Vertical deformation monitoring of the suspension bridge tower using GNSS: a case study of the Forth Road Bridge in the UK

Chen, Qusen and Jiang, Weiping and Meng, Xiaolin and Jiang, Peng and Wang, Kaihua and Xie, Yilin and Ye, Jun (2018) Vertical deformation monitoring of the suspension bridge tower using GNSS: a case study of the Forth Road Bridge in the UK. Remote Sensing, 10 (3). 364/1-364/19. ISSN 2072-4292

[img]
Preview
PDF - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
Available under Licence Creative Commons Attribution.
Download (6MB) | Preview

Abstract

The vertical deformation monitoring of a suspension bridge tower is of paramount importance to maintain the operational safety since nearly all forces are eventually transferred as the vertical stress on the tower. This paper analyses the components affecting the vertical deformation and attempts to reveal its deformation mechanism. Firstly, we designed a strategy for high-precision GNSS data processing aiming at facilitating deformation extraction and analysis. Then, 33 months of vertical deformation time series of the southern tower of the Forth Road Bridge (FRB) in the UK were processed, and the accurate subsidence and the parameters of seasonal signals were estimated based on a classic function model that has been widely studied to analyse GNSS coordinate time series. We found that the subsidence rate is about 4.7 mm/year, with 0.1 mm uncertainty. Meanwhile, a 15-month meteorological dataset was utilised with a thermal expansion model (TEM) to explain the effects of seasonal signals on tower deformation. The amplitude of the annual signals correlated quite well that obtained by the TEM, with the consistency reaching 98.9%, demonstrating that the thermal effect contributes significantly to the annual signals. The amplitude of daily signals displays poor consistency with the ambient temperature data. However, the phase variation tendencies between the daily signals of the vertical deformation and the ambient temperature are highly consistent after February 2016. Finally, the potential contribution of the North Atlantic Drift (NAD) to the characteristics of annual and daily signals is discussed because of the special geographical location of the FRB. Meanwhile, this paper emphasizes the importance of collecting more detailed meteorological and other loading data for the investigation of the vertical deformation mechanism of the bridge towers over time with the support of GNSS.

Item Type: Article
Keywords: GNSS; structure health monitoring; suspension bridge tower; vertical deformation; mechanism explanation
Schools/Departments: University of Nottingham, UK > Faculty of Engineering
Identification Number: https://doi.org/10.3390/rs10030364
Depositing User: Eprints, Support
Date Deposited: 06 Mar 2018 09:24
Last Modified: 02 Jul 2018 08:40
URI: http://eprints.nottingham.ac.uk/id/eprint/50202

Actions (Archive Staff Only)

Edit View Edit View