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  ̇  Fuel flow-rate kg/sec 

         Effective Cylinder Surface Area m
2
 

    Exhaust Port Surface Area m
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   Drag Coefficient - 

    
Friction coefficient for the big end bearing term in the piston 
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kPa m

3
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Friction coefficient for crankshaft seal term in the crankshaft 
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    Friction coefficient for piston ring term in the piston assembly kPa m
2
 (rev/min) 
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Friction coefficient for turbulent dissipation term in the crankshaft 
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Abstract 

The deactivation of a cylinder on a 1.0litre three cylinder turbocharged gasoline engine has been 

investigated providing novel information on thermal and fuel consumption effects associated with 

the technology. This comes in light of providing solutions to reduce fuel consumption and CO2 

emissions resulting from internal combustion engines. The investigation has been carried out 

through the PROgram for Modelling of Engine Thermal Systems (PROMETS). A version of 

PROMETS was extensively developed to characterise a commercially produced TCE not fitted 

with cylinder deactivation technology. Developments include an improved gas-side heat transfer 

expression to account for increased heat transfer to coolant due to the addition of an integrated 

exhaust manifold; addition of an expression to represent natural convection to model heating of 

quiescent coolant in the block; and a method to estimate the boosted intake manifold pressure 

past the throttle due to turbocharging on a gasoline engine. The 0-D approach used in this thesis 

compared to higher resolution computational tools has allowed for thermal and performance 

predictions to be made within a couple of minutes compared to several hours or days. In effect, 

PROMETS has been a time and cost effective tool during the development stages of a prototype 

engine.  

The PROMETS model indicated that no adverse changes in engine thermal behaviour arose with 

cylinder deactivation. The largest temperature change of < 400  occurs in the exhaust valve 

lower stem for the deactivated cylinder. Temperature changes in other components throughout the 

engine are an order of magnitude smaller. Although the largest temperature differences between 

the deactivated and firing cylinders were found to be in the range of < 70 , these remain within 

normal engine operating temperatures of < 100 . Also, by on-setting deactivation past an oil 

temperature of 40 , warm-up times were marginally extended compared to operation on all 

cylinders from key-on.  

Experimental inputs representing changes in engine gross indicated thermal efficiency and the 

work loss associated with the motoring of a piston complemented modelling work in predicting 

fuel consumption changes due to deactivation. Reductions in pumping losses account for the 

majority of the fuel consumption benefit associated with deactivating a cylinder. The main 

limitation in the employment of cylinder deactivation stems from the deterioration in the gross 

indicated thermal efficiency. Modelled results show that fuel consumption improvements are 

highest on low and part load operation envelopes. As such over the NEDC and FTP-75 benefits 

are in the range of 3.5%. Applying the technology over dynamically loaded cycles such as the 

WLTC and ARTEMIS, results in benefits of less than 1.6%.  

Further to modelling work on cylinder deactivation, experimental work has been carried out with 

the aim of allowing any engine size to be tested to cover transient drive cycles for future research. 



IX 

 

Future research could be in the aim of investigating technologies to reduce CO2 and emissions 

resulting from ICEs. Results show that the control solution implemented has allowed eddy-

current dynamometers normally used for constant speed and brake load conditions to operate 

cycles such as the WLTC or any transient brake torque and engine speed pattern. Benchmark fuel 

consumption values for two engines of differing swept volume are within a  4g error band 

equivalent to a 0.36% and 0.67% percentage error band demonstrating the excellence of the 

control system.  
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Chapter 1 Introduction 

1.1 Overview 

This thesis is primarily concerned with the development of a computational model and its 

application to a 1.0l three cylinder turbocharged gasoline engine (TCE) with cylinder deactivation. 

The main areas of interest have been quantifying the severity or otherwise degree of engine 

thermal changes produced by cylinder deactivation or reactivation, and the changes in fuel 

economy. The simulation studies have been complemented by test-bed investigations of engine 

behaviour including the extension of tests using eddy current dynamometers to cover drive cycles.   

The motivation for this study stems from the need to reduce the emission and therefore 

accumulation of carbon dioxide (CO2) in the Earth‘s atmosphere resulting from internal 

combustion engines (ICEs). In 2015, manmade CO2 emissions in the United Kingdom (UK) 

accounted for an estimated 404 metric tonnes of CO2 (MtCO2) wherein 24% resulted from the 

transportation sector [1]. In 2016, 82.8% of the transport sector in the UK comprised of light-duty 

vehicles (i.e. passenger cars). According to statistics from the department of transport 61% of 

these vehicles were powered by internal combustion engines tailored to gasoline [1.1].    

Cylinder deactivation has been successfully applied on large displacement spark ignition (SI) 

engines. As in-cylinder load increases, larger amounts of air are required to be drawn into the 

combustion chamber further opening the position of the throttle valve. As such pumping losses 

reduce, minimising wasted fuel. With reduced CO2 values of 6.2% reported on the environmental 

protection agency (EPA) city cycle for a 3.9l V6 gasoline engine [1.2] and ~9% for a 1.4l i4 

gasoline engine on the New European Drive Cycle (NEDC) [1.3], application of cylinder 

deactivation on a TCE provides incentive for assessment for the purpose of quantifying fuel 

consumption benefits.  

Understanding any adverse thermal consequences of cylinder deactivation on a TCE is 

important as heat rejection from the deactivated cylinder will reduce imposing a greater load 

demand from the firing cylinders. These effects are unknown and investigating this will shed new 

light on the subject. Temperatures and temperature gradients in the metal must be limited to safe 

values which neither jeopardise nor penalise the performance of the engine. Identifying and 

mitigating unwanted temperature differences is also needed to reduce the thermal effects 

deactivation has such that the engine may behave in a manner similar to that with all cylinder 

operation. Understanding this with the use of computational tools reduces the need to introduce 

more expensive experimental approaches, providing a time and cost saving incentive. The 



 

2 

 

PROgram for Modelling of Engine Thermal Systems (PROMETS); a 0-D spatial resolution 

computational tool (lumped thermal capacity model), has been used throughout this research as it 

provides rapid and accurate thermal and performance predictions on engine behaviour. Compared 

to computational tools which have higher order resolutions; PROMETS provides predictions 10 

to 1000 times faster than other tools. Therefore for a drive cycle such as the NEDC or WLTC the 

time-averaged approach used in PROMETS will take two to three minutes to complete 

predictions whereas higher order predictions will take a couple of hours to a couple of days or 

weeks to complete. This also depends on the nature of the model, i.e. whether time-averaged or 

crank-angle based.  

Reducing the time spent warming up an engine to its optimum thermal state improves fuel 

consumption. Less energy is used to overcome frictional losses while a warmer engine structure 

also improves combustion quality and reduces hazardous emissions, such as carbon monoxide, 

THCs and formation of soot in oil [1.4].  

The latter part of this thesis describes the development process and application of a control 

system built for engine test beds with an eddy-current dynamometer (ECTBs) to allow engine 

tests covering transient operating conditions to be carried out. Normally this type of dynamometer 

is used for test work covering steady speed and brake load conditions. In the context of the 

current study, the capability to simulate drive cycle conditions on a test bed greatly extends the 

possibilities of experimental work. Noted here, however, the reported work did not reach the 

point of evaluating the dynamics of the cylinder deactivation system on the test bed. A further 

interest in applying a control system to ECTBs for transient testing is in reducing the cost 

associated with engine testing providing research and automotive manufacturers an effective 

manner to test engines and engine technologies.   

1.2 Mandate on CO2 Emissions Resulting from the Transport Sector in the EU 

Since the early 1960s, climate simulations run by national space agencies; e.g. National 

Aeronautical and Space Association (NASA) and the Intergovernmental Panel on Climate 

Change (IPCC) have shown that greenhouse gases (GHGs) and particulate matter (PM) emitted 

into the atmosphere have increased the rate at which the Earth warms-ups [1.5] [1.6].
 
In response 

to the increased release in greenhouse and carcinogenic gases, legislative bodies have tightened 

and imposed emission thresholds in all sectors due to human activity in the aim of providing a 

sustainable and eco-friendly future for forthcoming generations. These thresholds are based on 

‗tail-pipe‘ measurements. In the UK, the 2008 Climate Change Act has mandated that CO2 
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emissions reduce by 80% by 2050 with reference to a 1990 baseline. The 20% reduction baseline 

is to be reviewed in 2020 [1].  

In 1998 members of the European Automobile Manufacturers Association (ACEA) 

voluntarily agreed to incur in a fleet average CO2 emissions threshold. The test or drive cycle 

used to homologate emissions was titled the NEDC. This consists of four repeated segments 

representative of a city-route, known as the ECE-15, followed by a short highway passage, named 

EUDC. The target was to achieve an average 140 g CO2/km by 2008 for newly sold cars in the 

EU. Joined by commitments from the Japanese (JAMA) and Korean Automobile Manufacturers 

Associations (KAMA), automobile manufacturers failed in achieving to reach the target. In light 

of this the Economic Commission for Europe (ECE), today known as the United Nations 

Economic Commission for Europe (UNECE), legally imposed a 130 g CO2/km limit (known as 

the ‗limit-value curve‘) to be achieved by 2012 by the entire automobile fleet (i.e. cars, trucks, 

etc.) through improvement of internal combustion engine technologies. This limit was postponed 

and successfully met in 2015. The average emission of a new car sold in 2016 was of 118.1 g 

CO2/km, proportional to a 16% reduction compared to 2010 values [1.7].  

From the end of the third quarter of 2017 new legislative tests for the purpose of 

homologating fuel consumption and emissions will bring an end to the NEDC. These tests will 

fall under the label of Euro6c. Newly sold vehicles will be tested for CO2 emissions on a more 

dynamic and aggressive drive cycle known as the WLTC. By fitting vehicles with an on-board 

emissions kit a Real-world Driving Emissions (RDE) test will also be implemented for the 

monitoring of CO2 and other emissions. The onset of these tests coupled with the fleet 98 g 

CO2/km limit to be set in 2020, for newly sold vehicles, are pushing automobile manufacturers to 

drastically improve engine efficiency and seek other solutions for reduction of CO2 emissions.   

More detailed figures concerning emission thresholds on the Euro6c, for gasoline engines, may 

be read [1.7].   

1.2.1 An Introduction to Light Duty Automotive Applications of Cylinder 

Deactivation 

Early applications of cylinder deactivation were mainly made to improve the part load 

efficiencies of large capacity and higher cylinder count spark ignition engines.  The Cadillac L62 

V8-6-4 engine fitted with cylinder deactivation for the 1980 Cadillac DeVille and Seville models 

(i.e. luxury vehicles) is an early example [1.8][1.9]. GM claimed a 30% reduction in fuel 

consumption during low – load and highway cruising conditions. Production stopped within the 

year of the application due to a series of unresolved failures [1.10]. In 1999, DaimlerChrysler 
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adopted the same technology in the European luxury/sports car market on the 5.0-litre V8 and 

5.8-litre V12 engines through Mercedes on the CL600, S600 and CL500 vehicles. The system was 

claimed to improve fuel economy in city driving conditions by 7% and 20% for steady-state 

cruising [1.10]. Production of these engines terminated in 2005 and 2002, respectively.  

In 2004, DaimlerChrysler introduced deactivation under the term Multi-Displacement 

System™ (MDS), to 5.7 (HEMI engine) and 6.4 litre V8 [1.11]. These were applied to the 

Chrysler 300C, Dodge Magnum, Dodge Charger, Jeep Grand Cherokee, Dodge Durango, Dodge 

Ram and Jeep Commander vehicle models. A 10-20% reduction in fuel consumption was claimed 

under this engine category, however with no reference to a drive cycle. Similarly in 2004, GM re-

released deactivation under the term Displacement on Demand (DoD), on the Envoy and 

TrailBlazer model SUVs. The engine fitted with the technology was the Vortec 5.3 litre V8, 

where deactivation was only deployed during fully-warm engine operation and lightly loaded 

conditions for engine speeds above idling. Claimed fuel economy benefits were around 5-25%. In 

the subsequent year, 2005, Honda introduced deactivation coining the variability in displacement 

as Variable Cylinder Management (VCM). This was applied to a bank of cylinders on the V6 

3.5litre Odyssey and 3.0litre Accord Hybrid. A 10% improvement in fuel economy was validated 

using the US EPA Highway Fuel consumption test, compared to the same engine exempt of the 

technology. In 2007, GM again coined Active Fuel Management™ (AFM), synonymous to 

cylinder deactivation, for the 3.9 litre V6 engine which improved fuel consumption at part load 

by 6.2% with reference to the US EPA City Cycle and 7% on the US EPA Highway cycle [1]. In 

2008, the EPA claimed that through cylinder deactivation fuel consumption could be reduced in 

the range of 6 to 8% [1.12].  

With this, cylinder deactivation was first applied to Vee engines due to the relative simplicity 

in deactivating a whole bank of cylinders through disablement of an entire camshaft. However at 

the expense of a control strategy such that the catalyst for the specific bank of deactivated 

cylinders light off without significant delay. In 2011, the Bentley Mulsanne, powered by a 6.75l 

V8 engine, was redesigned to meet LEV2/EU5 emissions legislation requirements by deactivating 

four of eight cylinders during low load conditions [1.13]. A 15% reduction in fuel consumption 

was attributed to cylinder deactivation along with the coupling of an 8-speed automatic 

transmission. In 2012, Daimler included deactivation on a 5.5litre V8 engine SLK 55 Mercedes-

AMG model. The modal characteristic of the NEDC allowed for the engine to employ 

deactivation over 60% of the cycle providing a 10% fuel consumption improvement [1.14].  2012 

marked the year where cylinder deactivation was commercially applied to an inline and sub 2.0l 
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engine. The 1.4l TSI engine fitted to the VW Polo GT promises a 0.4 l/100km (~9% reduction) 

over the NEDC by deactivating the two central cylinders of the inline four [1.3]. Reverting back 

to large swept volume engines, at the 2015 Geneva Motor Show, Bentley announced the 

deactivation of either of the W12 6.0l cylinder banks to improve fuel economy and reduce 

emissions [1.15]. Part of the VW group, this engine is fitted to the Bentley Continental Flying 

Spur, Continental GT and GTC, VW Phaeton and Audi A8 where calibration and thus rated 

power, and engine volumetric capacity are dependent on the target vehicle model [1.16].  

1.3 Other Routes in Achieving the 98 g CO2/km EU Target by 2020   

Further technology streams for reducing fuel consumption and CO2 are shown on Figure 1. In 

areas such as thermal management, weight reduction, start-stop, heat recovery, controlled 

combustion, down-sizing and lowered rolling resistance have already led to ~30% reduction in 

CO2 emissions. Hybridisation of ICE powered vehicles show the largest potential in reducing fuel 

consumption, i.e. ~22% reduction, given that the ideal gas engine may theoretically achieve a 

minimum CO2 emission of 110g/km [1.17]. Programs such as the Zero Emissions Vehicle (ZEV) 

instigated by the EPA as of 2018 [1.18] are directing ICE powered automobile manufacturers to 

the trend of hybridisation [1.19].  

 

Figure 1:  Estimated CO2 percentage reduction potential for proposed technology areas where the ball 

size represents a cost of implementation [1.20]. 

The ZEV program legally instigates that auto-manufacturers in the state of California, 

Connecticut, Maine, Maryland, Massachusetts, New Jersey, New York, Oregon, Rhode Island 

and Vermont produce a fixed percentage of hybrid, plug-in hybrid, battery or fuel cell electric 

vehicles relative to the total number of conventional ICE vehicles sold. This number is projected 

to exponentially increase over time as the cost of batteries will reduce over time.    

Technology 
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Fully electric powered vehicles are desirable from a socio-economic prospect if electricity is 

produced from renewable technological means (i.e. wind, solar or wave) or natural gas. The trend 

to fully renewable dependent production of electricity is taking place in countries such as 

Denmark where 42% of the annual electricity production stems from wind power [1.21]. The 

global trend in this direction is gaining momentum. However, gasoline hybrid, diesel and CNG 

engines are still favourable compared to electric powered vehicles where fuel sources still stem 

from coal fired plants. CO2 emissions would almost quintuple if the entire transport fleet would 

convert to electric vehicles [1.22]. As such within the automotive industry, a large proportion of 

resources are still deployed to improve conventional ICE designs. Such an optimisation is the 

application of cylinder deactivation to commercially sold vehicles outside the bounds of the 

luxury car market.  

1.4 CAE Tools – Application for Proto-type Design and Development 

Computational modelling tools are widely used to facilitate the proto-type design process and 

in assessing the feasibility of optimisations made to the design of an ICE design and/or 

technology. The mass availability of computational tools in carrier format such as laptops, 

touchpads and other portable devices makes simulation work incredibly easy to access and 

perform.  

 The aim of this research is to determine the effects of cylinder deactivation on the thermal 

behaviour and performance of the TCE. The importance and availability of such models are 

widely discussed in literature [1.23] [1.24] [1.25] with the choice of the computational resolution 

(i.e. number of dimensions) chosen being dependent on the time frame of the project and 

resources invested in obtaining set results.  

Computer aided design (CAD) tools such as Creo Parametric and AutoCAD are used to 

create assemblies from which 2D drawings are then used for manufacturing. Computational fluid 

dynamics (CFD) is used to describe fluid flow and the interaction between molecules in liquid 

and vapour phases. In application with internal combustion engines these are prevalent in 

understanding injection and ignition transients in the combustion process while also aiding in the 

aerodynamic optimisation of gas flow in the aim of reducing pressure losses in piping [1.26] 

[1.27]. Contrarily, referring to materials remaining in the solid phase, Finite Element Analysis 

(FEA); applicable from one-dimensional to three-dimensional resolutions, allows for the study of 

stress analysis of engine components subjected to shearing, tensile, compressive and/or thermal 

loads. Such simulation tools when solved in three dimensions require large computational time 
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and user experience (i.e. extremely detailed knowledge) however yielding high fidelity results. 

For the purpose of modelling ICEs enormous computational efforts are required; in the order of 

several days, due to the crank-angle based approach. 

Compared to 3D design and simulation tools, physics and chemistry based zero dimensional 

approaches such as lumped element models are most useful for early stage, concept or multi-

system studies using limited detail and expense. The PROgram for Modelling of Engine Thermal 

Systems (PROMETS) runs on Matlab™ SIMULINK built at the University of Nottingham, 

simulates hours of holistic engine operation in several minutes of real-time. This allows for rapid 

simulation results to be passed on in the aim of improving thermal management during the 

product development stage while also providing predictive and informative results on engine 

thermal behaviour and performance.  

1.5 Aim and Objectives 

The aims of this research cover two areas. The first area relates to the subject of cylinder 

deactivation. The work reported in this stream has been aimed at providing a detailed 

investigation on the macroscopic, and in certain cases, component specific effects that cylinder 

deactivation has on the thermal behaviour of a TCE. For this purpose the computational software 

PROMETS was used. The development and evaluation of the model was supported by data 

collected from a 1.0l engine which did not have a cylinder deactivation system. This was 

supplemented by experimental data made available by independent sources, acknowledged when 

used. The potential of applying cylinder deactivation in the aim of reducing fuel consumption 

over drive cycles of various natures was assessed. These aims were pursued through the 

following objectives:  

- Characterise an engine design as a collection of sub-systems to provide a prediction of engine 

performance and thermal behaviour; which models are available or must be modified or 

developed to represent each sub-system and assess their individual fit, formulation and 

function for the intended application.  

- Select sub-systems from a mix of physics-based and empirical modelling approaches to 

achieve a balance between these approaches.  

- Utilise this collection of sub-systems to predict the thermal effects of deactivating one of a 

total of three cylinders for an engine with a swept volume of 1.0 litre.  
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- Provide an understanding of which components undergo the largest temperature change and 

between which adjoining components the maximum temperature gradient arises. Also, 

identify thermal implications of deactivating a cylinder on engine performance and warm-up 

characteristics. 

- Suggest, through modelling, method(s) of minimising temperature changes/differences which 

may arise due to cylinder deactivation. 

- Provide a theoretical solution for estimating the work loss due to the motoring of a cylinder 

for time-averaged models.  

- Predict fuel consumption benefits due to the reduction in pumping work assuming constant 

combustion and gross indicated thermal efficiencies for drive cycles/routes of varying nature 

(i.e. modal and transient). Identify and quantify the increased fuel consumption improvement 

due to changes in gross indicated thermal efficiency.  

The second area pertains to devising a control system for the purpose of testing engines on test-

beds for fuel consumption evaluation purposes. With the upcoming WLTC drive cycle test, the 

ability to test engines in laboratory conditions gives auto-manufacturers the liberty to rapidly 

switch-over engines (i.e. at a cheaper cost compared to chassis based tests), engine components or 

added technologies for the purpose of evaluating the effects these modifications have on fuel 

consumption and thus CO2. Power absorbing engine test beds have not been previously used for 

this purpose and this would therefore provide a cost and time saving incentive if achieved. This 

work was carried out requiring that the following objectives be met: 

- Understand the limitations of using default engine speed and engine brake torque control 

modes on dynamometer controllers for the running of transient drive cycle tests on power 

absorbing eddy-current test beds.  

- Seek an automated closed-loop control system which allows for easy implementation of the 

drive cycle requiring a minimum number of user inputs as well as time and cost efforts. 

- Devise, test and validate an experimental method for running transient drive cycles on eddy-

current test beds such that fuel consumption may be gauged to a higher standard of accuracy. 

Accurate and repeatable control of engine speed and brake torque is required regardless of 

operating temperature.  

- Transfer this work to engines of differing sizes and explain the necessary changes required in 

the transferral process.  
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1.6 Layout of Thesis 

Following this introduction a literature review of the current and future research findings 

concerning the application of cylinder deactivation are reviewed in Chapter 2.  

A description of the state of PROMETS prior to the work carried out in this thesis is set in 

Chapter 3. Expressions for heat transfer from the gas-side and friction to coolant and oil are 

described providing information on the major sub-models of PROMETS.  

In Chapter 4 a description of the modifications made to the sub-systems of PROMETS 

specifically pertaining to the mass, heat transfer, friction, coolant and fuelling sub-systems 

required to characterise the 1.0litre TCE are overviewed. The set-up of thermocouples 

instrumented on to the TCE is referred to. Validation of each of these subsystems with 

experimental data is also presented. The method for analytically representing the work loss for 

the motoring of a piston in a non-hermetically sealed cylinder is also described in this section.  

Chapter 5 is composed of predictions of the thermal behaviour of a TCE when cylinder 

deactivation is enabled. This encompasses quantification of the temperature changes for various 

components, temperature differences between adjoining components and effects on warm-up time 

along with suggestions for minimising these occurrences.  

In Chapter 6 predictions of the effects that cylinder deactivation has on fuel consumption are 

assessed over various drive cycles and real-world routes. The effect of driving style on the 

potential for cylinder deactivation to reduce fuel consumption is discussed. 

The process of devising an engine generic closed loop control system for throttle control on eddy-

current dynamometers and a finalised control system for the benchmarking of fuel consumption 

on transient drive cycles is detailed in Chapter 7.  

In Chapter 8 conclusions of this work are shown with appraisal of the modified multi-cylinder 

model of PROMETS for predictive purposes highlighting key findings related to thermal and 

performance effects of cylinder deactivation. Finally further work and a summary of research 

findings, significant conclusions and achievements are listed.  

1.7 Contribution to Knowledge 

New knowledge has been brought forth through modelling with the effects of cylinder 

deactivation on the thermal behaviour and performance on a 1.0litre three cylinder gasoline 

engine. Thermally information on the absolute changes in temperature of engine components, e.g. 

the cylinder wall, valves and piston; for various constant operating conditions have been 
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quantified. Fuel economy benefits associated with cylinder deactivation for constant operating 

conditions, drive cycles and routes under real world driving have also been brought to light. The 

potential fuel economy benefits when deactivating a cylinder have been assessed with respect to 

operating condition characteristics.  

Modelling of the three cylinder engine required additions and modifications to the existing 

multi-cylinder model in MATLAB SIMULINK such that phenomena specific to the engine be 

captured. The transition from naturally aspirated to downsized turbocharged gasoline engines 

required a method for estimating cycle averaged inlet boost pressure past the throttle. Heat 

transfer through natural convection for coolant in a vertical enclosure of aspect ratio greater than 

10 was also added to represent the advanced cooling circuit defined in the three cylinder engine. 

Further to describing the occurrences associated with cylinder deactivation the penalty associated 

with the motoring of a piston and the net mass loss of the trapped charge for stabilised conditions 

have been defined and investigated. Part of the findings for the simulation work described above 

have been published in the SAE (2016-10-2106) International Journal of Engines V125-3 and 

V126-3 editions. Further work investigating the effect of driving style and route on a 1.4l four 

cylinder turbocharged gasoline engine have been published in the FISITA conference paper 

F2016-ESYA-01. Some of the experimental work concerning: the mass loss of the trapped charge 

in the deactivated cylinder and temperature changes throughout the engine system, are due for 

publication in the Proceedings of the Institution of Mechanical Engineers, Part D: Journal of 

Automobile Engineering.  

The final section of this thesis comprises work done on devising a control system allowing 

for the testing of transient drive cycles on eddy current dynamometers. New knowledge has been 

brought forth in this area by developing a control system dependent on the symbiosis of a PID 

controller, integrator windup and feedforward system allowing any engine size to run a given 

engine brake torque and speed profile. This has allowed for testing and benchmarking of any size 

engine on fuel consumption and emissions on any brake torque and engine speed profile, whether 

from a drive cycle or extracted from real-world driving. The result of the work carried out is due 

for publication in the Control Engineering Practice – Journal (Elsevier) although discussion for a 

patent has also been proposed.  
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 Chapter 2 Literature Review 

2.1 Introduction 

This chapter provides information into past and current advances mainly on areas that explain 

the phenomenon, technologies and effects due to cylinder deactivation. Since this thesis is 

focused on the simulated effects of cylinder deactivation on engine thermal behaviour and 

performance the majority of the content in this literature review identifies simulated results on the 

application of cylinder deactivation. This ranges from mechanisms used to deactivate cylinders, 

modelled and experimental results describing thermal and performance effects of deactivation to 

current proto-type technologies that facilitate the application of cylinder deactivation. Apart from 

the information detailed in this chapter, where applicable literary information also accompanies 

the working chapters of this thesis supporting explanation of concepts or findings drawn through 

this work. 

2.2 Thermal Management  

Compared to previous engines modelled through PROMETS the TCE has the addition of an 

advanced cooling system, integrated exhaust manifold (IEM) and inter-bore cooling slits. A split 

cooling system is first described to highlight the benefit of segregating flow in the block and head 

passages found through the literature. Next the addition of the IEM and inter-bore cooling slits on 

head temperature and the temperature difference between cylinders, respectively, are described 

with findings drawn from the literature.                                       

2.2.1 The Role of Cooling Circuits in Reducing Fuel Consumption 

One aspect of vehicle thermal management relevant to this work is in examining methods of 

improving engine warm-up rates in the aim of reducing fuel wasted due to cold starting 

conditions. Below the optimal engine thermal state fuel is generally wasted due to: cold 

lubricating oil temperature, inhomogeneous lubricant film and lowered combustion efficiency due 

to ‗cold‘ cylinder walls that quench available heat [2.1]. As the engine reaches a fully warm state 

coolant liquid should ideally keep the head cool in order to avoid knock, spontaneous ignition 

and/or mechanical failure/warping of the head. The bulk of the metal structure contained in the 

upper and lower block segments should be warmed up rapidly to reduce friction torque.  

Three types of cooling circuits are commonly used in internal combustion engines. These are 

series, parallel and cross-flow circuits. These designs involve a fixed mass of coolant flowing 

through the block eventually exiting the engine structure through head passages. The thermal 

inertia of the coolant in these systems is large due to the total engine coolant volume passing 
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through the engine structure from warm-up [2.2]. Recently the use of split cooling systems has 

been applied to internal combustion engines. This design segregates coolant volumes to specific 

parts of the engine reducing coolant thermal inertia, improving warm-up times. Studies conducted 

by Cipollone et al [2.1] on a 1-D lumped thermal capacity model have shown that segregating 

coolant flow to the intake side of the head, exhaust side of the head and block compared to 

conventional series type coolant systems improves engine warm-up rates over the NEDC by 

100seconds on a 800second warm-up period. However, accurate splitting of the flow is required 

due to the low thermal inertia the coolant bears with the addition of by-pass passages. Cipollone 

et al had shown that if coolant flow-rates were too low large temperature gradients could arise 

between the inlet and outlet parts of the engine. However if too much flow was allowed in the 

head the system behaved like a conventional system. 

2.2.2 The Integrated Exhaust Manifold (IEM) and Downsizing 

Exhaust gas enthalpy flow accounts for 30 to 37% of the heat energy released as a by-product 

of combustion [2.3]. To harness a larger proportion of heat energy from exhaust gases auto-

manufacturers have integrated the exhaust manifold into the engine head [2.4]. Removing the 

exterior exhaust manifold and providing longer exhaust ports enveloped by coolant a larger 

proportion of heat energy is thus transferred to coolant. The difference in engine design is shown 

in Figure 2. This system is incorporated in the engine design of the TCE reported in this thesis.  

 

 

 

 

 

 

 

 

 

 

Figure 2: Simplified line drawing differentiating between the external and integrated exhaust 

manifold with CAD extracted surface areas for the individual ports. 
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For a 1.6l 4 cylinder gasoline engine the addition of an IEM compared to a conventional 

external exhaust manifold reduces the build cost of an engine by 5%, catalyst light off time by 20% 

(approximately 5 seconds with a 30% reduction in surface area leading up to the turbocharger), as 

well as improved powertrain mass by up to 5kg with improved engine durability. By removing 

the external exhaust manifold the number of parts required to manufacture the engine reduces 

significantly saving costs throughout the development cycle and supply chain, from inventory and 

assembly to aftermarket supply. The exhaust port surface area exposed to coolant for coolant 

passages whose design remains unchanged increases by roughly 20% [2.5] if optimised to extract 

as much heat from exhaust gases this has the potential to significantly increase. As a result of this 

due to increased heat transfer from exhaust gases to coolant, warm-up rates have been shown to 

increase. As example, fuel consumption has been shown to improve by 1 to 2% over cold-starting 

tests on the NEDC [2.6]. With this the engine reaches optimum operating efficiency a faster rate 

allowing for windscreen demist and passenger warm-up periods to reduce too.  

With respect to downsizing, providing a thermally balanced head and upper block structure 

reduces the eventuality for knock. Furthermore, thermo-mechanical loads and effective 

component fatigue life (i.e. residual and thermal stresses and assembly loads also reduce) allow 

for turbocharging as combustion pressures increase, increasing thermal loads. As a result of 

lowered operating loads plastic and creep strain amplitudes reduce improving low and high cycle 

fatigue safety factors [2.5].  

 

2.2.3 Inter-Bore Cooling Slit Effects on Local Temperatures, Spark Ignition Advance and 

Knock  

 As engine power output per unit capacity has increased, manufacturers have added inter-bore 

cooling slits to improve cooling between cylinders and reduce inter-bore temperatures [2.7]. 

Experimental studies by Nishino et al have shown that the size of the slit is of importance in 

reducing the inter-bore temperature. The research findings are visually summarised in Figure 3. 

For speeds ranging from 1000-6000 rpm Nishino et al three cylinder blocks designed without slits, 

with small slits and with large slits experienced increases in temperature of 420-470K, 395-420K 

and 395-400K, respectively. With reference to Figure 3 (b), as the slit is enlarged, a smaller 

temperature variance is encountered across the inter-bore with respect to increasing engine speed 

at WOT. Furthermore, significant reductions in wall thickness between exhaust valves, intake and 

exhaust valves, valve sheet ring back boss and base thickness were also made by increasing 

coolant passage size. An average reduction of 3mm was achieved for each of the above 
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mentioned components allowing for faster warm-up time, reduction in knock and    advance in 

spark-ignition timing. This was feasible due to a 20  reduction in maximum cylinder wall 

temperature alongside an approximate 5  reduction in gas temperature during the compression 

stroke.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: (a) From Nishino et al – 3 cylinder block; inter-bore slit topology defining large and small slit 

geometry in mm. (b) Comparison of large, small and no slit engine designs effect on inter-bore temperature 

for varying engine speeds [2.5]. 

  

 With respect to cylinder deactivation the work of Nishino et al shows that the addition of 

inter-bore cooling slits minimises the thermal effects of neighbouring cylinders. For the TCE 

medium sized slits; [i.e. 1.2mm (W) x 16mm (D)] are fitted on to the engine.  

2.3  Cylinder Deactivation 

2.3.1 Methods for Deactivating Cylinders 

Three forms of cylinder deactivation process have been found in the literature. The simplest 

form of deactivation consists of cutting off fuel injection while allowing the valves to operate as 

they would normally [2.8]. The second also disables intake and exhaust valves, trapping the 

cylinder charge [2.8]. The third, in addition arrests the reciprocation motion of the piston [2.9]. 

Each method presents benefits and penalties relative to the other. When solely cutting-off fuel 

injection pumping losses are not significantly minimised since the motored cylinder still 

undergoes filling and emptying processes. The intake manifold pressure must therefore 

compensate for the filling of the motored cylinder. Leone and Pozar [2.8] report that when 

disabling the opening and closing motion of the intake and exhaust valves, pumping losses 

significantly reduce. When combining this with an inert piston, a further benefit is had by 

reducing friction rubbing losses at the piston level. Although a reduction is foreseen, proto-type 

(a) (b) 
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developments tested by Doller et al [2.9] have shown that the added complexity in design 

allowing pistons to transiently arrest and resume reciprocation causes uncertainty in the net fuel 

consumption improvement. This means that when the cylinders are disengaged overall engine 

FMEP increases by  

When trapping charge in the motored cylinder, by closing the valves, the BDC pressure 

rapidly stabilises to conditions below atmospheric. The magnitude of the pressure observed at 

BDC varies depending on the source conferred due to blowby. Leone and Pozar show through a 

pressure volume trace that the bottom dead centre pressure reaches approximately 0.2barA [2.8]. 

Contrarily Ma [2.10] shows a value close to 0.65barA while Zammit et al [2.11] have reported on 

a value of 1barA. Nonetheless, the reported penalty associated with deactivation has been noted 

to be negligibly small. Leone and Pozar quantified the value for a 6.8l V8 to be in the range of 

0.01 - 0.02bar gIMEP [2.8]. There is uncertainty in the actual BDC pressure value giving room 

for further research.  

Depending on the order of closure of intake and exhaust valves, fresh air or hot exhaust gases 

may be trapped in the deactivated cylinders. Trapping of fresh air would encompass omitting the 

injection period, spark sequence and exhaust valve opening. Ilhlemann et al [2.12] explain that 

when trapping an exhaust charge, fresh air is vented into the cylinder followed by a customary 

injection and ignition period omitting the exhaust valve opening period. Both methods result in 

different in-cylinder pressure conditions. Ilhlemann et al show that trapping fresh air results in 

low cyclic in-cylinder pressure variations and a rapid decline in the maximum and minimum 

pressure experienced. Ilhlemann et al show that when trapping exhaust gases in-cylinder 

pressures are significantly larger requiring more time to reduce to stabilised conditions. Although 

changes in the motored pressure traces are described by Ilhlemann et al [2.12] and Souflas et al 

[2.13] the number of cycles from the onset of deactivation to a repeated stabilised pressure profile 

has not been investigated. Nonetheless, both investigations explain that when trapping exhaust 

gases unwanted NVH effects may arise through a load imbalance during the exhaust stroke. 

Thermally, however, Ilhlemann et al observes that when trapping exhaust gases, cylinder walls 

are kept warmer in effect reducing possible thermal gradients between adjoining inter-cylinder 

metal components. However, pejorative effects of trapping an exhaust charge on oil quality 

and/or contaminative effects remain unknown.   

2.3.2 Valvetrain Mechanisms for Cylinder Deactivation  

Four mechanical valvetrain technologies have been commercially developed that allow for 

valve motion shut down. Two types of design exist; the first consists of modifications between 
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the cam-lobe and tappet and the second at the camshaft level. Hoffmann et al [2.14], Radulescu et 

al [2.15] and Fujiwara et al [2.16] describe three designs that exist between the interface of the 

cam-lobe and tappet based on different valve architectures. These have been undertaken for an 

end-pivot rocker arm, a centre pivot SRFF and a pushrod rocker arm design, respectively. The 

above authors all show that disablement of valve movement is achieved through a hydraulic lash 

adjustor (HLA). Pressurised oil disengages movement from the cam-lobe and camshaft by 

pushing back a spring within the HLA or in the spring system resulting in lost motion. 

Commercial applications of these mechanisms with reference to manufacturer are shown below in 

Figure 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Valvetrain concepts for the enablement of cylinder deactivation on volume production 

vehicles [2.12]. 
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End-Pivot Rocker Arm Design 

An end-pivot rocker arm design, with an overhead camshaft (OHC), consists of a cam lobe 

centred above the roller element while the valve is situated on the end of the pivot opposite a 

hydraulic lash adjuster. An illustration of the mechanism is shown in Figure 5. When deactivation 

ensues the hydraulic lash adjuster pushes pressurised oil into the roller assembly pushing aside a 

latch spring, which normally acts as a retainer for the roller, such that the roller element translates 

vertically without applying force onto the valve pad and thus the valve spring [2.14] [2.15].  

