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ABSTRACT 
 

Youths with attention-deficit/hyperactivity disorder symptomatology often exhibit residual 

inattention and/or hyperactivity in adulthood; however, this is not true for all individuals. 

We recently reported that dimensional, multi-informant ratings of hyperactive/inattentive 

symptoms are associated with ventromedial prefrontal cortex (vmPFC) structure. Herein, 

we investigate the degree to which vmPFC structure during adolescence predicts 

hyperactive/inattentive symptomatology at 5-year follow-up. Structural equation 

modeling was used to test the extent to which adolescent vmPFC volume predicts 

hyperactive/inattentive symptomatology 5 years later in early adulthood. 1,104 

participants (M = 14.52 yrs, SD = 0.42; 583 females) possessed hyperactive/inattentive 

symptom data at 5-year follow-up, as well as quality controlled neuroimaging data and 

complete psychometric data at baseline. Self-reports of hyperactive/inattentive 

symptomatology were obtained during adolescence and at 5-year follow-up using the 

Strengths and Difficulties Questionnaire (SDQ). At baseline and 5-year follow-up, a 

hyperactive/inattentive latent variable was derived from items on the SDQ. Baseline 

vmPFC volume predicted adult hyperactive/inattentive symptomatology (standardized 

coefficient = -.274, p < .001) while controlling for baseline hyperactive/inattentive 

symptomatology. These results are the first to reveal relations between adolescent brain 

structure and adult hyperactive/inattentive symptomatology, and suggest that early 

structural development of the vmPFC may be consequential for the subsequent 

expression of hyperactive/inattentive symptoms.      
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INTRODUCTION 
 

Attention-deficit/hyperactivity disorder (ADHD) symptomatology frequently persists 

across the span of development. Longitudinal research indicates that functionally 

impairing symptoms continue into adolescence and adulthood in approximately 60-80% 

of cases diagnosed during childhood (Barkley RA et al. 1990; McGough JJ and RA 

Barkley 2004). Despite such findings, longitudinal relations between adolescent brain 

structure and adult ADHD symptomatology remain virtually unstudied.  Prospective 

longitudinal neuroimaging studies offer an invaluable opportunity to identify early brain-

based markers of future emotional and behavioral problems. Investigating links between 

adolescent brain structure and adult psychopathology may further elucidate the neural 

underpinnings of adult ADHD symptomatology, as well as help to characterize different 

disease trajectories. Ultimately, such efforts may inform early intervention and 

prevention strategies.            

 

The ventromedial prefrontal cortex (vmPFC), comprised of medial portions of the 

orbitofrontal cortex as well as ventral portions of the medial prefrontal cortex, has long 

been implicated in ADHD symptomatology and impulse control (Bechara A 2005; 

Faraone SV et al. 2015). Prior studies demonstrate that the vmPFC is involved in 

aspects of reward processing, including reward valuation, as well as receipt of reward 

(Knutson B et al. 2003; Liu X et al. 2011). Indeed, motivation-based dysfunction models 

of ADHD have been proposed, positing that altered reward processes underpin ADHD 

behaviors such as hypersensitivity to delay and discounting of future reward (Sonuga-

Barke EJ et al. 1994; Sagvolden T et al. 1998; Sonuga-Barke EJ 2005). Portions of the 

vmPFC also constitute a critical node in the brain’s default mode network (DMN)—a 

functional brain network that, more recently, has been implicated in ADHD 
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pathophysiology.  Specifically, the default-mode interference hypothesis of ADHD 

postulates that activity in the DMN, which is normally diminished during goal-directed 

tasks, persists into periods of task-related processing and, consequently, interferes with 

task-specific processing (Sonuga-Barke EJ and FX Castellanos 2007).  

 

In the largest voxel-based morphometry (VBM) study to date on adolescent ADHD 

symptomatology, Albaugh et al. (2017) reported that parent and youth ratings of ADHD 

symptoms were each negatively associated with gray matter volume in an overlapping 

portion of the vmPFC (Albaugh MD et al. 2017). In particular, reduced GMV in the 

vmPFC was tied to aspects of inattentive symptomatology in adolescents. Further, 

Albaugh et al. (2017) found that reaction time variability—posited to reflect attentional 

lapses—was negatively associated with gray matter volume in an overlapping region of 

the vmPFC. Similarly, in the largest VBM study to date on adult ADHD, a significant 

negative correlation was revealed between vmPFC GMV and dimensional measures of 

inattentive symptomatology (Maier S et al. 2015). Taken together, vmPFC volume may 

be a critical marker for inattentive symptomatology.  It is possible that vmPFC structure 

during adolescence is not only related to concomitant symptoms of inattention, but may 

also be tied to the subsequent trajectories of ADHD symptomatology.  

