-static equilibrium equations (2.6) and the symmetry of the stress tensor.  

The fact that the elastic and the plastic parts of deformation are a-priori indistinguishable is reflected 

in the postulation  

 p
DC,WW IIII  ,                                                                                                                                    

(A.4) 

where the appearing “pull-back” form of the plastic-rate-of-deformation tensor, D
p
, is defined in the first part 

of (4.12). This postulation enables the model to account for the dissipative influence that plastic flow exerts 

on the deformation. It also points out the fact that, by virtue of (4.12), D
p
 is itself a function of the stress 

tensor and, hence, an indirect function of C.  

The form (A.4) of WII
 implies further that 
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 A comparison of (A.3) and (A.5) yields the work-hardening constitutive equation as follows: 
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This can be developed further in the usual manner, by requiring from WII
 to be a function of a complete basis 

of appropriate deformation invariants. The components of that basis should however also depend on the 

degree of possible anisotropy that may be observed in the material. If material anisotropy does exist and is 

due to one or more preference material directions, then (A.6) still holds but the unit vectors that define those 

directions should also be included among the arguments of WII
 (e.g., [16, 17]).  

The present case of interest is adequately modelled by considering the following extension of (A.4): 

 ADC
p ,,WW IIII  ,                                                                                                                              (A.7) 

where the unit vector A defines the preference direction within a transversely isotropic material. The complete 

and irreducible basis of deformation invariants sought is thus as follows (e.g., [17]):  
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and its connection with (A.6) leads to 
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With use of intermediate results of the type 
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and, where necessary, of the Cayley-Hamilton theorem, (A.9) is found equivalent to 
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where 
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and  
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The content of the curly parenthesis in the right-hand-side of (A.11) is identical to the right-hand-side 

of the constitutive equation met in conventional isotropic hyperelasticity. The new terms, denoted with 

 σII

ijΘ  and  σII

ijΦ , are both influenced by the plastic rate-of-deformation tensor D
p
 and, by virtue of 

(4.12), are regarded as stress-feedback terms. It becomes thus understood that, (A.11) is implicit rather than 

explicit constitutive equation. 

In particular,  σII

ijΘ  introduces into the constitutive equation stress-feedback terms that emerge 

through the direct involvement of D
p
 into the strain energy density. However, the advanced stress-feedback 

terms that  σII

ijΦ introduces into the constitutive equation depend not only on D
p
, but are also on 

RS

p

MN CD  / . It becomes thus understood that apart from implicit in the stresses, (A.11) is, in general, a 

differential, rather than an algebraic constitutive equation.  

 It is pointed out in this regard that, unless direct evaluation of the terms RSMN CD  /  can become 

straightforward in applications, these differential terms may be determined through use of some intermediate 

variable, q~  say, which D and C may both depend on; so that  
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If, as happens for instance in the present case of interest, q~ is replaced by time, t, then 
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which implies that  σII

ijΦ  dependent on the stress components as well as on their time derivatives. In that 

case, (A.12b) can be expressed in the following form 
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which is found particularly useful in Section 5.1.    

 

 

Appendix B: On the roots of the quadratic equation (6.28)  

 

By requiring from the offset yield point to coincide with the initial yield point and, hence, by setting AB tt   

in (6.28), one observes that  
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becomes a solution of that quadratic algebraic equation. The unit cube representation (B.1) is thus, correctly, 

a root of (6.28) in that particular case. This result is in agreement with the last of the initial conditions (6.3) 

and, hence, verifies validity of the modelling claim that deformation stage (i) is a particular case of the 

residually strained deformation stage (iii).  

 More generally, solution of the quadratic equation (6.28) returns two possible length values for the 

longitudinal edges of a completely unloaded cuboid, namely      
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,                         (B.2) 

where (6.20) is also taken into consideration. Real solutions of (6.28) are possible only if the appearing 

material moduli are such that  

     201121 2//2 Btt

II

BB tt
B  .                                                                                       (B.3) 

This inequality is thus perceived as a prerequisite condition in determining the value of μB. 

If, on the other hand, a set of values is provided for all material moduli appearing in (B.3), then this 

inequality is regarded as a restriction on the length of the time interval [tA, 
Ft̂ ) that work-hardening 

deformation can take place (tA < tB < 
Ft̂ ). The final instant of that interval, 

Ft̂ , is generally different to its 

fracture counterpart, tF, mentioned in the last paragraph of Section 5. If tF < 
Ft̂ , then 

Ft̂  exerts no influence in 

the outlined analysis. Otherwise, 
Ft̂  is generally reached before fracture takes place, and is thus perceived as 

the last instant that the dilatation pattern (2.1) is attainable within the work-hardening regime. In such a case, 

Ft̂  should necessarily be regarded as a point of material instability.  