 

 

 

Figure 5: Deactivation mechanism for an end pivot valve architecture [2.15].  
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Centre Pivot Switchable Roller Finger-Follower 

A centre pivot SRFF on the other hand has part of the rocker arm resting on the cam lobe via 

a bearing element where on the opposite side the rocker arm pushes the valve is pushed down. 

Disablement of the translational motion of the valve is affected by disengagement of a pin fitted 

and connecting to adjacent valves via the centre pivot hub. The mechanism for this valve design 

is shown on Figure 6. Again, hydraulic pressure is used to move the latch between the parallel 

rocker arms (i.e. for four valve cylinder) disengaging the latch pin which disconnects the rocker 

arm in contact with the valve thus abstaining valve movement [2.16].  

 

 

 

Figure 6: Deactivation mechanism for centre-pivot valve architecture [2.17].  
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Pushrod Rocker Arm Design 

A pushrod rocker-arm design has the cam-lobe fitted in the block acting as the pushrod lifter 

[2.16]. As shown on Figure 7 for this mechanism, a roller lifter is situated between the contact 

point between the lobe and the pushrod such that when deactivation of the valves is required the 

lifter does not exert force onto the rocker arm. An oil control valve is required for each cylinder 

in this case.   

 

 

 

 

 

 

 

Figure 7: Deactivation mechanism for a pushrod rocker arm valve architecture [2.13]. 

 

 

 

 

 



 

20 

 

Cam-Shifting Technology 

Cam-shifting technology used in the 1.4l VW TSi stems from the Audi Valvelift System used 

on four, six and eight cylinder engines. The technology is applied to an OHC roller follower 

configuration. The system is electronically actuated by merging a grooved shaft with a barrel with 

involute gearing to ensure that the shafts do not have an unsynchronised angular velocity. Of the 

four cams the two centre cams are prone to deactivation. Grooved guide paths are machined onto 

the camshaft below the actuators to allow for the transversal switching of the camshafts. When 

the actuators are enabled a cylinder pin, 4.0mm in diameter, is fired by inertial switching of coils 

and pushed against the grooved path sliding the camshaft. The switchover is completed within 

half a camshaft revolution. Actuation times are dependent on engine speed and range from 72ms 

at 1400rpm to 28ms at 4000rpm, where at the end of a deactivation event the shaft is locked into 

place by spring loaded balls. Compared to valvetrain assembly modifications, the cam-shifting 

technology design adds two kilograms to the total mass of the camshafts [2.19].     

 

 

 

 

 

 

 

Figure 7.1: Two-stage (left) and three-stage (right) cam-shifting systems, i.e. acting on a 

single cylinder and acting on two cylinders. 
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2.3.3 Transition from All Firing Cylinders to Deactivated Cylinders  

Studies by Ilhlemann [2.12] have shown that when deactivating a cylinder or cylinders 

fluctuations in engine brake torque occur if mechanisms allowing for deactivation are not well 

calibrated. Calibration work carried out by Souflas et al [2.13] shows that when transitioning 

from operation on all cylinders to operation on selected cylinders a succession of events occur 

within a 0.25 second interval. Kortwittenborg et al [2.20] show that the charge flowing past the 

throttle valve is first increased followed by a delay in ignition timing so as not to exceed the 

demanded engine brake torque. When the desired charge for deactivation is achieved the valve-

train ensues by shutting off the designated deactivated cylinder(s) [2.13]. This is followed by a 

rapid re-configuration, advancement of the injection and ignition timing to deliver the same target 

brake torque or a brake torque demand within the scope of the deactivation envelope. The change 

in throttle position, spark-timing and valve overlap during a transition event is illustrated in 

Figure 8.  

2.3.4 In-cylinder Charge Behaviour When Shutting-Off Valves 

Information on the in-cylinder charge behaviour of the firing cylinders for an engine subject 

to cylinder deactivation is limited. The increased air charge flowing past the valves of the firing 

cylinders when deactivating a cylinder are analogous to studies observing the change in air charge 

behaviour for cylinders with deactivated valves. Mention of this is also made in this literature 

review such that the effect of varying the valve lift for firing cylinders remains common 

knowledge giving way to theories for increased gross indicated thermal efficiency when 

implementing cylinder deactivation. Moore et al [2.21] conducted tests on a 2.0l gasoline 

turbocharged direct injection engine (GTDi) with dual independent cam phasing (DICP) subject 

to deactivation of a single intake valve per cylinder. Tests were performed for engine speeds of 

1000 to 3000rpm and brake loads of 1 to 8 bar BMEP. All cylinders were kept firing and the 

effect of deactivating a valve while compensating by delaying the adjacent intake valve closure 

time (LIVC) showed increased charge motion, doubling the tumble and providing higher swirl 

ratios. For engine speeds of 1000 to 2000rpm and brake loads of 1 to 2 bar BMEP, early intake 

valve closure (EIVC) with a deactivated valve, showed improvements in combustion stability and 

mixing. Contrarily, LIVC demonstrated an increase in particulate emissions, while compensation 

by further retardation in injection resulted in increased soot and hydrocarbon levels due to a lower 

burn temperature. This was mitigated by deactivating a valve. For an engine speed of 2000rpm, 

operating with a singular functional valve and implementing EIVC up to 6.25bar BMEP provided 

the largest benefits in  
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Figure 8: Example of a transitioning event for an un-optimised and optimised deactivation 

calibration showing the change in throttle position, valve overlap and spark timing for Tb = 50Nm, 

N = 3000rpm [2.13].  
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fuel consumption, where switching to LIVC between 6.25 to 8bar BMEP showed relatively 

higher improvements compared to a baseline engine with two functioning valves. At high loads, 

between 10 and 12bar BMEP, using gasoline and low ethanol blends i.e. E0 to E10, resulted in 

knock leading to power loss. Coupling images from optical tools in the 2.0l engine with a 

commercial CFD tool, i.e. CONVERGE, improved combustion was observed to be affected by 

increased in-cylinder charge motion which in turn improved fuel vaporisation, while promoting 

mixing and increasing the bulk motion leading up to and during combustion.  

2.3.5 Improving Catalyst Light Off Times  

Cylinder deactivation has proved to a method of improving catalyst light off times. Other 

methods of improving catalyst light off times exist. As such, Laing [2.22], Socha et al [2.23] and 

Burch et al [2.24] have shown that catalyst light off times can be reduced by coupling electric 

heaters to catalysts. However the drawback of electrically coupling heaters to the engine requires 

that large electrical currents be drawn from the engine driven alternator leading to deterioration in 

fuel consumption and being more expensive to implement compared to cylinder deactivation.  

Apart from cylinder deactivation several other in engine technologies have been investigated 

aimed at improving catalyst light off times. In light of this, it is interesting to compare other 

solutions to keep in mind the effectiveness of cylinder deactivation as a technology providing a 

means other than that of reducing fuel consumption. Simulation work carried out on GT-power 

by Bharath et al [2.25] on a four cylinder diesel engine was used to investigate which in-engine 

technologies provided the quickest catalyst light off time at low loads. Four factors were 

investigated specific to a 1bar BMEP and 1500rpm running condition where the required catalyst 

light of temperature was of 457K. First, varying combustion phasing for different gasoline/diesel 

fuel ratios showed little effect on catalyst light-off temperature. Secondly, adding a fuel injection 

event during the expansion stroke resulted in an undesired 1.34% increase in fuel economy. 

Based on the work of Bohac et al [2.24], Parvate et al [2.26] and Roberts et al [2.27] early 

exhaust valve opening (EEVO) strategies were also attempted although at the peril of 

deteriorating fuel consumption due to increased back pressure. Bharath et al [2.25] confirmed 

deterioration in fuel economy with EEVO strategies by observing an increase in specific fuel 

consumption, i.e. from 553 g/kWh to 1,053 g/kWh. The best strategy for faster catalyst light off 

times was found by deactivating three of the four cylinders predominantly due to significantly 

reduced fuel consumption, i.e. from 553 g/kWh to 351 g/kWh. Increased in-cylinder combustion 

efficiency and reduced pumping losses were attributed to be the leading cause in the reduction in 

fuel economy.  
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2.3.6 Cylinder Deactivation Effects on Emissions 

By increasing in-cylinder loads with cylinder deactivation Far et al [2.29] and Kuruppu et al 

[2.30] have shown that for a constant engine brake torque tailpipe emission of CO, CO2 and HC 

reduces with an increase in NOx emissions. The exact proportion of the reduction in emissions 

varies throughout literature showing dependence on engine size, calibration and catalyst design. 

The cause of these changes in emissions is attributed to higher burn temperatures. This promotes 

oxidation of heavy elements through higher thermal efficiency.  

2.3.7 Varying Valve Lift 

Said et al [2.31] have shown that optimisation of intake and exhaust valve lift (i.e. for normal 

engine operation) is a proposed method of enhancing fuel economy benefits for the firing 

cylinders on an engine with cylinder deactivation. Calibrating the valve lift profile such that the 

optimum lift duration is had reduces pumping losses. Said et al have shown through simulation 

studies on GT-Power for a four cylinder engine operating at a condition of 2500rpm and 3 bar 

BMEP that the exhaust and intake valve lift could be reduced by 4mm and 2.5mm respectively.  

Through a more detailed study Flierl et al [2.32] showed that deactivating from four to three 

cylinders significantly reduced the scavenging of residual gases. The effect of closing the exhaust 

valve over an 80° CA span showed that internal EGR for the four cylinder engine amounted to 2% 

at 220° linearly increasing up to 19% at 280°. Contrarily, when running on three cylinders 

exhaust valve opening overlaps were reduced. In effect, internal EGR was kept below 2% for the 

same crank angle interval increasing volumetric efficiency due to reduced exhaust valve overlap. 

Solely having full variable control over the intake valve when deactivating a cylinder provided a 

7.5% (2 bar BMEP), 6% (3 bar BMEP), 4% (4 bar BMEP), 1% (6 bar BMEP) and 4% (10 bar 

BMEP) improvements in fuel consumption. On the other hand with fully variable exhaust valve 

lift fuel economy improved by 9.25% (2 bar BMEP), 11% (3 bar BMEP), 8% (4 bar BMEP), 4.5% 

(6 bar BMEP) and no effect was observed at 10bar BMEP. Having passed the simulation stage, a 

prototype engine was built starting from key-on on three cylinders, capable of running on two 

cylinders, and switching to four cylinders when the rated power was required. Little difference in 

ISFC improvement when running on either two or three cylinders for an operating point of 2 and 

3 bar BMEP was shown. Running the prototype engine on the NEDC, demonstrated no need to 

run on four cylinders. Furthermore, larger exhaust mass pulsations on the three cylinder engine 

increased turbocharger angular velocities compared to running on four cylinders improving low-

end torque delivery.  
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Another study published by Flierl et al [2.33] showed that the largest fuel consumption 

benefit to be had with cylinder deactivation arises from removing the throttle plate and optimum 

calibration of valve lift. Fuel economy benefits for a prototype 1.6l 4 cylinder direct injection 

gasoline turbocharged engine fitted with an inlet cam-phaser were made against an engine fitted 

with a double cam-phaser; double cam-phaser and along with deactivation of two cylinders; and 

finally a double cam-phaser, cylinder deactivation and fully variable exhaust valve lift system. 

Tests conducted at 2bar and 3bar BMEP load at 2000rpm showed that the additional removal of 

the throttle plate along with an optimally tuned double cam-phaser reduced fuel consumption by 

8.6% and 7.1% respectively. Adding cylinder deactivation resulted in a combined fuel economy 

benefit of 16.4% and 12.8% respectively. Finally, with complete freedom over the exhaust valve 

lifts a total of 18.5% and 15% improvement were recorded respectively. 

2.3.8 Oil Entrapment in Deactivated Cylinders  

Simulation studies by Ma [2.10] show that cylinder deactivation promotes oil suction from 

the crankcase. For a firing cylinder, the top piston ring conforms to the cylinder bore during 

compression strokes compared to intake strokes due to the pressure difference in both strokes. For 

a deactivated cylinder, the pressure difference between intake and compression strokes is 

negligible in comparison to the firing case and consequently the top ring does not conform well to 

cylinder distortion. As shown in Figure 9, the amount of oil accumulated due to the top ring up-

scrapping movement is in effect much less however Ma has shown that this is depending on the 

duration of deactivation. Contrary to the firing cylinder, Tian et al [2.34] explain that the amount 

of oil blown-up into the combustion chamber through the top ring end gap increases. Ma explains 

that the reverse blow by time for the cylinder is longer but the force of the gas is shorter and 

weaker hence less oil is removed towards the crankcase. In effect, more oil is drawn onto the 

piston lands and therefore compared the firing case; where the trapped oil is either combusted 

with the fuel where either soot is formed or remains in its liquid form, the amount of oil burnt 

during combustion is significantly larger when the deactivated cylinder re-activates. The amount 

of oil accumulated is however dependent on the engine speed and the duration of deactivation and 

must be well monitored and rings must be well designed in order to reduce unwanted exhaust 

gases upon reactivation. If not accounted for the heavy land oil accumulation for the deactivated 

cylinder could reduce the maximum deactivation engine speed threshold limit.  

Reduction in land oil accumulation was suggested through improved designs such as 

reducing piston ring grooves, clearances, gap sizes, cylinder bore distortion, designing of piston 
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landings to help promote downward oil flow and design of drain-hole structure characteristics of 

the oil flow onto the piston landing change.  

 

Figure 9: Theoretical rate of oil scrapped onto the top land for deactivated (LHS) and firing 

(RHS) cylinder scenarios. Although the oil scrapped for the deactivated cylinder case is 

considerably smaller, the accumulated value tends to be much larger compared to the firing case 

[2.10]. As example if a cylinder were to be deactivated for 60 cycles the calculated rate of 

scarped oil would cumulatively be approximately two times more compared to that of the firing 

cylinder.  
 

2.3.9 Minimising NVH when Deactivating a Cylinder 

NVH is a limiting factor for the application of cylinder deactivation on any vehicle build 

which requires extensive testing. Senapati et al [2.35] have shown through work on a Bentley 

Muslanne V8 engine that ‗felt‘ vibrations are reduced by iteratively positioning, connecting and 

disconnecting mounts between the chassis and powertrain and engine and chassis. Torsional 

dampeners are also installed to reduce torsional vibrations induced from the driveline. For the 

luxury car market, the low hum produced by a V8 engine is a primordial aspect of enhancing 

driver feel. Unlike the work done by Senapati et al, Binder et al [2.7] have suggested that NVH 

felt by the driver can be significantly reduced by separating the torque paths in torque converters 

through a static spring set and a path directly connected to the planetary gear carrier. Commonly 

absorbers in torque converters are tuned to the engine running on all cylinders or highest 

operating point such that when deactivation takes place the torque converter outputs unwanted 

NVH characteristics. When disabling cylinders standard torsional dampers, turbine torsional 
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dampers
1
 and twin torsional dampers

2
 are not adaptive enough to dampen changing vibrating 

modes. However, while the vibrations travel through the spring set they are phased out by 180° 

such that when they meet a destructive interference is produced reducing the excitation. Work by 

Orlamuender et al [2.37] however states that the planetary carrier must be very rigid to prevent 

amplitude shifts. Effects of oil entrapment on super knock are referred to in Chapter 8 subsection 

8.2.  

2.3.10 Other Techniques for Cylinder Deactivation  

For designs which arrest piston reciprocation, proposed designs have only reached the proto-

type and research development stage. One design, coined the Scalzo Engine [2.38], consists of an 

adjustable four bar mechanism comprising of an oscillating member positioned opposite the 

cylinder relative to the crankshaft connecting to the crankshaft via the main con-rod, disabling 

piston movement. Simulations performed for a V8 4.6l naturally aspirated and V8 4.0l diesel 

engine show that potential improvements of 30 and 20% are had at low constant operating 

conditions. Furthermore a 50% reduction in friction work is achieved. Lateral piston thrust forces 

are also reduced with the extended crankshaft design thus reducing friction on a crank-angle basis. 

Additional mass and cost due to added components are claimed to be around 5-8% of the overall 

engine cost. Although such large benefits are to be had the complexity of the system reduces the 

attractiveness of implementing the Scalzo design.  

Doller et al [2.9] disabled reciprocation of two pistons through a split crank assembly [2.9]. 

Relative to a conventional engine, the split crank system showed friction deterioration (i.e. 

increase) at all engine speeds with all four cylinders reciprocating. The increase in friction at an 

oil temperature of 90  was of 1Nm at 1000rpm up to 9Nm at 5000rpm. For the same oil 

temperature and when having two inert pistons, friction improved by 2Nm at 1000rpm and 4Nm 

at 5000rpm. Given the increase in friction due to the assembly of the split crankshaft and the 

reduction due to having inert pistons compared to a baseline modular crankshaft, it is difficult to 

estimate the frictional benefits from novel split crank systems. As discussed by Scalzo et al the 

largest contribution to improving fuel economy results from reduced heat loss to the cylinder 

walls and improved combustion efficiency.   

2.3.11 Dynamic Skip Fire 

Compared to conventional cylinder deactivation, Tula Technologies [2.40] claims increased 

fuel economy benefits can be achieved through dynamic skip-fire. This changes the cylinder or 

                                                           
1
 Where the torque converter turbine is directly linked to the damper near the drive shaft or stator.  

2
 The torque converter turbine is linked to two separate torque dampers.  
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cylinders which are deactivated in a repeating pattern. Simulations showing the effectiveness of 

this technology were run on a 1-D SIMULINK based air flow models using GT-POWER for skip 

firing events on a GM 6.2l V8. Firing densities, or air charges, were altered between 33% and 

50%, on an engine cyclic basis with three and four cylinders firing, respectively. A numeric 

illustration of cylinder skip firing for a firing order of 1-8-7-2-6-5-4-3 repeating every three 

cycles on a 33% charge density would be: 1-s-s-2-s-s-4-s (cycle 1), s-8-s-s-6-s-s-3 (cycle 2) and 

s-s-7-s-s-5-s-s (cycle 3) where s indicates a skip. With this technology, the net indicated specific 

fuel consumption improved by ~140 g/kWhr at 1bar IMEPn, ~60 g/kWhr at 2bar IMEPn and ~10 

g/kWhr at 4bar IMEPn equalising with normal engine operation ISFCn for an engine speed of 

1500rpm. As illustrated on Figure 10, a higher fuel consumption improvement is had through 

skip-fire compared to conventional deactivation by trapping vacuum (note: negative indicates a 

reduction in fuel consumption and positive a penalty). 

 

Figure 10: Effect of varying deactivation methods for a three cylinder gasoline engine where Pman 

= 2bar and N = 2000rpm [2.12]. 

 

2.3.12 Future Advances: Koenigsegg Air Compressed and Free Valve Technology 

In 2011, Koenigsegg’s sister company FreeValve AB™ [2.41] patented seven designs 

describing an assembly pneumatically controlling valves for ICEs. Developed by Urban Carlson 

the system shown in Figure 11 renders the conventional camshaft, valve assembly and throttle 

body obsolete allowing free and independent control of the valves. In order to constantly supply 

pressurised air to the valve actuators the engine comprises of one compressor cylinder which 

delivers compressed air to a storage tank. The cylinder is powered through the same crankshaft 
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which connects to the working cylinders. Compressed air is directed into the chamber situated 

above the valve pushing against a piston kept in place by a spring similar to conventional spring 

systems for mechanically actuated valves. The air compressor, like all other cylinders, may be 

deactivated by shutting off intake valves such that compressed air is delivered to the air tank upon 

demand remaining filled at all times. Compressed air is relieved from the air compressor through 

an escape valve providing the optimised amount of pressurised air. A similar design has also been 

described by Venkatesh et al [2.42] although only reaching proto-type stage on a fixed rig.  

It is claimed that a fuel economy improvement of 4 to 5% may be had solely by removing the 

throttle plate. The removal of the camshaft assembly is claimed to provide a 20kg reduction for a 

4 cylinder 1.6litre diesel engine while increasing the rated power by 50% from 160bhp to 240bhp. 

Furthermore, exhaust ports were also designed such that designated ports lead directly to the 

catalyst, bypassing the turbocharger, allowing for even faster pre-catalyst and catalyst warm-up 

times compared to conventional ports. In effect, the need for a waste-gate is rendered obsolete 

due to complete control over the exhaust valve opening times and lift, allowing for optimised 

opening profiles given a demanded back pressure. At the time of writing this thesis, Freevalve 

AB has signed a partnership with the Chinese car company Qoros [2.43] applying a pneumatic 

valve system to a 4 cylinder 1.6l engine due to be sold in 2018. The performance benefits from 

applying this technology are still to be reported.  

 

Figure 11: One of the seven Freevalve AB patented air path schematics for an un-throttled 

turbocharged engine fitted with a cam-less pneumatic and electronic valve actuating mechanism 

[2.41].  
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2.4 Cylinder Bore Distortion and Piston Ring Behaviour 

Cylinder bore distortion occurs in all internal combustion engines and is difficult to mitigate. 

Understanding the phenomenon and causes of bore distortion for conventional engine operation is 

important in regard to this study due to the thermal effects of cylinder deactivation giving rise to 

increased temperature between cylinders and across the height of the cylinder wall.  

Distortions arise from four sources: 1) errors and tolerances in the manufacturing of engines; 

2) loading resulting from engine assembly; 3) thermal loading during engine operation; and 4) 

impulses due to in-cylinder pressures [2.44]. The three dimensional strain resulting from 

mechanical and thermal loads is expressed through the stress-strain relationship described by 

Hooke‘s Law. The strain in the x-plane is described through the following expression: 

   
    (     )

 
  (     ) 

According to Heywood [2.5] a three dimensional representation of engine geometry requires a 

detailed heat flow solution to acquire temperature distributions across the engine while requiring 

compatibility for each element. Finite element analysis (FEA) tools such as ANSYS or Abaqus 

are generally used to describe these complex phenomena however these remain outside the scope 

of this study. In light of this, the effects of cylinder bore distortion on engine performance are 

explained due to accentuated adverse thermal effects from cylinder deactivation. Furthermore, 

nominal temperature differences at the inter-bores during normal engine operation are reviewed 

in subsection 3.4.2 as a basis for comparison for predicted results for cylinder deactivation shown 

in Chapter 5 subsection 5.4.   

As a result of bore distortion the cylindricity and roundness of the cylinder vary. In turn this 

affects the straightness, parallelism and true inner diameter of the cylinder. A Fourier series 

approach is used throughout literature to analytically describe these orders, described below. Zero 

and first order distortions are generally associated with machine tolerances. Higher order 

distortions arise due to factors such as: uneven distribution of compressive load applied to head 

bolts; variations in the coolant heat transfer coefficient along the length of the liner giving rise to 

differences in thermal expansion; and thin cylinder walls [2.45].   

As a result of distortion engine performance is affected in an adverse manner. At the level of 

the piston ring, a non-circular bore reduces the conformity between the piston ring and liner. With 

poor ring conformity an imperfect seal results, allowing for much higher traversal of gas and 

liquid from the combustion chamber to the crankcase (and vice-versa) compared to normal engine 
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operation. This leads to increased oil leakage and thus oil consumption along with excessive 

engine blow-by [2.46]. As a result of blow-by engine fuel-conversion efficiency reduces due to 

the loss of in-cylinder pressure during intake and power strokes [2.47].  

2.4.1 Piston Ring Conformity, Collapse and Flutter 

The basis for the analysis of piston ring conformability was set by Prescot [2.48], 

Timoshenko [2.49] and Englisch [2.50] through a first principles derivation on elasticity of rings. 

Piston ring conformability and distortion for automotive application was pioneered by Gintsburg 

[2.51] with reference to a distorted cylinder bore profile [2.52]. Gintsburg describes bore and ring 

distortion through a Fourier series. The Fourier series represents the phenomenon known as radial 

ring collapse. This occurs when the piston ring is pushed inwards contracting the piston ring. A 

discontinuity is created between the ring and liner contact interface allowing for gas flow in this 

gap such that blow-by and oil transport are affected. Along with this, piston rings may lose their 

stability and flutter inside the piston ring groove. When fluttering gas leaks through the groove at 

a much higher flow-rate than from the ring gap. Gas flow routes are profoundly affected by this 

leading to changes in blow-by characteristics, oil transport and consumption [2.53]. The 

occurrence of these two phenomenon are dependent on the piston ring and groove design whilst 

the dynamic movement of the ring during an engine cycle is mainly driven by changes in pressure 

difference between the combustion chamber and crankcase. A complete physical analysis of 

piston ring behaviour is described in work conducted by Tian [2.53]. 

2.4.2  Methods for Minimising Temperature Differences and Cylinder Bore Distortion 

 Bore distortion and ring conformability, for third or higher order distortions, are in part due to 

temperature differences across the cylinder wall and along the height of bore. Rajput [2.54] 

observes that mean temperature differences across the bore wall for SI engines are generally near 

100 degrees Celsius. Rajput has shown that water cooled cylinder walls compared to air cooled 

walls (i.e. designed with cooling fins) reduce the mean temperature difference across the wall by 

the 10 to 20 degrees Celsius. Contrarily, temperature differences along the height of the cylinder 

wall are generally in the range of 30 to 70 degrees Celsius. Temperature differences across the 

height of the bore increase as in-cylinder load increases. With nominal temperature differences 

bore distortions are generally in the range of dozens of micro-meters [2.44]. Although distortion 

affects engine performance the effect is crank-angle specific requiring large computational tools 

outside the scope of the study of the 0D simulation tool used in this study.  
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 Although the elastic limit of the materials used in producing cylinder bores defines the 

maximum permissible strain, or component failure, several methods are suggested in minimising 

the occurrence of cylinder bore distortion. High order distortions are reduced through 

optimisation of the block design through improved coolant flow characteristics. As example, by 

biasing coolant flow on the top part of the bore the heat transfer coefficient is increased at the top 

of the liner where bore temperatures are highest and distortions most prominent. Loenne et al 

[2.55] showed that this is easily achieved using an open deck design along with positioning the 

block coolant aperture closer to top of the liner. Furthermore, Rahnejat [2.56] accentuates that 

bore distortion worsens for engines designed without inter-bore cooling slits along with the use of 

light alloy materials. As described in subsection 2.2.3, Nishino et al [2.7] show that inter-bore 

slits reduce large temperatures experienced at the top of the cylinder wall. In effect these 

combined designs reduce temperature differences between the top and bottom of the liner/wall to 

a more uniform temperature, nearing the coolant temperature. For lower order distortions, 

increased section moduli and reduced bolt loads not only help reduce distortion but engine 

friction in general. A more radical approach described by Flores [2.57] consists of honing bore 

distortion such that operation by manufacturing a default non-cylindrical bore shape. This 

requires knowledge of the distortions present during operation through extensive computational 

effort.  

2.5 Concluding Remarks  

Engine thermal management for light duty passenger vehicles is primarily aimed at 

promoting rapid coolant and oil warm-up rates for optimum engine operation. Minimising time 

spent in ‗cold‘ engine operation primarily reduces engine friction through heating of the 

contained liquids. Oxidation of the injected fuel and engine thermal efficiency is also improved 

by reducing heat losses to the engine structure. Careful optimisation of the coolant flow-rates and 

coolant passage geometries is also required to ensure that the engine does not overheat. This 

could lead to auto-ignition of fuel and catastrophic engine failure. Segregation of the coolant 

volumes, in the form of a split cooling circuit, reduces coolant thermal inertias improving engine 

warm-up rates. Compared to conventional cooling circuits where coolant flowing in the block 

flows through the rest of the engine split circuit flow-rates are favourable. Furthermore, [2.1] has 

shown that a 1-D lumped thermal capacity model is a particularly useful in quantifying 

interactions between metal, coolant and oil in a time effective approach.  

Generally cylinder deactivation for an engine fitted with a camshaft can be achieved using 

three different techniques. A review of these three methods has suggested that the form of 
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cylinder deactivation resulting in the best fuel economy involves fuel cut-off and intake/exhaust 

valve closure. All three methods provide increased exhaust gas temperatures promoting faster 

catalyst light off times. However, closing intake and exhaust valves provides a considerable 

pumping loss reduction compared to solely cutting fuel off. Disabling piston motion on the other 

hand requires complex engine modifications with negative effect of added weight (i.e. thermal 

inertia). Net fuel consumption benefits due to friction reduction are thus difficult to quantify 

[2.39]. Although more innovate solutions of deactivating cylinders are proposed [2.40] [2.41] 

these require more detailed approaches and accurate characterisation of engine behaviour for 

modelling purposes. The simple form of cylinder deactivation achieved through cutting off fuel 

injection and shutting off valves, paves the approach for predicting fuel consumption benefits 

associated with deactivation. However, the penalty associated with repeatedly compressing and 

expanding a trapped charge is an area which requires further explanation.   
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Chapter 3 PROMETS Theory 

3.1  Introduction 

In this chapter the theories in PROMETS for the modelling of heat transfer and friction in an 

ICE are described. An overview of heat transfer between gas-side, friction, coolant and oil is 

touched upon to provide the reader with knowledge of the state of the model prior to work 

presented in Chapter 4, 5 and 6. This is approached by describing historical work carried out 

leading to the onset of PROMETS on a SIMULINK user interface. This is then followed by a 

description of the stability criteria used for lumped capacity analysis, the layout of the elements 

representing the engine and required model inputs for simulation. Governing equations 

comprising of the major subsections of the model are also described with modes of heat transfer 

to the coolant and oil heat sinks. This chapter is concluded with a discussion stating where model 

advances and modifications are required to represent the TCE for operation on all cylinders.  

3.2 PROMETS: Basics and Model Elements 

PROMETS provides cycle averaged results on friction and engine heat transfer in a lumped 

capacity element model. Contact areas, volumes and masses of elements necessary to account for 

heat transfer throughout the structure of an ICE are defined through a pre-processor named 

PROGEN (PROgram for Generic Engine Representation). These parameters are determined by 

inputting selected engine dimensions which are preferably extracted from an existing engine 

CAD model. Element sizes are diverse and dependent on the magnitude of heat flux passing 

through a specific area of the engine. Areas exposed to high thermal flux have a higher spatial 

resolution whereas those with lower flux are represented with larger elements. The accuracy of 

predictions made by PROGEN may be refined with scaling factors. These help improve volumes 

and masses of engine components when compared with experimental mass measurements. Apart 

from the density of different components, input of properties such as thermal conductivity and 

specific heat capacities are also required to appropriately characterise the thermal behaviour of 

elements. Once dimensions, material properties and masses are defined, a single cylinder is 

constructed with a total of 41 elements. The position and size of the elements is illustrated in 

Figure 12. 

Following 2-D thermal analysis studies carried out by Mason [3]. The earliest version of 

PROMETS was developed by Christian [3.1]. Christian [3.1] investigated an FE approach to 

computing engine thermal behaviour. To reduce the time spent computing engine thermal 

behaviour, metal temperatures along the liner, cylinder wall and intake/exhaust ports of a one-
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quarter FE cylinder model (with a resolution of several thousand nodes) were compared with the 

centre metal temperatures of a lumped element model. Christian showed good agreement 

between the two models and thus shaped the sizes of elements in PROMETS such that this 

agreement remained robust over several operating conditions. The model was subsequently 

extended upon through several studies numerically representing cycle-averaged phenomenon 

through empirical and physics based correlations. Engine heat transfer from the gas-side to 

coolant is described in work done by Shayler and Yuen [3.2], Chick [3.3] and Baylis [3.4]. These 

account for effects of retarding or advancing spark timing, altering AFR, varying coolant 

composition and turbocharging specific to a diesel engine. Heat transfer emanating from rubbing 

friction, for a fully warm engine state, has been based on work done at MIT by Patton, Nitschke 

and Heywood [3.5]. Friction viscosity dependence for components undergoing mixed and 

hydrodynamic lubrication under warm-up conditions is based on work conducted by Shayler and 

Leong [3.6].  

Based on the high-level interactions described above and elaborated further in this chapter, 

two variants of PROMETS exist for either diesel or gasoline engines. The first describes heat 

transfer in a single cylinder and the second describes heat transfer for all cylinders in the engine. 

These exist for either inline or V-type engine types. The single cylinder and multi-cylinder 

models are differentiated by their boundary conditions. For the multi-cylinder model consisting of 

four cylinders the inboard cylinders are described to be adiabatically connected on both sides. 

Outboard cylinders have outer surfaces that are connected to ambient. On the coolant side 

equations describing conservation of mass are used to appropriate coolant flow-rate throughout 

the engine while traversing the block and head.  

The construct of the multi-cylinder model on MATLAB Simulink elaborated upon in the 

following subsections has been developed by Morgan [3.7] and is the basis for revisions 

described in Chapter 4. 

3.2.1 Model Inputs  

The lumped mass engine representation is defined by input of key engine geometries. Given 

the geometries, to run the model on MATLAB Simulink the user must define eleven variables 

such that the model may commence calculations. The eleven variables consist of time, engine 

speed, engine brake torque, AFR, fuel flow-rate, coolant flow-rate, heater matrix coolant flow-

rate, heater matrix air flow-rate, exhaust gas temperature, spark advance or retard relative to 

MBTD and % EGR. Of the eleven inputs only the first three have been used in this modelling 

instance, i.e. engine speed, engine brake torque and AFR, while the rest have been computed 
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Element 40 -  represents thermal inertia of miscellaneous components which are in intimate 

contact with the coolant flow prior to thermostat opening. These are components 

not account for by any of the main core elements above. These include the 

thermostat and thermostat housing, coolant pump, degas bottle, hoses and fittings.  

Element 41 -  represents the thermal inertia of miscellaneous components which are in intimate 

contact with the oil flow. These are components which are not accounted for by 

any of the main core elements stated above. The components included are the oil 

pump, filter, oil pan and other such components. Note: The thermal inertia of 

miscellaneous components are calculated using actual volume measurements.  

Figure 12: Element numbers representing the engine head, upper and lower block for a cylinder.   
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Figure 13: Schematic representation of calculation routine for PROGEN and PROMETS [3.8]. 
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through PROMETS. These three inputs are sufficient to describe a drive cycle. Cylinder 

deactivation has been defined through a trigger mechanism inputted through a ‗.m‘ script on 

MATLAB. Further to this, the initial thermal state of the engine is also defined by the user. This 

is done by assigning values to the oil, coolant and metal temperatures. The interaction between 

user inputs, PROGEN, PROMETS and model outputs is shown in Figure 13. 

3.2.2 Lumped Capacity Analysis 

Each lumped mass element is represented having a uniform temperature. An energy balance 

for an element ‗i‘ in contact with element ‗j‘ is described using the following expression [3.1].  

                                                  ̇  ∑
  

    
 

   
    (

  
      

 

  
)                               Equation 1 

Where  ̇  is the change in the elements internal energy;     the thermal resistance between 

elements; and    is the time-step between successive explicit forward time-marching calculations. 

   represents the extensive form of the specific heat capacity of the element, which is expressed 

by: 

                                                                                                                     Equation 2 

where    is the element density,    the specific heat capacity of the element and     is the element 

volume. Re-arranging the heat balance solution to equate to the temperature of the next time-step, 

   , the following is used to calculate element temperatures,  

                                                           
    

  

  
[ ̇  ∑

  
    

 

   
 ]    

                     Equation 3 

3.2.3 Accuracy and Stability 

 To represent a uniform element temperature two criteria are met; this is specific to elements 

which are solid in nature. These criteria are: 1) the temperature difference between the two 

elements must be kept to a minimum and 2) elements should contribute equally to the thermal 

resistance of the interface. In order to keep the temperature difference between elements to a 

minimum, the size of the element and therefore number of elements is optimised for this purpose. 

FE simulations run by Christian [3.1] found the basis for the element numbers and sizes shown 

below. Element resolution is increased along areas where heat fluxes are high and thus where 

significant thermal gradients arise. As example, the cylinder liner and exhaust valves have an 

increased number of elements. With this, the thermal resistance between two elements, elements 

1 and 2 is expressed according to the following,  
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(
     

  
 

     

  
)                        Equation 4 

Where k is the thermal conductivity of the element; A the perpendicular surface area connecting 

both elements; and    the midway distance from the surface area.  An illustration is shown in the 

figure below.  

 

Figure 14: Illustration of the geometries used to define the conductive resistance between 

elements.  

 

 Lumped thermal capacity elements with a solid-liquid interface adhere to a small enough Biot 

number such that a uniform wall temperature is maintained during thermal transients. The Biot 

number is expressed as the ratio of convective and conductive heat transfer coefficients.     

                                                                              
  

  
                                         Equation 5 

With a Biot number, Bi   0.1, the error in the lumped capacity assumption is less than 5% [3.1].  