 

When characterizing longitudinal relations between adolescent brain structure and 

subsequent ADHD psychopathology, it may be beneficial to assess symptomatology in a 

quantitative fashion. Indeed, empirically based assessment of psychopathology has 

provided strong support for dimensionality with regard to a number of psychiatric 

conditions, including ADHD (Hudziak JJ et al. 2007). There have been reports of an 

association between subclinical symptoms of hyperactivity and impulsivity in typically 

developing youths and evidence of delayed cortical thickness maturation—interestingly, 
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delayed thickness maturation was revealed in areas of the cortex that have been 

previously implicated in clinically significant ADHD symptoms (Shaw P et al. 2011; 

Ducharme S et al. 2012). Such evidence supports the use of dimensional measures of 

psychopathology, as emphasized by the National Institute of Mental Health’s Research 

Domain Criteria program (Morris S and B Cuthbert 2012). In addition to assessing 

psychopathology using dimensional measures, studying large population-based samples 

affords the opportunity to capture naturally occurring variance in behavioral phenotypes, 

including psychopathology. Unfortunately, few studies have examined the neural 

correlates of hyperactivity/inattention in population-based samples. 

 

In the present study, we employ structural equation modeling (SEM) in order to examine 

the degree to which adolescent vmPFC volume predicts hyperactive/inattentive 

symptoms during early adulthood in a large, population-based sample of 1,104 youths. 

In a subset of participants, we also test the degree to which hyperactive/inattentive 

symptoms and vmPFC structure are related at study follow-up, during early adulthood.    

 

MATERIALS AND METHODS 

 

Sample 

 

Neuroimaging and behavioral data were obtained from the IMAGEN study conducted 

across eight European sites, which includes 2,223 adolescents recruited from schools at 

age 14 years (SD = 0.41 year; age range = 12.9–15.7 years). A description of 

recruitment and assessment procedures, as well as study exclusion and inclusion 

criteria, has been published elsewhere (Schumann G et al. 2010). In the present study, a 

total of 1,104 participants possessed ADHD symptom data at the 5-year follow-up, as 
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well as quality controlled neuroimaging data and complete psychometric and 

demographic data at baseline. Of these 1,104 participants, 976 (88.4%) possessed 

quality controlled neuroimaging data at the 5-year follow-up as well as complete 

psychometric and demographic data at baseline.     

 

Assessment of Hyperactivity and Inattention 

 

The Development and Well-Being Assessment (DAWBA) is a computer-based package 

of questionnaires, interviews, and rating techniques used to assess adolescent 

psychopathology (Goodman R et al. 2000). In the present study, ADHD symptom counts 

were derived from the parent version of the DAWBA administered at baseline and were 

used solely in defining the vmPFC ROI (see below for further details) used in SEM 

analysis. 

 

At baseline and 5-year follow-up, the self-report version of the Strengths and Difficulties 

Questionnaire (SDQ) was used to assess symptoms of hyperactivity and inattention 

(Goodman R 1997). The SDQ is a reliable and valid measure of youth emotional and 

behavior symptoms, on which scores are predictive of increased probability of clinician-

rated psychiatric disorders and have retest stability over 4-6 months (Goodman R 2001). 

Importantly, concurrent validity has been established between the Child Behavior 

Checklist Attention Problems subscale—arguably the most widely accepted dimensional 

measure of hyperactive/inattentive symptomatology in youths—and the SDQ 

Hyperactive/Inattentive scale (r = .75) (Mieloo C et al. 2012). 

 

Demographic Measures 
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The puberty development scale (PDS) was used to assess the pubertal status of 

participants (Petersen AC et al. 1988). The socioeconomic status (SES) score was 

derived by summing the following variables: Mother’s Education Score, Father’s 

Education Score, Family Stress Unemployment Score, Financial Difficulties Score, 

Home Inadequacy Score, Neighborhood Score, Financial Crisis Score, Mother 

Employed Score, and Father Employed Score (Whelan R et al. 2014).  

 

MRI acquisition  

 

MRI scanning was conducted at the eight IMAGEN assessment sites using 3T whole 

body MRI systems. Image-acquisition utilized a set of parameters that were compatible 

with all scanners in order to ensure comparability of data across the different scanners. 

Details surrounding image acquisition protocols and quality checks have been described 

elsewhere, including extensive standardization across MRI scanners (Schumann G et al. 

2010). 

 

Structural MRI 

 

High-resolution anatomical MRIs were acquired with a three-dimensional T1-weighted 

magnetization prepared gradient echo sequence (MPRAGE) based on the ADNI 

protocol (http://adni.loni.usc.edu/methods/documents/mri-protocols/). 

 

MRI data preprocessing  

 

Preprocessing of the structural T1-weighted data was performed with Statistical 

Parametric Mapping version 8 (Wellcome Department of Neuroimaging, London, United 
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Kingdom, http://www.fil.ion.ucl.ac.uk/spm/software/spm8/), using standard automated 

pipelines (Schumann G et al. 2010). T1-weighted MRI processing included image 

segmentation into gray matter, white matter and cerebrospinal fluid tissue classes, 

preceded by an iterative registration to the Montreal Neurological Institute template 

space, using SPM’s optimized normalization routine (Ashburner J and KJ Friston 2005). 

For voxel-based morphometry (VBM), gray matter images were smoothed with a Full 

Width at Half Maximum Gaussian kernel of 8 mm, warped to standard MNI space and 

modulated by multiplying the linear and non-linear component of the Jacobian 

determinants generated during spatial normalization (Ashburner J and KJ Friston 2000).  

