Water solubility enhancement of pyrazolo[3,4-d]pyrimidine derivatives via miniaturized polymer-drug microarrays.

Monica Sanna, Giovanna Sicilia, Ali Alazzo, Nishant Singh, Francesca Musumeci, Silvia Schenone, Keith A. Spriggs, Jonathan C Burley, Martin C. Garnett, Vincenzo Taresco, and Cameron Alexander

ACS Med. Chem. Lett., Just Accepted Manuscript • DOI: 10.1021/acsmedchemlett.7b00456 • Publication Date (Web): 29 Jan 2018

Downloaded from http://pubs.acs.org on January 31, 2018
Water solubility enhancement of pyrazolo[3,4-d]pyrimidine derivatives via miniaturized polymer-drug microarrays

Monica Sanna, Giovanna Sicilia, Ali Alazzo, Nishant Singh, Francesca Musumeci, Silvia Schenone, Keith A. Spriggs, Jonathan C. Burley, Martin C. Garnett, Vincenzo Taresco,† and Cameron Alexander‡

†Dipartimento di Farmacia, Università degli Studi di Genova, Viale Benedetto XV 3, 16132 Genova, Italy.
‡School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.

ABSTRACT: A miniaturized assay was optimized to evaluate the enhanced apparent water solubility of pyrazolo[3,4-d]pyrimidine derivatives used extensively as anticancer drug scaffolds. The applied amount of drugs used in the reported strategy ranged from 5-10 µg per formulation which were dispensed by an inkjet 2D printer directly into a 96-well plate. The selected polymer/drug formulations with high water solubility demonstrated improved cytotoxicity against a human lung adenocarcinoma cancer cell line (A549) compared to the free drugs. We attribute the enhanced efficacy to the improved apparent-solubility of the drug molecules achieved via this methodology. This novel miniaturized method showed promising results in terms of water solubility improvement of the highly hydrophobic pyrazolo[3,4-d]pyrimidine derivatives, requiring only a few µg of each drug per tested polymeric formulation. In addition, the reported experimental evidence may facilitate identification of suitable polymers for combination with drug leading to investigations on biological properties or mechanisms of action in a single formulation.

The pyrazolo[3,4-d]pyrimidine (p[3,4]p) nucleus (Figure 1(a)) is an adenine isostere, and can therefore mimic adenine in the catalytic sites of many oncogenic kinases which act on ATP. For these reasons p[3,4]p has received growing attention as a scaffold for the combinatorial synthesis of drug candidates, particularly in targeted anticancer therapy based on protein kinase inhibitors. Many p[3,4]p derivatives act as nanomolar inhibitors of both the cytoplasmic tyrosine kinases SRC, ABL1 and FYN, and of the serine-threonine kinase SGK1. In addition, this family of compounds also showed an enhanced antiproliferative profile against several cancer cell lines, including those derived from neuroblastoma, chronic myeloid leukaemia, glioblastoma, rhabdomyosarcoma, osteosarcoma, prostate cancer and mesothelioma.

Although these molecules are readily soluble in DMSO and other organic solvents, limited solubility in water adversely affects their bioavailability and efficacy. Thus, in order to avoid the use of toxic organic solvents for in vitro and in vivo tests, several strategies have been sought to improve the aqueous solubility and pharmacokinetics of p[3,4]p derivatives such as formation of complexes with cyclodextrins, encapsulation into liposomes, formulation with albumin into nanoparticles and synthesis of prodrug derivatives.

However, one of the simplest and most promising methods is to create an amorphous solid dispersion where the drug is molecularly dispersed in an inert carrier, typically a hydrophilic polymer, such that the resulting stabilised amorphous drug shows a higher water apparent-solubility compared to the crystal form. Accordingly, we have previously developed a novel miniaturized printing technology as a screening method to evaluate drug-polymer compatibility. This new method represents an efficient method to evaluate pharmaceutical formulations and assess the compatibility between drug and polymer. It requires only nanogram quantities of materials which results in about six orders of magnitude lower amount of active pharmaceutical ingredient (API) compared to conventional methods. In this regard, routinely analytical techniques such as DSC and XRPD need mg of samples to evaluate drug-polymer blends stability.