 Stability in the numerical estimation of the temperature is ascertained by the size of the time 

step allocated to calculate heat transfer in the model. This done by considering a case when the 

internal energy of the element is set to zero such that the following inequality is satisfied, 

                                                                       [  
  

  
∑

 

   
 ]                               Equation 6 

The criterion ensures that heat transfer obeys Fourier‘s Law of conduction. As example if     is 

taken as      where element 1 is at a higher temperature than element 2, the inequality will be 
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satisfied. The time step used in PROMETS is taken as 0.1 seconds although the largest time step 

value of 0.3 seconds has been used by Morgan [3.7].   

3.3 Friction Model 

3.3.1 Original Friction Model Description  

Historically, an engine viscosity correcting factor has been applied to a fully warm friction 

value to represent increased friction when warming up from low oil temperatures. Although the 

reference oil temperature is set to 90  variations in local oil temperature may exist across the 

engine [3.1]. The effect the variations in oil temperature have on viscosity when the engine is 

fully warm are however small compared to cold starting conditions of 20 .  

               (
    

          
)
 

                                   Equation 7 

Where fully warm friction,       , is described through a force based analysis originating from 

the work of Patton et al [3.5]. The expressions for the sub-assemblies in an ICE are shown below. 

The index n = 0.19 is based on findings by Bayliss [3.4] for a gasoline engine. The calculation of 

dynamic viscosity shown in Equation 8 is based on Vogel‘s formulation shown below.  

              
(

  
    

)
                  Equation 8 

Prior to the onset of this work the oil viscosity grade described in PROMETS has been defaulted 

to a 5W-40 formulation [3.7].  

Improvements in the friction model originally conceived by Patton et al [3.5] were conducted 

by Shayler et al [3.9]. The improvements consisted of scaling hydrodynamic and mixed 

lubrication friction terms with a viscosity correction. The correction is in the form of a ratio of the 

oil viscosity at the current oil temperature by a reference viscosity for an oil temperature of 90 . 

Although the work has been focused on studies for diesel engines, components categorised 

undergoing boundary, mixed and hydrodynamic lubrication remain the same in gasoline engines. 

Further work by Addison [3.10] has focused on determining indices for specific components 

undergoing hydrodynamic lubrication. In light of this, the index for gasoline engines described by 

Bayliss [3.4], n = 0.19, has also proved to result in robustly capturing friction changes throughout 

warm-up conditions. A description of the friction terms used in this analysis is shown below with 

equations specific to the crankshaft, valvetrain, and piston assemblies and ancillary devices.  
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Crankshaft Assembly 

Friction at the crankshaft is described by three terms one of which is dependent on the 

viscosity of oil.  The first term describes friction of the main bearing seals assumed to operate 

under boundary lubrication. The seal lip load is assumed constant. Main bearing hydrodynamic 

friction is described in the second term and is dependent on oil viscosity. The third term describes 

windage losses due to the need to pump oil through flow restrictions; it is coupled with losses at 

the crankshaft for the purpose of grouping terms resulting from specific assemblies in the engine.  

                  (
  

     
)     (
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)                 Equation 9 

Valvetrain Assembly 

The largest proportion of friction heat generated in the valvetrain assembly is present between 

the tappet and bore. The first term is an empirical constant adjusted to account for friction at the 

camshaft bearing seals. The terms with the coefficients     and     predict friction between the 

cam-lobe and cam follower for a flat-follower and roller-follower element respectively. 

Oscillating hydrodynamic friction between valvetrain components such as the valve lifter in the 

lifter bore or valve guide are represented by the fifth term. Lastly oscillating mixed lubrication 

friction present in the valve guide or bore is accounted for in the sixth term.  
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                 Equation 10 

Piston Assembly 

Friction for the piston assembly is dominated by boundary lubrication occurring at the piston 

rings. The first term describes piston friction due to the hydrodynamic sliding motion of the 

piston skirt against the cylinder wall simply based on a stroke averaged reciprocation velocity 

with a strong dependence on piston bore size. The second term accounts for rubbing friction 

emanating from the contact of the piston rings against the cylinder liner occurring under the 

mixed lubrication regime. If the ratio of the piston ring tension and roughness of the rings is 

known values may be substituted; in this modelling instance this factor was equated to unity. The 

third term is representative of hydrodynamic friction present at the connecting rod bearings.  
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   Equation 11 

Ancillaries  

Ancillary loads are dependent on engine size and are specific to targeted performance. An 

engine with a rated speed of 10,000rpm will require high performance oil pumps such that 

components remain well lubricated under high frictional loads. Engines designed for light duty 

passenger vehicles, such as the TCE, generally have a smaller proportion of fuel energy spent 

powering ancillary devices. As in the original PNH model a second-order polynomial function 

based on engine speed describes friction losses due to the water, oil and fuel pumps.  

 

                                                         (      ) (
 

  
)
 

                     Equation 12 

The default coefficients for the friction terms in each sub-assembly discussed above are shown in 

the following chapter for comparative purposes with those of the TCE. These are shown in Table 

4.  

3.4 Original Gas-side Heat Transfer Correlations  

Combustion results in high temperature gases directing heat from the gas-side to lower 

temperature coolant. In the four stroke engine cycle this is dominant during the power and 

exhaust strokes. Contrarily, during intake and compression strokes heat is directed from the metal 

to the intake charge until ignition occurs. This is however magnitudes smaller compared to when 

combustion occurs. The onset of heat transfer is specific to engine calibration and thus crank-

angle. A simplified time-averaged approach describing heat transfer from the gas-side to coolant 

is used in PROMETS. The formulation is based on the work of Taylor and Toong [3.11] derived 

on data emanating from 19 engines. An empirical formulation,  ̇ , represents cycle-averaged heat 

transfer from the gas-side to coolant, specific to a cylinder.  

 ̇       (
   

 
)

  

 
(       )   

             Equation 13 

The expression solely requires the cylinder bore to characterise an engine. The magnitude of heat 

transfer in the combustion chamber and exhaust ports is strongly dependent on changes in the 

Reynolds number,    .  

        
   ̇  (  

   

(     )
)

    
       Equation 14 
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In-cylinder gas temperature changes are weakly dependent on the mass of fuel injected. Instead 

the cycle averaged in-cylinder gas temperature has a strong dependency on the air-to-fuel ratio 

relative to stoichiometric, i.e. equivalence ratio ( ). Taylor [3.11] thus formulated a simple 

expression correlating mass averaged gas temperature with the equivalence ratio in the following 

form: 

                
 

(            )
            Equation 15 

To account for turbocharging the following correction is applied [3.16]: 

 

        ̇         (        )        Equation 16 

 

In-cylinder dynamic viscosity,   ,  and conductivity,   , are also dependent on equivalence ratio:   

 

                (  )                 Equation 17 

                  (  )                 Equation 18 

Although predictions based on the work of Taylor and Toong are accurate in describing heat 

losses to coolant, Shayler et al [3.12] identified weaknesses in solely having one term describe 

the heat released to coolant. Compared to the original expression shown in Equation 13 the 

revised formulation is shown below.   

                          ̇      ̇        ̇   ̇   ̇     ̇                  Equation 19 

Where  ̇     is the heat transfer from the combustion chamber and exhaust ports to coolant, 

 ̇       is the heat transfer from the external exhaust manifold to ambient,  ̇    are ambient 

heat losses and  ̇   heat losses from the oil to the OFCA. The original gas-side expression,  ̇ , 

was improved to incorporate the effective surface area of the cylinder and the exhaust port 

surface area while retaining the dimension of the cylinder bore. The revision takes the form: 

               ̇        (              )
  

 
(       )   

       Equation 20 

Where heat transfer in the combustion chamber and exhaust ports is expressed as follows: 

 ̇               
  

 
(          )   

       Equation 21 

 ̇           
  

 
(          )   

       Equation 22 

Constants    and   , characterised for SI engines fitted with an external exhaust manifold, are 1.8 

and 1.5 respectively. The Reynolds number index, 0.7, is based on an exhaust port heat transfer 
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Nusselt-Reynolds expression stemming from data on six engines. Other Nusselt-Reynolds 

expressions are provided in literature describing time-averaged heat transfer in the exhaust ports 

are described in the following subsection The relationship used in PROMETS prior to the onset 

of this study had been derived by Shayler et al [3.12]. 

3.5 Exhaust Gas Temperature Prediction 

The exhaust gas temperature is predicted through an energy balance. Equating the enthalpy of 

the exhaust gas with the source of heat produced due to combustion subtracted by the heat sinks 

allows determining the exhaust gas temperature. Heat sinks in an internal combustion engine are 

comprised of: 1) the useful work converted into brake power, 2) heat lost to the coolant through 

the metal structure and 3) miscellaneous sinks which balances the energy equation. The 

expression is shown below: 

 

    
                            

(     )      
                  Equation 23 

 

3.6 Coolant Side Heat Transfer  

3.6.1 Forced Convection and Nucleate Boiling 

When both metal and coolant are below the saturation temperature, forced convection is the 

sole heat transfer mechanism. Heat transfer coefficients are mainly dependent on the velocity of 

coolant flow and temperature differences between the metal and liquid. Upon reaching the 

saturation temperature, vapour bubbles form at the interface between the metal and coolant. As 

the pressure of the vapour bubble increases a threshold is met where the bubble has sufficient 

kinetic energy to detach from the solid-liquid interface. Subsequently these bubbles are carried 

away by the flow of coolant. Further disorder due to the presence of these bubbles increases the 

heat transfer coefficient. As the heat flux rises to the point that flowing coolant is restricted from 

making contact with the hot metal a ‗critical heat flux‘ is reached. At this point large pools of 

vapour are formed at the surface of the metal forming thin film boiling [3.12]. This in turn 

reduces the heat transfer coefficient as the metal is abstained from contact with coolant in effect 

significantly increasing the component metal temperature. Nucleate and pool boiling is most 

likely to occur in regions with very high heat fluxes such as the valve-bridge area or the top of the 

cylinder wall.   



 

45 

 

The total heat transfer coefficient when forced convection and/or nucleate boiling are present 

are added, as shown in the following expression:          

                    *
       

        
+                 Equation 24 

The Dittus-Boetler correlation for turbulent fluid flow in smooth pipes is used to describe the heat 

transfer coefficient for forced convection,       [3.13]:  

                                   

 
       Equation 25 

Where D is the diameter of the pipe, Re is the Reynolds number, Pr is the Prandtl number and k is 

the thermal conductivity of the fluid. The nucleate boiling term,              , is obtained from the 

work of Forster and Zuber [3.14], originally sought for pool boiling and is described as follows:  
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    (         )
    +           Equation 26 

Nucleate boiling is described by the addition of a suppression factor, S, defined by Chen [3.15], 

which decreases asymptotically with increasing Reynolds number  

  
 

                 
                                Equation 27 

For low Reynolds numbers S approaches unity indicating that pool boiling occurs. Finaly et 

al. [3.16] have shown that although the expression has been derived for vertical axial flow inside 

a circular tube, it is applicable for coolant side heat transfer as done in PROMETS. 

3.6.2 Coolant Circuit Set-Ups 

Three default coolant circuits have previously been used in the multi-cylinder model of 

PROMETS. The circuits, shown in Figure 15, depict a (A) a cross-flow parallel cooling circuit; 

(B) series flow cooling circuit; and (C) parallel cross-flow cooling circuit. These circuits, specific 

to an inline four cylinder engine, have been set-up by Morgan [3.7] and the benefits of applying 

different type circuits are elaborated upon.  

Parallel cooling circuits, also known as dual cooling circuits, consist of separate circuits 

employed for the head and block of the engine. Morgan [3.7] states that such circuits are useful 

during cold and part load operation. Benefits of applying such circuits include reduced fuel 

consumption, improved knock limits and higher compression ratios for SI engines while 

improving rated power. These effects have been reported by observing the ratio of heat 

transferred through forced convection and nucleate boiling.  
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Flow-rate through the coolant passages is assumed constant and is dependent on the coolant 

pump speed. This is modelled in PROMETS using the following expression:   

 

 ̇                     Equation 28 

Where a is a scaling factor, B the cylinder bore, S engine stroke and N engine speed. In 

PROMETS, the split in the mass flow-rate for circuits with cross-flow (i.e. flow directed from the 

block to the head through bleed holes in the gasket) is modelled using the continuity expression 

for mass. As example, for a given total flow entering the block passage next to the first cylinder if 

  is the percentage of flow-rate branched into the cylinder head the total remaining flow in the 

block is: 

                                                                   ̇   ̇ (   )                               Equation 29 
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Figure 15: (A) Cross-flow parallel cooling circuit; (B) series flow cooling circuit; and (C) 

parallel cross-flow cooling circuit previously used in PROMETS.  

A 

B 
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3.7 Oil Circuit Model 

The Reynolds number describes the flow regime in the oil galleries in block and head, this 

being laminar, transitioning or turbulent. For flow in an oil pipe the characteristic length is taken 

as the diameter of the pipe and is characterised by the engine. The smaller the pipe diameter the 

more turbulent the flow becomes with development of eddies or vortices while a larger pipe 

allows for bulk flow to easily move through the centre of the gallery. 

Transition from laminar to turbulent flow occurs for Reynolds numbers ranging from 2000 to 

4000. The model describes flow through oil pipes undergoing a laminar regime, 

                                              
  ̇   

        
 

  ̇   

       
                                     Equation 30 

The Nusselt number describes the difference between the advective and diffusive heat 

transfer mechanisms compared to conductive heat transfer across the boundary. In PROMETS 

this is expressed as a function of the Reynolds and Prandtl numbers for laminar flow in a pipe 

[3.10].  
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-

                       Equation 31 

The heat transfer coefficient is then calculated based on re-arranging the Nusselt number 

expression and substituting values calculated in the above expression:  

                                                              
    

     
                                            Equation 32 

Oil flow rate for varying operating conditions are calculated by means of a lookup table 

which is a function of the engine speed and oil temperature. Viscosity, density and conductivity 

are calculated as a function of temperature by utilising empirical expressions. Lookup table data 

is attributed to a positive displacement, gear type pump of fixed capacity equipped with a 

pressure relief valve.  
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Figure 16: This diagram illustrates the calculation path PROMETS executes in order to estimate 

heat transfer and node temperatures of the oil at different points throughout the engine. 

Eighteen triggers are used to activate calculation of heat transfer and temperatures and 

different points throughout the oil circuit in the engine as shown in Table 1, below. Heat resulting 

from friction in the bearings and piston heats the oil being flung around the crankcase. The 

interaction between the oil mist and metal structure components within the crankcase (i.e. 

bearings, piston underside, liner, connecting rod and walls) and valve deck is modelled by 

assigning a convective heat transfer coefficient of 50 W/m
2
K.   

In PROMETS the sump model does not account for stratification of the oil during the warm-

up phase. It is assumed that the oil temperature is spatially uniform. Heat losses from the sump to 

the ambient air are assumed to be negligible for steel or iron as the thermal resistance differs by 

several orders of magnitude.    
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Function Name Functionality 

Trig 1 Heat Transfer from Metal Structure to Oil in Main Gallery 1 

Trig 2 Heat Transfer from Metal Structure to Oil in Main Gallery 2 

Trig 3 Temperature of Oil at Crankshaft Main Bearings 

Trig 4 Temperature of Oil at Piston 

Trig 5 Heat Transfer from Oil to Galleries and Bearing Elements 

Trig 6 Heat Transfer to Oil from Block Casing 

Trig 7 Temperature of Oil at the Valvetrain 

Trig 8 Heat Transfer from Valve Deck to Oil 

Trig 9 Temperature Calculation of Oil Prior to Entering Head 

Trig 10 Heat Transfer from Block Metal to Oil Prior to Entering Head 

Trig 11 Energy Calculation of Block Outer Walls due to Friction 

Trig 12 Heat Transfer from Auxiliary Components to Oil 

Trig 13 Heat Transfer to Mist within Crankcase due to Oil 

Trig 14 Temperature of Oil Mist 

Trig 15 Total Heat Lost from Oil to the Structure, Mist and Sump 

Trig 16 Temperature of Oil Entering Oil Cooler 

Trig 17 Heat transfer from Oil to Oil Cooler 

Trig 18 New Temperature of Oil Leaving the Oil Cooler 

 

Table 1: The table below shows the eighteen steps involved in calculating the heat transfer 

throughout the oil circuit. 
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3.8 Fuel Consumption Prediction 

Fuel flow-rate is the influencing factor on in-cylinder and exhaust port heat transfer. An 

iterative calculation based on residual convergence is used through a c-script in PROMETS to 

estimate the required fuel flow-rate given friction power, pumping power, power required to drive 

the ancillaries and brake power. The summation of the powers for motive and parasitic losses is 

termed as the gross indicated power and is equated to fuel flow-rate using the following 

expression.   

 ̇                

Where the gross indicated power,     , is defined in relation to the volume swept, engine speed 

and gross indicated mean effective pressure.  

              
    

   
 

Where the gross indicated mean effective pressure,        , is split into brake, pumping, friction 

and ancillary mean effective pressures:  

                            

Pumping mean effective pressure is determined by subtracting the exhaust manifold pressure by 

the intake pressure in an iterative process based on a residual convergence scheme. Estimates of 

friction power throughout a warm-up are defined in subsection 3.3.      

      (       ) 

To estimate the percentage of total fuel combusted to deliver useful work the combustion and 

gross indicated efficiencies are defined. These efficiencies describe how well the engine contains 

heat resulting from combustion and combusts the total amount of fuel injected. For gasoline 

engines operating at lean or stoichiometric burn combust efficiencies are generally around 98%. 

Gross indicated thermal efficiency values vary depending on operating condition however 

previous values used in PROMETS by Addison [3.10] were around 35%.  

        
 

            
 

Based on the lower heating value of the fuel for gasoline,      = 44MJ/kg, and the required gross 

indicated power, the mass of fuel is defined.    

 ̇  
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3.9 Discussion  

An overview of the current state of the PROMETS model has been given. Previous models 

have represented inline and V type engines. For these type engines, equations describing heat 

transfer stemming from rubbing friction and the gas-side to the metal structure, coolant and oil 

have been outlined. Although the current state of PROMETS is comprehensive for modelling 

engine thermal behaviour, several modifications in most areas of the model have been required to 

represent operation of the 1.0litre TCE. All the changes suggested below are described in Chapter 

4.  

Firstly PROGEN lacks in representing some design features specific to the TCE. Although 

PROGEN is suited to represent straight runner exhaust ports, the addition of the integrated 

exhaust manifold and optimised crankshaft and connecting rod designs has required changes to 

the PROGEN code. Therefore mass predictions of the TCE resulting from PROGEN require 

validation in order to appropriately model engine thermal inertia.  

Furthermore, the  ̇     correlation described by Shayler et al [3.12] has been validated for 

engines with straight runner exhaust ports. As the TCE is designed with an integrated exhaust 

manifold, the effect this has on heat transfer in the head remains to be ascertained. Current values 

for the    and    constants and the exponent for the gas Reynolds numbers also remain to be 

confirmed.     

Also, coefficients for the friction model for all assemblies in PROMETS are currently suited 

to an inline 2.0l 4 cylinder gasoline engine design reported by Addison [3.10]. In order to 

characterise rubbing friction for the TCE, coefficients have to be adjusted for fully warm 

operation. Further to this, a SAE 5W-20 oil grade is used for the TCE. Vogel constants for this 

formulation have not been reported or validated in PROMETS. These are essential to accurately 

model fuel consumption over engine warm-up. This therefore provides incentive to modify the 

friction model set-up. 

The default coolant circuit layouts reported by Morgan [3.7] do not segregate flow in the 

head. The TCE, as shown in the next chapter, has bespoke passages in the intake and exhaust 

sides of the head with the addition of a block thermostat. This renders coolant in the block to 

initially warm-up in a quiescent state while forced convection dominates heat transfer in the 

exhaust side of the head. In addition to having to modify the coolant circuit the heating of 

quiescent coolant in the block requires the addition of an expression for natural convection.  

Pertaining to the air paths, previous gasoline versions of PROMETS have been modelled to 

represent naturally aspirated engines. Although an empirical expression has been used by Addison 

[3.10] to estimate the boosted intake pressure past the throttle, the approach provides sub-optimal 
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predictions over the NEDC and cannot be transferred to the version of PROMETS for the TCE. A 

robust method for predicting the boost pressure past the throttle for the TCE over various drive 

cycles is required to. This is important in light of characterising pumping losses specific to the 

TCE over highly dynamic drive cycles such as the FTP-75 and WLTC. This in turn, affects fuel 

consumption predictions made through the model. Therefore, an adequate expression calculating 

the boost pressure has to be found in literature or derived.  

Finally, the penalty associated with motoring a piston also remains to be quantified. This is 

important in trying to weigh the fuel consumption benefits and penalties associated with cylinder 

deactivation.      

In light of the above, the following chapter looks at modifications made to the model 

requiring correlation with experimental data. These modifications are firstly essential to 

characterise the operation and thermal behaviour of the TCE from idling to rated power. Secondly, 

robustly characterising the TCE sets confidence in using PROMETS as a tool for predicting 

effects of cylinder deactivation on engine thermal behaviour and performance. This is elaborated 

upon in Chapter 5 and 6.  
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Chapter 4 Advancing PROMETS to Represent the 1.0litre Three Cylinder Engine  

4.1  Introduction 

This chapter covers revisions and additions made to the multi-cylinder model of PROMETS 

in order to characterise the three cylinder engine. The modifications are presented through 

subsections by firstly giving background knowledge and incentive for modifications; processes 

undertaken to apply the modifications to the model; and lastly validation of the model if 

experimental data was present for correlation. Subjects looked at are widespread referring to: 

engine features, the friction model, coolant side heat transfer and coolant circuit modifications, 

gas-side heat transfer revisions, piston cooling jets, a simple method for predicting turbocharged 

engine performance and lastly a motoring loss representation when deactivating a cylinder for 

robust performance estimations.  

4.2 Engine Details and Architecture 

The PROMETS model described in the following is developed as a representation of a 1.0l 

three cylinder engine[4.1]. Specifications of the engine are shown in Table 2. The engine cooling 

circuit is described using the nomenclature shown in Figure 17. Figure 18 shows coolant flow in 

the engine prior to the opening of the block thermostat. During this period coolant in the block 

remains quiescent with flow solely in the exhaust side of head. After the block thermostat opens 

coolant flows as illustrated in Figures 18, 19 and 20.  

4.3 Location of Thermocouples Used for Model Correlation  

The TCE was instrumented with chromel-alumel   K-type thermocouples, to monitor 

temperatures both in solid (i.e. metal) and liquid mediums (i.e. coolant and oil). Composed 

mostly of nickel, this is   90% by volume, these thermocouples are suited for thermodynamic 

environments outside of the combustion chamber
3
. Thermocouples were instrumented along the 

block coolant cavity with the aim of capturing changes in coolant temperature before and after the 

block thermostat opened. Thermocouples were also instrumented vertically alongside the coolant 

block to monitor temperature differences between the bottom and top of the coolant cavity. To 

ensure that heat transferred from the combustion chamber and exhaust ports to the entire engine 

was appropriately modelled; thermocouples were installed along the vertical axis of the first 

and second firing cylinders. With this incentive, thermocouples were also inst alled into 

 

                                                           
3
K-type thermocouples are suited to endure temperatures in the range of -200  to +1350 .  
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Table 2: Technical details of engines installed on the ECTB. 

 

 

Attribute TCE 

Engine Type Gasoline Turbocharged Direct Injection, Four Stroke (120 ) 

General Description 

Cast aluminium alloy cylinder head with integrated exhaust 

manifold (IEM), pent-roof cross-flow combustion chambers, grey 

cast iron cylinder block, aluminium alloy sump pan, aluminium 

pistons 

Engine Layout Inline 3 

Capacity 999cc 

Compression Ratio 10:1 

Bore / Stroke 71.9mm/82mm 

Cam System DOHC – flat follower 

Valvetrain 
Double Overhead Camshaft, Wet Belt Drive, Direct Acting Flat-

Follower, 2 intake/2 exhaust valves 

Fuel  Pump Grade 95 Octane 

Main/Connecting Rod 

Bearings 
4 (44mm diameter bearings)/ 40mm connecting rod bearing 

Valve Sizes 
Inlet Head Dia. 27.1mm 

Exhaust Head Dia. 23.1mm 

Max. Valve Lift 
Inlet, 8.26mm 

Exhaust, 8.26mm 

Rated Power 74kW 

Idling Speed 850rpm 

Injection System Bosch Management System 

Cooling System 50% Water / 50% Ethylene-Glycol, Split cooling System   

Coolant Passages 
Block Coolant Jacket: 6.5mm thick/ 80mm tall 

Exhaust Port Coolant Sleeves: variable thickness above and below 

Turbocharger Radial 

EGR System Internal 

Variable Displacement 

Capability 
None 
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Figure 17: Nomenclature for split cooling system of the engine. 

 

 

 

 

 

 

 

 

 

 

 

Figure 18: Illustration of coolant flow in the exhaust side of the head while the block thermostat 

remains closed.   
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Figure 19: Illustration of coolant flow in the block exiting through the intake side of the head and 

flow in the exhaust side of the head when the block thermostat is open.  

 

 

 

 

 

 

 

 

 

 

 

Figure 20: Top-view of the coolant flow paths around the block when the block thermostat is 

open. 
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Figure 21: Detailed line drawing of the thermocouple positions in the block and head. 
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several locations in the engine head. Diagrams of the general location of thermocouples in the 

engine head and block are shown in Figure 21. Thermocouples in the metal block structure were 

placed at 20 degrees from the perpendicular of the cylinder due to packaging constraints on the 

intake side of the engine. In addition thermocouples were drilled half-way through the thickness 

of structural walls to ensure that cracking due cyclic thermal or stress fatigue did not affect 

readings. This being said, the thermocouple on the first cylinder at the top of the liner failed after 

commissioning. With this, thermocouples were used for metal and coolant temperature 

measurements which then elaborated upon heat flux and enthalpy calculations.   

4.3.1 Data Used for Model Correlation 

Test-bed data presented in this thesis originates from 1) an eddy-current dynamometer rig 

(ECTB) [4.2] located at the University of Nottingham and 2) a driving dynamometer test-bed 

situated on an engine test bed situated at the British Petroleum (BP) Pangbourne Technology 

Centre. Comparisons between experimental and model outputs using temperature information 

resulting from cylinder wall and coolant thermocouple data are shown in subsection 4.7.2. Drive 

cycle data emanating from BP for the purpose of comparing coolant and oil temperatures and fuel 

consumption over the NEDC and FTP-75 are shown in Chapter 4 subsection 4.8.2.3 and 4.10.3. 

4.4 Feature Revisions and Additions 

4.4.1 Integrated Exhaust Manifold (IEM) 

For lumped capacity thermal modelling purposes an appropriate estimate of the volume 

surrounding the IEM was necessary to model inertial effects during warm-up, deactivation and re-

activation periods. For this purpose, a singular element was sufficient to define cylinder specific 

exhaust ports. In this case, three elements have been used in the multi-cylinder instance of 

PROMETS.  

4.4.1.1 Dimensions Used for Mass and Volume Estimation 

Two methods of extracting the geometries from an IEM to make a generic estimate of the 

volume of a lumped element model are suitable for the lumped thermal approach used in this 

instance. The first is by topographically representing the structure given a physical engine to refer 

to. Otherwise and if available, CAD drawings provided by the engine manufacturer may be used 

to extract such information. The latter was chosen for purposes of accuracy and time constraints. 
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As shown in Appendix A the exhaust port volume metal element in PROGEN is simply 

calculated by subtracting the volume of the hollow part of the exhaust port by the thickness of the 

metal surrounding the exhaust port. 

                                                    

 On the left-hand side of the expression, the total exhaust port element volume solely accounts 

for the wall thickness. The expression for                represents the inner volume of the port 

while                adds thickness to the inner volume. Each volume is split into three sections 

described generically in Appendix A.   

4.4.1.2 Surface Areas for Heat Transfer to Coolant  

 The surface areas of the exhaust port metal exposed to coolant were extracted from a CAD 

model of the engine head. The dimensions of the surface areas assigned and transferred to 

PROMETS are shown in Figure 22.   

 

 

 

 

 

 

 

Figure 22: Modelled surface areas exposed to coolant flow in the IEM for specific cylinders. 

 

4.4.2 Engine Component Masses 

4.4.2.1 Revisions for Optimised Crankshaft and Connecting Rod Designs  

 Component masses have been previously described in PROGEN through empirical 

formulations based on work done by Chick [4.3]. Since the inception of these expressions, 

introduction of weight reducing features on modern engines has required that these formulations 

be revised. For the crankshaft, mass reduction has been sought through improved web-design, 

counterweights and hollow crankpin journals [4.4]. Optimisation via CAE has also led engine 

designers to reduce the mass of connecting rods specifically around the I-beam and small end and 
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big end bearings [4.5]. Given this knowledge it was found that the original expressions for the 

mass of the crankshaft and connecting-rod did not give appropriate estimates. To correct for this 

constants were modified in the source code for PROGEN such that masses compared well with 

experimental measurements.    

4.4.2.2 Comparisons between Modelled and Measured Engine Masses 

With the above modifications made to PROGEN the total engine mass (i.e. excluding the 

fly-wheel) was estimated within a 10% error band. Figure 23 shows a breakdown of the 

comparison between modelled and measured data for component masses. To allow for such a 

comparison the engine manufacturer supplied a detailed document with the masses of different 

components.  

 

Figure 23: Differences between measured and modelled component masses. 

 

4.5 Friction Model Revision for the TCE 

The thermal-friction interactions at rubbing surfaces are difficult to model using an explicit 

time marching scheme due to strong coupling between oil temperature, friction dissipation and 

viscosity. For the purpose of modelling cycle averaged friction a mean value model formulated 

by Patton et al [4.6], modified and corrected by Shayler et al [4.7] is used in PROMETS. As 

described in the previous chapter in subsection 3.3 the original friction model stems from a force 

analysis coupled with lubrication theory to account for the effect of changes in the viscosity of oil.  
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4.5.1 Original Friction Model Description  

Although in the past other formulations have been added to PROMETS, Vogel constants specific 

to a 5W-20 oil grade (i.e. present in the TCE) were not previously investigated and were therefore 

added. Values for the thicker (5W-40) and thinner (5W-20) solutions are shown in Table 3 below. 

 

Oil Grade/ 

Vogel Constants 
5W-20 [4.8] 5W-40 [4.6] 

   (Pa  ) 4.576       1.1220       

   ( ) 1224 1018 

   ( ) 134.1 125.9 

 

 

 

Table 3: Oil viscosity constants for SAE 5W-20 compared to SAE 5W-40. 
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4.5.2 Engine Friction Validation 

The total engine friction for the TCE due to combined rubbing friction and ancillary loads (i.e. 

vacuum pump, oil pump, coolant pump and fuel pump) while operating on all cylinders were 

determined experimentally. This was calculated by subtracting the calculated BMEP (based on a 

measured brake torque value) from the net IMEP (calculated by integrating a pressure-volume 

trace for one engine cycle) over a range of engine operating conditions emanating from the rig at 

the University of Nottingham.  

The corresponding friction prediction was increased exactly by 10% to match experimentally 

measured values, at various speeds, with each component contribution scaled by the same factor. 

The change in the coefficients from the previous PROMETS model for Equations 9 to 12 (shown 

in subsection 3.3) are shown in Table 4. The agreement between the measured and adjusted 

prediction of the total and the distribution between contributing sources are shown in Figure 24. 

For the ancillaries, the three pumps (i.e. fuel, coolant and oil pumps) have been coupled together 

for this application and it is assumed that there are no changes in pump performance when 

cylinder deactivation is enabled. A comparison between modelled and component specific FMEP 

from engine teardown tests (conducted in Germany) were supplied by the automotive 

manufacturer. Perfect agreement lay between measured and modelled FMEP values, however for 

confidentiality purposes these are not plotted. Furthermore, FMEP points plotted in Figure 24 are 

limited to four engine speeds (i.e. 1500, 2000, 2500 and 3000rpm); over 20, 40 and 60Nm brake 

torque points, to ensure that excessive engine speeds would not wear the engine down 

considering the number of tests required for thermal validation of the model. 
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Table 4: Coefficients for engine friction sub-assemblies.  
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Figure 24: Modelled and measured FMEP values for fully warm conditions, i.e.          for 

a flat-follower configuration. 

 

4.6 Oil Circuit Model  

For the TCE engine oil is pumped from the sump into two main galleries 9mm in diameter 

and 286.2mm in length. The head gallery is 7.5mm in diameter traversing a length of 286.2mm. 

A total of 4.9 litres of oil is contained within the engine.  Only dimensional modifications specific 

to the TCE were made to model the heat transfer across the oil circuit. Therefore the oil circuit is 

kept the same as that shown in subsection 3.7.  

4.7 Revisions to the Gas-side Heat Transfer Expression 

Ensuring appropriate heat transfer changes are predicted when deactivating a cylinder, the 

heat transfer expression from the gas-side to coolant was revised to account for the addition of the 

IEM and direct injection. An accurate prediction of temperature differences and changes for 

components throughout the modelled engine was required. Importance in verifying this also 

translates to appropriately estimating warm-up rates for both coolant and oil mediums. This 

section describes revisions made to account for increased heat transfer from the exhaust ports to 

coolant and validation of the revision by comparing heat transfer and metal temperatures.     
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The constants C1 and C2 optimised for SI engines by Shayler et al are specific to engines with 

an external exhaust manifold. Addition of an integrated exhaust manifold required that the energy 

balance between heat sources and sinks be revisited. Also due to the increase in the exhaust port 

diameter the Nusselt-Reynolds expression was verified with respect to experimental data. The 

methodology for this modification for the application to the TCE is explained in the next sub-

section.  

4.7.1 Methodology for Revision of Heat Transfer Model 

The procedure used in revising the gas-side to coolant heat transfer follows the methodology 

described by Shayler et al [4.9]. Integrating the exhaust manifold into the engine head eliminates 

heat transfer across the manifold face and raises exhaust gas heat transfer within the head. As the 

IEM is enveloped by coolant passages the heat transferred from the exhaust ports to the coolant is 

increased. Thus the energy balance is re-written omitting heat losses through the external exhaust 

manifold:  

 

             ̇     ̇    ̇          ̇      ̇     ̇        Equation 33 

 

Where  ̇   is representative of heat transferred from the IEM. Measuring a value of the heat 

transferred from the IEM to the coolant is facilitated by the design of the split cooling system. 

Coolant passages in the exhaust side of the head are segregated from the rest of the engine. 

Therefore, given the coolant mass flow-rate and the rise in coolant temperature the enthalpy of 

the coolant flow-rate is directly calibrated in the following manner:  

     ̇        ̇                       Equation 34 

Where    is the difference in coolant temperature entering and exiting the passage and  ̇    , the 

mass flow-rate. The heat transfer from the port required the existing model to be calibrated, 

specifically to the 1.0l TCE. The Reynolds number index, 0.7, is based on an exhaust port heat 

transfer Nusselt-Reynolds expression stemming from data on six engines previously studied at 

Nottingham. Other Nusselt-Reynolds expressions are provided in literature describing time-

averaged heat transfer in the exhaust ports and are shown in Table 5 below [4.9] [4.10] [4.11] 

[4.12] [4.13] [4.14]. The relationship previously used in PROMETS derived by Shayler et al [4.9] 

lies between the relations found by Catton and Heywood [4.13] and Meisner and Sorenson [4.14] 

as shown on Figure 25.   
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For the TCE an increase in coolant enthalpy was noted due to coupling of coolant flowing 

from the turbocharger bearing to the exhaust side of the head. The mass flow-rate, at varying 

engine speeds, accounted for approximately 10% of the total flow from the exhaust side of the 

head and was thus subtracted from the measured outlet temperature. Changes in measured heat 

transfer from the IEM to coolant compared to the predicted heat transfer from straight runner 

ports are compared in Figure 26 C.  

 

Table 5: Various Nusselt-Reynolds expressions describing heat transfer at the exhaust ports. 