 

ROI Definition 

 

Parent reports of ADHD symptoms (obtained at baseline) were used to define the 

vmPFC ROI (shown in Supplemental Figure 1). Specifically, baseline regional GMV was 

regressed against baseline total ADHD symptom count—using parent reports on the 

DAWBA—while controlling for age, sex, total gray matter volume, site, pubertal 

development, Performance IQ, Verbal IQ, and SES. As outlined in Albaugh et al. (2017), 

this regression analysis included 1,538 adolescents and revealed a negative association 

in bilateral vmPFC (3424 voxels, x = -4, y = 30, z = -20; peak Z score = 4.12). 

 

Although the spatial resolution of MRI does not allow for reliable identification of 

cytoarchitectonic areas in humans, we have attempted to apply the cytoarchitectonic 

scheme of Ongur et al. (2003) using anatomical landmarks. Moving in the caudal to 

rostral direction along the gyrus rectus, the ROI likely includes areas 32pl, 14c, 14r, and 

11m, as well as areas 10m and 10r along the medial wall (Ongur D et al. 2003). The 

lateral extent of the ROI likely includes portions of area 13. 
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Statistical Analyses 

 

Structural equation modeling (SEM) was employed to test the extent to which adolescent 

vmPFC volume was associated with self-reported hyperactive/inattentive 

symptomatology at 5-year follow-up, while accounting for the effects of sex, age, 

pubertal status, IQ, handedness, site, SES, and total gray matter volume, as well as 

baseline self-reports of hyperactive/inattentive symptomatology. By controlling for 

baseline symptoms, we tested the extent to which baseline vmPFC structure accounted 

for unique variance in follow-up H/I symptoms—independent of baseline 

symptomatology. At baseline and follow-up, a hyperactive/inattentive latent variable was 

derived from items on the youth version of the SDQ. Three SDQ items from the 

hyperactive/inattentive subscale were used to indicate the latent variable (“I am restless, 

I cannot stay still for long”, “I am constantly fidgeting or squirming”, “I am easily 

distracted, I find it difficult to concentrate”). This was due to the fact that the two 

positively coded items (“I think before I do things”, “I finish the work I'm doing. My 

attention is good”) did not covary with the other items, likely reflecting their positive 

scaling. The tendency for positively worded items on the SDQ to cluster together, 

irrespective of the subscale they belong to, has been previously reported by other 

groups (DiStefano C and RW Motl 2006; Palmieri PA and GC Smith 2007; Van Roy B et 

al. 2008).  Analysis was carried out using the statistical package Mplus 

(http://www.statmodel.com). We utilized the Weighted Least Squares with Mean and 

Variance Adjusted Chi Square Test Statistic estimator (WLSMV), which is robust to 

violations of multivariate normality (Muthén LK and BO Muthén 2001-2016). We also 

repeated our analysis using standard multiple linear regression, utilizing the 5-item SDQ 
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Hyperactive/Inattentive summary scores at baseline and follow-up (rather than indicating 

latent variables).    

 

In order to assess if brain regions during adolescence—other than the vmPFC—might 

be associated with adult hyperactive/inattentive symptoms, we performed a subsequent 

exploratory whole-brain analysis. Specifically, a whole-brain voxel-wise analysis was 

conducted using the general linear model, performed with the VBM toolbox of SPM8. 

Regional GMV, measured at baseline, was regressed against self-reports of 

hyperactive/inattentive symptomatology obtained at 5-year follow-up. Age at baseline, 

sex, handedness, total gray matter volume (GMV), site, pubertal development, 

Performance IQ, Verbal IQ, and SES were controlled for in the analysis. An initial height 

threshold of p ≤ .001 was implemented at the voxel level, with a corrected family-wise 

error (FWE; p ≤ .05) subsequently applied to identify significant clusters.  

 

RESULTS 

 

Demographic and Behavioral Measures 

 

Demographic and psychometric information for participants is provided in Table 1. For 

the 1104 participants included in the main SEM analysis, self-report ratings of 

hyperactive/inattentive symptomatology at follow-up were inversely correlated with SES 

(r = -0.114, p < .001) and Verbal IQ (r = -0.068, p = .023). In addition, self-reported SDQ 

H/I scores at follow-up were positively correlated with self-reported SDQ H/I scores at 

baseline (r = 0.434, p < .001). Baseline parent-reported DAWBA symptom counts were 

correlated with baseline self-reported SDQ H/I scores (r = 0.345, p < .001) as well as 

follow-up self-reported SDQ H/I scores (r = 0.235, p < .001) (Supplemental Table 1).      

Page 28 of 51Cerebral Cortex

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

ADOLESCENT BRAIN AND ADULT INATTENTION 12

  

Imaging Analyses 

 

ROI-based Analysis. Table 2 displays results from the ROI-based SEM analysis. The 

model (Figure 1) showed good fit (Root Mean Square Error of Approximation = 0.030; 

Comparative fit index = 0.941; Tucker-Lewis Index = 0.925). Our analysis revealed that 

there was a significant direct effect of baseline vmPFC volume on hyperactive/inattentive 

symptoms at 5-year follow-up (standardized coefficient = -0.274, p < .001) where smaller 

volumes at baseline were associated with higher levels of hyperactive/inattentive 

symptoms at 5-year follow-up—independent of baseline self-reports of 

hyperactive/inattentive symptoms. Results were not meaningfully altered when age and 

pubertal stage at time of MRI scan were removed from the model, or while controlling for 

other SDQ subscales (including mood and anxiety symptoms captured on the Emotion 

subscale, as well as oppositional/rule-breaking behaviors captured on the Conduct 

subscale). These latter findings suggest that co-occurring psychopathology was not 

confounding our results.  