Provided that the set of values of the involved material moduli satisfies (B.3), admissible values of 

the length parameter 
0̂

L̂  can be sought only among the positive real solutions of (6.28). Recall in this context 

that, in the present case of interest, the external loading is considered tensile and, therefore, 011  .  If 

follows that if the left hand side of (B.3) is positive, then only the positive square root appearing in (B.2) can 

provide an admissible value of 
0̂

L̂ . If, on the other hand, μB > 0 and (B.3) is satisfied while its left hand side 

is negative, then (B.2) provides only inadmissible values of 
0̂

L̂ . However, if μB < 0, then there should be 

cases in which (B.2) provides two admissible values of 
0̂

L̂ . 

 

 

References 

 

[1] R.S. Rivlin, Large elastic deformations of isotropic materials. II. Some uniqueness theorems for pure 

homogeneous deformation, Phil. Trans. Roy. Soc. London A 240 (1948) 491-508.  

[2] R.W. Ogden, On non-uniqueness in the traction boundary-value problem for a compressible elastic 

solid, Q. Appl. Math. 42 (1984) 337–344.  

[3] R.S. Rivlin, M.F. Beatty, Dead loading of a unit cube of compressible isotropic elastic material, ZAMP 

54 (2003) 954–963. 

[4] D.M. Haughton, A comparison of stability and bifurcation criteria for a compressible elastic cube, J. 

Eng. Math. 53 (2005) 79-98.  

[5] K.P. Soldatos, On the stability of a compressible Rivlin’s cube made of transversely isotropic material. 

IMA J. Appl. Math. 71 (2006) 332-353. 

[6] K.P. Soldatos, On the stability and non-uniqueness of the dilatation states of a compressible isotropic 

cube subjected to dead loading. Int. J. Non-Lin. Mech. 42 (2007) 271-282. 

[7] A.M. Tarantino, Homogeneous equilibrium configurations of a hyperelastic compressible cube under 

equitriaxial dead-load tractions, J. Elast. 92 (2008) 227-254.  



 25 

[8] J.G. Lloyd, J. Sivaloganathan, On the relative energies of the Rivlin and cavitation instabilities for 

compressible materials, Math. Mech. Solids 17 (2011) 338–350.  

[9] A.E. Green, P.M. Naghdi, General theory of an elastic-plastic Continuum, Arch. Rational Mech. Anal. 

18 (1965) 251-281. 

[10] R. Hill, The Mathematical Theory of Plasticity. Oxford, Clarendon Press, 1950. 

[11] Malvern, L.E., Introduction to the Mechanics of a Continuous Medium. Prentice Hall, Englewood 

Cliffs, N.J., 1969. 

[12] L.M. Kachanov, Foundations of the Theory of Plasticity. North-Holland Publ., Amsterdam, 1971. 

[13] R. Rivlin, The solution of problems in second order elasticity theory, Arch. Rational Mech. Anal. 2 

(1953) 53-81. 

[14] R. Rivlin, Large elastic deformations, in Rheology, Theory and Applications 1, L. Eirich, ed., 351-

385, Academic Press, New York ,1956. 

[15] A.J.M Spencer, A nonlinear viscoplasticity theory for transversely isotropic materials. In “Proc. 4
th

 Int. 

Conf. Nonlin. Mech (ICNM-IV), Sanghai, (Aug. 2002), pp.149-154.  

[16] A.J.M Spencer, Deformations of Fibre-reinforced Materials. Clarendon Press, Oxford, 1972. 

[17] Q.-S. Zheng, Theory of representations for tensor functions. Appl. Mech. Rev. 47 (1994) 554-587.  

 

  

  

 

 

  

 



 26 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

       

      

 

 

 

Figure 1: Idealisation of elastic-plastic behaviour of metals under negligible hysteresis and simple 

loading/unloading conditions; P and e represent external loading and strain, respectively. 
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FIGURE 2: (a) Undeformed unit cube with edges parallel to the axes of the depicted Cartesian co-ordinate 

system; (b) Deformed cuboid configuration due to action of the externally applied pairs of tensile forces 

0ˆ  ff  (the magnitude of these forces and the dimensions of the resulting cuboid are determined in the 

text for all three deformations stages (i), (ii) and (iii) implied in Figure 1). 
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