 

To calculate a Nusselt number for the exhaust port an effective exhaust port diameter was 

required. An attribute of the IEM is that the exhaust port diameter is not uniform. The diameter 

was measured with reference to a CAD model of the engine head.  Near the exhaust valve the 

diameter measured 19.8mm, doubling as the ports merge, contracting to a unified exit width of 

25mm. An average port diameter of 25mm was calculated using CAD tools. With this, the 

following Nusselt number expression characterised heat flow to the coolant:  

     
 ̇     

     (                )
         Equation 35 

    is calculated based on the average exhaust port diameter using an average length,         , 

for all three cylinders. The conductivity of the exhaust gas was taken to have the same 

dependency on equivalence ratio as the in-cylinder exhaust gas, i.e. as shown above. To 

appropriately evaluate the Nusselt number an estimate of the exhaust gas temperature across the 

exhaust port,        , and an average port wall temperature,         , were required. The open 

flow expression used to estimate the exhaust gas temperature is shown below:  

Nusselt-Reynolds Relation Authors 

                    Dittus-Boetler [4.10] 

               Hires and Pochmara [4.11] 

                  Malchow, Sorenson and Buckius [4.12] 

              Caton and Heywood [4.13] 

                  Meisner and Sorenson [4.14] 

              Shayler and Chick [4.9] 
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 ̇  

(
 ̇ (     )

    
)(

 

   
) 

                Equation 36 

Based on Heywood’s [4.15] observation an index of     is a robust estimate for the polytropic of 

exhaust gas exiting the exhaust ports. The port wall temperature was calculated based on the 

thermal resistance of the port wall and coolant given the heat transfer through the port to the 

coolant and coolant temperature. The expression is shown below:  

                (
  

  
  

               
 

 

               
)                Equation 37 

Experimental values were taken during constant operating conditions such that exhaust gas 

and coolant temperatures settled. The ratio  
  

  
 was taken uniformly through the extent of the port 

length, equating to      .          was calculated based on model predicted values using the 

Dittus-Boetler expression. Variations in the calculated inlet exhaust gas temperature existed due 

to small oscillations in measured exit temperatures. Knowing this, inlet exhaust gas temperatures 

were generally          higher compared to exit exhaust gas temperatures mainly dependent 

on mass flow-rate. Estimated exhaust port metal temperatures were generally 200 - 400  hotter 

compared to the coolant, ranging between 260 - 530 . Calculation errors primarily stem from 

uncertainty in estimating the exhaust gas temperature. These errors are difficult to quantify and 

are dependent on calibration.  

To characterise the heat transfer in the exhaust port in a Nusselt-Reynolds power law 

expression the exhaust port Reynolds number was also calculated. This was done using the 

following expression: 

  

                      
   ̇  (     )

      
            Equation 38 

Where the dynamic viscosity of the exhaust gas,   , has the same dependence on equivalence 

ratio as the in-cylinder gas.  

4.7.2 Comparison between the Original and Revised Model 

The Nusselt and Reynolds numbers resulting from the above expressions were then plotted on 

a log-log scale against exhaust port heat transfer descriptions listed in Table 5. Data in Figure 25 

shows Nusselt Reynolds estimate for engine speeds between 1250 and 3000rpm and brake loads 



 

69 

 

between 20 (i.e. 11% WOT) and 150Nm (i.e. 86% WOT). A mean fit through the data was 

plotted giving the following Nusselt-Reynolds correlation: 

                     
              Equation 39 

Figure 25 shows that the IEM increases the Nusselt number above the Caton and Heywood [4.13] 

correlation and those previously described by Shayler and Chick [4.9]. This is primarily attributed 

to an increase in exhaust port diameter. The increase in coolant surface area in contact with the 

metal is also attributed to this. The Nusselt numbers remain below those observed by Hires and 

Pochmara representative of heat transfer in the curved port wall section next to the exhaust valves. 

This is indicative of the Nusselt number not being overestimated. 

Using the index inferred from the Nusselt-Reynolds plot, i.e. 0.723, the constants C1 and C2 

were calculated using the following expression: 

         
 ̇  

   
  

 
(       )   

     
     Equation 40 

 

 

Figure 25: Predicted exhaust port heat rejection compared with published correlations from sets 

of data for the 1.0l engine designed with an integrated exhaust manifold. 

 

39 

Data points used to define Equation 39. 

Spread in dots is present due to 

oscillations in measured exhaust gas 

temperature resulting from unstable in-

cylinder pressures at certain loads.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Operating Conditions Tested 

Brake Loads: 20 – 145Nm 

Engine Speeds: 1000 – 4000rpm 
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These were evaluated through a simple optimisation process and cross-referenced against the 

coefficients in Equation 40, giving new constants        and      compared to the previous 

constants        and       .  

     *    (
 

   
)
   

                

       
+    

       Equation 41 

To determine the validity of these new constants modelled and measured heat rejection rates from 

the gas side to coolant for the engine, cylinder wall and exhaust ports are shown on Figure 26. 

These are also compared against predicted heat rejection rates using the original expression 

derived by Taylor and Toong [4.16] and Shayler and Chick [4.9]. The new constants result in a 

more accurate description of the heat rejection to coolant as compared on Figure 26 (A). As seen 

on Figure 26 (B) the influence of changing the coefficients and index on the cylinder based heat 

transfer to coolant is retained and slightly improved. Figure 26 (C) illustrates the increase in heat 

transfer from the exhaust port significantly improving the predictions.  

To further verify that the appropriate amount of heat is exposed to the metal components 

comparisons were made between measured and modelled cylinder wall temperatures. Cylinder 

number one and two were used for this purpose as is illustrated in Figure 27 and Figure 28. For 

the first cylinder a 5  difference is present between modelled and measured data. Experimental 

wall temperatures are generally lower due to the block aperture being located adjacent to the 

thermocouples. The cylinder wall is locally cooled remaining outside the resolution of a 0-D 

lumped thermal capacity model where the annular elements consist of single temperature. 

Thermocouple tips for cylinders one and two were situated mid-way through the cylinder wall 

thickness such that these matched with the representation of the model elements. Readings at 

20mm from the flame-deck are also missing due to thermocouple failure after commissioning of 

the engine. Modelled wall temperatures for cylinder number two agree well with measured data, 

remaining within a 3  difference. Generally the difference increases with brake load and reduces 

as engine speed increases. The crested temperature profile is generally very well captured 

indicating that heat paths to the cylinder head and lower crankcase are appropriately modelled.  
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Figure 26: Predicted heat rejected to coolant on (A) a total per cylinder basis, (B) specific to the 

cylinder walls and (C) specific to the exhaust ports from sets of data for the 1.0l engine designed 

with an integrated exhaust manifold. Heat released to engine coolant was calculated using an 

open flow enthalpy equation for coolant passages in the exhaust side of the head and block given 

a mass flow-rate, temperature difference and empirically based specific heat capacity for coolant. 
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Figure 27: Comparison of modelled and measured cylinder 1 wall temperature for various engine brake loads and speeds. 
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Figure 28: Comparison of modelled and measured cylinder 2 wall temperature for various engine brake loads and speeds. 
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4.8 Revised Coolant Passage Heat Transfer 

Prior to this study modelled heat transfer in coolant passages has been represented through forced 

convection and nucleate boiling. These have been described in subsection 3.6.2. For the TCE, these are 

still the dominant forms of heat transfer however the addition of a thermostat controlling coolant flow in 

the block has required the addition of a term describing heat transfer through natural convection. 

Expressions made available in literature used to describe natural convection have been assessed based on 

their applicability to the topography of the block coolant passage of the TCE. As a result of expressions in 

literature not being suited to represent natural convection in the TCE an empirical Nusselt-Raleigh 

expression has been used to satisfy this void.  

4.8.1 Advanced Cooling Circuit Design Representation 

Unlike conventional cooling systems, a split cooling circuit involves the segregation of coolant 

volumes to specific parts of the engine reducing coolant thermal inertia while promoting engine warm-up 

rate. The TCE has a single coolant delivery which is split during the warm-up process and re-routed as a 

parallel cooling system through the use of two thermostats; one situated at the block and a conventional 

radiator thermostat. This characterises the cooling system for the TCE as an advanced cooling system.  

Initially flow passing through the block leads in parallel with the intake side of the head and is 

segregated from flow in the exhaust side of the head. A schematic of the model representation for the 

segregated flow is shown on Figure 29 at different stages of the warm-up. As shown in Figure 29 (A) 

prior to the block thermostat opening, forced convection is only present across the exhaust side of the 

head. During this stage, coolant in the block is warmed-up by heat transfer in the form of natural 

convection. When coolant in the block situated adjacent to the block thermostat reaches 75  forced 

convection takes place throughout the engine structure, as is shown in Figure 29 (B). Bleed-holes located 

between the block and the intake coolant passages direct coolant entering the block up through to the 

intake side coolant gallery. As coolant is directed to the back of the engine, flow from the intake side of 

the head and exhaust side of the head mix prior to leaving the engine structure. Figure 29 (C) depicts the 

coolant circuit when the radiator thermostat opens.  

When forced convection is present throughout all coolant passages in the engine, during fully warm 

operation, the physical attributes of flow mixing and bifurcation are accounted for by assigning 

percentage reductions to the volume flow-rate at designated locations within the model. The total coolant 

flow-rate at the pump bifurcates into a 25% and 75% split directed to the block and exhaust side of the 

head respectively (refer to Figure 29 B). With reference to data emanating from CFD models [4.18], as 

coolant flow in the block traverses each cylinder (i.e. three cylinders) a 33% reduction in volume flow-
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rate is directed into the coolant passage in the intake side of the head. Thus as flow merges prior to exiting 

the head the percentage split between flow sourcing from the exhaust side of the head and intake side of 

the head are attributed a 25% and 75% split respectively. Flow-rates were extracted from idling to rated 

power operation from manufacturer supplied data and CFD simulations.  The percentage split translates to 

the temperature balance and mass flow-rate calculation made for merging flow in the model.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 29: Coolant schematic for the modelled three cylinder engine [A] prior to the block thermostat 

opening, [B] after the block thermostat opens and [C] when the radiator thermostat opens.   
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4.8.2 Modelling Quiescent Coolant in the Block 

The presence of natural convection in the block required the addition of a correlation for quiescent 

liquid undergoing heat transfer in an enclosure being heated from a side-wall transferring heat to a cooler 

side-wall. The phenomenon is first described followed by a description of the available expressions found 

in literature.  

4.8.2.1 Natural Convection in a Rectangular Enclosure 

The coolant passage in the block is best described by vertical rectangular enclosure. The fluid is 

assumed to be Newtonian. At t ~ 0 seconds the sidewall is coated with a conduction layer which increases 

with respect to time as shown [4.19]: 

  

 
  

  

  
              (  )    

Where:  

-    is the boundary layer thickness 

-   
 

   
 (thermal diffusivity) 

-   ; time (sec) 

 

While the fluid does not undergo heating three forces balance out such that the fluid remains 

quiescent: the inertia, friction (viscous diffusion) and buoyancy forces. Inertia forces are dependent on the 

momentum diffusivity while the buoyant forces are dependent on the thermal diffusivity. Initially, the 

Prandtl number     
 

 
 

   

     
 

   

 
 is small such that the thermal diffusivity is close to the momentum 

diffusivity. As the fluid heats up, due to conduction through the cylinder wall, the convective effect 

increases in turn increasing the importance of the buoyancy force compared to the friction forces, 

     . At this instance, the Prandtl number increases such that the momentum diffusivity dominates 

the thermal diffusivity such that     . As the temperature of the cylinder wall increases through the 

warm-up process there exists a point in time,   , when the energy balances between conductive and 

convective forms such that the enthalpy is carried away vertically by the buoyant forces [4,19]. Beyond 

that time the layer thickness is: 

       (   )
   

     
    

 

Where the Raleigh number according to Bejan is based on the enclosure height: 
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Unlike, other sources [4.19] Bejan states that the choice of incorporating the characteristic length as 

the width of the enclosure, L, instead of the height, H, for the Raleigh number ‗is without foundation from 

a theoretical scaling viewpoint‘. That is, the relation between the property     is not strongly bounded by 

the characteristic dimension L. Knowing this, Bejan gives the condition such that ‘if the final thermal 

boundary layer thickness      is smaller than the transversal extent of the enclosure (L), the thermal 

layers will be distinct’ such that the following criterion is satisfied: 

 

 
    

   
    

 

    

    

The enthalpy flow from the hot vertical end to the cold vertical end is expressed in the following manner: 

           
          

    (    )     

Which simplifies to: 

           
          

            
   

 

Heat diffuses vertically from the warm upper branch of the counter-flow to the lower branch at a rate 

           
          

      
  

 
 

The enthalpy carried by the stream, horizontally reaches the opposite end intact when the vertical 

diffusion is negligible such that,  

 

 
    

    
  

When the above condition is met, Bejan states that the horizontal streams along the adiabatic walls 

retain their temperature identity. Four regimes may be used to describe the convective heat transfer 

dependent on the aspect ratio,  
 

 
, of the cavity containing the fluid and the     number, as shown in 

Figure 30 [4.19].  

1) The first regime accounts for heat transfer through conduction (where      ) and the 

temperature varies linearly across the cavity, wherein the heat transfer rate across the cold wall is 

insignificant. There are no distinct layers or striations in this regime.  

2) The second regime is specific to tall enclosures, where the temperature difference across the 

cavity is linear like that of the first regime, with distinct layers close to the top and bottom walls.  

3) The third regime is suited for high Raleigh number cases with thermal boundary layers forming 

next to the vertical and differentially heated sidewalls. The heat transfer rate obeys a convective 
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form with a non-linear temperature profile presenting itself between the hot and cold walls. The 

horizontal walls are adiabatic where within the cavity the fluid is relatively stagnant and 

thermally stratified (i.e. 
 

    
  ) with distinct streamlines providing a rotational flow pattern.  

4) The fourth regime is pertinent to a shallow enclosure, where the rotational flow pattern is 

obscured by turbulence due to the streamlines being very close to one another, therefore creating 

an insulating heat barrier. The boundary layer becomes significantly more turbulent compared to 

regime three.  

 

Figure 30: Heat transfer regimes for internal natural convection for an enclosure heated from the side 

[4.19]. 

Mention of the four regimes is made such that future studies can refer to the Raleigh number depending 

on the coolant passage topology. Such designs could include sectioning of the block passage (i.e. with 

respect to the fourth regime) or creating long slender passages (i.e. the second regime) such that the effect 

on coolant warm-up rates may be observed and further studied.  

 

4.8.2.2 Nusselt-Reynolds Empirical Expression for Natural Convection 

Several expressions are available describing natural convection in a vertical enclosure. These are 

specific to the aspect ratio of the enclosure and applicable to experimentally observed Prandtl and Raleigh 

numbers. These are provided by [4.19] [4.20] and are shown in Table 6. 
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Table 6: Natural convection expressions for fluid trapped in a vertical enclosure heated from a side wall 

with uniform heat flux [4.19] [4.20].   

 

To appropriately select the Nusselt number expression utilised for 0-D modelling purposes, 

experimentally occurring Prandtl and Raleigh numbers were first verified against the inequalities shown 

above. The aspect ratio for the coolant cavity in the block measured H/L ~ 12.5. Coolant properties and 

dimensionless numbers were evaluated for a warm-up encompassing the following engine operating 

conditions: N = 1000 - 2000rpm and    = 1 - 44Nm.  The starting temperature of the coolant, oil and 

global engine structural temperature measured 19 . Figure 31 shows the locations of the thermocouples 

used to capture the temperature profiles of the quiescent coolant shown on Figure 32. Subsequently these 

temperatures were used to calculate coolant properties.  

Author 
Equation 

Number 
Expression Conditions 

Dimensional 

Length for 

   

C
en

g
el

 

Equation 42 
         (

 

 
)
    

            
     

   
 

 
    

           

            

  

Equation 43 
           

 
  

  
 

 
    

        

            

  

B
ej

a
n

 

Equation 44 
         (

 

 
)     

     

     
 

 
   

        

  



 

80 

 

 

Figure 31: Characteristic dimensions used for the block coolant cavity and location of thermocouples 

utilised to monitor liquid temperatures. 

                                   

Figure 32: Measured block coolant temperatures opposite cylinder 1 and 3 during a warm-up phase for   

N = 1000 - 2500rpm, Tb =1 – 44Nm. 
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Coolant conductivity (Equation 45), specific heat capacity (Equation 46), viscosity (Equation 47) and 

density (Equation 48) were determined utilising empirical expressions for a coolant composed of 50% 

ethylene-glycol and 50% water [4.21].  

 

                                    √
            (         )         (         )      

 

    (         )       (         )      
                     Equation 45 

 

                √
           (         )      

    (         )       (         )      
           Equation 46 

 

                   
(         )   (         )      

   (         )         (         )      
     Equation 47 

 

                
       (         )      

    (         )         (         )      
                    Equation 48 

 

These expressions are designed for an absolute pressure of 2.5bar, for forced convection cases however 

the results are independent of pressure over the range of pressures used in engine coolant systems. 

Property values were then substituted to calculate the Prandtl number: 

    
    

 
           Equation 49 

The Raleigh number       (     )  was then determined utilising the following expression: 

             
   

 

      

   
          

  
              Equation 50 

Where the volume expansion coefficient for a liquid,  , was determined by:  

          
    

 (    )
        Equation 51 

Given that the temperature of the inner block wall was not monitored a simplification was made by 

equating the upper-outer block wall temperature to the coolant temperature at the centre of the cavity. The 

effect of this assumption on the estimation of the Grashof number is unknown. This is can however be 

inferred as marginal as there is no direct contact between the combustion gases and the outer block wall. 

Following Cengel‘s approach [4.20], the characteristic length used for the Raleigh number was chosen as 

the width of the coolant cavity, L. The density of the coolant at the interface between the coolant and 
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metal structure is evaluated utilising the cylinder wall metal temperature such that     .    is 

evaluated using coolant temperature,   , measured mid-way through the block cavity.  

Experimentally occurring Prandtl and Raleigh numbers were then compared against the inequalities 

presented for the three expressions found in literature. Observed Prandtl numbers, shown through the blue 

line on Figure 34 (D), fall outside the bounds of the inequality for Equation 42.  The expression is only 

pertinent for coolant temperature greater than 40 degrees Celsius, equivalent to a      . The 

expression was found unsuitable for modelling purposes as ambient world temperatures range between 

       and       [4.22]. Applying thermocouple measurements to Equation 43 resulted in over-

estimating the Raleigh number by an order of magnitude also leading to uncertainty. Equation 44 

presented in Table 6 proves to satisfy observed dimensionless numbers and the measured cavity aspect 

ratio, however this was achieved when using the cavity width as the characteristic dimension instead of 

the suggested cavity height. Given that turbulence in a vertical boundary layer commences when    

       [4.23], applying the cavity height as a characteristic dimension over-estimates the buoyance (i.e. 

gravitational effect) effect due to heating. This is specifically observed during the early stages of warm-up. 

Given the lack of certainty in using the equations provided in literature, a simple power law relationship, 

         was empirically derived. The process for this is described in the following subsection.  

 

4.8.2.2.1  Method for Empirically Deriving an Expression for Natural Convection  

PROMETS utilises a single temperature node to describe cylinder-specific block coolant temperature. 

Thus the total number of coolant nodes for the TCE is three. A weighted wall temperature is, in effect, 

used to determine the overall heat transfer coefficient across the cylinder wall. Therefore, a singular metal 

and adjacent coolant temperature profile has been used to extrapolate a Nusselt-Raleigh relationship.  

Heat transfer rates were calculated utilising thermocouple readings for metal situated 40mm from the 

flame-deck (FFD). Due to the absence of a thermocouple opposite the metal, the coolant temperature at 

the centre and situated opposite the metal thermocouple was linearly extrapolated from thermocouple data 

from measurements taken at 30 and 60mm FFD. Measured and extrapolated metal and coolant 

temperatures were then used as characteristic temperatures to determine the properties and dimensionless 

numbers described on Table 6. A quasi-static approach was used to solve for the change in internal energy 

of the fluid.   

                 
  

  
           Equation 52 
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The total mass,  , of fluid contained around each cylinder was approximated by dividing the total 

volume of liquid in the block by the number of cylinders. Where 
  

  
 was monitored over one second 

intervals. The heat transfer coefficient was resolved next by re-arranging the expression for Newton‘s 

Law of Cooling: 

              
          

          
            Equation 53 

Where    is the temperature difference between the cylinder wall and the coolant temperature;       , is 

the total surface area around the cylinder wall assuming a uniform temperature. Heat losses from the 

coolant to the outer block wall to ambient air significantly less. As such with a heat transfer coefficient a 

magnitude or two lower through the cooler wall compared to that of the hotter wall the heat transfer could 

be considered negligble. With this, the expression for the lateral surface area of a cylinder with height 

0.085m and width 0.077m was used to calculate the surface area of the cylinder wall. An experimental 

Nusselt number was calculated based on this dimension using the expression shown below: 

      
                  

        
        Equation 54 

Figure 33 shows the log-log plot of the experimental Nusselt-Raleigh resulting in the following relation: 

           
                               Equation 55 

Expressions with an exponent of ¼ are indicative of laminar flow while turbulence is described by an 

exponent closer to 1/3 [4.19]. The empirically derived exponent of 0.1738 indicates that laminar flow is 

present near the centre of the cavity although turbulence may exist between the metal and coolant 

interface.   

The influence of each modelled element temperature was weighted by comparing the individual 

surface area exposed to the coolant against the total surface. For this particular engine, five cylinder-wall 

elements of varying temperature were in contact with coolant situated in the block. Thus the uniform wall 

temperature used to calculate the heat transfer coefficient is described by: 

                                                                     Equation 56 

Where          ,               and          . The influence of the modelled cylinder wall 

temperature on the heat transfer coefficient is centrally biased ~42.5mm FFD. Good agreement exists 

between empirical and modelled block coolant properties, dimensionless numbers and heat transfer, 

shown in Figure 34 (A-J). 



 

84 

 

 

Figure 33: Log-log plot of measured Nusselt and Raleigh numbers used to derive a power law relation 

for the heat transfer coefficient for internal natural convection for N = 1000 - 2500rpm, Tb =1 – 44Nm. 

 

4.8.2.3 Validation over Steady-State and Drive Cycle Applications 

Second-by-second comparisons of the quiescent coolant temperature resulting from expressions 

provided in literature and that shown in Equation 55 for a warm-up are shown in Figure 35. Applying the 

analytically derived expression, Equation 55, correlates well with the rate of change in temperature while 

changes in gradient due to oscillations in torque are also very well mimicked. This is analogous to 

changes in the heat transfer coefficient. Using equation 42 and 43 in PROMETS underestimates and 

overestimates the heat transfer coefficient respectively. Instead of applying the characteristic dimension, 

H (i.e. cavity height), for Equation 44 as suggested by [4.8], good agreement with experimental data is 

instead observed when using L (i.e. the cavity width) as the characteristic dimension. Due to uncertainty 

in applying the cavity width as the characteristic length Equation 55 was used for modelling purposes.  
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Figure 34: Modelled and measured coolant properties and dimensionless numbers for a warm-up 

at N = 1000 - 2500rpm, Tb =1 – 44Nm. Block thermostat opens at t = 236 seconds. 
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Figure 35: Second-by-second comparison of measured (30mm and 60mm FFD) and modelled coolant 

temperatures using literary and the analytical            
     relations for N = 1000 - 2500rpm, Tb =1 – 

44Nm. 

Measured coolant volumes were represented and adjusted for modelling purposes. In-engine coolant 

volumes were acquired through manufacturer supplied CAD models. The percentage split of coolant 

volume between segregated intake and exhaust sides of the head were determined by filling and draining 

processes prior to installing the engine on the test-bed at the University of Nottingham.  A comparison of 

the modelled and measured coolant volumes before, Figure 36 (A), and after the block thermostat is 

opened, Figure 36 (B), are illustrated for steady-state and transient set-ups.  

The modelled volume passing through the exhaust side of the head, i.e. 1.3 litres, is in perfect 

agreement with the measured volume. A larger discrepancy exists during the quiescent phase where the 

block volume is nearly doubled, ~95% increase, for steady-state operation. This is further increased to 

~150% for transient operation when correlating with rig data originating from BP. The large discrepancy 

is primarily due to the 0D lumped capacity nature used to model the block volume. This is a weakness in 

the modelling approach employed. However, for the envisaged purpose of observing warm-up rate 

changes due to cylinder deactivation, increasing the dimensionality of the model was not required. 

Comparisons of predicted and experimental variations in oil and coolant temperatures over the NEDC are 

given in Figure 37 (A), (B) and (C). 

 

Measured Temperatures 

Equation 44 (delta = H) 

Equation 42 (delta = L) 

Equation 43 (delta = L) 

Equation 44 (delta = L) 

Equation 55 (delta = L) 
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Figure 36: Comparison between measured and modelled in-engine and external coolant volumes (A) 

before and (B) after the block thermostat opens based on the in-house test-bed. 

 

 

Figure 37 (A) shows the variation of oil temperature in the engine main oil gallery, (B) shows the 

coolant temperature in the block bypass to the pump inlet and (C) the coolant temperature in the block. 

The agreement between predicted and experimental data is good, including the times at which the first 

and second thermostats open. The opening points at ~200s and ~900s, respectively, are marked by the 

changes in the rate of coolant temperature change which can be seen in Figure 37 (C).   
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Figure 37: Modelled and experimental (A) oil main gallery, (B) bypass coolant and (C) block coolant 

passage warm-up rates for the NEDC (supplied by BP).  

 

 

A 

B 

C 

Modelled  
Measured 



 

89 

 

4.9 Piston Cooling Jet Heat Transfer 

In PROMETS pistons are represented using two elements segregating the piston crown and skirt. The 

respective element numbers are 23 and 24 as seen on Figure 12. As combustion ensues, heat propagates 

from the piston crown to two components, the connecting rod and cylinder wall.  Heat directed towards 

the connecting rod passes through the piston skirt, connecting rod pin and down to the connecting rod. 

The cylinder wall on the other hand receives heat from the piston crown through physical contact with the 

piston rings. In the TCE the presence of an oil jet impinging on the lower surface of the piston crown and 

the interior of the piston skirt reduces heat transfer to the cylinder liner and connecting rod. Instead heat is 

stored in the oil splashing down past the crankshaft assembly down to the sump. A brief explanation of 

the theory behind the piston cooling jets (PCJs) is described in this subsection based on more thorough 

studies conducted by Law [4.24] and Easter et al [4.25]. With this a comparison of the modelled and 

experimentally obtained heat transfer coefficients are compared for model validation purposes. Validation 

is ensued in light of assuring that robust predictions of the piston temperatures are obtained when 

enabling piston cooling jets with cylinder deactivation.  

4.9.1 Piston Cooling Jet Discharge and Heat Transfer Coefficient  

 Describing heat transfer from the piston to the oil cooling jet is a complex task [4.24] outside the 

scope of this study. A cycle averaged solution as described in the work of Law [4.24] and Easter et al 

[4.25] has been used for this instance of PROMETS, as has been done in previous versions. Although this 

is a simplification of the actual phenomenon it is important to capture the volume flow-rate of oil passing 

through the jet such that the Reynolds number used to calculate the heat transfer coefficient is estimated.  

 As oil travels from the main oil gallery into the L-shaped nozzle directing a jet of oil towards the 

piston underside a discharge coefficient is used to characterise the amount of actual oil flow through the 

orifice. Based on Mian’s [4.26] observation for Reynolds numbers below 20,000 this may be expressed as 

a function of the ratio of the length and diameter of the orifice, 
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       Equation 57 

 

Where     is the discharge coefficient for fully turbulent flow with Reynolds numbers above 20,000. 

                               (
        

        
)
   

       Equation 58 
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Mian [4.26] and Lichtarowicz et al [4.27] suggest calculating the discharge coefficient without 

substituting for the Reynolds number with knowledge of the area of the jet at the nozzle exit given the 

pressure drop across the orifice,   , 

      
 ̇

  √     
√            Equation 59 

Where  , is the ratio of diameters of the orifice supply pipe and the jet orifice 
  

   and    is the surface 

area of the cooling jet nozzle. For most commercial vehicles, Reynolds numbers are within the 2000 

region and therefore the discharge coefficient for cases below the 20,000 Reynolds numbers is most 

commonly used.  

          
        

    
√

   

 
      Equation 60 

Thus given the discharge coefficient and hydraulic Reynolds number, the volume flow-rate of the oil 

passing through the jet orifice is expressed by, 

 ̇  
   

   

√    √
   

 
     Equation 61 

The Reynolds number of the oil stream between the outlet of the piston cooling jet is described as the 

orifice Reynolds number. This is used to characterise the Nusselt number of the impinging jet for heat 

transfer coefficient evaluation: 

    
  ̇

    
      Equation 62 

The Nusselt number is empirically determined and is a function of the Reynolds and Prandtl numbers 

satisfying the following inequalities              ,           . These inequalities are 

confined for jet heights and orifice diameters in the range of              . For fully warm 

conditions Easter et al [4.25] describe the following Nusselt expression, i.e.         ,  

 

         (
        

        
)
      

   
                  Equation 63 

For conditions inclusive of warm-up and fully warm oil temperatures the following relation may be used 

again for the same Reynolds, Prandtl and jet height and orifice diameter ratios              , 

           and            respectively, 

         (
        

        
)
      

   
                  Equation 64 
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The heat transfer coefficient may then be determined by re-arranging the expression for the Nusselt 

number,   

        
    

        
        Equation 65 

The formulae used in PROMETS defining the piston underside areas defined by Law [4.24] refer to a 

circular topography while the actual contact area for the oil jet is significantly less given the design of the 

pistons. The expressions based on work by Law [4.24] shown below have been halved to equate to more 

accurate areas,   

                           
 

 
(     )

     Equation 66 

                       (     )(     )   Equation 67 

Where    is the crown thickness,    is the depth of the piston,    is the thickness of the skirt.  

4.9.2 Piston Cooling Jet Model Validation  

The Nusselt number expression for conditions inclusive of warm-up and fully warm oil temperatures 

were found to give the most sensible modelled heat transfer coefficients. The agreement between the heat 

transfer coefficient found by Easter et al [4.24] for differing jet heights, and those modelled in 

PROMETS are shown on Figure 38 (A). Small oscillations are present for the modelled data due to the 

variation in brake load and thus heat transfer coefficient. Comparisons of modelled and experimental 

Reynolds number, at the jet orifice, and Nusselt number are shown in Figure 38 (B).   
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Figure 38: Comparison between model outputs and findings reported by Easter et al [4.24] (A) for piston 

cooling jet heat transfer coefficient and (B) relationship between Nusselt number expression and orifice 

Reynolds number.  
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4.10 Revised Fuelling and Intake Manifold Pressure Estimation 

Historically PROMETS engine models specific to gasoline fuel have been tailored to non-

turbocharged, naturally aspirated, intake systems. The only model tailored to a turbocharged gasoline 

engine relied on an empirically based formulation specific to the NEDC [4.28]. Model outputs were 

however non-generic. For this modelling instance, appropriately estimating the intake manifold pressure 

past the throttle was required such that fuel consumption benefits due to reduced pumping losses be 

robustly predicted. Given this requirement, this subsection defines a simple expression used to predict the 

intake manifold pressure; corrections based on empirical formulations for warm-up and fully-warm 

conditions; and validation of predicted pumping losses over four drive cycles are complemented with 

comparisons in second-by-second and cumulative fuel consumption.  

4.10.1 Method for Estimating Turbocharged Intake Manifold Pressure 

K. Zinner [4.29] developed an estimate for the boosted intake manifold pressure specific to diesel 

engines but applicable to any turbocharged engine. The derivation of the expression stems by initially 

referring to the cylinder volumetric efficiency of the engine, defined as the ratio of the volume of trapped 

air over the swept volume of the cylinder, 

   

   
  

  
      Equation 68 

The net indicated work is related to the volumetric efficiency through the following expression:  

                               Equation 69 

A relation between the gross indicated thermal efficiency, combustion efficiency and lower heating value 

of the combusted fuel is found through the following expression: 

                                Equation 70 

Where the intensive form of the term for the lower heating value of fuel is: 

              Equation 71 

Given two terms that equate to the net indicated work, Equation 69 and Equation 70, the lower heating 

value of gasoline may be expressed in terms of combustion efficiency, gross indicated thermal efficiency, 

net indicated mean effective pressure and engine swept volume. The mass flow-rate of air is assumed to 

account for EGR in this case and the net amount of fresh air needed may be calculated if calibration based 

EGR values are known. With this, utilising an intensive form of the lower heating value the volumetric 

efficiency may also be brought into the expression as shown: 
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              Equation 72 

Equation 72 may then be equated with the definition of the lower heating value based on an indicated 

mean effective pressure and gross indicated thermal efficiency. Thus an expression for the gross indicated 

mean effective pressure in terms of volumetric efficiency, gross indicated thermal efficiency, combustion 

efficiency and intake air density for a given AFR results: 

     
        

     
 

             

     
 

       
                

     
    Equation 73 

Substituting for the density form of the perfect gas equation in terms of intake manifold pressure, charge 

temperature and gas constant substituted to equate to the intake manifold pressure a simple relationship 

between the gross indicated mean effective pressure       and intake manifold pressure is thus shown, 

      
            

  
   

     
         

             
                

           
    Equation 74 

An iterative solution for the pumping mean effective pressure is required to appropriately estimate the 

intake manifold pressure. Direct calculations are badly conditioned to large errors requiring several 

iterations of the calculation such that the solution converges. It must be noted that the above expression 

does not segregate scavenging of air from the induced air charge. Thus the expression would have to be 

re-written subtracting the scavenged air in effect reducing intake pressure. The combustion efficiency and 

gross indicated thermal efficiency generally vary little once engine loads are marginally above idling 

conditions. An accurate estimate of cylinder volumetric efficiency is however required to calculate 

appropriate intake manifold pressures. 

4.10.2 Cylinder Volumetric Efficiency Estimation 

The ideal volumetric efficiency is dependent on compression ratio, exhaust and intake charge 

pressures (i.e. dependent on engine brake load) [4.30] and engine speed.  

           
   (    ) (

   
  

)

 (    )
     Equation 75 

However, standing alone, this expression is not typified for an engine and thus specific corrective 

functions must be added. The correction functions are based on engine speed,    ( ) , and intake 

manifold pressure,    (  ), such that the product,   



 

95 

 

                   ( )    (  )   Equation 76 

may be calibrated to account for waste-gate position, compressor and turbine characteristics, valve timing 

(i.e IVo and EVo), AFR and fuel vaporisation effects. The functions    ( ) and    (  ) have been 

defined for fully warm engine thermal state.  

   ( )   (  )  
          

          
    Equation 77 

           are volumetric efficiency values calculated based on conditions in the intake manifold. 

Corrections for the effect the intake port metal temperature, strongly bound by coolant temperature, and 

intake air charge temperature on the intake charge density follows from Taylor [4.31].  

 

       

    
 

       

          
     Equation 78 
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     Equation 79 

 

Where the final form of the volumetric efficiency, accounting for engine speed and intake manifold based 

corrections dependent on engine calibration along with intake manifold and coolant temperature 

corrections results in the following expression:  

 

                    ( )    (  ) √
  

        
 

       

          
    Equation 80 

 

Shown in Figure 39 (A) is the speed based correction function and Figure 39 (B) the intake manifold 

based correction function acquired from a collection of data sourcing from BP for the 1.0litre three 

cylinder engine from NEDC, FTP-75, US06 and HWFET drive cycles (i.e. for conditions up to 3500rpm 

and 2.15barA).  
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Figure 39: Volumetric efficiency corrective functions based on (A) engine speed fna[N] and (B) intake 

manifold air pressure fnb[N]. Characteristic of curve on plot (B) is specific to calibration of the waste-gate 

on the turbocharger.  
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4.10.3 Iteration for Intake Manifold Pressure and Fuel Consumption Prediction  

A residual based iterative calculation, inserted into PROMETS in a c code script, predicts the fuel 

mass flow-rate, intake manifold pressure and pumping losses. The intake manifold pressure and 

volumetric efficiency are calculated using the methods described above. The exhaust gas pressure is 

referred to from a look-up table based on throttle position and waste-gate position (i.e. a function of brake 

torque and engine speed). Variations in exhaust pressure are generally significantly smaller compared to 

variations in intake pressure; in the range of 0.5 barA compared to 2barA. Thus the largest source of error 

in estimating pumping losses stems from the intake manifold pressure calculation. Implementing the 

iterative solution summarised in Figure 40, an estimate of the cylinder volumetric efficiency was made. 

The complete calculation process is shown in Appendix B, in a c-script format.     

 

Figure 40: Residual convergence based iterative solution for the estimation of the intake manifold 

pressure and fuel consumption.  