 

It is noteworthy that very similar results were obtained when standard multiple linear 

regression analysis was performed in which SDQ Hyperactive/Inattentive summary 

scores (using all five items) were used rather than latent variables (Supplemental Table 

2).  More specifically, follow-up SDQ Hyperactive/Inattentive summary scores were 

regressed on sex, age, pubertal status, Performance IQ, Verbal IQ, handedness, site, 

SES, baseline total gray matter volume, baseline SDQ Hyperactive/Inattentive summary 

score, and baseline vmPFC ROI volume.  
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Using only the 976 participants with available follow-up imaging data, we attempted to 

include vmPFC volume (assessed at 5-year follow-up) into the structural equation 

model—in particular, as a mediating variable in between baseline vmPFC and follow-up 

hyperactive/inattentive symptoms. This resulted in a lack of model convergence. Upon 

further investigation, this reflected the fact that follow-up vmPFC volume was not 

significantly correlated with hyperactive/inattentive symptoms at baseline or 5-year 

follow-up (See Supplemental Tables 3-5). Baseline vmPFC volume, however, was 

significantly correlated with follow-up vmPFC volume (r = 0.846, p < .001). Post hoc 

partial correlation analysis revealed a significant association between baseline vmPFC 

volume and follow-up hyperactive/inattentive SDQ summary score while controlling for 

follow-up vmPFC volume, baseline hyperactive/inattentive SDQ summary score, as well 

as sex, handedness, site, SES, age at baseline, pubertal development at baseline, 

baseline total GMV, and follow-up total GMV (r = -.084, p = .009). 

 

Whole-brain Analysis.  Regressing baseline regional gray matter volume against 

follow-up hyperactive/inattentive SDQ summary scores revealed a negative association 

in the vmPFC (1351 voxels, x = -12, y = 46, z = -17; peak Z value = 5.04) (Figure 2). No 

other associations survived correction for multiple comparisons. Figure 3 depicts the 

spatial overlap between the parent-defined ROI used for the a priori analyses above and 

the results from this whole-brain analysis.  

 

When controlling for baseline H/I self-report scores in the above VBM analysis, findings 

hold when an initial height threshold of p ≤ .005 is implemented at the voxel level, with a 

corrected family-wise error (FWE; p ≤ .05) subsequently applied to identify significant 

clusters. 
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DISCUSSION 

 

To our knowledge, this is the first report of a longitudinal association between adolescent 

brain structure and hyperactive/inattentive symptomatology in early adulthood. Critically, 

vmPFC structure during adolescence was linked to hyperactive/inattentive 

symptomatology in early adulthood. In our SEM and standard multiple linear regression 

analyses, smaller ventromedial prefrontal volume at baseline predicted greater 

hyperactive/inattentive symptomatology at 5-year follow-up. It is important to note that, in 

these analyses, we controlled for baseline symptomatology. Further, covarying for mood 

and anxiety psychopathology, as well as conduct problems, did not meaningfully alter 

our results. Thus, our findings indicate that adolescent vmPFC volume accounts for 

unique variance in self-reported hyperactive/inattentive symptoms at 5-year follow-up—

independent of self-reported baseline symptomatology. Taken together, vmPFC 

morphology during adolescence may possess predictive utility with regard to future 

symptoms of hyperactivity/inattention in early adulthood.  

 

The vmPFC has been previously associated with concomitant ADHD symptomatology in 

adolescents and adults. In recent work by Albaugh et al. (2017), it was found that 

vmPFC gray matter volume during adolescence was negatively associated with 

concomitant parent and youth reports of inattention. In this same study, it was also 

reported that reaction time variability was negatively associated with gray matter volume 

in an overlapping region of the vmPFC. Similar results were obtained in the largest brain 

structural imaging study to date on adult ADHD, where a significant negative correlation 

was revealed between vmPFC gray matter volume and a dimensional measure of 

inattentive symptomatology (Maier S et al. 2015). Taken together, these previous studies 

further implicate the vmPFC in the pathophysiology of inattention. The present study 
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extends findings from these previous reports, demonstrating that adolescent vmPFC 

structure is associated with hyperactive/inattentive symptomatology approximately five 

years later in early adulthood, independent of baseline symptomatology.    

 

Interestingly, the vmPFC represents a central node in the brain’s default-mode network, 

a brain network that has been hypothesized to play a role in the pathophysiology of 

ADHD symptoms. Specifically, the default-mode interference hypothesis posits that 

activity in the DMN, which is typically attenuated during goal-directed tasks, can persist 

into periods of task-related processing and, as a result, compete with task-specific 

neural processing (Sonuga-Barke EJ and FX Castellanos 2007). The ventromedial 

prefrontal cortex represents a primary hub in the brain’s default mode network (DMN)—a 

network believed to play a central role in mind-wandering and task-unrelated thought. 