Here we report, for the first time, an efficient inkjet 2D printer-based screening process to identify the best polymeric carriers for aqueous solubilisation of different p[3,4]p derivatives at minimal sample amounts. We demonstrate a complete miniaturized and fast analytical route to determine polymer/drug formulations for hit derivatives and validate this approach in a standard cytotoxicity screening.

The initial work involved selection of five previously reported p[3,4]p compounds 1-5 and synthesis of one new molecule, compound 6. These candidate drugs were combined with seven different commercially available hydrophilic polymers selected from those commonly used as pharmaceutical excipients (Figure 1SI). The initial drug and polymer stock solutions were prepared by dissolving the drugs in DMSO and the polymers in deionized (DI) water, in order to reach a final concentration of 10 mg/mL and 1 mg/mL, respectively. Initially, a fixed volume of each drug solution was dispensed by a piezoelectric printer into a 96-well plate (each
drug was formulated at drug/polymer ratio of 10/90% w/w, used as printer target as well as a storage platform. DMSO droplets with nominal volumes ranging from 250 to 280 pL were dispensed to obtain a final amount of drug of 5-6 µg

![Figure 1. (a) General structure of pyrazolo[3,4-d] pyrimidines. i. High-throughput dispensing of DMSO drug solutions by inkjet 2D printer; ii. Sequential addition of polymeric aqueous solutions and evaporation of water and DMSO; iii. Re-suspension with water of the dry solid dispersions; iv. Evaluation of the apparent-solubility of the drugs in water from the polymeric matrixes via multi-well-reader UV-vis analysis; and v. MTT-cytotoxicity assessment of the hit formulations.]

(Figure 1i). Subsequently (Figure 1ii), the different polymer solutions were pipetted into the different wells, by using a pipette (drug controls were prepared by simply adding water rather than polymer solutions). The well plates were left inside the printer cage to allow the DMSO-water mixture to slowly evaporate overnight at room temperature (from our previous experience\(^2\), the amount of DMSO dispensed, for each well in the present work, evaporates completely in the employed conditions). Subsequently, in order to remove any possible residual trapped solvent in the solid formulations, all the well plates were moved into a vacuum drying oven at room temperature for two days (Figure 1ii).

Generally, to dispense the complete set of 6 pure drugs and to pipette the 7 polymers in triplicate, the entire process required around 40 minutes and around 15-18 µg per drug. The drug-polymer solid formulations were then analysed for solubility by re-suspension in 200 µL of DI water (Figure 1iii). The quantitative determination of any UV-vis active molecule present in a solution (in this case the aromatic p[3,4]p derivatives) can be obtained by comparison with its calibration curve plotted using several solutions of known concentration. However, due to the low solubility and stability in water and DMSO respectively of the whole set of drugs, it was not possible to determine quantitatively the amount of soluble component. To overcome this problem in a pragmatic manner, an analytic screening based on the variation of the absorbance between the free drug re-dissolved in water and its polymer formulation was developed (Figure 1iv). This was achieved by normalizing the absorbance values of the drug/polymer dispersions against the absorbance of the free drug in water at the same maximum wavelength. The resulting values (ΔA%) were then used to compare the ability of the different polymers to solubilise the sample set of drugs. The absorbance (A0) of the drugs alone in water was evaluated by using a UV-vis multi-well plate reader, which was able to measure the full wavelength-spectrum in the range between 200 to 1000 nm in less than 30 seconds per sample. As anticipated, no signals were observed from the presence of water-insoluble drugs (Figure 2SI and 3SI). In parallel, the absorbance of the aqueous solutions of drug/polymer blends (A) was tested by using the absorbance of the polymer solutions as a blank (Figure 4SI). All the absorbance values were kept in the range 0<A<1 where the Beer-Lambert law can be considered valid and thus, the correlation between absorbance and drug concentration.