4.10.3.1 Validation of Predicted Intake Manifold Pressure and Fuel Consumption  

Figure 41 (A) and (B) show the agreement between the measured and modelled volumetric efficiency 

over a warm-up process on the NEDC. Model predictions for the intake manifold pressure show good 

agreement with measured pressures as shown on Figure 42 (A). Although the exhaust manifold pressure 

is assigned through a look-up table, pumping work losses also agree very well with experimental data as 

shown for the NEDC, FTP-75, HWFET and US06 on Figure 42 (B). Second-by-second comparisons of 



 

98 

 

the intake manifold pressure and pumping mean effective pressure are shown in Appendix C on Figures 

91 and 92 for the NEDC, FTP-75, HWFET and US06. 70% of PMEP data points lie within a  10% error 

margin with 80% of the points lying in the  15% error margin. In turn with the friction model calibrated 

to the TCE, robustness in the pumping losses the model proves to estimate fuel consumption over modal 

and transient drive cycles within -5% and      respectively. The model is validated in this respect by 

comparing instantaneous and cumulative fuel consumption over the NEDC and FTP-75 as shown on 

Figure 43 (A) and (B) respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 41:  Comparison between modelled and measured (BP based on lambda sensor) cylinder 

volumetric efficiency over the NEDC on a (A) second-by-second basis and (B) measured versus modelled 

axes with ±10% bands. Measured mass flow-rate is calculated based on a lambda sensor reading and 

multiplied by the fuel flow-meter values on a second-by-second basis.  
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Figure 42: Modelled and measured (A) intake manifold pressures and (B) pumping mean effective 

pressures for the NEDC, FTP-75, HWFET and US06.  
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Figure 43: Simulated and experimental fuel consumption for the (A) NEDC and (B) FTP-75.  
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4.11 Estimating the Work Done on the Gas in a Deactivated Cylinder  

4.11.1 Incentive for Estimating Motoring Work Penalty 

The form of cylinder deactivation considered here shuts off gas exchange by leaving intake and 

exhaust valves closed, effectively sealing the cylinder, and disables fuel injection electronically. The 

trapped gas in the cylinder is compressed and expanded every engine revolution. The compression and 

expansion processes adjust within a small number of cycles to establish repeating closed pressure-volume 

figures. The cylinders are not perfectly sealed due to piston blow-by and leakage passed valves. Gas 

transfer occurs out of the cylinder when cylinder pressure is high and into the cylinder when pressure is 

low. The work required to motor the deactivated cylinder represents a performance penalty which needs 

to be accounted for in weighing the benefits and disadvantages of deactivation through PROMETS. 

Although Leone and Pozar [4.32] reported that the work penalty is small, representing a penalty of 

around 0.02 bar IMEP, this was left to be confirmed. 

4.11.2 Procedure for Measuring Reduction in Bottom Dead Centre Pressure  

Prior to estimating the work loss associated in motoring a cylinder the procedure to accurately 

measure this using a proto-type engine was established. 

 Different methods exist for measuring the in-cylinder pressure in an internal combustion engine. 

Three types of transducers exist: a differential pressure transducer, absolute pressure transducer and gauge 

pressure transducer [4.33]. Differential transducers were installed on the TCE to measure in-cylinder 

pressures. Typically a reference BDC pressure, serving as a nominal value, is assigned during the intake 

stroke. The reference in this case is the intake manifold air pressure. Any difference in measured pressure 

is cumulatively added or subtracted with reference to this pressure. The BDC value is refreshed every 

second cycle and this process is known as ‗pegging‘. In order to observe if significant mass loss took 

place through blow-by, the pressure transducers were unpegged. Thus the transducer value was left to 

float such that the BDC pressure would initially increase, specifically after combustion while trapping an 

exhaust charge, and then reduce with time. An example of the initial degradation in the in-cylinder 

pressure, while trapping an exhaust charge, is shown on Figure 44. 
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Figure 44 (left) and 44.1 (right): (Left) Reduction of BDC pressure measurement during deactivation 

when unpegging the pressure transducers to intake manifold air pressure values. (Right) Measured 

stabilised trace for an expansive process in a motored cylinder (N = 1500rpm, Tb = 20Nm, cycle no. 607). 

For differential transducers the pressure may drift due to changes in temperature. The effect of drift 

over an extended number of cycles is difficult to understand as this is specific to the transducer. However, 

the reduction in BDC pressure for an unpegged trace may be verified against the reduction in TDC 

pressure for a stabilised pegged trace. The shift or decline in the BDC pressure for the motored cylinder is 

equated to the reduction in TDC pressure for the pegged trace and is generally applicable past 220 cycles 

when the trace stabilises. Note that this is specific to trapping an exhaust gas charge where the settling 

time is longer compared to trapping a fresh air charge. In effect, this method showed that BDC pressures 

reached sub-atmospheric levels thus creating a partial vacuum close to 0.1 barA. An example of a 

stabilised motored pressure trace during an expansive stroke is shown on Figure 44.1. The effect of heat 

and mass loss is past the time frame given for predicting effects of cylinder deactivation on engine 

performance. Therefore, for this thesis the subject is not regarded in great detail since the net mass 

remaining after stabilisation was required to calculate the work loss. This process is shown in the 

following subsection. Instead this is discussed in an experimental paper due for publication in the IMechE 

Part D: Journal of Automotive Engineering sometime in 2018. 

4.11.3 Work Done on the Gas in the Deactivated Cylinder  

Neglecting the losses associated with mass transfer into and out of the cylinder after the early 

transient conditions have settled, the dissipated work per revolution is the difference between work done 

on the trapped gas during the compression and expansion strokes. Because this difference is small, a 

direct calculation is badly conditioned to small errors in the values of the polytropic indices. More 

robustly, the total work dissipated can be equated to the heat transferred from the gas. The direction and 

magnitude of heat transfer are the same for both the compression and expansion strokes, and over the two 
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strokes is approximately twice the heat transfer during the compression stroke. Treating the cylinder as a 

closed-system the work done on the gas during the compression process [4.34]: 

    ∫    
 

 
  

  (          )

(   )
   Equation 81 

Substituting this value into the equation defining the First Law of Thermodynamics, with heat transfer 

from the gas taken to be positive: 

       

and expanding the internal energy term in its extensive form:   

   
 (          )

   
    (      )   Equation 82 

Substituting for the specific heat capacity at a constant volume: 

    (      )(
   

(   )(   )
) 

If the temperature change over the expansion is the same as during the compression, then over the 

compression and expansion strokes of one engine revolution:   

∮   ∮             (
   

(   )(   )
)   Equation 83 

Where   is the trapped mass at BDC,   the adiabatic index,   the polytropic index,   the gas constant for 

air and    the estimated difference between the top dead centre and bottom dead centre temperatures. An 

estimate of the trapped mass according to the pressure values shown in Figure 45, is calculated assuming 

an ideal gas and no losses of mass within the revolution: 

         
         

      

 

Where       is the pressure,      is the temperature (approximated to 400K) and the      cylinder 

volume at the BDC (the cylinder swept volume is of 333cc). Quantification of the net work loss when 

motoring a cylinder is set in Figure 46, for varying polytropic indices from an adiabatic reversible process, 

i.e.       , tending towards an isothermal process, i.e.     . Indices between 1.34 and 1.36 applied to 

Equation 83 result in a net work loss of roughly 2.2 to 3.2 Joules/rev which is consistent with findings in 

Leone et al [4.32]. Net-work losses calculated by integrating the area between measured expansion and 

compression strokes also resulted in a parasitic loss of ~0.02bar IMEP (i.e. 2 Joules/rev). Experimental 

log-log traces for pressure and volume show that the polytropic index is between 1.34 and 1.36, agreeing 

with the experimentally calculated values. Care must be taken when extrapolating gradients from log-log 

traces that are prone to noise. The inferred polytropic index is very sensitive to oscillations in the trace 
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resulting from noise. It was noticed that the experimental trace is devoid of noise near top dead centre 

conditions typically between 0 and 25°CA aTDC. Therefore the index was typically extrapolated close to 

TDC. Due to the time-averaged approach used in the model, the penalty associated when enabling 

deactivation was taken to occur instantaneously.  

 

Figure 45: Calculated net-work loss when motoring a piston for TBDC = 400K and pBDC = 0.23barA used 

for mass calculations for a 367cc cylinder capacity (incl. Vclearance) .  

 

4.11.4 Estimated Mass Loss When Trapping an Exhaust Charge 

The percentage of the initially total induced mass lost through blow-by or due to leakage past 

imperfect sealing of the valves against the valve seats from the onset of deactivation to the cycle prior to 

re-activation is of interest. Suction of oil from the crankcase, which is kept near atmospheric conditions, 

to the combustion chamber, which is in a partial vacuum, may result in the oxidation of oil resulting in 

high soot and/or smoke upon reactivation. This affects the calculated work loss and combustion quality 

when reactivating a cylinder. Although the effects on combustion quality are not in the scope of this study 

quantifying the percentage of mass lost is simply calculated by observation of the BDC pressure prior to 

deactivation and late into the motoring process. It is important that the measured motored BDC pressure 

value stabilises in order to minimise errors in the calculation of the mass lost so that factors such as the 

cylinder wall temperature do not significantly affect the pressure. For an engine speed of 1500rpm and 

Nearing Adiabatic 
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brake torque of 20Nm, a 47% mass loss is observed when an initial fill condition of 0.40barA,     , 

degrades to a stabilised 0.23barA,     . A mass loss of up to 70% is experienced when the stabilised 

motored trace reduces to a BDC pressure of 0.12barA [4.34].  

4.11.5 Literary Suggestions for Reducing Prolonged Partial Vacuum and Oil Suction 

Acknowledging mass loss within the deactivated cylinders it has been identified that the minimum 

desired BDC pressure should be around 0.2barA [4.35]. These finding were published and set in the 

public domain during the convention when the publication based on model findings [4.34] reported in this 

thesis were presented. The adverse effects of allowing the in-cylinder pressure to drop down between 0 – 

0.2 barA could result suction of oil fouling the injector tip and spark plug, increased PN, CO and THC 

emissions [4.35]. Counter-acting the near-vacuum condition may be achieved by ventilating air by 

opening the intake or exhaust valves at regular intervals. This is assuming that the engine at hand is fitted 

with a fully variable valvetrain. It is proposed that the exhaust valves open every 10 cycles such that the 

hot gases maintain the cylinder wall temperature elevated although at the cost of increasing the motored 

loss [4.35]. Alternatively the ring pack could be designed such that ring and groove clearances are 

reduced, cylinder bore distortion is ameliorated, or by promoting downwards flow of oil to the crankcase 

by redesigning the piston land or limiting oil supply to the oil ring through drain-holes [4.36]. In essence, 

the simplest alternative would be to disable piston cooling jets although oil accumulation effects for the 

specific engine would have to be investigated.  

4.12 Discussion and Conclusions 

Revisions made to the multi-cylinder model of PROMETS have been described in the aim of 

characterising the TCE. The design of the TCE differs from previously modelled engines due to the 

integration of the exhaust manifold in the engine head and the addition of an advanced cooling system.  

A generic representation of the IEM was required to 1) represent the mass of the engine head and 2) 

model heat lost from the exhaust ports to the coolant. CAD models were referred to input appropriate 

exhaust port lengths and represent the surface area of coolant in contact with the exhaust ports. To 

validate the representations, thus the accuracy of the modifications, comparisons of the head mass were 

made such that an appropriate thermal inertia was encapsulated. Furthermore, heat rejection to coolant 

was evaluated by comparison with experimental measurements over the NEDC.   

As a result of the increase in the exhaust port diameter the previous Nusselt-Reynolds expression for 

straight port runners derived by Shayler and Chick [4.9] was found to under-estimate the heat losses 

based on comparison with experimental data. As such the constants for the C1C2 expression were assigned 

new values. The Reynolds index was augmented to 0.723, instead of 0.7, and the constants were 
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iteratively adjusted to C1 = 1.3 and C2 = 2. Although, the changes mimic well the heat transfer in the TCE 

from the gas to coolant in the cylinder and exhaust port, the generic applicability of these changes to other 

engines with an IEM has not been validated. However this does not affect the robustness of results 

originating from PROMETS for the TCE.   

The cooling system for the TCE comprises of a split circuit. In this set-up coolant passing through the 

exhaust side of the head is segregated from coolant in the block and intake side of the head. During warm-

up the heat transfer coefficient in the block drastically reduces as the coolant remains quiescent. However, 

roughly 12% of the total coolant volume is held in block and therefore the thermal inertia of the coolant is 

significantly less providing quicker warm-up compared to a conventional system with forced convection. 

Several expressions for heat transfer in the form of natural convection in a vertical rectangular enclosure 

exist. However the Prandtl and Raleigh inequalities for which they are suitable lay outside the bounds 

observed experimentally. Thus an expression was derived in a Nusselt-Reynolds power law form. The 

expression was found to be adequate for the lumped element thermal capacity model and validated by 

comparison with experimental data.  

Importance lay in accurately modelling heat transfer throughout the engine in order to utilise the 

model for the purpose of predicting the changes in heat transfer and component temperatures when 

deactivating a cylinder. Given this ambition, component temperatures were predicted within a 5% 

tolerance compared to experimental data. This was exemplified against temperature measurements taken 

across the length of two cylinders. The changes in heat transfer and component temperatures associated 

with cylinder deactivation are quantified and discussed more thoroughly in Chapter 5.  

Aside from the thermal model a robust manner of predicting engine performance parameters 

specifically fuel consumption and pumping losses for a turbocharged engine was required. This was in-

light of previous models used for predicting pumping losses and fuel consumption for naturally aspirated 

gasoline engines. A simple algebraic expression derived by Zinner [4.29] was used to iteratively calculate 

the required intake pressure past the throttle for a turbocharged engine. A more extensive approach 

describing the interaction between the compressor and throttle would be physically representative of the 

engine. However this would entail describing the effect that cylinder deactivation has on pulsations in the 

air ducts along with pressure fluctuations from bounce-back at the intake ports. This remains outside the 

scope of this study and would also require CFD analysis of the phenomenon in the air ducts. For the 

purpose of determining the fuel consumption benefit due to the reduction in pumping work associated 

with cylinder deactivation the simple approach used is sufficient. For engine operation with firing on all 

cylinders comparisons between modelled and experimental pumping losses and fuel consumption were 
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shown for the warm-up processes over the NEDC and FTP-75 and fully-warm operation the HWFET and 

US06 drive cycles.  

Given the need to robustly characterise pumping losses and fuel consumption it was of importance 

that the work loss associated with motoring piston be quantified and represented in the model. Based on 

data emanating from a proto-type engine capable of shutting off intake and exhaust valves and cutting-off 

fuel injection, an analytical expression based on the first law of thermodynamics was used to express the 

work loss. The expression relies on input experimental data input of maximum and minimum in-cylinder 

pressure while assuming a BDC charge temperature. Furthermore, the polytropic index is based on 

stabilised in-cylinder pressure traces found to be between 1.34 and 1.36. This results in a work penalty 

between 0.02 to 0.03bar IMEPg. This work loss is negligible. However through the development of this 

expression and for informative purposes a large proportion of the initially induced mass was found to be 

lost through blow-by. When trapping an exhaust gas charge this was found to be in the range of 47 to 70% 

depending on the final BDC stabilised pressure.  

As such given a robust and simple method of predicting engine performance for turbocharged 

gasoline engine the coupling of the thermal and performance models were used to predict engine 

performance due to cylinder deactivation as described in Chapter 5 and 6.  

Sensitivity analyses were not carried out throughout this study as the purpose was mainly to 

characterise the engine accurately to use as a predictive tool.  An extensive analysis of model sensitivity 

has been previously carried out by Morgan [4.37] and Janowski [4.38]. In these studies sensitivity to 

changes in the heat transfer correlations (i.e. the C1C2 expressions), friction model, changes in engine 

mass and changes in the input parameters for engine performance estimation have already been 

thoroughly assessed.  
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Chapter 5 Modelled Changes in Heat Transfer due to Cylinder Deactivation 

5.1 Introduction 

The application of PROMETS to simulate thermal responses to cylinder deactivation of the three 

cylinder engine is described in this chapter. Firstly the changes made to the heat transfer model to 

simulate cylinder deactivation are described. Consequently, simulation results such as: response times for 

temperatures to reach equilibrium conditions before/after deactivation; changes in component 

temperatures and heat fluxes; and temperature differences between adjoining components are described 

specific to constant operating conditions. The effects on warm-up rates are investigated for constant 

operating conditions and also over the NEDC. Possible thermal constraints which arise due to cylinder 

deactivation are also investigated. This is followed by suggested methods for minimising adverse thermal 

effects of cylinder deactivation through thermal management strategies. With very little information 

available in the public domain about the effects cylinder deactivation has on engine thermal behaviour 

this section provides new and informative knowledge on the subject. 

5.2 Heat Transfer Model Revision to Account for Cylinder Deactivation 

The form of cylinder deactivation considered in this study entails shutting of the intake and exhaust 

valves and cutting-off fuel injection while retaining a reciprocating piston. In this subsection the 

phenomenon due to cylinder deactivation occurring in the combustion chamber, engine intake side, 

engine exhaust side and at the friction level are described. In this modelling instance when deactivation 

ensues cylinder number one is prone to disablement while cylinders number two and three remain firing 

at all times. Thermal effects of varying the deactivated cylinder are discussed in further detail towards the 

end of this chapter. The effect of these revisions is exemplified with reference to a heat flow diagram 

showing the changes in heat transfer for the first cylinder before and after deactivation. For the 

deactivation period, heat flow diagrams for cylinder one are contrasted with the heat flow across cylinder 

two. The heat flow diagrams are shown on Figure 48 (A), (B) and (C) for a constant operating condition 

of N = 2000rpm and Tb = 60Nm at a fully-warm engine state.  

5.2.1 Combustion Chamber Heat Transfer 

Specific to a vehicle whose sole prime mover is an internal combustion engine, increasing the fuel 

injected in the firing cylinders is the only means of compensating for the absence of useful work delivered 

from the deactivated cylinder. Simply put for the firing cylinders the increase in heat transfer is 

proportional to the increase in mass of fuel injected. In a three cylinder engine when deactivating a single 

cylinder fuel injection in the firing cylinders increases by roughly 50% (i.e. factor of 1.5) more fuel 

injection. When deactivating two cylinders roughly 200% more fuel is injected in the single firing 
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cylinder (i.e. factor of 3). The reason for stating that a ‗rough‘ increase in fuel injected takes place is due 

to the reduction in fuel consumed arising from the fuel consumption benefit that arises with deactivation. 

In effect the increase will always be less than the values stated above. The cycle-averaged in-cylinder 

Reynolds number, described in Chapter 4 Section 4.7.1, dictates the heat transfer from the combustion 

chamber to the coolant in the firing cylinder. Deactivation is accounted for by reducing the number of 

working cylinders,        , as shown: 

     
   ̇  (  

   

(     )
) 

(          )     
           Equation 84 

For the deactivated cylinder heat transfer to the cylinder walls drastically reduces and little 

information on the in-cylinder Reynolds number exists in literature. Therefore as substitute the net heat 

transferred to cylinder walls is equated to the heat produced by the polytropic process shown in Chapter 4 

Section 4.11.2. The flux across the elements, i.e. representing the topography of the cylinder wall 

comprising the engine stroke, are segregated with respect to the proportion of time the trapped charge is 

exposed to the cylinder wall. This is based on an algorithm described by Christian [5]. Changes in heat 

flux in the combustion chamber experienced across the piston crown are the same as described for the 

cylinder walls for both deactivated and firing cylinders. The flux is however proportional to the total 

cycle-averaged flux in the combustion chamber, as described by the Qc1c2 expression, and the exposed 

surface area of the piston.      

The modelled effect of these revisions before and after deactivation are shown on Figure 48. (A) 

shows heat fluxes for cylinder one prior to deactivation; (B) for cylinder one after deactivation; and (C) 

for cylinder two after deactivation. Modelled heat rejection from the combustion gas to coolant, for 

cylinder two, increases by 20%, equivalent to 289W, from 1166W to 1455W. Heat flux to the piston 

crown for cylinder two increases by 33% from 305W to 415W. For cylinder one on the other hand heat 

fluxes from the gas to piston reduces significantly.   

5.2.2 Exhaust Side Heat Transfer  

5.2.2.1 Exhaust Port 

When deactivation occurs, closure of the exhaust valves prevents the flow of hot combustion gases 

through the exhaust ports. The heat transfer process changes from forced convection to natural convection 

and it is assumed that heat transfer in the exhaust port of the deactivated cylinder makes a small 

contribution to heat flow in the head. This can be neglected. In PROMETS, the heat exchange in the port 

is switched by,      , from 0 to 1, representing the absence of flux as shown in the expression below. 
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 ̇          ̇   (       )   ̇         Equation 85 

Where  ̇   is the heat transfer from the exhaust gas to the coolant and  ̇      the heat transfer from the 

valve seat to the exhaust port. The only form of heat transfer to the exhaust port for the deactivated 

cylinders stems from the valve through the valve seat. This is described in the following subsection. For 

the firing cylinders, the increase in mass flow-rate through the exhaust ports and thus heat flux is reflected 

by an increase in Reynolds number.  

The effect of nullifying heat rejection in the exhaust port for cylinder during deactivation is shown on 

Figure 48 (B). Modelled heat rejection rates for the firing cylinder at an operating condition of N = 

2000rpm and Tb = 60Nm increases by 36% or 519W, from 1444W to 1963W. The latter value is depicted 

in Figure 48 (C) as a solid line connection between the exhaust port and engine head. The majority of heat 

is lost to coolant as the IEM is completely enveloped by coolant passages.  

5.2.2.2 Exhaust Valve 

In the deactivated cylinder, heat transfer from the exhaust valve head,  ̇     , to the lower segment of 

the exhaust port is still present. As the trapped charge is compressed, an increase in pressure and thus 

temperature results in heating the exhaust valve face. Although this is generally very small on a cycle-

averaged basis, ~ 2 watts per revolution, this is still modelled and applied to the term  ̇           
   shown 

in the following expression, 

 ̇                  ̇           
     Equation 86 

For the firing cylinders heat transfer to exhaust valves increases proportionally with the magnitude of fuel 

injected. This is modelled by multiplying the area of the exhaust valve head and lower stem with the 

revised combustion flux described through Equation 20.  

Figure 47 shows the heat conduction path through the exhaust valve of a firing cylinder to the 

cylinder head and exhaust port. The lower stem of the exhaust valve remains significantly hotter 

compared to the other sections of the exhaust valve due to the absence of direct contact with the heat 

sinks.   
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Figure 46: Illustration of the heat transfer paths from the exhaust valve to the cylinder head and block at 

Tb = 60Nm, N = 2000rpm.   

5.2.3 Intake Side Heat Transfer  

5.2.3.1 Intake Ports 

The intake ports experience smaller changes in heat transfer coefficient relative to the exhaust ports 

due to the absence of hot gases. Dominated by the coolant temperature in contact with the intake port 

metal, increments in heat transfer coefficient are strongly dependent on the increase in the mass of air 

traversing the ports as described by the Reynolds number [5.1],  

         
   ̇    

   (     )                  
    Equation 87 

Where the viscosity of the air,     , is taken to have the same dependence on temperature as the viscosity 

defined for the in-cylinder gas,   , i.e. Equation 55. With this the heat transfer coefficient in the intake 

port is expressed as follows,  
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5.2.3.2 Intake Valves 

For the intake valves belonging to the deactivated cylinder, although motionless, cooling through 

forced convection still occurs at the top of the valve head, lower stem and upper stem. This is due to the 

constant filling and emptying process taking place in the intake manifold and ports. The lower head 

section of the intake valve, i.e. facing the combustion chamber, is not prone to convective forces 

originating from the intake manifold but is subject to repeated in-cylinder compression and expansion 

processes. The net heat transfer to the intake valve head due to this irreversibility was modelled as a 

constant cycle-averaged ~ 2W per revolution. The heat transfer expressions used for the intake valve stem 

and head for the deactivated and firing cylinders are those described by Chick [5.1] and are shown below.  

Reynolds Number and Heat Transfer Coefficient Expression for the Intake Valve Head [5.1]  

                     
   ̇  (     )                                  

          (     )(            
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 Equation 89 
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Reynolds Number and Heat Transfer Coefficient Expression for the Intake Valve Lower Stem 
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     Equation 91 
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         Equation 92 

The Reynolds number for the intake valve head and stem are thus not modified. The expression for 

the intake valve stem is valid for Reynolds numbers up to 40,000 although simulation results do not 

exceed Reynolds numbers of 5000, i.e. for a brake load of 160Nm and engine speed of 5500rpm. For 

comparative purposes the engine brake torque is rated at 170Nm.  

5.2.4 Heat Losses due to Friction with a Deactivated Cylinder  

In this sub-section changes in heat transfer due friction at the level of the engine and specific to 

deactivated cylinder are described. Concordantly, the necessary modelled changes to physically represent 

these descriptions at both levels are described.      
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5.2.4.1 Piston Ring Friction 

The continuing reciprocation of the piston dissipates work through rubbing friction. For this cycle-

averaged model the thermal resistance between the piston rings and cylinder liner is constant.   

 

          
 

      

               

     

     Equation 93 

Where n is the number of rings, k the thermal conductivity of the ring, t the ring width and d the ring 

thickness. Based on an analysis by Zammit [5.2] the constant ring resistance bears a value of           

 0.1153K/W; assuming an air filled gap between the ring and the groove in the piston. The presence of oil 

between the rings would have reduced the thermal resistance although this would only be the case for the 

lower segment of the piston stroke when in-cylinder pressures reach sub-atmospheric levels. Although 

Zammit [5.2] reports that for diesel engines the piston ring resistance is a function of engine speed; i.e. 

initially larger at around ~0.4 K/W at 1000rpm reducing with speed down to ~0.10 K/W at 3000rpm. In 

effect, heat is still transferred from the cylinder wall to the coolant over 91% of the piston stroke as the 

block coolant gallery does not extend to the BDC. The coolant temperature however is chief in 

maintaining a nominal cylinder wall temperature as frictional heat losses are small relative to the enthalpy 

carried by the coolant. 

An illustration of the constant modelled resistance is shown by the dotted lines representative of 

friction between the piston and the liner, on Figure 48 (A), (B) and (C). Where for firing and deactivated 

cases no change in the value of friction is observed; i.e. a constant 210W heat dissipated to the liner and 

40W rejected to the oil. 

5.2.4.2 Camshaft Main Bearing Friction 

An increase in the thrust force due to deactivation experienced by the big end bearings for the firing 

cylinders increases bearing frictional losses [5.3]. This is attributed to augmented ‗squeezing‘ of the oil 

film in effect reducing the thickness and increasing the temperature of the oil surrounding the journal 

bearing. Frictional losses, on a crank angle basis, possibly rise due to increased boundary/mixed 

lubrication regimes. For the deactivated cylinder the opposite process takes place. The film thickness 

increases significantly as the thrust force is smaller [5.4], even when compared to an engine idling 

condition. In turn, the film temperature reduces. However, the reduction is almost negligible thus not 

significantly affecting shearing losses. Tribo-dynamic simulations conducted by Mohammadpour [5.5] 

have shown that the net effect cylinder deactivation has on the change in frictional dissipation 
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experienced in the bearings are marginal. Thus in this modelling instance of PROMETS it was assumed 

that the global engine bearing frictional losses remain unchanged.  

In effect, as shown on Figure 48 (A), (B) and (C), heat transfer on a per cylinder basis from the 

crankshaft assembly to the oil remains constant at a constant 10W regardless of whether the engine 

undergoes deactivation.  

5.2.4.3 Valvetrain Friction 

Valvetrain frictional losses in the deactivated cylinder reduce due to the arrested lifting motion of the 

intake and exhaust valves. The contact between the cam-lobe and the flat follower element are still 

present thus the fourth term describing the valvetrain friction is left unchanged.  Mixed (i.e. rubbing of the 

asperities and hydrodynamic lubrication) and oscillating hydrodynamic lubrication regimes, describe the 

frictional losses at the valve lifter bore and guide assembly as shown describing the valvetrain friction. 

Friction at the lifter bore reduces for a roller finger follower as the retentive force of the spring holding 

the valve in a closed position does not resist any downward motion of the bore, thus the lifter is left 

motionless. This is accounted for in the sixth term describing the valvetrain friction by reducing the 

number of working valves,   , by a third. A modelled 4.34% reduction in the valvetrain friction is 

computed for the partial absence of this mixed lubrication regime. Additionally, the oscillating 

hydrodynamic friction between the valve stem and the valve guide zeros as the valves are inert thus the 

fifth term describing the valvetrain friction also reduces by a third resulting in a 0.26% reduction in 

modelled valvetrain friction.  In effect the reduced valvetrain frictional losses amalgamate to a 0.87% 

reduction in engine rubbing friction.  
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Figure 47: Modelled cylinder 

specific heat transfer rates across (A) 

cylinder 2 for an engine firing on all 

cylinders compared to heat transfer 

rates across (B) cylinder 1 and (C) 

cylinder 2 for the same engine firing 

on 2 cylinders for Tb = 60Nm,  N = 

2000rpm and Toil =90 .  
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This is represented in the heat transfer flow diagrams by comparing Figure 48 (A) and (B). Reduced 

valvetrain heat transfer to the oil and head metal structure, are illustrated on Figure 48 (B). Heat loss from 

the valvetrain friction when cylinder 1 is deactivated reduces from 16W to 14W to the oil and from 84W 

to 72W to the head metal structure.  The combined 14W reduction in heat rejection is specific to cylinder 

1, thus the total heat rejection due to rubbing friction from the valvetrain assembly reduces from 301W to 

287W. Although changes in frictional losses are present at the valvetrain level these are minimal.    

5.3 Changes in Heat Transfer to Engine Coolant 

Set in Figure 49 (A) and (B) and Figure 50 (A) and (B) are the modelled changes in heat transfer from 

the gas to coolant with cylinder deactivation from the centre firing cylinder, cylinder two, and the entire 

engine. For these figures the maximum engine brake load when deactivating has been limited to 90Nm. 

For engine brake loads above 110Nm (i.e. 55Nm) the model does not converge due to excessive heating 

of the coolant and oil resulting in temperatures outside the bounds of model look-up tables (i.e. Toil  > 

Toil,max = 160°C). The overheating of oil is illustrative of the real engine where cooling of the cylinder wall 

is generally affected by enriching the air charge. Largely a 13 to 32% increase in the heat rejected from 

the remaining firing cylinders takes place when deactivating, shown on Figure 49 (B). Three data points 

lie significantly above this range corresponding to loads above 60Nm at 1000rpm. These result from a 

severe drop in the gross indicated thermal efficiency inputted into the model (refer to Appendix D for 

experimentally referred values). Excessive retardation in spark angle is required to avoid the onset of 

knock due to higher cylinder wall temperatures. As way of example, the discrepancy in heat rejection 

values at 1000rpm for the 70Nm, 80Nm and 90Nm load cases (i.e. a 37%, 39% and 45% increase in heat 

rejected shown on Figure 49 (B)) are associated with modelled gross indicated thermal efficiency values 

of 36, 33 and 29% respectively. To contrast this, at an engine speed of 2000rpm at 90Nm the gross 

indicated thermal efficiency reduces to only 37.3%.  

The overall heat rejected to coolant from the engine reduces compared to when firing on all three 

cylinders. This is depicted in Figure 50 (A) and (B) with reference to changes in the absolute values of 

heat transfer and percentage respectively. Apart from the three load points, which demonstrate excessive 

heat loss to the coolant at 1000rpm, the reduction in heat rejected to coolant increases with engine brake 

load and reduces with engine speed. Reduced heat rejection resides within a 20.5% to 3% interval for 

engine speeds between 1000 and 4000rpm and brake loads between 20 and 90Nm.  
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Figure 48: (A) Modelled heat rejection rates to coolant combined from the head and block sections and 

(B) the equivalent percentage change specific to cylinder number 2 when firing on two of three cylinders. 
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Figure 49:  (A) Modelled total engine heat rejection rates to coolant combined from the head and block 

sections and (B) the equivalent percentage change specific to cylinder number 2 when firing on two of 

three cylinders. 
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5.4  Changes in Component Temperatures 

5.4.1 Cylinder Walls  

As a result of changes in heat transfer metal components settle to new equilibrium temperatures. An 

illustration of the modelled time dependent temperature response for the upper and mid sections of the 

cylinder wall for the firing and deactivated cylinders are shown in Figure 51. An illustration of the 

temperature distribution for all three cylinder liners for a constant operating condition of Tb = 50Nm and 

N = 3500rpm is shown on Figure 52. 

 

Figure 50: Example of modelled cylinder wall temperature change and response time; Tb = 50Nm, N = 

3500rpm. 

 

Figure 51: Modelled stabilised cylinder wall temperatures after deactivation; N=2000rpm and Tb= 60Nm. 

Temperature (⁰C)

113 13589
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As seen on Figure 52 the deactivated cylinder cools to a near uniform temperature. The temperature 

to which the liner settles is dictated by the local coolant temperature. Cylinder number 3 operates at the 

highest temperature as the coolant initially enters the block cavity with lower temperature compared to 

the engine coolant outlet temperature. As shown in Figure 53 the largest temperature rise is observed at 

the top of the liner for the firing cylinder although the temperature change remains very small      . 

Dependent on engine load the top of the liner for the deactivated cylinder endures the largest temperature 

change  T < 20  as it falls to the coolant temperature.  

 

Figure 52: Modelled Cylinder #1 and #2 wall temperature changes for varying brake loads at an engine 

speed of 3500rpm. 

5.4.2 Temperature Response Times 

The response time,  , is primarily a function of the wall thicknesses as well as the heat transfer 

coefficient of local heat sinks directly or indirectly in contact with the engine structural component. The 

response time is defined as the time taken for the component temperature to reach 63.2% {i.e. percentage 

of time defined for an increasing system to reach 1 - 
 

 
 ~ 63.2%} of its equilibrium state after 

deactivation/reactivation. On Figure 54 modelled cylinder wall response times are plotted for varying 

engine speeds against brake power. The coolant pump is mechanically driven through the FEAD via the 

crankshaft with a gear ratio of 2:1. The increase in response time at 1000rpm compared to the 3500rpm 

engine speed case is primarily due to the very small temperature increase experienced across the cylinder 

wall. Thus as engine load increases the response time reduces. This is further promoted by the relatively 

low heat transfer coefficient present in the block at 1000rpm, i.e. 1950 W/m
2
K, as shown on Figure 55. 

Response times for all engine components are in the range of 10 to 25 seconds.  
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Figure 53: Cylinder wall response time for two engine speeds N = 1000rpm and 3500rpm.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 54: Modelled coolant volume flow-rates for a fully-warm engine thermal state (      
            ) with respect to engine speed and corresponding block coolant heat transfer 

coefficients (W/m
2
K).  

 

 

1000 – 3500rpm 
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5.4.3 Intake and Exhaust Valves  

The largest changes in cycle averaged temperature takes place in the valve stem. An illustration of the 

intake and exhaust valve temperatures before and after the deactivation in all cylinders is shown on Figure 

56. 

 

Figure 55: Modelled stabilised valve metal temperatures before and after deactivation; N = 2000rpm, Tb 

= 60Nm, Tcool = 90 . 

The lower stems of the exhaust valves for the deactivated cylinder undergo the largest modelled 

temperature changes in contrast with all other engine components. The change in temperature of the 

exhaust valve lower stem with respect to engine brake load for an engine speed of 3500rpm is shown on 

Figure 57. The temperature increase of the exhaust valve lower stem for the firing cylinders is 

significantly smaller. With similar response times as described above, the new equilibrium temperatures 

for the deactivated intake and exhaust valves is approximately that of the coolant temperature. The largest 

reduction observed for an engine speed of 3500rpm and brake load of 70Nm is of 370 . The largest 

temperature rise for the firing cylinder exhaust valve lower stem is in the range of 120 . Exhaust valve 

head temperature changes lag behind lower stem temperatures generally by 40  . Intake valve 

temperature changes are significantly less with the largest change at the valve head being around ~50 .  
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Figure 56: Modelled change in temperature for the exhaust valve lower stem component for the 

deactivated and firing cylinders at N = 3500rpm. 

 

5.4.4 Piston Temperatures With and Without Cooling Jets  

Figure 58 illustrates the effect cooling the piston underside with oil jets has on the temperature of the 

firing cylinder, number two, with and without cylinder deactivation. This is specific to a modelled nozzle 

aspect ratio of            . An engine operating condition of N = 3500rpm, Tb = 60Nm was chosen since 

the modelled fuel consumption benefit due to deactivation at this operating point nears zero, i.e. ~1%; 

representing a near upper limit for the application of cylinder deactivation. Case (A) illustrates the 

nominal piston temperature for cylinder two when all cylinders are operating. The piston temperature for 

the deactivated cylinder (B) is contrasted by the significantly elevated temperature of the piston in the 

second cylinder regardless of whether the cooling jets are flowing, as is illustrated in cases (C) and (D). 

The temperature of the piston for the deactivated cylinder, cylinder one, stabilises to a temperature above 

that of the coolant,              compared to             . This difference is attributed to the 

combined effect of heat losses due to rubbing friction being directed towards the piston assembly as well 

as the small amount of heat lost to the piston from the trapped charge.  

Compared to the nominal piston operating temperature (A), deactivating a cylinder, increases the 

crown temperature by 14% as depicted in case (D). In contrast switching on the jets, when deactivating a 

cylinder, reduces the cycle-averaged piston metal temperature by 12%. Operating at a significantly higher 

temperature with no cooling jets drives a significant proportion of the heat from the piston crown to the 
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pin. Heat dissipation within the inner-shell of the piston changes by a factor of four with jets on, as 

reported by Nassif [5.6]. In effect, although the time-averaged piston temperature is within the safe 

operating range, i.e. below 250 - 280  [5.2], the expansion of the piston pin may restrict the rotational 

degree of freedom between the connecting rod and the piston. Furthermore, at temperatures above ~275  

the yield strength of aluminium alloys reduces by 50% several affecting the durability of the piston.  

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 57: Sketch of piston illustrating change in piston crown and skirt temperature at N = 3500rpm and 

Tb = 60Nm with and without oil flowing through the piston cooling orifice. 

