Systematic analysis of the contributions of stochastic voltage gated channels to neuronal noise

O'Donnell, Cian and van Rossum, Mark C.W. (2014) Systematic analysis of the contributions of stochastic voltage gated channels to neuronal noise. Frontiers in Computational Neuroscience, 8 . p. 105. ISSN 1662-5188

[img]
Preview
PDF - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
Available under Licence Creative Commons Attribution.
Download (2MB) | Preview

Abstract

Electrical signaling in neurons is mediated by the opening and closing of large numbers of individual ion channels. The ion channels' state transitions are stochastic and introduce fluctuations in the macroscopic current through ion channel populations. This creates an unavoidable source of intrinsic electrical noise for the neuron, leading to fluctuations in the membrane potential and spontaneous spikes. While this effect is well known, the impact of channel noise on single neuron dynamics remains poorly understood. Most results are based on numerical simulations. There is no agreement, even in theoretical studies, on which ion channel type is the dominant noise source, nor how inclusion of additional ion channel types affects voltage noise. Here we describe a framework to calculate voltage noise directly from an arbitrary set of ion channel models, and discuss how this can be use to estimate spontaneous spike rates.

Item Type: Article
Keywords: channel noise, voltage-gated ion channels, Hodgkin–Huxley, spontaneous firing, simulation
Schools/Departments: University of Nottingham, UK > Faculty of Science > School of Mathematical Sciences
University of Nottingham, UK > Faculty of Science > School of Psychology
Identification Number: https://doi.org/10.3389/fncom.2014.00105
Depositing User: Van Rossum, Mark
Date Deposited: 08 Feb 2018 13:13
Last Modified: 08 Feb 2018 13:17
URI: http://eprints.nottingham.ac.uk/id/eprint/49636

Actions (Archive Staff Only)

Edit View Edit View