Although speculative, it is possible that the volumetric reductions in the vmPFC may be 

linked to both concomitant and future DMN dysfunction. In a recent study by Salavert et 

al. (2015), ADHD participants exhibited reduced deactivation of the ventromedial 

prefrontal cortex during a working memory task. The authors suggest that failure to 

deactivate the medial prefrontal cortex is tied to lapses of attention, and that this may be 

a central feature of ADHD symptomatology (Salavert J et al. 2015). In the context of the 

present study, reduced vmPFC volume during adolescence may serve as a marker for 

increased vulnerability to future DMN dysfunction—more specifically, an impaired ability 

to deactivate portions of the DMN. Future studies are needed to test this hypothesis.             

 

In the context of the DMN, it is noteworthy that mind-wandering—or the drifting of 

attention away from external, task-related activities towards self-generated cognitions—

has been previously tied to the vmPFC. Numerous functional imaging studies have 

implicated the vmPFC in mind-wandering (Andrews-Hanna JR, JS Reidler, C Huang, et 
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al. 2010; Fox KC et al. 2015). Bertossi and Ciaramelli (2016) recently found that patients 

with vmPFC damage reported significantly reduced off-task thoughts and less frequent 

daydreaming when compared to controls. The extent and overlap of patients’ brain 

lesions studied by Bertossi and Ciaramelli (2016) share a striking resemblance to the 

ROI used in the present study. As noted by others, the vmPFC belongs to the “medial 

temporal lobe (MTL)-subsystem” of the DMN (Andrews-Hanna JR, JS Reidler, J 

Sepulcre, et al. 2010). As hypothesized by Bertossi and Ciaramelli, the vmPFC—and its 

shared connections with MTL structures—may be central to the mental construction of 

past events, or possible future scenarios (Bertossi E and E Ciaramelli 2016). According 

to their hypothesis, vmPFC patients may experience a relative dearth of internally 

generated thoughts about the past and future, and there is little competition from the 

internal milieu with regard to the allocation of attentional resources (Bertossi E and E 

Ciaramelli 2016). Although speculative, it is plausible that aberrant functioning and/or 

connectivity of the vmPFC could also lead to an abundance of internally generated 

stimuli that outcompete external stimuli for attentional resources. Interestingly, this 

aberrant functioning and/or connectivity of the vmPFC may underpin aspects of 

normative, as well as clinically significant, inattention. It is also worth mentioning that 

over-activation of the subcallosal cingulate area (Brodmann Area 25)—an area closely 

neighboring the caudal extent of the ROI used in the present study—has been tied to the 

shifting of attention away from external stimuli and towards negative, self-referential 

thoughts (Choi KS et al. 2015).  

 

Findings from the present study may also reflect altered maturation of neural pathways 

involved in reward processing.  A number of functional neuroimaging studies have found 

evidence of hypo-responsiveness during reward anticipation in adolescent and adult 

ADHD samples (Scheres A et al. 2007; Strohle A et al. 2008). It was recently reported 
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that vmPFC-lesioned neurosurgical patients exhibited reduced ventral striatal activity 

during the anticipation of reward, as well as decreased nucleus accumbens volumes, 

relative to neurologically healthy controls (Pujara MS et al. 2016). Intriguingly, in the 

context of the present study, structural alterations in the vmPFC during adolescence 

may be related to enduring functional deficits in reward processing.    

 

Few imaging studies have attempted to test longitudinal associations between brain 

metrics and ADHD-related outcomes. In a seminal longitudinal study by Shaw et al. 

(2006), 163 children with ADHD (mean age at study entry, 8.9 years) and 166 controls 

underwent MRI scanning, with the majority of participants undergoing MRI scanning two 

times or more. Clinical evaluations were conducted at follow-up (mean follow-up, 5.7 

years). In brief, children with worse clinical outcome possessed thinner left medial 

prefrontal cortex at baseline relative to controls and ADHD participants with better 

outcomes. This finding appears in line with results from the present study indicating that 

reduced ventromedial prefrontal volume during adolescence is associated with greater 

ADHD symptomatology in early adulthood. Mattfeld et al. (2014) recently used resting 

state MRI to characterize patterns of functional connectivity within three groups: I) 

patients with persistent ADHD diagnoses in both childhood and adulthood, II) patients 

who had met criteria for ADHD diagnosis in childhood but not during adulthood, and III) 

controls who did not meet criteria for ADHD diagnosis during childhood or adulthood 

(Mattfeld AT et al. 2014). Importantly, participants were scanned as adults.  Positive 

functional correlation between two major midline nodes of the DMN—the vmPFC and 

posterior cingulate— was reduced in patients with a persistent ADHD diagnosis, but not 

in remitted patients or controls. Furthermore, whereas control participants exhibited 

significant negative correlations between resting state activity in medial prefrontal and 

bilateral dorsolateral prefrontal regions, these regions were not significantly anti-
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correlated in participants with persistent or remitted ADHD. These findings suggest that 

DMN dysfunction may indeed be related to trajectories of ADHD symptomatology.   