 

5.5 Temperature Differences between Adjoining Metal Components 

The largest temperature differences occur between adjoining components for cylinder one and two. 

These are shown in Figure 59 (A) for the cylinder wall, (B) lower block and (C) between the intake and 

exhaust ports. Cylinder number one is located closest to the coolant inlet aperture in the block and head. 

As illustrated on Figure 59 predicted temperature differences have been limited to the range where 

modelled fuel economy benefits due to deactivation are present, i.e. ~70Nm. As shown on Figure 59 (A), 

the top sections of the cylinder liners of the deactivated and firing cylinders experience the largest 

temperature difference. These are areas where the heat fluxes from the firing cylinder are highest. For the 

top of the cylinder liner temperature differences are primarily a function of engine load, i.e. 0.2     . 
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Engine speed increments of 1000rpm raise the difference by 2 to 3  at 10Nm and up to 4 to 6  at 70Nm 

as denoted by the different line types (e.g. dotted/dashed).  

Moving down the length of the liner, differences are significantly lower driven due to a controlled 

coolant temperature and lower heat flux rejection. As shown in Figure 59 (B) temperature differences in 

the upper crankcase wall are generally 2 to 4  higher compared to the bearing support plates and lower 

crankcase structure. The differences are generally less than 10 . The engine speed dependence is less 

pronounced in these areas as heat fluxes are generally two orders of magnitude lower compared to the top 

of the cylinder liner.  

Temperature differences between the firing cylinder and deactivated cylinder exhaust ports, as seen 

on Figure 59 (C), are the highest. The non-linear dependence with engine speed is a result of the 

plateauing of exhaust gas temperature at part loads. Initially the exhaust gas temperature is between 200 

and 300 , increasing to 600  at part loads. Nearer to the intake valves temperature differences across 

the intake ports are smaller. A reduction in temperature difference is observed with increasing engine 

speed, inverse of the speed dependence observed on other components. This is associated with increased 

heat fluxes warming the exhaust side of the engine and cylinder resulting in heat traversing into the cooler 

intake side of the head.  
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Figure 58: Modelled temperature difference for [A] the cylinder liner, [B] lower block and [C] 

exhaust/intake ports between the deactivated and firing cylinder as a function of brake torque.   
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5.5.1 Effect of Varying Compression Ratio and Spark Timing on Temperature Differences 

Temperature differences between adjoining components are dependent on the cylinder geometric 

compression ratio. Increasing compression ratio reduces the temperature difference between the firing 

cylinder and deactivated cylinder. As example, given a constant amount of fuel injected into a firing 

cylinder with a fixed surface area, A1, the total surface area will reach an average metal temperature, T1. 

As the surface area of the combustion chamber is increased, such that A2 > A1, and the same magnitude of 

heat energy is exposed to the combustion chamber. Due to the increase in surface area the overall metal 

temperature will reduce such that T2 < T1. This is due to their being more surface area through which heat 

can be transferred thus resulting in greater heat losses. An illustration of this effect is shown on Figure 60 

(A).  

Temperature differences between components are also dependent on the gross indicated thermal 

efficiency. In practice, spark timing is kept close to the maximum spark advance for best torque delivery 

(MBTD) to promote more complete burn of fuel to ensure that the flame front fully develops close to 

TDC. At this point the maximum potential amount of work is extracted from the heat energy resulting 

from combustion. Retarding or advancing spark timing relative to MBTD, reduces the amount of useful 

work generated due to combustion in turn, increasing heat losses to the cylinder walls. A way of 

expressing this has been formulated by Chick [5.1], 

            (  
 

  
   )             

      Equation 94 

Where      , is the spark timing relative to MBTD and the squared term indicates that advancing or 

retarding the spark angle relative to MBTD results in a deterioration of the gross indicated thermal 

efficiency. In practice, for an engine with a deactivated cylinder, as the cylinder load increases the spark 

angle is retarded to reduce the propensity for knock. The effect of varying the spark angle relative to 

MBTD has on the temperature difference between adjoining deactivated and firing cylinders is illustrated 

on Figure 60 (B).  
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Figure 59: The non-quantitative effect of [A] varying the engine compression ratio and [B] the effect of 

reduced gross indicated thermal efficiency due to spark retard on the temperature difference between the 

deactivated and firing when employing cylinder deactivation. 
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5.6 Reducing Adverse Thermal Effects on the TCE  

For the small three cylinder engine considered in this study, specific to the advanced coolant circuit 

described in Chapter 4 subsection 4.8.1, the choice of cylinder to deactivate in order to reduce 

temperature changes and differences have been considered by varying the pair of firing cylinders. An 

illustration of the effect for a fully warm coolant and oil temperature is shown in Figure 61. Deactivating 

the cylinder closest to the block coolant aperture (B), maximises the temperature of the firing cylinders 2 

and 3 as the coolant stream progressively warms up as it travels up the block. The first cylinder is thus 

kept coolest and the temperature differences shown above are thus the largest. Similarly, when 

deactivating cylinder 2 (C) the temperature differences between cylinders 1 and 2 are relatively 

minimised however an unnecessary temperature gradient between the deactivated cylinder and the two 

firing cylinders arises. NVH implications when deactivating cylinder number two would restrict the 

availability of firing solely on the two outboard cylinders. Due to the firing order being 2-3-1, 

deactivating either of the outboard cylinders and the centre cylinder is of preference. If the centre cylinder 

were to be deactivated this would create significant bending moments at the centre of the crank-shaft 

considering that an imbalanced crankshaft is required for an odd number of cylinders. Deactivating 

cylinder 3 (D), the warmest cylinder, takes advantage of the warmer coolant downstream of the block 

inlet aperture minimising the temperature drop after deactivation while moderating the temperature rise of 

the firing cylinders. Thus cylinder 3 was the optimum cylinder to deactivate. In effect, the modelled 

temperature difference between the firing and deactivated cylinders reduce by 5  and 10   at the 

cylinder liner and exhaust ports, respectively, independent of load. This is equivalent to the rise in 

temperature observed when increasing the engine speed by 1000rpm as shown on Figure 59 (A).   
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Figure 60: Modelled change in cylinder wall temperatures for cases after deactivating [B] cylinder 1, [C] 

cylinder 2 and [D] cylinder 3 contrasted with [A] engine operating on all cylinders (Tb = 60Nm, N = 

2000rpm and Tcool = 90  ). 
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5.7 Exhaust Gas Temperature Changes when Deactivating 

In addition to the fuel consumption benefit, faster catalyst ‗light-off‘ times are had with cylinder 

deactivation [5.7]. The reduction in gas-side heat transfer to coolant exhausts higher temperature gases 

out of the firing cylinders. The geometry of the integrated exhaust manifold is not identical for each 

cylinder. The exhaust port surface area of the outboard cylinders is 21.9% greater than the surface area of 

the inboard cylinder. Effectively, this suggested that deactivating the centre cylinder exposes a total 

exhaust port surface area of 0.246m
2
 while deactivating either out-board cylinder exposes an area of 

0.219m
2
. This is equivalent to an 11% reduction in total exhaust port surface area. Utilising an energy 

balance approach in determining the exhaust gas temperature, PROMETS was utilised to compare gas 

temperatures at the outlet of the IEM.  

The predicted change in exhaust gas temperature with varied brake work is shown in Figure 62. For a 

10Nm engine brake load the modelled exhaust gas temperature when running on two cylinders is 

significantly lower compared to the three cylinder case. For loads above 10Nm, deactivation of the centre 

cylinder generally increases the exhaust gas temperature by 20 to 100 degrees. Denoted by the triangular 

markers, exposing a smaller surface area, i.e. deactivating one of the outboard cylinders increases the 

exhaust gas temperature by ~25   compared to when deactivating the centre cylinder. Table 7 

summarises the modelled benefits of deactivating the outboard cylinder (i.e. furthest from coolant inlet 

aperture) compared to deactivating the cylinder closest to the FEAD, cylinder one, and the inboard 

cylinder, cylinder two.  In principle deactivating cylinder three, furthest downstream of the coolant 

aperture is suggested in terms of minimising the temperature different between cylinders and retaining an 

elevated exhaust gas temperature. Modelled effects on warm-up times show little difference in 

deactivating cylinder one, two or three. Temperature changes in a gasoline engine are lower compared to 

that of diesel engines as the exhaust gas temperature is already significantly higher under normal 

operation. As engine operation moves away from low power operation, i.e. 10kW, the increase in exhaust 

gas temperature with respect to brake power plateaus. In effect, the increase in exhaust gas temperature 

for a diesel engine with cylinder deactivation is significantly better as the rise had during low and part 

load operation is significantly higher than that of petrol engines.         



 

132 

 

 

Figure 61: Modelled exhaust gas temperatures when operating on three cylinders compared to two 

cylinders when deactivating the out-board cylinder compared to the centre cylinder, N = 1500 – 3500rpm, 

Tb = 20 – 70Nm.  

 

Attribute 
Deactivating  

Cylinder 1 (outboard) 

Deactivating 

Cylinder 2 (centre) 

Deactivating    

Cylinder 3 (outboard) 

Increase Pre-Turbine Exhaust Gas 

Temperature (K) 
+ - + 

Increased Heat Release to Coolant 

Via Exhaust Ports (W/m
2
) 

- + - 

Reduce Temperature Difference 

Between Adjoining Components 

(K) 

- - + 

Increase Wall Temperature of 

Deactivated Cylinder (K) 
- - + 

 Key        +       Contribution 

                     -        Counter-effective    

 

Table 7: Comparison of the effect of deactivating said cylinders on the temperature and heat transfer. 
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5.8 Limiting the Adverse Delay in Warm-Up Time When Deactivating  

Reduced coolant and oil warm-up rates associated with cylinder deactivation were investigated by 

varying the onset time for deactivation over the NEDC, as shown in Table 8. The NEDC was chosen over 

warm-ups performed under constant operating conditions due to the majority of the drive cycle performed 

over a warm-up. The reduction in fuel consumption during this warm-up process is attributed to an 

increase in the gross indicated thermal efficiency and pumping benefits. Deactivation was disabled when 

the deterioration of the gross indicated thermal efficiency resulted in a fuel consumption penalty. For 

reference purposes the zero percent is indicative of the reactivation point as shown on the BSFC map on 

Figure 63. Also, to retain some semblance to reality, deactivation was limited to 1250rpm to imitate a 

limit due to NVH. The NVH limit was based on vibrational characteristics of the chassis of the VW Polo 

powered by a 1.4l TSi engine capable of deactivation. Furthermore a minimum deactivation period of 2 

seconds was modelled. This was based on observations that the ECU monitors that all the criteria for 

cylinder deactivation are met over a two second interval prior to enabling deactivation [5.11].  

 Generally, enabling cylinder deactivation over a longer time interval of the drive cycle prolongs the 

time for coolant to warm-up however the oil warm-up rate remains largely unaffected. If cylinder 

deactivation is present over the majority of a warm-up procedure the delay in warm-up time may be 

significantly be reduced if deactivation is onset past a coolant temperature of 40 . This agrees well with 

data analysed by McGhee et al [5.11] where deactivation on the 1.4l four cylinder engine was enabled 

past a coolant temperature of 40  and oil temperature of 10 . Furthermore, modelling the effects of 

enabling piston cooling jets during the warm-up process proved not to enhance the warm-up rate of the 

coolant or oil. 

Table 8: Modelled delays in coolant and oil warm-up times over the NEDC and associated fuel 

consumption deterioration with the delays. 

Coolant Temperature at 

which deactivation enabled (
o
C) 

20 30 40 50 60 70 90 

Source of mf benefit 

Pumping losses and 

gross indicated thermal 

efficiency 

 

Time Constraint 

3 second minimum 

deactivation window 

 

Deactivation Operating 

Window 

Refer to BSFC map on 

Figure 63  

 

Time for coolant to 

reach 90
o
C 

 

938 927 921 914 902 893 882 

Oil temperature when 

coolant reaches 90
o
C 

 

84 83 82 80 80 78 76 

Fuel consumption 

reduction over NEDC 

(%) 

 

3.31 3.21 3.05 2.79 2.39 2.00 0.41 

Percentage of Drive 

Cycle Time Deactivated 

(%) 

40% 39% 37% 34% 30% 25% 16% 
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5.9  Discussion 

In this chapter the effects cylinder deactivation has on engine thermal behaviour have been examined, 

with particular focus on quantifying cycle-averaged changes in component temperatures and reducing 

associated adverse thermal effects.  

Based on good agreement between measured and predicted temperature distributions in the liner 

coolant and oil temperatures for the engine running on all three cylinders the model proved to be robust 

over various operating conditions. To model the effect of cylinder deactivation in the deactivated cylinder 

heat transfer from the gas-side was assumed to be small in the exhaust ports. This approach results in 

numerically increasing the mass of fuel injected into the firing cylinders such that the Reynolds number 

increases. In turn, the temperatures of the components comprising the deactivated cylinder reduce to local 

coolant temperatures. Consequential to this components of the deactivated cylinder endure the largest 

temperature changes in the engine. Temperature changes increase with engine brake load and engine 

speed.  

Thermal models are time and cost-effective solutions in providing information on component 

temperatures which are difficult to access or restricted due to motion. The installation of thermocouples or 

infra-red sensors [5.9] to monitor the temperature of components such as exhaust valves or pistons [5.10] 

is a delicate, expensive and time consuming process. With this the model predicts that the lower exhaust 

valve stem undergoes the largest temperature change in the engine in the range of < 400 . The near 

vacuum pressures measured above the motored piston, see Chapter 4 section 4.11.2, would however 

discourage the use of non-individually controlled jets. The continued suction effect due to the vacuum 

would augment accumulation of oil on the top landing of the piston. However, this development is 

applicable if independent control of the piston cooling jet solenoids were made possible or piston design 

were improved to drain accumulation of oil [5.1]. 

Time constants for components to settle to new equilibrium temperatures when deactivating or 

reactivating are predicted in the range of 10 to 25 seconds. Dependence on coolant flow-rate and the 

magnitude of the temperature change are explanatory for the range of the time constants, although this 

might not be apparent when physically observing changes in an engine.    

Changes in engine friction when considering cylinder deactivation are difficult to analytically resolve 

due to the complexity of the phenomenon. For instance, to understand the changes in the camshaft main 

bearing friction, associated with cylinder deactivation, crank-angle resolved tools are required to compute 

the effect of the transient change in bearing load and thus film thickness. This remains outside the scope 

of the time-averaged approach used in this modelling instance. For simplification, the viscosity correction 
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is based on a global engine oil temperature. This proves to be adequate for the purpose of modelling 

engine thermal behaviour which is primarily dependent on changes in the magnitude of heat transfer on a 

cylinder specific basis. Nonetheless, tribo-dynamic analysis carried out by Mohammadpour [5.5] show 

that the net effect cylinder deactivation has on friction dissipation experienced in the bearings are 

negligible. Thus this validates the approach used in this instance.  

Friction at the piston level is however more complicated. The effect of the partial vacuum formed as 

the piston approaches BDC on piston ring conformity against the cylinder walls remains uncertain. 

Although studies by Ma [5.11] have shown that cumulatively the magnitude of oil sucked onto the top 

piston landing over extended deactivation periods can be larger than that for firing piston, this has been 

shown on a pressure trace where the minimum in-cylinder pressure for the deactivated cylinder reaches 

0.65barA. Experimental findings for the TCE shown in Chapter 4, agreeing with experimental findings 

by Gottschalk [5.12] have shown that the minimum in-cylinder pressure can reduce to values below 

0.20barA. As such the effect on oil consumption, oil contamination and contamination effects on friction 

levels remains unanswered. However this would require detailed experimental analysis coupled with 

analytical modelling of the piston friction. A simplification was taken in this modelling instance assuming 

that air is present between the piston ring and cylinder wall although the presence of oil and air between 

the piston ring and liner is left to be ascertained in future studies. A simple approach was instead taken 

where piston friction in the deactivated cylinder was modelled to be the same as the piston friction in the 

firing cylinders. Friction in the deactivated cylinder is modelled to slightly reduce, i.e. <1%, compared to 

when firing on all. This however has a negligible effect on fuel consumption.  

Choosing the optimum cylinder to deactivate is dependent on the manufacturers‘ choice of valvetrain 

technology (i.e. packaging) along with dynamic considerations such as balancing of the crankshaft. For 

‗V‘ or ‗W‘ type engines where entire banks of cylinders are deactivated Adcock [5.13] reported that 

altering deactivation between cylinder banks reduces the adverse thermal effects of deactivation. 

Contrarily employing dynamic skip-fire mitigates thermal changes due to deactivation thus rendering the 

dilemma obsolete [4.14]. However, at the time of this investigation the availability and commercial 

applicability dynamic skip-fire has not been exemplified. Nonetheless, for cylinder deactivation keeping 

the deactivated cylinders warm is preferential such that upon reactivation factors such as combustion 

quality, emissions and soot formation remain unaffected. In the case of the TCE the ideal cylinder to 

deactivate was shown to be that furthest downstream of the coolant inlet aperture. Furthermore 

temperature differences between components in firing and deactivated cylinders are also minimised by 

doing so. The reduction in temperature difference was found to be equivalent to the temperature increase 

a component endures at a given brake load when augmenting the engine speed by 1000rpm.    
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The warm-up rate of the coolant is delayed due to the reduced surface area reducing the transfer of 

heat from hot gases. Through modelling an optimisation study was carried out on the NEDC altering the 

onset time for deactivation based on coolant temperature. It was found that the delay in coolant warm-up 

is minimised when on-setting cylinder deactivation between temperatures of 40 and 50  while still 

retaining a significant fuel consumption benefit over the drive cycle. This study has been conducted in 

light of ensuring that cabin heating is provided to the passengers without significant delays for comfort 

purposes. Experimental studies on cylinder deactivation applied to the two in-board cylinders of a 1.4l 

four cylinder engine used to power the VW Polo GT have shown deactivation is onset when the oil 

temperature is above 10  and when coolant temperatures are above 42  [5.8]. Further investigations on 

predicted fuel consumption improvements associated with cylinder deactivation are described in Chapter 

6.  

The main conclusions concerning operating the TCE safely thermally with cylinder deactivation can be 

summarised as follows: 

 Heat resulting from rubbing friction in the liner of the deactivated cylinder is weakly affected by 

cylinder deactivation as this is strongly dependent on coolant temperature.  

 

 In order to limit the prolonged effect on warm-up rate due to cylinder deactivation, the onset of 

deactivation should be between a coolant temperature of 40 to 50  and an oil temperature of 

20 . 

 

 Temperature changes in the lower exhaust valve stem due to cylinder deactivation remain within 

safe engine operating temperatures. The temperature change when deactivating one cylinder up to 

33% WOT is analogous to a rapid acceleration event wherein the engine operates at 66% WOT 

followed by a rapid deceleration event and engine switch off.   

  

 The largest modelled temperature difference between adjacent cylinders is in the inter-bore region 

being around ~60 . Based on nominal temperature differences reported by Rajput [5.15] in the 

inter-bore region of 100  for an engine firing on all cylinders, a 60  remains within safe engine 

operating bounds.     
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Chapter 6 Cylinder Deactivation Effects on Engine Performance 

6.1 Introduction 

In this chapter fuel consumption improvements due to cylinder deactivation have been investigated 

for the TCE. This work was undertaken using the characterised multi-cylinder version of PROMETS 

described in Chapter 4. As a large proportion of the fuel consumption benefit stems from reduced 

pumping losses it was imperative that model predicted values compare well with experimental data over 

modal and transient drive cycles. Second-by-second comparisons over the NEDC, FTP-75, HWFET and 

US06 as mentioned in, Chapter 4 subsection 4.10.3, are shown in Appendix C. Modelled fuel 

consumption of the TCE, operating on all three cylinders, over cold starting NEDC and FTP-75 drive 

cycles were intrinsically well estimated.  

With this, in the first part of this chapter differences between modelled and physical pumping work 

estimates are described. Modelled pumping improvements coupled with empirical expressions describing 

the changes in the gross indicated thermal efficiency, are then used to predict the potential cylinder 

deactivation has on reducing fuel consumption. Empirical functions were described through experimental 

work carried out at the University of Nottingham. Predicted magnitudes of fuel saved for cylinder 

deactivation with respect to engine brake load and engine speed are quantified. The potential for cylinder 

deactivation to reduce fuel consumption on different drive cycles was then investigated through 

simulation and expressed in percentages. The effect NVH has on the potential fuel consumption benefit 

over these drive cycles was simulated by setting arbitrary engine speed envelopes for operation of 

cylinder deactivation. With this the potential of using the technology over idling periods is also assessed.     

Adding to the modelling work, real world driving data is used to visually depict engine speed and 

brake torque residence times over different routes. The influence of driving style on the proportion of 

total fuel consumed over the different routes is also addressed through this work. This expands on work 

carried out in collaboration with Dr. Michael McGhee [6] on a 1.4l four cylinder TSi gasoline engine used 

to power the VW Polo GT [6.1]. The impact cylinder deactivation has on fuel consumption benefits over 

real world driving routes was then assessed through PROMETS for the 1.4l engine and the TCE. Factors 

influencing the employment of cylinder deactivation such as traffic and gear selection are also briefly 

investigated for real world driving routes.    
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6.2 Modelling Performance Changes with Cylinder Deactivation  

6.2.1 Pumping Losses and Gross Indicated Thermal Efficiency Calculations 

Holistically, the improvement in fuel consumption is described through changes in pumping work and 

gross indicated thermal efficiency as shown in the expression below: 

   
           

       
     Equation 95 

Where    is the brake power,    the pumping power,    the friction power,    the ancillary power 

and    the power required to motor the deactivated piston in the deactivated cylinder. Modelled pumping 

losses are calculated by subtracting a look-up table based exhaust manifold pressure value,    , with an 

iteratively solved intake manifold pressure value,   . The expression for the pumping loss is shown below.    

   (      )    
 

   
     Equation 96 

The expression is strongly dependent on the reduction in swept volume, Vs. For the TCE the volume 

reduces by 33%. Upon deactivation the cylinder volumetric efficiency increases. For a given engine speed, 

the volumetric efficiency correction factor based on the intake manifold translates horizontally up the x-

axis. The effect of varying exhaust pulse frequency and valve timing are not accounted for through this 

expression. This remains outside the scope of this investigation as engine calibration entails a study in 

itself.  

Any improvement or deterioration in the gross indicated thermal efficiency also affects the solution 

for the intake manifold pressure. This is representative of the spark retard relative to MBTD. Shown in 

Appendix D Figure 92 are the empirical expressions for the changes in gross indicated thermal efficiency 

with respect to engine brake load for various engine speeds. The experimentally observed change in gross 

indicated thermal efficiency is added or subtracted by a theoretical constant efficiency value that is based 

on the expression defined in Equation 97. For the TCE the theoretical gross indicated thermal efficiency 

at MBTD is 42.9%. Combustion efficiency,   , has been empirically expressed showing a dependence on 

equivalence ratio [6.2],  

   {
                                                                

                                       
       Equation 97 

The equivalence ratio has been held at a constant value of 1 for the study of cylinder deactivation with no 

discrepancy for the engine firing on all cylinders. Combustion efficiency for this modelling instance is 

thus at a constant 98%. Effects of varying the intake charge temperature past the compressor have not 

been modelled such that the effectiveness of the inter-cooler was not assessed. For this investigation the 

intake charge temperature is held at a constant 20 .  
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6.2.2 Discrepancy between Modelled and ‘Real’ Pumping Losses 

Pumping losses in PROMETS are calculated as isobaric processes. In reality, when the intake valves 

open, during the suction phase, heat transferred from the cylinder wall to the fresh air charge increases the 

charge pressure. In effect, as the piston travels downwards, towards BDC, the reduction in the density of 

the trapped charge results in a reduction in the intake stroke pumping work. This reduces the resultant 

opposed force due to the crankcase pressure. Likewise, the process of internal scavenged flow or internal 

EGR, emanating from the exhaust side, marginally increases the in-cylinder temperature and thus 

pressure.  

Inversely, when expelling the by-products of combustion, the in-cylinder pressure resists the upward 

travel of the piston (           ). The pressure in the exhaust manifold experiences large dynamic 

oscillations typically during part/high load conditions. Calibration settings aim at minimising the resistive 

force of the high pressured exhaust gases by advancing the exhaust valve opening times prior to the 

exhaust stroke. Although pressure fluctuations are present due to early exhaust valve opening, absolute 

changes in pressure are small.    

6.3 Fuel Consumption Improvement on the TCE 

6.3.1 Percentage Improvements at Constant Operation 

Figure 63 shows modelled BSFC percentage improvements for the TCE under fully-warm conditions. 

Between 0 and 20Nm, the percentage improvement in fuel consumption remains largely constant 

regardless of engine speed, residing in the 25% to 10% reduction range, respectively. In practice for low 

loads poor mixture of the fuel and air charge may result in large coefficients of variation in in-cylinder 

pressures producing unstable readings of the fuel consumption improvement. For modelling purposes a 

constant fuel consumption improvement is taken. Between engine brake loads of 20 to 80Nm the 

percentage improvement in fuel consumption increases with increasing engine speed. This is realistically 

attributed to a smaller retard of the spark angle as engine speed increases. For loads between 40 and 

80Nm, the improvement, if present, is balanced by the penalty imposed by the deterioration in gross 

indicated thermal efficiency and the persisting benefit due to reduced pumping losses.  
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Figure 62: Modelled brake specific fuel consumption percentage improvements with deactivation of 

one cylinder on a 1.0l three cylinder engine (engine rated brake torque of 170Nm at 1500rpm). 
 

 

The majority of the fuel consumption benefit is had at light engine loads, reducing as engine load 

increases. This is primarily due to the reduced importance pumping work has as engine load increases 

combined with the deterioration in gross indicated thermal efficiency. The break-down of the benefit 

stemming from changes in pumping and gross indicated thermal efficiency are shown in percentage terms 

in Appendix D Figure 93. Modelled pumping work changes with cylinder deactivation are also shown in 

kilowatts Appendix D Figure 94. Given this, for very low engine loads pumping work accounts for 

roughly 45 to 33% of total fuel consumption further reducing at part loads to values between 5 and 0.5%. 

Therefore any reduction in pumping work marginally affects the fuel consumption benefit as engine load 

increases. Given this the reduction in pumping work associated with deactivation accounts for 55 to 100% 

of the total fuel consumption benefit with respect to increasing brake load. As the importance of pumping 

work reduces the deterioration in the fuel consumption improvement at part load is chiefly due to the fall 

in the gross indicated thermal efficiency. Given this, the fuel consumption penalty due to the motoring of 

a piston is dependent on engine brake load but generally varies between 0.05 to 0.01% increase in fuel 

consumption at low and part loads respectively.  
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6.3.2 Magnitude of Improvement 

At light loads although the percentage benefit is similar for differing engine speeds, the reduction in 

the magnitude of fuel injected into the firing cylinders is not the same. Figure 64 generally shows that the 

reduction in mass of fuel injected, for a given engine brake load, increases with engine speed. As engine 

speed increases the magnitude in fuel consumption reduction becomes significant compared to lower 

engine speed counterparts. The magnitude in fuel reduced for 1000rpm increments increases by a two fold 

equivalent or 100%. As example, for an engine brake load of 10Nm at 1000rpm five times more fuel is 

consumed and saved running when operating at 4000rpm.  

 

Figure 63: Modelled reduction in mass of fuel injected with deactivation of one cylinder on a 1.0l three 

cylinder engine.  

 

6.4 Fuel Consumption Improvements on Drive Cycles 

6.4.1 Drive Cycle Brake Torque and Engine Speed Inputs  

Drive cycles are simulated through PROMETS by inserting second-by-second engine brake torque 

and engine speed traces. These two inputs can be acquired, 1) by performing a drive cycle on a chassis 

dynamometer wherein an operator or robot follows a designated vehicle speed trace or 2) by simulating 

resistive forces overcome by a vehicle. Data emanating from both these sources has been used to simulate 
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the effects cylinder deactivation has on fuel consumption over the NEDC, FTP-75, WLTC and 

ARTEMIS. For the NEDC and FTP-75, brake torque and engine speed traces were supplied by British 

Petroleum . These traces were acquired through chassis dynamometer tests specific to an undisclosed 

commercially produced vehicle. Contrarily, WLTC and ARTEMIS inputs for PROMETS were acquired 

through a vehicle simulation tool named ‗Advanced Vehicle Simulator‘ ADVISOR [6.3]. The principles 

and configuration of the simulation tool are briefly discussed in the following subsection.   

6.4.1.1 Vehicle Simulator – Brake Torque and Engine Speed Outputs 

It was important that specific vehicle attributes be retained for the simulation of drive cycles such that 

brake torque and engine speed traces accurately represent the target vehicle used on chassis dynamometer 

tests. Engine brake torque and engine speed were calculated by inputting vehicle speed traces for the 

WLTC and ARTEMIS [6.4] [6.5]. The required engine brake power is characterised by resistive forces 

impeding forward motion of vehicle and is expressed as the sum of the rolling resistance   , drag 

resistance   , momentum of the vehicle   , and resistance due to inclination   ,    

                             Equation 98 

The mechanical efficiency of a powertrain reduces the actual brake torque outputted from the engine to 

the wheels. The TCE is fitted in traverse to the direction of motion of the vehicle therefore the mechanical 

efficiency of the powertrain was taken as        [6.6].       

 
                         Equation 99 

Vehicle rolling resistance describes the force required to overcome friction between the tyre and road 

surface. This is expressed as a product of the static mass of the vehicle, road surface resistance coefficient 

and velocity, as shown [6.7],    

                
 

  
        

 

  
                 Equation 100 

Where     is the torque generated due to the road resistance which is a function of the tyre radius,     

force exerted on each tyre,   , due to the apparent mass,     of the vehicle; and the road surface resistance 

coefficient,   . The C-segment Ford vehicle represented here has a mass of 1,454kg inclusive of an 80kg 

passenger. Also, consideration of the effect of reciprocating and rotating components, i.e. crankshaft, 

camshaft and others, has to be accounted for while calculating the overall vehicle mass. These 

components create an effective inertial mass. Therefore an apparent mass    is used as a substitute for the 

actual vehicle mass,   [6.6].  

 
                   Equation 101 
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The resistance coefficient for typical passenger vehicles operating on tarmac is in the range of 0.01 <     

< 0.02. An intermediary value of 0.015 was used [6.8].  

The drag force experienced by the vehicle is dependent on the vehicle‘s drag coefficient, frontal area, 

air density, velocity of travel and head wind, as shown, 

   
 

 
〈    (    )

 〉         Equation 102 

The density of air was calculated assuming a constant air temperature of 20  while head wind effects 

were nullified. The C-segment vehicle has a drag coefficient of    = 0.3 and frontal surface area of   = 

2.22m
2
.  

The momentum of the vehicle must also be accounted such that excess power required in accelerating 

the vehicle from a constant velocity or standstill position is accounted for.  Contrarily while the vehicle is 

decelerating the momentum of the vehicle reduces the required brake torque to overcome rolling and drag 

resistances. This is shown through the following expression, 

        

          Equation 103 

Lastly, the increased or reduced resistive force due to road surface inclination or declination is 

accounted for in the following expression, 

               Equation 104 

Road gradients are not present on legislative drive cycles therefore this last term was nullified.  

In ADVISOR engine speed is determined as a function of the tyre radius,      ; gear ratio,   ; and 

vehicle speed. Gear ratio is appropriated based on a vehicle speed band for a given number of gears. The 

expression for engine speed,                 , is shown below, 

 

                 
          

        
            Equation 105 

Gear ratios for a 6-speed manual gearbox have been modelled with the shifting point occurring at a 40% 

of the maximum indicated speed for a given gear.    

   

{
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6.4.2 Engine Speed Based Operating Envelopes   

Table 9 shows modelled fuel consumption benefits for the TCE when employing cylinder 

deactivation over the NEDC, FTP-75, WLTC and ARTEMIS, for fully warm starting conditions (Toil = 

90 ). The effect of limiting cylinder deactivation within different engine speed operating envelopes has 

been studied. The switchover from two to three cylinder operation, and vice-versa, is based on 0% fuel 

consumption line shown on the BSFC map. The reduction in the fuel consumption improvement when 

omitting deactivation periods less than two seconds long has also been studied. For lightly loaded cycles 

such as the NEDC and FTP-75 the largest fuel consumption benefits are to be had between the 1000 and 

2000rpm engine speed range. As the upper limit on engine speed is increased from 2000 to 4000rpm, i.e. 

a 2000rpm increment, the benefit nearly doubles. On the other hand, for the WLTC and ARTEMIS due to 

more dynamic loading and reduced time spent in the lower brake torque regions the overall fuel 

consumption benefit reduces drastically regardless of the engine speed operating envelope. For the WLTC 

and ARTEMIS 53% and 51% of the total cycle duration is spent between 0 to 30Nm range respectively. 

This contrasted by 77% of the total time for the NEDC and 75% for the FTP-75, while 6% of the NEDC 

and FTP-75 is spent in the 60 to 90Nm range c.f. 17% for the WLTC and 18% for the ARTEMIS.    

 A large proportion of time is spent idling in the four drive cycles; 22.6%, 12.9%, 13.4% and 7.32% 

for the NEDC, FTP-75, WLTC and ARTEMIS respectively [6.5] [6.8] [6.10]. For engine speeds below 

1000rpm the percentage improvement in fuel consumption is significant, denoted by the fourth column of 

Table 9. The lower engine speed limit has been set to 500rpm, given that the idling speed for the TCE is 

limited to 850rpm. Commonly the lower engine speed limit for engines capable of cylinder deactivation is 

cited at around 1250rpm [6.1] [6.9]. This is attributed to poor vehicle NVH characteristics at lower speeds 

when applying cylinder deactivation, as mentioned in Chapter 2 subsection 2.3.9.  

Drive Cycle/ 

Engine 

Speed 

1000 – 

2000rpm 

1000 – 

3000rpm 

1000 – 

4000rpm 

500 – 

4000rpm 

(500 – 

4000rpm) 

 2 second limit 

 

NEDC 2.72% 4.50% 4.50% 5.69% 5.65%  

FTP-75 2.86% 5.35% 5.43% 6.59% 6.31%  

WLTC 0.55% 1.37% 1.58% 2.23% 2.00%  

ARTEMIS 0.22% 0.56% 0.74% 1.16% 0.76%  

 

Table 9: Fuel consumption benefits for various engine speed envelopes when deactivating one cylinder 

on the 1.0litre three-cylinder engine over various drive cycles for Toil = 90 .  
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Reducing the lower engine speed limit from 1000 to 500rpm; while maintaining the upper engine speed 

limit of 4000rpm, increases the potential fuel consumption benefit had by 1.19%, 1.16%, 0.65% and 0.52% 

over the NEDC, FTP-75, WLTC and ARTEMIS, respectively. This is equivalent to a 26.4%, 21.4%, 41.1% 

and 70.3% increase of the total fuel consumption benefit over the NEDC, FTP-75, WLTC and ARTEMIS, 

respectively. As the absolute reduction in mass of fuel consumed is largest for the lowest loads it is clear 

that cylinder deactivation should be implemented at lower engine speeds through the development of 

stiffer chassis [6.1]. This is if start/stop is not used during idling periods.  

Simulation of deactivation periods shorter than two seconds were quantified in order to replicate the 

effect ECU processing-time may have on reducing fuel consumption improvements. This is shown on 

column five of Table 9. The reduction in fuel consumption benefit is small for the NEDC, i.e. 0.02%, 

characterised by its modality. For the FTP-75, WLTC and ARTEMIS the reduction increases by a 

magnitude 0.28%, 0.23% and 0.4% respectively. A 1.47% increase in fuel consumption improvement is 

had when starting from a fully warm state compared to a cold started cycle, shown in Table 9. The 

reduction under cold starting conditions is attributed to higher frictional losses.  

6.5 Real World Driving  

Drive cycles are referred to as a standard for comparing engine performance for legislative purposes. 

Real world driving data on the other hand is specific to a person‘s quotidian commute and this is varied. 

The characteristics of a commute are largely defined by the infrastructural development of the localities 

through which a driver travels. For example, as population density increases road signalling and traffic 

become more common to ensure safe environment for pedestrians [6.11]. Therefore during ‗rush hour‘ the 

probability of traffic may increase resulting in a large proportion of time spent accelerating and 

decelerating. Contrarily commutes for inhabitants of rural areas are characterised by segments which 

encompass urban, motorway and rural passages. Traffic may be scarcer in these demographics and 

vehicle operation more modal in nature. Given these differences, it was of interest to model cylinder 

deactivation using real world brake torque and engine speed profiles to quantify fuel consumption 

improvements.  

6.5.1 Description of Routes  

Real world data on three quotidian commutes, shown in Figure 65, were obtained by driving a VW 

Polo GT powered by a 1.4l turbocharged TSi engine capable of deactivating two cylinders. An Influx 

Rebel CT data logger plugged into the OBD-II port relayed variables from the ECU to an SD storage chip 

providing second-by-second information on GPS position, fuel consumption, coolant and oil temperatures, 

AFR, brake torque and engine speed. The first route was known as the City Route: an urban route 12.8km 
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long comprised primarily of passages through the city centre and extra-urban segment of Nottingham. 