\[
\Delta A\% = \frac{\Delta A}{A_0} \times 100 = \frac{(A - A_0)}{A_0} \times 100
\]

Detailed data of ΔA% values for each polymer/drug combination can be found in Supporting Information (Table 1SI and Figures 5SI-6SI). It is apparent from these data that two sur-
factants (Pluronic F-68 and Tween 80) and the amphiphilic co-
polymer PVPVA showed notably higher ∆A% average values
compared to the homopolymers (PEG 8000-20000, PVP and
HPMC). Based on these data, ∆A% average values were cal-
culated and used to rank the polymers in terms of drug appar-
ent-solubility enhancement (Figure 2). This was anticipated,
since as a first assumption, the trend in solubilising hydropho-
bic drugs might be attributed to the presence of hydrophobic
blocks in Pluronic F-68, Tween 80 and PVPVA, which could
participate in associative interactions with the drugs. However,
it is also interesting to highlight that, in this first-generation
array, PEG chain length also affected the overall drug appar-
ent-solubility (Figure 2), which increased independently from
the initial water solubility of the drugs (see Figures 3SI).

![Figure 2. ∆A% average of polymers ranked according to their water apparent-solubility enhancement (high ∆A% is related to a high drug water solubility). Error bars showing standard deviation (n=3).](image)

After this first analytical screening, on the basis of the ∆A% average results, each drug was formulated with two of the best performing polymers from the initial set i.e. PVPVA, Pluronic F-68 and Tween 80 (Table 1SI).

The anti-proliferative activity of the p[3,4]p derivatives alone
or in combination with polymers was assessed against a hu-
man lung adenocarcinoma cell line (A549), due to its high cy-
tosolic content of tyrosine and serine/threonine kinases (Figure 1v). As shown in Figure 3, none of the drugs formulated as aqueous suspensions was cytotoxic after 24 h treatment. Before screening the drug-polymer formulations, all the polymers were also tested at varying concentrations against the A549 cell line (Figure 7SI) to evaluate their cytotoxicity and identify the least toxic polymer concentration, in order to avoid any effects of the polymer carrier on the final formulation killing activity.

The data showed that the polymers were essentially non-toxic to A549 cells up to concentrations of 200 µg/mL. Subsequent solid dispersion cytotoxicity assays were therefore performed at polymer carrier concentrations below the threshold level of 200 µg/mL.

![Figure 3. Cytotoxicity of pure drug solutions (30 µg/mL) against human lung adenocarcinoma cell line (A549). Due to the low solubility of the whole set of drugs, no antiproliferative activity was shown in the high-throughput MTT assay adopted. Error bars showing standard deviation (n=4).](image)

Printing of drugs into polymer dispersions at a level of 90% polymer and assays of these formulations with A549 cells showed growth inhibition of ~ 20-50% (Figure 4), and more than the drugs alone at 30 µg/mL. These data also showed that compounds 1 and 2 were the most active drug candidates (Figure 4). We also used this formulation process to identify a pair of drugs to evaluate the combined effect of two more potent active principles in a single polymeric blend, thus 1 (15 µg/mL) and 2 (15 µg/mL) were formulated with PVPVA (drug/polymer ratio constant at 10/90 % w/w). As shown in Figure 4 (red bar) a synergistic effect of the combined formulation (1+2-PVPVA) was observed with respect to the single ones. In particular, a further 15-20% growth inhibition was reached (~60% of killing effect). This experimental evidence may both facilitate the future adoption of drug combinations in the field of kinase inhibitors and dosage of drugs with different nature and/or mechanisms of action in one single formulation. To further validate this methodology, traditional cell viability assays using DMSO drug solutions were also performed (Figure 8SI). As can be seen in Figure 8SI, formulations gave similar or more accurate cytotoxicity results than that obtained with DMSO. These latter results not only support the analytical evidence of an improved drug water-solubility after formulation but also support the enhancement of availability conferred by solid dispersions.