 

It is noteworthy that baseline vmPFC volume was associated with hyperactive/inattentive 

symptoms at follow-up; however, follow-up vmPFC volume was not significantly 

associated with baseline or follow-up symptomatology. Although seemingly at odds with 

Maier et al. (2015), this finding appears in line with several morphometric studies of adult 

ADHD in which volumetric reductions were limited to the dorsal anterior cingulate and 

areas comprising the dorsal attention network (Seidman LJ et al. 2006; Makris N et al. 

2007). Given the relatively protracted structural development of the vmPFC—particularly 

with regard to cortical surface expansion (Sowell ER et al. 2004)—it may be a region 

where delayed brain maturation could still be observed at time of baseline assessment. 

Interestingly, results from the present study appear to dovetail with findings of Ducharme 

et al. (2012). Studying a large population-based sample of typically developing youths, 

Ducharme et al. (2012) revealed negative associations between Child Behavior 

Checklist Attention Problems score and orbitofrontal (including portions of the vmPFC) 

cortical thickness early on in development; however, this relation was not observed in 

older youths. Thus, our results appear to support previous reports of clinical and 

subclinical ADHD symptoms being associated with reduced rates of brain structural 

change. Moreover, it is notable that self-reported hyperactive/inattentive symptoms at 

follow-up were related to vmPFC structure five years earlier even when partialling out 

the influence of this region’s volume at follow-up. This suggests that the earlier 

developmental trajectory of this region may prove to be consequential for the 

subsequent expression of hyperactive/inattentive symptoms. 
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We have demonstrated anatomical convergence with regard to the association between 

baseline brain structure and baseline parent-reports of ADHD symptoms, and the 

longitudinal association between baseline brain structure and subsequent self-reported 

hyperactive/inattentive symptomatology in early adulthood (controlling for baseline self-

reports of hyperactive/inattentive symptomatology). Given that this anatomical overlap 

was observed primarily in ventromedial prefrontal cortices, these results further implicate 

this brain region in the pathophysiology of ADHD symptomatology. Thus, vmPFC 

structure during adolescence is not only related to concomitant hyperactivity/inattention, 

but also future hyperactivity/inattention in adulthood—with smaller volumes during 

adolescence being associated, on average, with greater hyperactive/inattentive 

symptomatology in adulthood.    

 

Intriguingly, findings from the present study suggest that aspects of prefrontal structure 

during adolescence may, ultimately, be of clinical significance in the context of adult 

ADHD. Although speculative, it is possible that more refined assessments of orbital and 

ventromedial prefrontal morphology during adolescence may help to identify youths at 

greatest risk for clinically significant symptom change. It is possible that youth with 

aberrant vmPFC volume during adolescence, when coupled with particular genetic 

and/or environmental factors, may increase likelihood of clinically significant 

symptomatology in adulthood. Future studies may benefit from investigating the extent to 

which environmental and genetic factors may serve to moderate the relationship 

between adolescent prefrontal structure and adult hyperactive/inattentive 

symptomatology.  

 

Finally, it should be noted that aspects of the vmPFC have been implicated in a number 

of different psychopathologies and behaviors, including anxiety, depression, impulse 
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control, psychopathy, and reward valuation (Hiser J and M Koenigs 2017). This 

observation likely reflects several important points. First, the majority of previous 

neuroimaging studies have utilized relatively simple approaches to characterizing 

psychopathology. With the advent of more sophisticated statistical approaches, such as 

bifactor models of psychopathology (Lahey BB et al. 2017), it is possible that a more 

general psychopathology factor—a factor that cuts across different classes of 

psychopathology and accounts for observed correlations across different symptom 

domains—may help to elucidate why particular brain areas are implicated in numerous 

psychopathologies. Second, the vmPFC has been identified as a hub node in the brain’s 

“rich club” network—a constellation of brain regions that possess rich connections and 

are densely interconnected (van den Heuvel MP and O Sporns 2013). Thus, the vmPFC 

is ideally situated to exert influence on numerous brain networks; its rich connectivity 

may account for the vmPFC’s putative role in numerous psychopathologies and 

behaviors.     

 

The present study possesses a number of methodological strengths. We utilized a large 

longitudinal, population-based sample, capturing naturally occurring variation in ADHD 

symptomatology. We also assessed hyperactive/inattentive symptoms as a quantitative 

trait rather than following a strict categorical approach. These methodological 

approaches serve to greatly bolster statistical power. Nonetheless, given that we have 

focused on regional GMV in our analyses, we are unable to definitively comment on the 

neurophysiological underpinnings of the VBM findings. Similarly, we are unable to 

comment on possible ties to aberrant structural and/or functional connectivity. Future 

studies are needed to address these issues. We were limited by the fact that only self-

reports of ADHD symptomatology were obtained at follow-up. Thus, our SEM analysis 

rested solely upon self-reports of hyperactive/inattentive symptoms using the SDQ. 

Page 37 of 51 Cerebral Cortex

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

ADOLESCENT BRAIN AND ADULT INATTENTION 21

Lastly, we did not have information with regard to prescription stimulant usage, which 

may have qualified the relationship between brain structure and hyperactive/inattentive 

symptoms over the developmental window studied.  