The second route as Commute A: a 35.2km long route comprised of a rural, urban, motorway and again 

brief urban passage. The third route as Commute B: a route 20.8km comprised of a short urban passage 

primarily defined by extra-urban and rural passages [6]. A collection of 12 repetitions for each route (i.e. 

a total 36 drives) were taken to supply data on the variables mentioned above and in the following 

subsections. Two drivers of differing age and background split the driving. These drives were performed 

at varied times during the day (i.e. with varying traffic conditions). 

 

 

Figure 64. Real world driving routes [6]. 

Brake torque and engine speed data emanating from the ECU for the three routes were used as inputs 

for PROMETS for the TCE. Since the 1.4l engine has a higher power rating compared to the TCE, any 

excess load was capped to the rated brake torque value of 170Nm.  Engine speed remains the same 

inferring that the same type gearbox is utilised.  

6.5.2 Operating Condition Residence Times and Related Engine Fuel Consumption    

To visually characterise the operational bias in each route, engine operating residence times are drawn 

on bubble graphs with respect to engine speed and brake load, as shown on Figure 66 (A-F). The graphs 

have a resolution of 20 by 25. Shown on Figure 66 G, are the residence times for the NEDC. The rated 

engine speed-torque curve for the 1.4l is denoted by a thick black line while the operating envelope for 

cylinder deactivation is denoted by a dashed line. Two driving styles are described; one is characterised as 

‗economic‘ aimed at reducing fuel consumption by minimising accelerations and the other as ‗urgent‘ 

wherein the aim was to reduce time-spent commuting in a law-abiding manner. The ‗urgent‘ driving style, 

shown on Figure 66 (B, D and F) is visually discernible by a larger proportion of time spent in the higher 

City 

Commute B 

Commute A Rural 

City 

Motorway 

City 



 

147 

 

brake torque and engine speed regions. The NEDC falls under an ‗economic‘ driving style wherein the 

largest torque event achieved is equivalent to 52% of the rated torque while only touching upon specific 

engine operating points repeatedly. Figure 67 (A-G) shows the proportion of fuel consumed for a given 

operating point on Figure 66 (A-G). Generally all figures demonstrate that for a fixed engine speed the 

proportion of fuel consumed for a 10Nm increase in brake torque is of roughly 0.2grams, under fully 

warm conditions. A simple backhand calculation indicates that the fuel consumed over 10 seconds spent 

at a 25Nm brake load is equivalent to 1 second spent at a brake load of 250Nm. Therefore although little 

time is spent on aggregate in the higher brake load segments the percentage of the total fuel consumed in 

these regions is significant. What is largely inferred from the collection of graphs is that although a 

significant proportion of the real world routes are spent in the deactivation envelope more than 75% of 

fuel consumed is allocated to points outside this envelope. This is heavily influenced by long idling 

periods and short acceleration periods which draw large amounts of fuel relative to low and part load 

conditions. The following three paragraphs exemplify this by describing the percentage of the total time 

and total fuel consumed for brake torque bands demonstrating that cylinder deactivation is useful in 

reducing fuel consumption over moderate and modal type driving styles.   

Referring to Figure 66 (A) and (B), pertinent to the City Route, operating points remain largely 

confined below 3000rpm. For the ‗economic‘ driving style 74.1% of the total time is spent between the 0 

to 50Nm interval of which 19.9% of the time spent is held idling/stopped. This is similar to the 22% 

observed on the NEDC shown on Figure 66 (G). The proportion of time spent in this region reduces to 

70.3% under an urgent driving style. For the ‗economic‘ driving style the time spent between 50 to 

100Nm, 100 to 150Nm and 150 to 250Nm is equivalent to 22.5%, 2.74% and 0.64% of the total time (i.e. 

total of 25.9%) respectively. While for the ‗urgent‘ driving style the spread biases towards the upper end  
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Figure 65: Brake torque and engine speed residence times for a given route/drive cycle.  
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Figure 66: Magnitude of fuel spent on a given engine speed and brake torque operating condition (i.e. described in Figure 61 – torque and engine 

speed residence times).  
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at 18.1%, 7.88% and 3.64% (i.e. a total of 29.7%) respectively. Less time is spent in the upper brake 

torque region regardless of the driving nature due to the intermittency of traffic and traffic signalling 

resulting in standstill periods. With reference to Figure 67 (A) and (B) although a small change in the 

time spent in the 0 to 50Nm interval is observed, i.e. ~3.9%, the proportion of total fuel consumed 

changes dramatically from 39.1% for an ‗economic‘ driving style to 29.1% for an ‗urgent‘ driving style. 

In turn comparing the percentage of fraction of fuel spent for the ‗economic‘ and ‗urgent‘ driving styles 

for the remaining brake torque intervals the percentages at first reduce from 46.3% to 29.3% (between 50 

to 100Nm) increasing from 10.2% to 21.9% (between 100 to 150Nm) and 4.39% to 19.6% (between 150 

to 250Nm) respectively. The two following paragraphs render a similar style analysis of the fuel 

consumed specific for varying brake torque intervals for Commute A and B in the aim of informing the 

reader of the variability imposed on residence times and fuel consumption for varying driving styles. 

Referring to Figure 66 (C) and (D) specific to Commute B, again operating points remain largely 

confined below 3000rpm although a larger spread of operating points is visible across the upper half of 

the engine rated torque region. For the ‗economic‘ and ‗urgent‘ driving styles the proportion of time spent 

between the 0 and 50Nm interval is similar at 55% of and 55.8% respectively.  However less time is spent 

idling for the ‗urgent‘ style at 2.12% compared to 8.73% for the ‗economic‘ style. For the ‗economic‘ 

driving style the time spent between 50 to 100Nm, 100 to 150Nm and 150 to 250Nm is equivalent to 38%, 

4.49% and 1.7% of the total time (i.e. total of 45%) respectively. While for the ‗urgent‘ driving style the 

spread this shifts to 33%, 7.56% and 3.6% (i.e. a total of 44.2%) respectively. Comparatively, a larger 

proportion of time is spent in the 100 to 250Nm interval for the ‗urgent‘ style, i.e. 11.2% compared to 

6.2%, resulting from harsher acceleration periods sustained over the entirety of the journey. Shown on 

Figure 67 (C) and (D) driving characteristics are similar to that of the City Route, although a small change 

in the time spent in the 0 to 50Nm interval is observed, i.e. ~0.8%, the proportion of total fuel consumed 

reduces by 6.94% for the ‗urgent‘ case compared to the ‗economic‘ case, from 26.9% to 19.9% 

respectively.  In turn comparing the percentage of fraction of fuel spent for the ‗economic‘ and ‗urgent‘ 

driving styles for the remaining brake torque intervals; the percentage at first reduces from 53.5% to 44.5% 

(between 50 to 100Nm), increasing from 11.9% to 18.8% (between 100 to 150Nm) and 8.76% to 17.2% 

(between 150 to 250Nm) respectively.  

Figure 66 (E) and (F)  show that engine speed points for Commute A span across 1000 to 3000rpm 

although a larger spread of operating points is visible across the upper half of the engine rated torque 

region compared to the City Route and Commute B. For the ‗economic‘ and ‗urgent‘ driving styles the 

proportion of time spent between the 0 and 50Nm interval differs greatly residing in these regions for 76% 

and 54% of the total time respectively. Traffic conditions increase the number of stops per kilometre 
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significantly affecting the driving style as denoted in Figure 68. Points A and B are representative of an 

‗urgent‘ driving style while point C subjugates the driving style to an ‗economic‘ one.   The proportion of 

time spent idling is significantly affected by the number of stops encountered along the journey reducing 

from 18.9% for the ‗economic‘ style to 2.79% for the ‗urgent‘ style driving. For the ‗economic‘ driving 

style the time spent between 50 to 100Nm, 100 to 150Nm and 150 to 250Nm is equivalent to 14.2%, 5.27% 

and 4.41% (i.e. total of 23.87%) respectively. While for the ‗urgent‘ driving style the spread similarly 

biases towards the upper end at 20.9%, 13.26% and 11.8% (i.e. a total of 45.9%) respectively. 

Comparatively, a larger proportion of time is spent in the 100 to 250Nm interval for the ‗urgent‘ style, i.e. 

11.8% compared to 4.41%, resulting from harsher acceleration periods sustained over the entirety of the 

journey. With reference to Figure 67 (E) and (F) although a large proportion time is spent between 0 and 

50Nm, i.e. 76% (economic) and 54% (urgent), the percentage of the total fuel consumed in this region is 

small accounting for 29.3% and 12.6% for the ‗economic‘ and ‗urgent‘ styles respectively. In turn 

comparing the percentage of fuel spent for the ‗economic‘ and ‗urgent‘ driving styles for the remaining 

brake torque intervals the percentage at first reduces from 24.9% to 22.8% (between 50 to 100Nm) 

increasing from 17.6% to 26.3% (between 100 to 150Nm) and 31.6% to 42.4% (between 150 to 250Nm) 

respectively. 

6.5.3 Representation of the 1.4l Engine  

Given the availability of information emanating from the ECU of the 1.4l engine [6], a model of the 

engine was built in PROMETS. This was undertaken to compare fuel consumption improvements when 

employing cylinder deactivation on the 1.4l against modelled improvements on the TCE on the three real 

world routes described above. Key dimensions used to model the 1.4l engine are shown in Appendix E 

Table 14. Coolant and engine oil volumes were increased proportionally to the volumes in the TCE. 

Block and radiator thermostat opening temperatures were kept the same as for the TCE agreeing with 

information found in literature [6.1].  

A 6% overestimate in fuel consumption is outputted from the 1.4l engine when simulating the NEDC 

from a 20  starting temperature. Given the lack of information available to the author this difference was 

considered acceptable. Differences are attributed to engine design specifics not readily available to the 

author such as coolant passage surface areas in the block and head and differences in engine calibration 

during warm-up. In modelling cylinder deactivation on the 1.4l engine emphasis was given in imitating 

the degradation in fuel consumption benefit with respect to brake torque. This was produced by matching 

modelled fuel consumption benefits on constant operating conditions against experimental data shown by 

Middendorf et al [6.1]. Thermally cylinder deactivation on the four cylinder engine is onset for coolant 

temperatures greater than 40  and for oil temperatures above 10  [6.1].   
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6.5.4 Fuel Consumption Improvements for a 4 Cylinder and 3 Cylinder Engine  

  Table 10 shows quantified modelled and measured fuel consumption benefits with cylinder 

deactivation for the 1.4l engine over the three real-world routes and the NEDC. Modelled fuel 

consumption benefits through cylinder deactivation for the TCE are also quantified. Good agreement 

exists between modelled and experimental fuel consumption improvements for all four drive cycles 

shown. Referring to modelled percentage improvements for both engines, the largest benefit is observed 

over the NEDC.  

 

Table 10:  Modelled fuel consumption percentage improvements over the NEDC and real world driving 

routes for a 1.4l four cylinder capable of deactivating 2 cylinders and 1.0l three cylinder engine capable of 

deactivating one cylinder.  

 

The city route provides low fuel consumption benefits due to increased traffic density resulting in a 

larger percentage of the cycle time spent stopped [6]. Commute B shows fuel percentage improvements 

that are higher due to the calmer driving style adopted. An attempt to maximise deactivation while 

ensuring that the journey time did not remain compromised reflects the improvement. An aggressive 

driving style was adopted on Commute A with no regard given to the availability of cylinder deactivation 

on the vehicle. Therefore the magnitude of fuel used per kilometre is equivalent to that observed on the 

city route where staccato like driving style results in high fuel consumption considering the distance 

travelled. The estimated fuel consumed over 100 kilometres for the City Route, Commute B and Commute 

A are 4.6l/100km, 3.3l/100km and 4.8l/100km respectively.  

Largely the three cylinder engine yields a smaller fuel consumption benefit through cylinder 

deactivation. This is due to a smaller potential to reduce pumping losses considering the downsized nature 

Rated 

Power 

(Psi) 

Engine Size 

(l) 
Attribute 

 Cold Start,  Toil = 20°C  

NEDC City Route Commute B Commute A 

140 

1.4l 

 4 Cylinder 
(Deactivation of two 

cylinders) 

mf,total  0.469kg 0.593kg 0.696kg 1.68kg 

Modelled Benefit 

due to 

Deactivation 

7.49% 3.22% 4.85% 1.53% 

OBD Measured 

Benefit due to 

Deactivation 

~ 6% ~ 3% ~ 6% ~ 0% 

120 

1.0l   

 3 Cylinder 
(Deactivation of one 

cylinder) 

mf,total 0.406kg 0.521kg 0.616kg 1.13kg 

Modelled Benefit 

due to 

Deactivation 

3.05% 1.16% 2.01% 1.72% 
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of the engine, i.e. residing in the sub 1.0litre category. In other words, the relative change in the throttle 

position for the three cylinder engine for a given brake torque increment is larger compared to the change 

in the four cylinder engine.  Thus cylinder deactivation provides larger benefits for heavily-throttled 

engine. 

6.5.5 Factors Influencing Employment of Cylinder Deactivation  

 Driving style along with the journey type, whether limited in consistency in operating conditions due 

to traffic signalling or traffic conditions; as visualised and explained in subsection 6.5.2 of this chapter, 

are factors which limit the benefit to be had from cylinder deactivation. Shown on Figure 68 is the effect 

of traffic volume on the number of stops per kilometre covered on Commute A. Commute B and the 

NEDC exemplify that a smoother driving style allows for larger benefits to be had when driving in a 

manner which is less volatile to acceleration and deceleration periods, as shown by the fuel consumption 

benefits listed in Table 11.  

 

 

Figure 67: Dependency of time-spent deactivated on the traffic volume for Commute A.  

 

Applying smart automatic gear selection control for constant speed cruising in city driving can yield 

large benefits assuring that traffic flow remains regular. This is demonstrated by the fuel economy benefit 

observed on Figure 69, when switching from 5
th
 to 4

th
 gear when cruising at 40kmph where switching 

from four to two cylinder operation yields a 16% reduction in mass of fuel. Contrarily switching to 3
rd
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gear imposes a penalty. As shown on Table 11 smart gear selection may be used to evade NVH limited 

operation on two cylinders [6]. 

 

 

 

Figure 68: Fuel consumption benefit when downshifting from 5
th
 to 4

th
 gear enabling the use of two 

cylinder operation at a vehicle speed of 40kmph.  
 

 

 

Gear 

Number 

Vehicle 

Speed 

(km/h) 

 

Engine 

Speed 

(rpm) 

 

Vehicle 

Speed 

(km/h) 

 

Engine 

Speed 

(rpm) 

 

Vehicle 

Speed 

(km/h) 

 

Engine 

Speed 

(rpm) 

 

3 

32 

1510 

48 

2235 

64 

2959 

4 1110 1656 2203 

5 913 1357 1802 

6 757 1121 1484 

 

Table 11: Effect of gear number selection on engine speed in remaining outside the NVH constrained 

band [6].  
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6.6 Discussion and Conclusions 

The effects of cylinder deactivation on the performance of a 1.0l three cylinder engine have not been 

previously reported in literature. This chapter has shown quantitative information on the benefits had 

when deactivating one cylinder through PROMETS used in conjunction with experimental data.  

PROMETS is not calibrated to account for engine knock when deactivating a cylinder and therefore 

the higher IMEPs of the firing cylinders are not limited in the engine. The deterioration in the gross 

indicated thermal efficiency due to engine knock was therefore accounted for by inserting percentage 

changes emanating from a proto-type engine. In turn coupled with the predicted benefits due to the 

reduction in pumping, fuel consumption predictions show that the benefit due to the improvement in 

gross indicated thermal efficiency account for a maximum 45% of the benefit at the lightest engine loads. 

As engine load increases the deterioration in fuel economy, relative to operation on all cylinders, is solely 

due to the degradation in the gross indicated thermal efficiency.    

Leone and Pozar [6.12] showed through the coupling of experimental and simulation work fuel 

consumption benefits to be had through cylinder deactivation are limited by six factors: hysteresis; warm-

up delay; NVH constraints; no deactivation in the 1
st
 or 2

nd
 gear due to NVH constraints; no deactivation 

at idling and higher engine speed limits. By hysteresis the implication is that engine calibration decisions 

to switch into a deactivated cylinder mode should lag behind actual engine operation such that 

deactivation is not consistently enabled and disabled. Simulations on a 6.8l gasoline truck engine showed 

that over the EPA city and highway drive cycle benefits reduced by 8.5% from 14.5 to 6%.     

Similarly, simulation of constraints on the operating window for cylinder deactivation on the TCE 

reduces the potential fuel consumption benefit had over the NEDC. Fuel consumption benefits are 

significant over the NEDC when no constraints are imposed and the cycle is commenced from a fully-

warm engine state. Benefits are predicted at 5.69%. Imposing an arbitrary lower bound NVH constraint of 

1000rpm however reduces the potential benefit had by 1.19% down to a total fuel consumption 

improvement of 4.50%. Furthermore, imposing a 2 second delay to represent the hysteresis had by the 

ECU to enable deactivation a small reduction of 0.06% is imposed. If the engine is started from an 

ambient temperature of 20  the benefit further reduces by 1.19%, to a total of 3.31%. Deactivation also 

imposes an unwanted delay in warm-up time which can minimised by delaying the onset of deactivation, 

as shown in Chapter 5 subsection 5.8, to a temperature between 40 and 50 . This marginally affects the 

benefit reducing it by 0.28%, to a total of 3.03%. Warm-ups can potentially be mitigated by installing 

latent heat storage devices as suggested by [6.13]. Finally, arbitrarily limiting deactivation to an upper 

speed limit of 2000rpm shows that the benefit is reduced by a further 0.33%, to a total of 2.70%.  An 

illustration of the effect of these constraints have on the potential fuel consumption improvement is 
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shown on Figure 70. In essence, based on the non-extensive work looking at arbitrary NVH limits, NVH 

and warm-ups are the main factors restricting the potential for cylinder deactivation to reduce fuel 

consumption. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 69: Modelled fuel economy sensitivity due to arbitrary modelled NVH limit and warm-up over the 

NEDC for the TCE.   

 

Apart from the sensitivity in fuel consumption imposed by NVH factors and engine warm-up, driving 

style; the nature of the operating conditions encountered on a journey or drive cycle; and reducing engine 

size for a given vehicle mass reduce the potential fuel consumption benefit had from cylinder deactivation. 

Firstly, due to deactivation improving fuel consumption at light and part engine loads drive cycles 

characterised by their light loads show the greatest potential for fuel consumption reduction. As such, for 

non-constrained operation of cylinder deactivation on the TCE over the NEDC and FTP-75 benefits of 

5.69% and 6.59% were modelled. More dynamically loaded cycles such as the WLTC and ARTEMIS 

show that the benefit reduces significantly down to 2.23% and 1.16% respectively. Furthermore, the 

potential fuel consumption reduction had by employing deactivation below 1000rpm on these cycles is 

also less significant due to distribution of fuel consumption biased towards the upper end of engine 

operation. As example, the benefits reduce from 2.23% down to 1.58% on the WLTC and 1.16% down to 

0.74% on the ARTEMIS. Bearing this in mind, real world driving characterised by harsh acceleration and 

Added Constraint 
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deceleration periods along with frequent stoppage time minimises the potential fuel consumption 

improvement to be had.        

The main conclusions concerning fuel economy improvements had from cylinder deactivation are as 

follows: 

 The deterioration in gross indicated thermal efficiency is the main influence on the maximum 

operating point for cylinder deactivation.  

 

 The largest magnitude improvement in fuel consumption with cylinder deactivation is had at low 

engine brake load conditions for any given engine speed. The magnitude in fuel consumption 

improvement for the 1.0l TCE increases by 80% for an engine speed increase of 1000rpm. 

 

 Fuel consumption benefits with cylinder deactivation, for the 1.0l TCE, are highest on drive 

cycles which reside in part in the low and part load engine operation envelopes such as the NEDC 

or FTP-75.   

 

 As the duration of the drive cycle increases and becomes more dynamic in nature (i.e. 

characterised by larger residence times in high load operating points) fuel consumption 

improvements due to cylinder deactivation reduce.  

 

 Benefits due to cylinder deactivation are also severely diminished due to poor vehicle NVH 

characteristics for engine speeds below 1000rpm. Benefits could be improved by allowing for 

deactivation for engine speed below 1000rpm. 

 

 For a vehicle fitted with an engine of larger swept volume cylinder deactivation improves fuel 

consumption benefits as pumping losses at low operation increase.  

 

 Fuel consumption benefits due to cylinder deactivation can be improved if driving style is more 

anticipatory combined with optimised gear selection and reduced number of stops in a journey.  
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Chapter 7 Closed Loop Control System for Transient Drive Cycle Testing on ECTBs 

7.1 Introduction  

Although testing of modal drive cycles has been previously established on ECTBs the repeatability of 

engine response is poor for transient drive cycles. This translates to poor repeatability of measurements of 

fuel economy. The incentive to improve engine control over transient drive cycles on ECTBs led to the 

development of a control system. Aside from the main focus of this thesis pertaining to the modelled 

effects of cylinder deactivation on the TCE; the process involved in developing such a system is described 

in this chapter.   

The evaluation of engine performance under drive cycle conditions is an important part of powertrain 

development. ECTBs are widely used in industry and research facilities due to their low inertia properties 

as well as low operation and maintenance costs. Having an exposed engine facilitates the process of 

replacing components, if not the engine itself, for the purpose of evaluating fuel consumption. Such 

upcoming technologies are optimised or electrically driven pumps, modified coolant circuits, variable 

cylinder deactivation, injection systems pressurised above 300bar and thermoelectric generators [7]. 

Better suited for running modal tests such as the NEDC, ECTBs perform poorly on high transient events. 

This is due to the dynamometer‘s inability to accurately and rapidly decelerate the engine to a designated 

engine brake torque and speed target with consistent accuracy. In this chapter the development of a closed 

loop control system is described consisting of a PID controller, feedforward (i.e. map based input) and 

integrator wind-up processors tuned and extensively tested to run transient drive cycles such as the 

WLTC on eddy-current test beds for gasoline engines of different sizes.  

7.2  Initial PI Control Configuration and Step-Response Characteristics 

Prior to the development of the transient closed loop system, four sets of input data were required to 

run a drive cycle on the eddy current test beds present at the University of Nottingham: dynamometer 

operating mode (i.e. speed or torque control mode), engine speed, engine brake torque, and engine throttle 

percentage. The Texcel V4 Froude Hoffman dynamometer controller switches between engine speed and 

torque control mode maintaining either attribute but neither at the same time. Either attribute is controlled 

by inducing an electromagnetic flux across a stator to a cooper rotor translating to a resistive torque. 

Apart from the switching of the control mode the requirement of engine brake torque, engine speed and 

throttle position over a given drive cycle, demands a precise second-by-second record of the these 

parameters. As example, to achieve a target brake torque output for a given throttle input while remaining 

in speed control mode first requires that the engine accelerate to the designated speed target and thereafter 

once the dynamometer applies a flux maintaining the target engine speed the engine produces a torque 
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output with any excess pedal position. The need to have a throttle position as an input parameter requires 

that a vehicle be tested on a rolling road assuring that the exact throttle position be recorded over the 

entirety of the test. This imposes a dependency on the facilities available or network present to provide 

this information. Given this if the input throttle position is not sufficient such that the throttle target is not 

achieved the input must then be iteratively modified until such target is achieved. This is a time-

consuming process which would require modification for every drive cycle performed as well as remain 

dependent on the engine temperature. Also another weakness when depending on the controller speed 

mode is that the lag time from the point of assigning a target value on the dynamometer to attaining the 

target value for engine speed is greater than the lag time required to achieve a target engine brake torque. 

This is due to the dependency in the rate of change of the throttle position value. The engine speed was 

chosen as the parameter to be independently controlled and used as a source of error for assigning a 

closed-loop control system modulating throttle position as this was the most unstable engine output.  

The first advantage of implementing a feedback control system is that the number of inputs reduces to 

two compared to four, these are engine brake torque and engine speed. These inputs are still preferably 

extracted from a vehicle dynamometer test while if not present vehicle chassis simulation tools may be 

used as a replacement. Figure 71 shows the block diagram schematic for the initial control system 

implemented solely applying a proportional gain and integral gain coefficients.  

 

Figure 70: Closed loop proportional gain and integral block diagram for engine speed control. 

If PI constants are too large, the system will respond by overshooting the target value and oscillate, 

requiring more time to stabilise. If constants are too small the system will undershoot, not attaining the 

target value, requiring more time to reach the target value or never reaching it. During transient tests large 

increments and decrements in torque and speed occur rapidly and successively. Hence while the 

controller assigns integral and gain values to meet the target value, it is desired to keep the error margin to 

a minimum. A method of preventing large accumulation in error is by increasing the rate at which the 

CPU performs error calculations, i.e. calculation frequency. For the monitoring of engine speed it was 
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found that due to inertial effects of rotating components within the engine a 10Hz refreshment rate is 

suitable. With this, the aim was to attain the target engine speed in the shortest amount of observable time 

within an engine speed error margin of 10%.    

The starting point was to iteratively test sets of PI constants that would give good engine response. 

Tests were performed on a four cylinder gasoline engine commercially used to power a Jaguar XF and 

Ford Focus ST vehicle; engine details are shown below in Table 12. 

Engine Type In-line, 4-cylinder 

Displaced Volume 1999cc 

Stroke/Bore 87.5mm/83.1mm 

Compression Ratio 10:1 

Rated Torque/ Power 340Nm@1700rpm, 177kW@5500rpm 

Fuel Injection Type Direct Injection 

Induction system Turbocharged, Intercooled 

Valvetrain Type Twin-independent Variable Timing 

Camshaft Type Double Overhead Camshaft 

Turbocharger Type Waste-gated, Fixed Geometry 

 

Table 12: Details of engine used for testing of transient drive cycle implementation on ECTBs 

Figure 72 below, illustrates four of the 18 responses recorded for varying PI constant sets, where the 

torque was maintained at 10Nm and a target step profile (1000-1500-1000rpm) for the speed was defined. 

 

Figure 71: Step target speed profile with constant load of 10 Nm for evaluation of suitable PI constants. 

For values of     0.01 and          the engine speed overshot and undershot by more than 200 

rpm for the step changes shown above. The system did not stabilise in less than two seconds and therefore 

constants above these values were unsuitable for transient cycles. For values of     0.01 the system 

behaved in an unstable manner where overshooting occurred for step increases and the system did not 

±
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have sufficient time to stabilise. Effectively, the    and    values displaying the most accurate control of 

engine speed were 0.01 and 0.001 respectively. With these constants the ICE stabilised at the desired 

engine speed within 2 seconds and small undershoots and overshoots occurred remaining within less than 

the intended error margin of 10%.  

Tests performed using the same proportional and integral gain coefficients over successive step 

changes in engine speed (1000 – 200rpm) and brake torque (i.e. 0 – 200Nm) showed a similar quality in 

response. However, the accuracy in engine speed response reduced when torque increments greater than 

50Nm occurred over the period of 1 second.  

7.3 The Effect of Ramping on Engine Speed Stability  

From testing system response to step changes in engine speed and brake torque the next phase 

encompassed testing the PI control system over transient operating profiles over extended periods of time. 

An approximate ARTEMIS cycle was formulated by calculating a theoretical gross indicated torque 

profile (a poor substitute for a brake torque profile) based on bagged CO2 emissions while using a 

second-by-second measured engine speed profile. This was deemed suitable for testing as long as the 

operating conditions remained within the engine speed-torque curve. Data for this test emanated from 

chassis roller dynamometer tests for a Jaguar XF powered by a 4 cylinder direct injection turbocharged 

engine coupled with an automatic 8 speed gear-box (ZF-8HP). The average of four engine speeds along 

with a 1Hz gross indicated torque averaged over 1 second intervals were used as engine speed targets. 

Although using a calculated gross indicated torque value would overestimate the actual brake torque this 

information was used as a stepping stone and indicator of system behaviour/response when under 

transient loading profiles. Figure 73 shows the engine speed response over a 200 second segment of the 

ARTEMIS cycle when undergoing transients with regard to both engine speed and brake torque. 
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Figure 72: Instability in PI engine speed response over transients with step changes in the brake torque 

profile over a segment of the ARTEMIS drive cycle.  

Although the difference between the target engine speed and measured engine speed remains small, 

overshoots are present during points where the measured brake torque plateaus significant due to onset of 

integral windup. Speed errors in the segments encircled in red are in the range of 20 to 130% remaining 

outside the target error band of 10%. In effect as time progresses the integral wind-up begins to severely 

affect system performance resulting in large overshoots and undershoots as shown in Figure 74. 

 

Figure 73: Instability in PI engine speed response attributed to the extended effect of integral wind-up. 

Large overshoots in engine speed attributed to 

sudden reductions in brake torque and the onset of 

integral windup 

Large overshoots in engine speed attributed to 

progressive integral wind-up  
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To limit the effect of integral wind-up an iterative testing process was undertaken where ramping of 

the brake torque profile proved to absolve the engine speed instability. The ramping and thus modification 

of the brake torque profile was computed through a MATLAB script. Figure 75 shows the engine speed 

response for an un-ramped and ramped brake torque trace for an identical target speed trace. Ramping 

proves to be an effective technique in reducing wind-up and maintaining controller stability. However 

when referring to a drive cycle it remains important to withhold vehicle specific attributes through the 

brake torque trace as these are representative of the rolling resistance, drag force, inertia of the vehicle 

and if present road inclination. This in turn would revert to the initial time-consuming procedure of 

having to iteratively modify the brake torque profile for every drive cycle implemented using this system. 

Therefore the incentive to optimise the control system was undertaken in the aim that system response (i.e. 

engine speed) remains within a 10% error margin regardless of the severity of the brake torque and engine 

speed transients while also ascertaining that the system be transferrable to engines of different sizes. 

 

Figure 74: Effect of reducing integrator windup by ramping the brake torque profile on engine speed 

response (blue-line) compared to a non-ramped solution (red-ine)  

 

7.4 Feed-forward Loop and PID Synergy 

The first initiative was to modify the control system so that whenever large torque increments or 

decrements took place during the cycle, the engine speed response would not severely under- or over- 

shoot the target speed. Several pre-defined parameters were modified to understand whether a completely 

new strategy would have to be implemented in the system designed in the previous section. Such 
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modifications were increasing the rate of the engine speed error from 10Hz to 20Hz. For the latter larger 

oscillations in engine speed were observed on-setting instability within the first few seconds of running a 

drive cycle. Another parameter which was tuned was the time interval between each cell for the input 

brake torque and engine speed profiles. This data had initially been set to read at intervals of 1 second 

however this was increased to 0.1 second intervals. An increase in stability was observed however due to 

the extra computational steps, the system response (i.e. engine speed) lagged by one or two seconds when 

the cycle came close to 600 seconds. This lead to large overshoots and undershoots later on in the cycle 

making the system unstable.  

A feed-forward loop (FFL), capable of delivering a baseline pedal percentage based on the current 

speed and torque data being read was added to the system. The function of this FFL was to ensure that the 

engine always meets a minimum threshold pedal percentage. The minimum pedal position changes with 

respect to the operating condition - minimising the magnitude change in throttle position outputted 

through the closed loop control system. Two effects were desired in the process of introducing this FFL – 

1. The quasi-steady engine speed segments would remain flat without the presence of oscillations (i.e. 

indicative of a stable system); 2. No significant under- and over-shoots during torque increments or 

decrements would be noticeable.  

The process in defining the pedal position requires mapping the throttle position for constant speeds 

and varying torques (i.e. to allow for interpolation) on an eddy-current dynamometer. The process is easy 

and robust to perform requiring a maximum of three hours to test and implement. This may be achieved 

using the inbuilt dynamometer speed or torque control modes while manually changing pedal position to 

desired torque and speed operating points. An example of a pedal position map for the Jaguar XF 2.0 litre 

GTDi engine is shown in the Table 13. 

  Engine Speed (rpm) 

  750 875 1000 1125 1250 1375 1500 

E
n

g
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e 
B
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e 

(N
m

) 

4.9 1.6 1.6 1.6 1.94 2.57 3.21 3.85 

50 7.95 8.84 9.73 10.62 11.50 12.39 13.28 

100 16.23 17.17 18.11 19.04 19.98 20.92 21.86 

150 24.73 25.51 26.30 27.09 27.88 28.66 29.45 

200 30.15 31.11 32.07 33.03 33.99 34.96 35.92 

250 39.13 40.33 41.53 42.73 43.93 45.13 46.33 

300 55.8 56.45 57.10 57.75 58.40 59.05 59.70 

350 36.48 40.56 44.63 48.71 52.78 56.86 60.93 

 

Table 13: Example of a throttle position map as a function of engine speed and brake load.  
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 A limiting torque and speed increment parameter was introduced into the first FFL system in order to 

ensure the optimum balance between the interaction of the PID and FFL systems. During idling and 

steady operating conditions this therefore ensured no FFL influence on the systems‘ stability by assigning 

full control to the PID system. This is shown in Figure 76. This was done by inputting the following 

limiting criteria: 

                                

                                

 

If the increments are within the confined thresholds the feedforward will retain its previously 

outputted value. This is to ensure a minimum pedal percentage is satisfied so that system response is rapid 

and any adjustments in the actual speed requires minimal effort from the PID system.    

 

Figure 75: PI control schematic with the addition of FFL. 

The role of the FFL and PI system on the pedal position output to the ECU is shown in Figure 77 (A) 

and (B). This time tests were conducted inputting brake torque and engine speed target traces for the 

WLTC computed through ADVISOR. Due to the dominance of the FFL on the throttle position output kP 

and kI constants were modified to reduce the bias of the PI controller such that instability would not ensue 

due to excess throttle output. The new constants were set to kP = 0.009, kI = 0.00052.  
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Figure 76: Pedal position output from (A) the FFL and (B) pedal position output from the PI control 

system over a 600 second trial run of the WLTC. 

 

The application of a baseline pedal position (i.e. FFL) significantly stabilises system response during 

transient events, as shown in Figure 78. However, the addition of a baseline pedal position combined with 

the effect of integral windup after long idling periods followed by large engine speed increments 

increased the magnitude of the engine speed error. This is shown in Figure 79.  

 

Figure 77: Improved engine speed response after implementing an integral windup with error margins of 

    . 

A B 
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Figure 78: Extreme overshoots in engine speed due to integral windup coupled with the FFL system 

throttle position output after extended idling periods.  

7.5 Addition of an Integrator Wind-Up Nullifier 

 In order to reduce the eventuality of large cumulation of integral action, specifically during idling 

periods, an inequality based statement recognises when the output FFL throttle position is that required 

for idling conditions. Thus in this case an output pedal position of 1.6% is equivalent to the idling pedal 

position. When outputting this value the engine speed based error calculation channeled to the integrator 

action is nullified and thus the integral action at the beginning of the idling periods remains constant to 

the value previously outputted. This retains the added benefit of implementing a FFL to ensure that a 

baseline pedal position is met while eliminating large errors encountered only during idling periods. A 

block diagram of the control system capable of running transient drive cycles incorporating a FFL, PID 

and integrator wind-up nullifier is shown in Figure 80. The corresponding schematic with the conditional 

statements is shown in Figure 81.  The block diagrams created on National Instruments LabVIEW for the 

FFL, PID and integrator wind-up nullifier are shown in Appendix F Figures 97 and 98.  

 

∆1150rpm ~ 52.5% error  

∆2200rpm ~ 105% error  
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Figure 79: Block diagram for a closed loop proportional, integral and derivative gain system with an 

integral wind-up. 

 The addition of a derivative action to a control system provides ‗smoother‘ response compared to 

solely using a proportional and integral gain system. The coefficients for the proportional, integral and 

derivative actions for the running of transient drive cycles on ECTBs are 0.008, 0.0004 and 0.06 

respectively. These constants are intended for a system that runs symbiotically with a FFL providing a 

baseline pedal position. The effect of solely applying the FFL on the same target engine speed trace is 

shown on Figure 82 (A) while Figure 82 (B) shows the effect of solely applying the PID system. 

 

 

 

 

 

 

 

 

 

 

 

Figure 80: Schematic of the devised pedal control system for transient drive cycle testing incorporating a 

PID, Feedforward and integral wind-up processors.  
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Figure 81: Engine speed response solely with (A) the feedforward loop system outputting pedal 

percentage to ECU and (B) the PID control system. 