![Figure 4. Cytotoxicity of selected pre-screened formulations. The final drug concentration reached in the formulations was](image)
around 30 µg/mL equal to a loading in the polymer matrix of 10% w/w. As shown in Figure, polymers alone showed no adverse activity against the selected cell type. **Red bar:** cytotoxicity of 1+2-PVPVA at 30 µg/mL in drugs (15 µg/mL, 15 µg/mL of 1+2). Error bars showing standard deviation (n=4).

In an attempt to shed some light upon the interactions established in between drug and polymer, some preliminary experiments were carried out using Dynamic Light Scattering (DLS). This was carried out on just the most powerful single drug formulation (1-PVPVA) resulting from the biological screening reported in the present work (Figure 4). PVPVA showed a poor correlation curve indicating a highly disperse preparation, and the resulting DLS traces could be interpreted as a mixture of small and large polymer micelles. A similar poor correlation curve accompanied with the presence of big aggregates were observed for the free form of I as would be expected from its low solubility (Figure 9SI). On the other hand, the 1-PVPVA formulation showed a single unimodal peak in the range of 1000 nm with a discrete dispersion (PDI of 0.4). As the only peak in this sample this must be a mixture of both polymer and drug, hinting at a degree of interaction in between the hydrophilic polymeric matrix and the hydrophobic drug (Figure 5 and 9SI). The self-assembling of the 1-PVPVA blend into nano-micro structures might explain not only the higher apparent-solubility of the formulation, compared to the free drug, but also the enhanced biological activity, due to a higher bioavailability than the free drug. This result provides preliminary support for the effectiveness of the new method. However, a more rigorous study would be needed to prove the exact nature of polymer-drug interactions and the features of any structure in particles of the final blend.

ASSOCIATED CONTENT

Supporting Information

General information of materials, experimental details for the printing, UV screening, cellular assays and synthesis (PDF).

AUTHOR INFORMATION

Corresponding Authors

E-mail: vincenzo.taresco@nottingham.ac.uk cameron.alexander@nottingham.ac.uk

Notes

The authors declare no competing financial interest. All raw data created during this research are openly available from the corresponding authors and at the University of Nottingham Research Data Management Repository (https://rdmc.nottingham.ac.uk)

Acknowledgements

We thank EPSRC (Grants EP/N03371X/1, EP/H005625/1, EP/N006615/1 and EP/L013835/1) and the Royal Society (Wolfson Research Merit Award WM150086) for funding this work. We gratefully acknowledge Paul Cooling, Esme Ireson, Tom Booth and Christine Grainger-Boulby for expert technical assistance. We thank Valentina Cuzzucoli Crucitti for graphical and picture design.

ORCID

Vincenzo Taresco: 0000-0003-4476-8233 Cameron Alexander: 0000-0001-8337-1875 Martin Garnett: 0000-0002-4365-4499

ABBREVIATIONS

pyrazolo[3,4-d]pyrimidines, p[3,4]p; Polyvinylpyrrolidone-vinyl acetate copolymer, PVPVA; Polyvinylpyrrolidone, PVP; Hydroxypropyl-methyl cellulose, HPMC; polyethylene glycol 8000, PEG8000; polyethylene glycol 20000, PEG20000; Tween 80; Pluronic F-68; dimethyl sulfoxide, DMSO; A, UV-vis Absorb-

Water solubility enhancement of pyrazolo[3,4-d]pyrimidine
derivatives via miniaturized polymer-drug microarrays

Monica Sanna,† Giovanna Sicilia,‡ Ali Alazzo,† Nishant Singh,† Francesca Musumeci,† Silvia Schenone,† Keith A. Spriggs,‡ Jonathan C. Burley,‡ Martin C. Garnett, ‡ Vincenzo Taresco*,‡ and Cameron Alexander*‡

†Dipartimento di Farmacia, Università degli Studi di Genova, Viale Benedetto XV 3, 16132 Genova, Italy.
‡School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.