 

In conclusion, vmPFC structure, which has been previously linked to concomitant ADHD 

symptomatology, also informs ADHD symptom trajectories from adolescence into early 

adulthood. These findings suggest that vmPFC structure in adolescence may have 

clinical utility by informing ADHD symptom trajectories. More granular assessment of 

adolescent vmPFC morphology may increase predictive utility in future studies.    
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Table 1. Summary Statistics for Demographic and Psychometric Variables 

 N = 1,104 N = 976 (Available 
Follow-up Imaging) 

Age at baseline (in years) (Mean ± SD) 14.52 ± 0.42 14.52 ± 0.42 

Sex 52.8% F (583), 47.2% 
M (521) 

53.0% F (517), 47.0% 
M (459) 

SES  (Mean ± SD) 18.28 ± 3.92 18.37 ± 3.88 

Verbal IQ  (Mean ± SD) 112.75 ± 14.00 112.76 ± 13.99 

Performance IQ  (Mean ± SD) 109.83 ± 14.61 109.88 ± 14.59 

Baseline H/I Score on Youth SDQ  
(Mean ± SD) 

3.80 ± 2.11 3.82 ± 2.10 

Baseline DAWBA Symptom Count 
(Mean ± SD) 

3.59 ± 5.32 3.54 ± 5.32 

Follow-up H/I Score on Youth SDQ  
(Mean ± SD) 

3.41 ± 2.14 3.39 ± 2.13 

Participants scoring at, or above, 
Youth SDQ H/I cut-off of 7 at follow-up 

93 82 

 

H/I=Hyperactive/Inattentive scale 
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Table 2. Summary of ROI-based Structural Equation Modeling Analysis 

 

Direct effects on Latent H/I Variable at 5-Year Follow-Up 

 Std. beta Sig. 
Baseline ROI GMV -0.274 <0.001 

Sex 0.065 0.224 
Hand 0.006 0.871 
Site1 0.104 0.036 
Site2 0.155 0.003 
Site3 0.159 0.001 
Site4 -0.024 0.593 
Site5 -0.049 0.328 
Site6 -0.010 0.835 
Site7 -0.025 0.630 
SES -0.123 0.002 
Age -0.002 0.959 

Puberty -0.048 0.303 
IQ PR 0.008 0.845 
IQ VC 0.029 0.505 

Baseline Total GMV 0.188 0.014 
Baseline Latent H/I Variable 0.535 <0.001 

 
SES = socioeconomic status; Puberty = pubertal development scale; IQ PR = Perceptual 
IQ; IQ VC = Verbal IQ; H/I = Hyperactive/Inattentive; ROI = Region of interest; GMV = 
Gray matter volume (N = 1,104) 
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Figure 1: 
 
The model used to study the relationship between baseline vmPFC GMV and follow-up 
hyperactive/inattentive symptomatology (N = 1,104).  Only statistically significant 
parameters are reported. A range of parameters is reported for site because it was 
coded via seven binary dummy-variables. All covariates were assessed at baseline.   
 
 
Figure 2: 
 
Results from whole brain voxel-wise analyses regressing baseline regional gray matter 
volume against SDQ Hyperactive/Inattentive score (assessed approximately 5 years 
later at follow-up).  Age, sex, handedness, total gray matter volume (GMV), site, pubertal 
development, Performance IQ, Verbal IQ, and socio-economic status were controlled for 
in the analysis.  An initial height threshold of p ≤ .001 was implemented at the voxel 
level, with a corrected family-wise error (FWE; p ≤ .05) subsequently applied to identify 
significant clusters (N = 1,104).  In axial view, left is left. 
 
 
Figure 3: 
 
(A) Blue depicts baseline regional GMV related to parent-reported 
hyperactive/inattentive symptomatology (assessed at baseline) (see Albaugh et al., in 
press, for further details; N = 1538).  Red depicts baseline regional GMV related to self-
reported hyperactive/inattentive summary score (assessed approximately 5 years later 
at follow-up) on the Strengths and Difficulties Questionnaire (N = 1,104).  Pink 
represents overlap in results.  Age, sex, handedness, total gray matter volume (GMV), 
site, pubertal development, Performance IQ, Verbal IQ, and socio-economic status were 
controlled for in the analysis.  An initial height threshold of p ≤ .001 was implemented at 
the voxel level, with a corrected family-wise error (FWE; p ≤ .05) subsequently applied to 
identify significant clusters.  (B) Three-dimensional reconstruction of results.  Blue 
depicts baseline regional GMV related to parent-reported ADHD symptomatology 
(assessed at baseline) (see Albaugh et al., in press, for further details; N = 1,538).  Red 
depicts baseline regional GMV related to self-reported ADHD symptoms (assessed 
approximately 5 years later at follow-up) on the Strengths and Difficulties Questionnaire 
(N = 1,104). Results shown in axial view.   
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Figure 1: The model used to study the relationship between baseline vmPFC GMV and follow-up 
hyperactive/inattentive symptomatology (N = 1,104).  Only statistically significant parameters are reported. 