 

7.6  Transferability to All Engine Builds, Repeatability of Results and Robustness of 

System Performance 

The robustness and applicability of the combined PID, FFL and integral wind-up nullifier control 

system were tested on the four cylinder 2.0litre gasoline direct injection turbocharged engine as described 

above. Figure 83 and 84 (A) and (B) show the fidelity of system control by comparing the engine speed 

and brake torque between repeats and compared to the target profiles inputted into the system over warm-

up processes. The repeatability of the warm-up process by reference to the coolant and oil temperature is 

shown on Figure 85 (A) and (B). The repeatability for controlled starting oil temperatures is excellent 

demonstrating the robustness of the control system as a result of the same magnitude of fuel being 

consumed. Figure 88 (A) shows the cumulative fuel consumption measurements using a Coriolis 

Emerson Micro Motion High Pressure fuel flow-meter for four repetitions of the WLTC. The error band 

on a per gram basis is within     equivalent to a        difference.  

Application of the control system was further tested on a smaller engine, namely a prototype 1.0l 

three-cylinder engine whose specifications may not be disclosed. This was ensued in order to understand 

whether control system properties such as the PID coefficients required alteration when transferring the 

National Instruments LabVIEW block diagrams to different engine sizes. Figure 86 and 87 (A) and (B) 

demonstrate that measured engine speed and engine brake torque, thus brake energy, show an excellent 

level of agreement between five repetitions and compared to target values for hot and fully warm 

operating conditions. Figure 88 (B) shows that a robust level of confidence for instantaneous fuel 

consumption resulting in an error margin of     equivalent to a        for the cumulative fuel 

consumption over five repeats of the NEDC. A    increase in fuel consumption was captured for an 

A B 
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NEDC test starting at 67  instead of 88  demonstrative of the ability to capture fuel consumption 

dependence on engine temperature.  

The excellence and accuracy of implementing the control system on two different drive cycles is 

exemplified with second by second comparisons of engine speed responses for the 1.0l three cylinder and 

2.0l four cylinder engines in Figure 89 and 90.  

The transferal process is achievable in less than four hours of consistent work. PID coefficients do not 

require modification when transferring the control system to different engine sizes. This can be an 

arduous task and thus removing this process for control implementation purposes is a significant 

achievement. The only parameters requiring modification is the mapping of the pedal position with 

respect to engine speed and engine brake load. This must be done for any new engine fitted with an ECU 

whose throttle position has not been mapped before. If an ECU is transferred to a different engine then the 

mapping process is not required given that the monitored ECU throttle position result in the same delivery 

of engine brake work. Therefore for engines with cylinder deactivation it is important that the displayed 

throttle position with a deactivated cylinder or when firing on all cylinders result in the same brake work 

delivery although the physical throttle position (i.e. butterfly valve angle) changes. Albeit, if the same 

ECU is transferred to a different engine it is advised that the mapping process still be undertaken to 

ensure that an appropriate FFL baseline throttle position be outputted. 

The transfer process to different engines installed on ECTBs may be summarised in four steps:  

1) Transfer the National Instruments LabVIEW sub virtual interactive window for the FFL and PID 

controller (inclusive of the integrator wind-up nullifier) to the virtual interactive window containing 

the throttle emulator.  

2) Map the throttle position for a matrix of engine speed and brake torque values, preferably within 

250rpm intervals up to WOT.  

3) Apply the mapped throttle position and appropriate x and y axes to indicators 1,2 and 3 shown in 

Appendix F Figure 97 and 98 and ensure that the kP, kI and kD constants are 0.008, 0.0004 and 0.06 

respectively.  

4) Run a drive cycle to test system response. (Note: it is necessary that the drive cycle commence with 

none zero load segments and elevated engine speed (i.e. not idling) such that the integral and 

derivative actions adapt to the engine behaviour within the first five seconds of the drive cycle.)  
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Figure 82: Comparison (A) between target and measured engine speed and (B) repeatability of measured 

engine speed for four repetitions of the WLTC on a 2.0litre four cylinder engine. 

 

 

 

 

 

 

 

 

Figure 83: Comparison (A) between target and measured engine brake torque and (B) repeatability of 

measured engine brake torque for four repetitions of the WLTC on a 2.0litre four cylinder engine.   

Figure 84: Comparison of (A) coolant temperature and (B) oil temperature in the main gallery over a 

warm-up procedure on the WLTC for four repeated tests on a 2.0litre four cylinder engine.  

     

     

     

     

     

     

     

     

A B 

A B 

A B 



 

172 

 

 

Figure 85: Comparison (A) between target and measured engine speed and (B) repeatability of measured 

engine speed for five repetitions of the NEDC on a 1.0litre three cylinder engine.   

 

 

 

 

 

 

 

 

Figure 86: Comparison (A) between target and measured engine brake torque and (B) repeatability of 

measured engine brake torque for five repetitions of the NEDC on a 1.0litre three cylinder engine.   
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Figure 87: Cumulative fuel consumed over four tests (A) for a cold started (        ) WLTC test on 

2.0l four cylinder engine and five tests for (B) hot and fully-warm started NEDC test on 1.0l three 

cylinder engine.  

 𝑚𝑓    𝑔𝑟𝑎𝑚 (      ) 

 𝑚𝑓    𝑔𝑟𝑎𝑚 (      ) 
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Figure 88: Second-by-second comparison of the measured and target (A) engine speed and (B) engine 

brake torque over the WLTC for the four cylinder 2.0l gasoline turbocharged engine.  
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Figure 89: Second-by-second comparison of the measured and target (A) engine speed and (B) engine 

brake torque over the NEDC for the three cylinder 1.0l gasoline turbocharged engine. 
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7.7 Conclusions 

In this chapter a control system developed to control engine power output over transient drive cycles 

on an ECTB has been described.  The control system consists of a PID controller, feed-forward throttle 

position look-up table and integrator wind-up working in synergy outputting engine throttle position 

commands based on calculated engine speed errors. The purpose of the development of this control 

system arises from the relatively cheaper equipment used to test engines in laboratory conditions. The 

system is to be used for the purpose of evaluating fuel consumption improvements on drive cycles in the 

aim of asserting improvements had by modifying engine components.  

The main conclusions to be drawn from the development of this system are: 

 The control system is applicable to the virtual environment available on LABVIEW™ National 

Instruments 2012 or newer versions. 

 

 The development of the control system was made such that it is transferable and generic to engines of 

different sizes while requiring minimal work from the operator.  

 

 The performance and successful application of the control system has been validated on two engines 

of differing size and this has proven to be successful for the purpose of satisfying the initiative of 

devising a method for carrying out transient drive cycles on ECTBs. Although a successful step, 

further tests on a variety of engine sizes and differing drive cycles are required as more engines are 

made available on ECTBs at the University of Nottingham to provide feedback on potential 

improvements of system response.   

 

 Engine speed and engine brake torque, preferably sought from vehicle chassis tests, are the only 

inputs required to successfully run the engine over a drive cycle such as the WLTC. The transfer 

process is made simple, achieved in four steps.  

 

 The repeatability and accuracy of the system has been validated for cold started WLTC tests run on a 

2.0l gasoline engine and hot started NEDC tests run on a 1.0l gasoline engine. Repeatability has been 

shown to be excellent through the use of an Emerson MicroMotion Coriolis fuel flow-meter with the 

spread in recorded fuel consumption remaining within a  4g error band.  
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Chapter 8 Discussion, Future Work and Conclusions 

8.1 Discussion 

A version of PROMETS has been used to characterise the TCE, in the aim of predicting and 

quantifying the effects of cylinder deactivation on engine thermal behaviour and performance. Based on 

model predictions knowledge of the changes in engine heat transfer and effect on component 

temperatures have been outlined. Predictions indicate that while cylinder deactivation is not limited by 

engine thermal behaviour potential benefits remain sensitive to engine temperature and operating 

characteristics.  

For a three cylinder engine if one cylinder is deactivated the brake torque output of the two firing 

cylinders increases by 50%. In turn, the total engine metal surface area exposed to combustion and 

exhaust gases reduces by approximately one third. The reduction in surface area reduces heat transfer to 

coolant between 2 and 22% depending on engine brake load. As a result of retaining heat within the 

combustion chamber the in-cylinder charge and exhaust gas have higher enthalpy. In effect, model 

predictions indicated that the exhaust gas temperature increases in the range of 20 to 100 , increasing 

with engine brake load. Studies made on an experimental diesel engine [8] have shown that increased 

exhaust gas temperatures due to cylinder deactivation result in the catalyst reaching optimum operating 

temperatures faster. Thus this is beneficial for the purpose of entraining oxidation of unwanted emissions.  

As a result of reducing heat losses coolant warm-up rates reduce. Although heat transfer to coolant is 

affected, heat losses to oil are minimally affected. Slowing coolant warm-up rates reduces the available 

heat input to the passenger compartment and slows the gradual reduction in higher rubbing friction. 

Rubbing friction changes negligibly due to an average 1% reduction in overall engine friction associated 

with deactivation. An optimisation study was carried out in the model varying the onset temperature of 

deactivation over the NEDC in the aim of reducing the delay in warm-up rate without severely affecting 

the benefit due to deactivation. It was found that cylinder deactivation minimally affects warm-up rates 

when onset from a coolant temperature between 40 and 50 .  

Heat transfer changes due to cylinder deactivation result in engine structural temperature changes. All 

components comprising the deactivated cylinder stabilise to a temperature close to that of the coolant 

temperature. On the other hand, the temperatures of the components in the firing cylinders augment 

dependent on engine power. To build confidence in model results predicted temperature data was 

correlated against cylinder wall thermocouple data from a three cylinder engine firing on all cylinders. In 

Chapter 4 subsection 4.7.2 it was shown that predicted data correlated very well with experimental data. 

The model was capable of predicting metal temperatures sensitive to local coolant temperatures specific 
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to cylinder location within a maximum error band of  5 . With knowledge of some component 

temperatures it was inferred that heat transfer to the rest of the engine structure was well represented and 

thus temperatures were also well predicted. Based on this the model was used as a tool to predict and 

inform on temperature changes throughout the engine structure when enabling cylinder deactivation. For 

a fully warm engine state the time required for all engine components to reach an equilibrium temperature 

were predicted to reside in a 10 to 25 second interval. The largest temperature change was predicted in 

components which are small in volume and frequently exposed to hot gases. As such the lower stem of 

the exhaust valve, for the deactivated cylinder, is the component that undergoes the largest change in 

temperature; i.e. in the magnitude of < 400 . This being said it was predicted that the piston cooling jets 

significantly reduced piston operating temperatures at the upper end of the deactivation window at high 

engine speeds. When operating on all cylinders piston cooling jets were enabled at engine speeds above 

3000rpm. Consequently when deactivating a cylinder, the pistons cooling jets are disabled to reduce the 

risk of oil accumulation on the top landing of the piston as suggested by [8.1]. The disablement of cooling 

jets could have negative effects on piston assembly durability. This would however require further 

analysis with FEA tools. Temperature changes in the rest of the engine were predicted to be relatively 

small. In the upper cylinder wall temperature, where the cylinder fluxes are large, differences are in the 

range of ~2 to 15 . Although significant temperature changes occur in the exhaust valve lower stem 

these were asserted to remain within safe operating limits of the engine. As a means of comparison, when 

operating at the rated engine load and reducing back down to an idling condition the temperature 

difference endured by the exhaust valve is similar to when deactivation occurs.  

Significant temperature differences arise in components between the firing and deactivated cylinders. 

The largest temperature differences occur at the top of the cylinder liner and exhaust ports in the region of 

< 70 . This is largely due to the consistent exposure these components have to combustion and exhaust 

gases. It is beneficial to minimise these temperature differences while reducing the temperature of the 

operating cylinders and keeping the deactivated cylinder warm is beneficial [8.2]. For the firing cylinders 

it is useful to keep the metal temperature cool to reduce the probability of knock or auto-ignition due to 

local hot spots. For the deactivated cylinder, on the other hand, Serrano et al [8.3] has found that when 

reactivation ensues combustion quality improves if the cylinder walls are kept warm. Through modelling 

it was found that deactivating the cylinder furthest downstream of the coolant aperture reduces the 

temperature difference between cylinders by 5  while increasing the temperature of the deactivated 

cylinder by the same amount. This is equivalent to the temperature change experienced by the cylinder 

wall, at a fixed load, for a 1000rpm increase in engine speed.     
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The thermal investigations presented here have been limited to 0D cycle averaged analysis of 

component temperature changes along with macroscopic effects on engine performance. The effect of 

continued deactivation and reactivation events on component integrity and lifetime remains outside the 

scope of lumped capacity analysis and time-frame of this study. The stress-strain behaviour of 

components undergoing large temperature changes can be analysed through FEA tools such as ABAQUS. 

For instance the effect cylinder deactivation has on the integrity of the cylinder bore shape and thus piston 

slap, oil consumption and blow-by have not been ascertained [8.4]. The results presented in Chapter 5 can 

however be used to direct future computational work involving cylinder deactivation to specific 

components such as the lower stem of the exhaust valve and cylinder bore.  

Cylinder deactivation for the TCE does not severely worsen distortions or temperature differences 

between and across the height of the cylinders. Observations by Rajput [8.5] on gasoline engines show 

that temperature differences between adjacent cylinder bores for an engine firing on all cylinders 

nominally raise up to 100  at the top of the cylinder liner. For the TCE temperatures between cylinders 

and across the height of the cylinder wall remain within rated engine operating load; residing in the <70  

region. Distortions are therefore not greater during deactivation compared to when the engine operates at 

rated power. Furthermore, based on the work of Nishino et al [8.6] inter-bore cooling slits reduce the 

thermal load between adjacent cylinders. For the TCE, medium sized inter-bore cooling slits are present 

such that cylinders remain thermally isolated from one another remaining near the coolant temperature. 

For larger engines where several cylinders are deactivated it is preferable to reduce the number of 

cylinders prone to temperature differences by spatially grouping the deactivated cylinders. This in turn 

reduces the possibility of increasing the order of distortion. The feasibility of selecting the cylinders to 

deactivate is however dependent on packaging constraints. As example, on the 1.4l four cylinder gasoline 

engine the two in-board cylinders are deactivated due to the sliding cam-shaft mechanism not being 

packaged to deactivate outboard cylinders [8.7]. For larger engines of V-type configuration, as mentioned 

in Chapter 5 section 5.9, whole banks are deactivated to mitigate the occurrence of temperature 

differences between cylinders.    

The retention of heat in the firing cylinders augments the amount of energy resulting from 

combustion used in a propulsive fashion pushing the piston downwards at low loads. Due to the 

improvement in channelling heat energy to provide engine brake torque the magnitude of fuel required 

reduces thus translating to an improvement in the gross indicated thermal efficiency. Experimental data 

stemming from a proto-type engine describing the changes in the efficiency were inputted into the model 

for various engine speeds under the form of empirical based functions. Difficulty lay in physically 
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describing the phenomenon however for the purpose of robustly predicting fuel consumption benefits this 

approach was deemed suitable.   

The benefits due to cylinder deactivation stem from an improved gross indicated thermal efficiency 

and reduced pumping losses. The largest benefits, for a given engine speed, are had at the lightest engine 

loads, reducing as load increases due to a deterioration in gross indicated thermal efficiency. The 

maximum benefit had is of 25% and the maximum magnitude reduction in fuel consumption is at the 

highest applicable engine speed for the lowest engine brake load.  

Applying cylinder deactivation over a warm-up period reduces the potential fuel consumption 

reduction. Compared to a fully warm engine state as the amount of fuel spent overcoming friction losses 

during a warm-up reduces the amount of fuel saved relative to the total fuel consumed. Thus as engine 

temperatures reach optimal conditions the percentage fuel economy is maximised. With this, the fuel 

consumption benefit had over a drive cycle is highly dependent on the cycle characteristics (e.g. duration, 

operating conditions and vehicle mass). As engine operating regions tend towards higher brake loads the 

potential availability of deactivating a cylinder reduces while the importance of the warm-up is less 

accentuated. In effect, benefits are highest on drive cycles which reside mostly in the lower brake torque 

region such as the NEDC and FTP-75. As the operation nears full rated power the proportion of fuel 

reduced due to reduced pumping losses and increased thermal efficiency is small relative to the large 

proportions of fuel spent at high operating conditions. Therefore over drive cycles such as the WLTC and 

ARTEMIS fuel consumption improvements are small. To quantify these differences; on a fully warm 

NEDC and WLTC run the predicted benefit due to deactivation is 4.50% and 1.58% respectively. Vehicle 

mass also affects the proportion of time spent deactivating a cylinder. As the mass increases the engine is 

required to deliver larger brake loads to overcome inertial and rolling resistances therefore minimising the 

time spent in a deactivated engine state. However, this may be alleviated by fitting a larger size engine 

with more cylinders and the ability to deactivate cylinders based on driver requested engine torque 

although the baseline fuel consumption is higher. This is generally due to larger engines being heavily 

throttled at low and part loads therefore relatively reducing fuel consumption with cylinder deactivation.  

Currently, innovative solutions are picking up in the automotive industry with technologies that are 

giving way to full independent control of intake and exhaust valves. In 2014, Freevalve AB [8.8] patented 

a design which replaces conventional camshaft driven valves with electronically controlled pneumatically 

actuated valves. This solution will allow gasoline engines to operate without a throttle and therefore the 

intake manifold pressure remains near atmospheric. This renders the throttle plate obsolete in a gasoline 

engine. In turn pumping losses are extensively minimised with a range of modifications made to the 

engine build, combustion and after-treatment systems. Modelled estimates for the TCE indicate that by 
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solely removing pumping losses from fuelling calculations over the NEDC for warm-up and fully warm 

conditions an estimated 13.1% and 13.7% improvement in fuel consumption may be had. However, this 

benefit is to be weighed against the penalty in installing the equipment necessary to supply pressurised air 

to the valves. With this technology engines will be able to deactivate cylinders without the need to build 

valve or cam-shifting technologies. The development of such technology is still in the concept stage [8.9] 

and its on-road usage is in the phase development stages by merger with the Chinese automobile 

manufacturer Qoros. However this does not mitigate the limitations in applying cylinder deactivation 

associated with NVH and driving style.  

 Fuel economy improvements shown in Chapter 6 subsection 6.5.5 indicate that real world journeys 

with frequent stoppage time and harsh driving style, i.e. a larger spread in engine brake torque operating 

points, minimise the amount of time spent with cylinder deactivation. Modelled fuel consumption 

reduction figures for a city route and a route characterised by an aggressive driving style minimise 

benefits keeping them around 1.16% and 1.72% respectively. The potential for the technology in reducing 

fuel consumption may be improved by operating the vehicle in a modal type manner and smart gear 

selection refraining operation from entering NVH limited engine speed bands. Furthermore with the 

advent of autonomous driving traffic systems and driving style will change. As described in the 

conclusion of Chapter 6, the factors limiting the potential benefit to be had from cylinder deactivation 

will therefore need to be addressed in ECU development phase. This is also pertinent even if engines 

serve as range extenders for hybrid vehicles.   

8.2 Future Work 

The motoring loss described and analytically defined in Chapter 4 served as means of quantifying the 

performance penalty when deactivating a cylinder. This offers a manner of calculating the fuel 

consumption deterioration for stabilised in-cylinder pressure traces in terms of the gross indicated mean 

effective pressure when deactivating cylinders. There are a considerable number of topics pertaining to 

the motoring of a piston that remain unanswered requiring detailed analysis. Describing the mass loss 

process, when trapping fresh air and exhaust gas charges, by detailing the flow of air through the piston 

ring pack can provide engine designers with methods of reducing the occurrence of in-cylinder mass. 

Although means of alleviating the occurrence of very low in-cylinder pressures have been suggested 

through ventilating strategies by Gottschalk et al [8.10] the physical phenomenon is not thoroughly 

described. With this there is uncertainty on the effect the vacuum created at BDC has on oil lifetime, 

consumption and engine friction. If excessive amounts of oil were to be sucked into the combustion 

chamber there would be need to determine the effect this has on oil contamination and thus engine 

friction over engine lifetime. If oil were to be sucked into the combustion chamber understanding the 
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effect this has on the spark plug, injector, valves, the exhaust after treatment system, emissions and soot 

would be necessary.     

There is increased interest in the application of cylinder deactivation for throttled gasoline engines in 

the form of dynamic skip fire and displacement on demand (DoD). The current revisions made to thermal 

and performance models of PROMETS are specific to cylinder deactivation cutting off fuel injection and 

shutting off the intake and exhaust valves. The basis of the model revisions are made suitable and 

transferrable to future models characterised for different size engines. This will allow the model to 

accurately represent the impact thermal behaviour has on warm-ups and thus fuel consumption. This is 

applicable to engines fitted with technologies that allow for DoD under cylinder deactivation. In terms of 

engine performance, the impact that DoD has on fuel consumption has not been compared with cylinder 

deactivation and dynamic skip fire. For dynamic skip fire, formulating a time-averaged description of the 

thermal behaviour of the engine would be required. This thesis presents a simple manner of determining 

the pumping losses for a turbocharged engine and robustly estimates pumping loss reductions with and 

without cylinder deactivation. However, the occurrence of dynamic skip fire would enable cylinder 

deactivation further up the engine rated load spectrum therefore a more detailed model of turbocharger 

behaviour and throttle plate response would be required to accurately model performance behaviour. The 

occurrence of pressure fluctuations across the throttle plate when closing valves would also have to be 

investigated.   

In the author‘s opinion, several upcoming innovations in the automotive world will affect the way 

traffic and thus driving style propagates in the next 50 years. The advent of autonomous driving will give 

rise to smarter traffic systems. This will potentially render obsolete traffic signalling systems while 

allowing for optimisation of traffic flow in real time such that engine efficiency may by kept at a 

maximum [8.11]. Thus vehicles fitted with larger displacement engines coupled with technologies such as 

that presented by FreeValve [8.12] allowing for displacement on demand (DoD) [8.13] are suggested 

methods for maximising the benefits to be reaped from cylinder deactivation. This process has already 

begun and will become more common with time. As example, Tesla remotely patched vehicle control 

units, in 2015, with semi-autonomous functionality [8.14]. Google on the other hand plans to render 

autonomous vehicles publicly available by 2020 [8.15]. As legislation consents the advent of autonomous 

vehicles; first demonstrated in 2012 by the state of Nevada - being the first state in the United States to 

pass a law allowing for autonomous cars to be used on road [8.16], the driver‘s influence on fuel economy 

will reduce excess use of fuel by rendering driving more modal in nature thus allowing for smarter gear 

selection. Most recently, on April 14 2017 the state of California issued autonomous vehicle testing 

permits to 33 companies [8.17].  
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The vacuum created when deactivating a cylinder poses unknown experimental problems to 

performance in direct injection spark ignition turbocharged gasoline engine. Low speed pre-ignition 

(LSPI) can cause heavy knock at low engine speeds which can result in broken spark plugs and cracked 

pistons [8.18]. Several theories exist as to why LSPI exists. The first is that droplets of oil get trapped 

between the piston and the cylinder wall. As the oil is trapped and fuel is injected prior to the power 

stroke oil and fuel mix causing auto-ignition. Although more theories for LSPI exist and can be further 

read upon in literature, cylinder deactivation is pertinent to the suction of oil. As example partial or near 

vacuum combustion chamber pressures, during deactivation, could enable the excessive sucking of oil 

and thus promote LSPI during reactivation events. Ways to mitigate this are required especially with the 

downsized and highly boosted nature of the TCE and other engines. This however requires experimental 

validation and would be a study worthy of being undertaken for deactivation events at low speeds. 

Studying the travel of oil around the piston during deactivation and the effect that low engine speeds has 

on this are mechanisms that will have to be defined and well understood. Likewise, the effect that 

deactivation has on oil entrapment and the eventuality of super knock remains to be observed [8.19] 

giving room for future work.  
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8.3 Conclusions 

The main conclusions drawn from the investigations in this thesis are: 

Motoring a Cylinder 

- Combusting a fresh air charge and trapping the exhaust charge in a motored cylinder results in mass 

loss of 47% if the minimum in-cylinder pressure reduces from 0.40 to 0.23 barA. A mass loss of up to 

70% is experienced if the same minimum in-cylinder pressure drops down to 0.12 barA.  

 

- Cylinder deactivation imposes a small penalty on engine performance in the range of 0.02 to 0.03 bar 

IMEP equivalent to 2.2 to 3.2 Joules/rev. This agrees with findings reported by Leone and Pozar 

[8.20]. The polytropic index of a stabilised in-cylinder air charge for the expansion and compression 

strokes is in the range of 1.34 and 1.36, indicating a near adiabatic process.  

 

- The work loss when motoring a cylinder may be expressed in the following manner using 

experimental based values defining the polytropic index of the trace, n, mass of the charge, m, while 

assuming a BDC temperature equal to the cylinder wall metal temperature. 

∮   ∮             (
   

(   )(   )
) 

 

Time-Averaged Effects of Cylinder Deactivation on Engine Heat Transfer 

- Although heat rejection to coolant from the firing cylinders increases, total engine heat transfer to 

coolant reduces for a given engine load. Predictions for the TCE indicate that heat rejection for the 

firing cylinders increases by between 14 and 30%, increasing with in-cylinder load. Predictions for 

engine heat rejection show a reduction between 22 and 2%, reducing as engine load increases.  

 

- Engine operation with cylinder deactivation is not limited by excessive temperatures due to in-

cylinder loads peaking at 50% of the rated load.   

 

- Temperature differences between adjacent components can be minimised by deactivating the cylinder 

furthest downstream of the coolant inlet aperture. In this manner, the deactivated cylinder remains 

warmed by higher enthalpy coolant in contact with the firing cylinders. In turn, temperature 

differences between adjacent cylinders are also reduced.  
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Effects of Cylinder Deactivation on Engine Performance 

- Fuel consumption benefits due to cylinder deactivation reduce during warm-up. This is due to a 

higher proportion of fuel used in overcoming friction losses. As example, a warm-up from a 20  

starting temperature over the NEDC reduces fuel improvement by 1.45%, from 4.50% to 3.05%.   

 

- The benefit due to cylinder deactivation reduces as drive cycle torque residence times are more 

evenly distributed (i.e. covering engine rated load) and drive cycle duration increases. As example, 

fuel consumption improvements over the NEDC and FTP-75 are 4.50% and 5.43%, respectively, 

while for the WLTC and ARTEMIS benefits are around 1.58% and 0.74% respectively.   

 

- The fuel consumption reduction due to cylinder deactivation for a throttled gasoline engines increases 

with engine swept volume. This is due to a larger proportion of engine operation spent under naturally 

aspirated conditions. Modelled fuel consumption improvements for a 1.0l three cylinder engine 

(deactivating one cylinder) and 1.4l four cylinder engine (deactivating two cylinders) indicate that 

over the NEDC roughly three times more fuel is reduced.     

 

Transient Drive Cycle Testing on ECTBs 

- A closed loop control system consisting of a PID, feed-forward look-up table and integrator wind-up 

solution have been devised to accurately test engines on transient drive cycles for fuel consumption 

benchmarking on ECTBs.  

 

- The system is transferrable to engines of all sizes by following four steps requiring a total of 6 hours 

for set-up and testing of system functionality.  

 

- The accuracy of the system has been validated with fuel measurements for the NEDC and WLTC 

taken on an Emerson MicroMotion Coriolis flow-meter showing repeatability within an error band of 

   .  
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Appendix  

A) Method for Calculating Exhaust Port Elements 

 

1) Lower section of the exhaust port 
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2) Middle section of the exhaust port (defined as the area between an arc and the center of a circle) 
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3) Upper section of the exhaust port 
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B) Fuelling and Intake Manifold Pressure Iteration 
Fuelling Iteration C-Script in Matlab S-Function 

 
/* 

 * 

 * 

 * 

 *   Promets fuel prediction and intake manifold air pressure model 

*/ 

  

#define S_FUNCTION_NAME Gasoline_turb_fuelling 

  

#include "simstruc.h" 

#include "math.h" 

double turb_p_3_bar; 

double P_man; 

double V_swept; 

double Eng_speed; 

double gamma; 

double Tamb; 

double fric_alpha1; 

double fric_alpha2; 

double Pis_m_speed; 

double C_R; 

double P_brake; 

double P_fric; 

double eta_c; 

double eta_indi; 

double mf_old; 

double mf; 

double P_pump; 

double P_fric_gas_loading; 

double P_indi_gross; 

double AFRst; 

double eta_vol; 

double eta_v; 

double P_man_old; 

double P_motored; 

double P_ex; 

double IMEP_desired; 

double N_correction; 

double P_correction; 

double Torque; 

double exp(P_man); 

double T_coolant; 

double T_coolant_fw; 

double T_intake_metal; 

double T_intake_metal_ideal; 

double eta_vol_engine; 

  

//double fuelling_load; 

//int i; 

  

/* 

 * mdlInitializeSizes - initialize the sizes array 

 */ 

static void mdlInitializeSizes(SimStruct *S) 

{ 

     ssSetNumContStates(    S, 0);   /* number of continuous states           */ 

     ssSetNumDiscStates(    S, 1);   /* number of discrete states             */ 

     ssSetNumInputs(        S, 17);   /* number of inputs         */ 

     ssSetNumOutputs(       S, 10);   /* number of outputs     */ 
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     ssSetDirectFeedThrough(S, 1);   /* direct feedthrough flag               */ 

     ssSetNumSampleTimes(   S, 1);   /* number of sample times                */ 

     ssSetNumSFcnParams(    S, 0);   /* number of input arguments             */ 

     ssSetNumRWork(         S, 0);   /* number of real work vector elements   */ 

     ssSetNumIWork(         S, 0);   /* number of integer work vector elements*/ 

     ssSetNumPWork(         S, 0);   /* number of pointer work vector elements*/ 

} 

  

/* 

 * mdlInitializeSampleTimes - initialize the sample times array 

 */ 

static void mdlInitializeSampleTimes(SimStruct *S) 

{ 

     ssSetSampleTime(S, 0, -1.0); 

     ssSetOffsetTime(S, 0, 0.0); 

} 

  

  

/* 

 * mdlInitializeConditions - initialize the states 

 */ 

static void mdlInitializeConditions(double *x0, SimStruct *S) 

{ 

} 

  

/* 

 * mdlOutputs - compute the outputs 

 */ 

  

static void mdlOutputs(double *y, double *x, double *u, SimStruct *S, int tid) 

// sets input variables to simulink variable name u[x]; where 'x' is the variable name  

{ 

  

    V_swept=u[0];// total swept volume [m^3] 

    eta_c = u[1]; // combustion efficiency [%] 

    eta_indi = u[2]; // indicated efficiency [%] 

    P_fric = u[3]; // friction power [W] 

    P_brake = u[4]; // brake power [W] 

    Tamb = u[5]; // ambient temperature [K] 

    Eng_speed = u[6]; // engine speed [rev/min] 

    fric_alpha1 = u[7]; // friction factor 1 

    fric_alpha2 = u[8]; // friction factor 2 

    Pis_m_speed = u[9]; // piston mean velocity [m/s] 

    C_R = u[10]; // compression ratio 

    AFRst = u[11]; // air-to-fuel ratio 

    mf = u[12]; // initial fuel flow 

    P_motored = u[13]; //Power due to motoring 

    turb_p_3_bar = u[14]; //turbocharged pre-turbine pressure 

    T_coolant = u[15]; // coolant temperature above the intake port metal 

    T_intake_metal = u[16]; //intake port metal temperature 

     

     

    gamma = 1.4;// gas index number, ideal gas at 1.4 

    P_ex = 1.01325; // exhaust manifold [bar] 

    T_coolant_fw = 363; 

    T_intake_metal_ideal = 363;  

    Torque = P_brake/(Eng_speed*(2*3.1416)/60); 

    P_man = 1; 

    P_motored = (P_motored*Eng_speed*1E-3)/(120);//W 
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do{ 

mf_old = mf; 

P_pump = ((turb_p_3_bar-P_man)*1E5)*V_swept*Eng_speed/120; 

P_indi_gross = P_brake+P_fric+P_pump+P_motored; // Desired Indicated Power 

mf = P_indi_gross/(44E6*eta_c*eta_indi); // Mass of Fuel Required 

N_correction = (0.7859-4E-5*Eng_speed+3E-8*Eng_speed*Eng_speed); // speed correction 

P_correction = (1.5754-3.9393*P_man+5.8327*P_man*P_man-

3.3459*P_man*P_man*P_man+0.6624*P_man*P_man*P_man*P_man); // pressure correction 

eta_vol = (1+gamma*(C_R-1)-(turb_p_3_bar/P_man))/(gamma*(C_R-

1))*N_correction*P_correction; // engine volumetric efficiency 

IMEP_desired = ((P_indi_gross*120)/(Eng_speed*V_swept))/100000; // Desired Indicated 

Mean Effective Pressure 

P_man = 0.5*(P_man_old+(((IMEP_desired)*287.1*Tamb*AFRst)/(eta_vol*44E6*eta_indi)));// 

Required Manifold Air Pressure 

P_man_old = P_man; 

                                   

                                                                    

}while((fabs(mf-mf_old)/mf)>0.00001); 

     

     

mf = mf; // kg/sec 

P_indi_gross = P_indi_gross; // Indicated gross power 

P_fric_gas_loading = ((fric_alpha1+fric_alpha2*Pis_m_speed)*4.2*(1.01325-(1.01325-

P_man))*(0.088*C_R+0.182*pow(C_R,(1.33-(2.38E-2*Pis_m_speed)))))*V_swept*Eng_speed/120; 

eta_vol = eta_vol*((T_coolant_fw)/(T_coolant))*pow((T_intake_metal/293),0.5); // 

cylinder volumetric efficiency (/100) 

IMEP_desired = IMEP_desired; // Gross Indicated Mean Effective Pressure (bar) 

N_correction = N_correction; // Engine Speed Correction 

eta_vol_engine = ((mf*AFRst*120)/(V_swept*(P_man*1E5/(287.1*293))*Eng_speed));  

     

     

     

     

    y[0]=mf;//kg/sec 

    y[1]= P_indi_gross;//Ws 

    y[2]= P_pump;//W 

    y[3]= P_man;//bar,3.25 

    y[4]= P_fric_gas_loading;//W 

    y[5]= eta_vol;//volumetric efficiency 

    y[6]= IMEP_desired; 

    y[7]= N_correction; 

    y[8]= turb_p_3_bar; // Exhaust Pressure 

    y[9]= eta_vol_engine; // engine volumetric efficiency 

         

    } 

/* 

 * mdlUpdate - perform action at major integration time step 

 */ 

  

static void mdlUpdate(double *x, double *u, SimStruct *S, int tid) 

{ 

} 

  

/* 

 * mdlDerivatives - compute the derivatives 

 */ 

static void mdlDerivatives(double *dx, double *x, double *u, SimStruct *S, int tid) 

{ 

} 

  

  

/* 

 * mdlTerminate - called when the simulation is terminated. 
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 */ 

static void mdlTerminate(SimStruct *S) 

{ 

} 

  

#ifdef  MATLAB_MEX_FILE    /* Is this file being compiled as a MEX-file? */ 

#include "simulink.c"      /* MEX-file interface mechanism */ 

#else 

#include "cg_sfun.h"       /* Code generation registration function */ 

#endif 
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C) Correlation between Modelled and Measured IMAP and PMEP 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 90: Modelled and measured intake manifold air pressure (bar) values for the NEDC, FTP-75, 

US06 and HWFET legislative drive cycles. 
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Figure 91: Modelled and measured pumping mean effective pressures (PMEP) for the NEDC, FTP-75, 

US06 and HWFET legislative drive cycles.  
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D)  Experimental Changes in      and Modelled Fuel Consumption Benefits  

 

 

Figure 92: Measured load dependent deterioration in gross indicated thermal efficiency with deactivation 

of one cylinder on a three cylinder engine.  
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Figure 93: Attribution of percentage benefit in fuel consumption to reduced pumping work and gross 

indicated thermal efficiency for various engine speeds.  
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Figure 94: Net fuel consumption benefit when deactivating one of three cylinders for various engine 

speeds.  
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Figure 95: Modelled reduction in pumping work when deactivating one of three cylinders for various 

engine speeds.  
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E)  Input Parameters for Modelling of the 4 cylinder 1.4litre TSI Engine 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 14: Model inputs for the 1.4l TSI Engine capable of cylinder deactivation [1.3]. 

Variable Name Dimension 

Bore 
74.5 mm 

Stroke 
80 mm 

Cylinder Spacing 
82 mm 

Compression Ratio 
10.5 

Total Engine Mass 
106 kg 

Crankcase Material 
Aluminium 

Crankcase Mass 
19 kg 

Follower Configuration 
Roller Tappet 

Valve Angle 
120  

Main Bearing Diameter 
48mm 

Crankshaft Mass 
9.17 kg 

Connecting Rod Mass 

(1 connecting rod) 
0.370 kg 

Piston Material 
Aluminium 

Camshaft Bearing Size 

(plain bearing) 
24 mm 

Cylinder Liner Material 
Grey Cast Iron 

Head Material 
Aluminium 

Camshaft Configuration 
DOHC 
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F)  LabVIEW Block Diagrams for the Transient Drive Cycle Control System 

 

 

 

Figure 96: National Instruments LabVIEW™ upper level block diagram of the PID and FFL controller.    
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Figure 97: National Instruments LabVIEW™ PID controller and integrator wind-up nullifier block diagram. 
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