A range of parameters is reported for site because it was coded via seven binary dummy-variables. All 
covariates were assessed at baseline.    
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Figure 2: Results from whole brain voxel-wise analyses regressing baseline regional gray matter volume 
against SDQ Hyperactive/Inattentive score (assessed approximately 5 years later at follow-up).  Age, sex, 
handedness, total gray matter volume (GMV), site, pubertal development, Performance IQ, Verbal IQ, and 

socio-economic status were controlled for in the analysis.  An initial height threshold of p ≤ .001 was 
implemented at the voxel level, with a corrected family-wise error (FWE; p ≤ .05) subsequently applied to 

identify significant clusters (N = 1,104).  In axial view, left is left.  
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Figure 3: (A) Blue depicts baseline regional GMV related to parent-reported hyperactive/inattentive 
symptomatology (assessed at baseline) (see Albaugh et al., in press, for further details; N = 1538).  Red 
depicts baseline regional GMV related to self-reported hyperactive/inattentive summary score (assessed 

approximately 5 years later at follow-up) on the Strengths and Difficulties Questionnaire (N = 1,104).  Pink 
represents overlap in results.  Age, sex, handedness, total gray matter volume (GMV), site, pubertal 

development, Performance IQ, Verbal IQ, and socio-economic status were controlled for in the analysis.  An 
initial height threshold of p ≤ .001 was implemented at the voxel level, with a corrected family-wise error 

(FWE; p ≤ .05) subsequently applied to identify significant clusters.  (B) Three-dimensional reconstruction of 
results.  Blue depicts baseline regional GMV related to parent-reported ADHD symptomatology (assessed at 
baseline) (see Albaugh et al., in press, for further details; N = 1,538).  Red depicts baseline regional GMV 

related to self-reported ADHD symptoms (assessed approximately 5 years later at follow-up) on the 
Strengths and Difficulties Questionnaire (N = 1,104). Results shown in axial view.    
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Supplemental Figure 1:  
 
 

 
 
 
 
On left, coronal cross-sections of the ventromedial prefrontal cortex region of interest 
used in the structural equation model (SEM) analysis.  Blue depicts baseline regional 
GMV related to parent-reported ADHD symptom counts (assessed at baseline). Age, 
sex, total gray matter volume, site, pubertal development, performance IQ, verbal IQ, 
and socioeconomic status were controlled for in the analyses. An initial height threshold 
of p ≤ .005 was implemented at the voxel level, with a corrected family-wise error (p ≤ 
.05) subsequently applied to identify significant clusters. On right, region of interest 
depicted on the orbital surface. 
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Supplemental Table 1. Correlations between ADHD Measures 
 
 Baseline 

DAWBA 
Baseline SDQ 

H/I 
Follow-up SDQ 

H/I 
Baseline DAWBA (parent) 1   
Baseline SDQ H/I (self-report) .345 1  
Follow-up SDQ H/I (self-report) .235 .434 1 
 
N= 1104; all correlations are significant at p < .001 
 
 
 
 
Supplemental Table 2. Summary of ROI-based Multiple Linear Regression Analysis 
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SES = socioeconomic status; Puberty = pubertal development scale; IQ PR = Perceptual 
IQ; IQ VC = Verbal IQ; H/I = Hyperactive/Inattentive; ROI = Region of interest; GMV = 
Gray matter volume.  
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Supplemental Table 3. Partial Correlations between ADHD Measures and Baseline 
ROI. 
 

 
 
SES = socioeconomic status; Puberty = pubertal development scale; IQ PR = Perceptual 
IQ; IQ VC = Verbal IQ; H/I = Hyperactive/Inattentive; ROI = Region of interest; GMV = 
Gray matter volume.  
 
 
Supplemental Table 4. Partial Correlations between ADHD Measures and Follow-up 
ROI. 
 

 
SES = socioeconomic status; Puberty = pubertal development scale; IQ PR = Perceptual 
IQ; IQ VC = Verbal IQ; H/I = Hyperactive/Inattentive; ROI = Region of interest; GMV = 
Gray matter volume.  
 
 

Baseline ROI
Correlation -.080
Significance (2-tailed)

.008

df 1087
Correlation -.138
Significance (2-tailed)

.000

df 1087
Correlation -.105
Significance (2-tailed)

.001

df 1087

Correlations

Control Variables
Sex, Hand, Site, SES, 
Age, PDS, IQPR, IQVC, 
Baseline Total GMV

Baseline SDQ H/I (self-report)

Baseline DAWBA symptom 
count (parent)

Follow-up SDQ H/I (self-report)

Follow-up ROI
Correlation -0.005
Significance (2-tailed)

0.867

df 959
Correlation 0.017
Significance (2-tailed)

0.595

df 959
Correlation -0.050
Significance (2-tailed)

0.125

df 959

Correlations

Control Variables
Sex, Hand, Site, SES, 
Age, PDS, IQPR, IQVC, 
Follow-up Total GMV

Baseline SDQ H/I (self-report)

Baseline DAWBA (parent)

Follow-up SDQ H/I (self-report)
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Supplemental Table 5. Multiple Linear Regression Testing Concurrent Association 
between ROI and Hyperactive/Inattentive Score at Follow-up. 
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SES = socioeconomic status; Puberty = pubertal development scale; IQ PR = Perceptual 
IQ; IQ VC = Verbal IQ; ROI = Region of interest; GMV = Gray matter volume.  
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