A Hybrid Converter with Series Capacitors Featuring Ultralow Added Installed Power

Dr. Christian Klumpner (klumpner@ieee.org)
University of Nottingham
Faculty of Engineering
Department of Electrical and Electronic Engineering
Power Electronics, Machines and Control

Presented material is a result of the PhD project of Mr. Savvas Papadopoulos
Contents

- Introduction to Hybrid Concept
- Circuit Features
- Analysis and Operation
- Simulated Results
- Experimental Evaluation
- Conclusion
Properties of inverters:

- **Inverters transform DC to AC**

- **Classified as Voltage or Current Source**

- **Medium voltage applications (typically ~3.3kVrms) require >5kVdc in DC link**

- Characteristics of switching devices limit inverter capability to slow switching (<1kHz)

- Either use more complex multilevel topologies or install large filters (large passive components)

- Passive filters = variable attenuation = low @ 1st fsw cluster

- Alternative solutions employing active filtering have been proposed in the literature
Related Work

Main inverter = lower sw. frequency (max \(\eta \))
Aux. inverter processes switching crt. ripple \(\Rightarrow \text{low I-rating} \) but SAME V-rating

Switching ripple > than typical 5\(^{th}\), 7\(^{th}\) grid harmonics \(\Rightarrow \) much faster current controllers than in utility active filters

Series caps = used to block most of 50Hz voltage \(\Rightarrow \) Aux inverter= Lower V-rating

Related Work

- Current controller – simpler
- Reduction of switch voltage rating to 50% of supply peak voltage has been reported
- Controlling DC voltage drift of series caps was necessary

Why using a CSI as Auxiliary Inverter in cancelling Main Inverter sw. ripple?
- Switching harmonics change very little with loading & is well defined
- No current controller needed ⇒ lower fsw of auxiliary inverter
- Size of series caps =reduced /allows tighter design to fit whole operating range
- Suitable for retrofitting/upgrading PQ of existing MV inverters
Overview of Hybrid Circuit

Medium Voltage 3-level NPC VSI

Voltage ratings:
MV VSI = 2x3kV dc-link
V_{CSI-L-L} < 1kVpk

Series Capacitors: Blocks most 50Hz grid voltage reducing V-ratings of auxiliary inverter but results in capacitive current absorbed from grid

LC Filter: Removes the switching ripple from CSI currents but LC-prone to resonance

Low Voltage rated CSI:
- synthetises DIRECTLY the distortion in main converter current
- (no current controller required)
- ⇒ Could potentially operate with a much smaller switching frequency than an auxiliary VSI

20% V rating & 20% I rating
⇒ 4% Installed power
- @ 50 Hz: the grid voltage is shared between the series capacitor and CSI depending on CSI current (controlled by P_{loss}&Q).

- @ $f_{\text{sw-main}}$: the voltage drop caused by switching current in series capacitor is reflected entirely across CSI inputs.

- \Rightarrow CSI V-stress = $|\overrightarrow{V_g} - \overrightarrow{V_c}| + \frac{\overleftarrow{i_{\text{sw}}}}{(\omega_{\text{sw}}C)}$

50Hz
- Series capacitor V-drop achieved by the CSI injecting a 50 Hz current
- A small active component may be required to cover losses (rectifier)
- Area “1” is the desired for operation
Smaller Cs reduces reactive current & conduction losses and overall CSI current rating

BUT

The switching ripple causes a higher voltage drop across Cs that needs to be mirrored by CSI

\[\downarrow \]

Varying Cs can have adverse effects on CSI installed power

\[\downarrow \]

Determining an optimum design where P installed is minimised is possible
Control System
Simulation Results

Main 3L inverter: \(V_g = 3.3kV; \ I_g = 330\text{Arms}; \ V_{dc} = 5kV \)
\[S = 1.89\text{MVA}; \ f_{sw} = 1kHz; \ C_s = 110\mu F \]
CSI: \(L_{dc} = 20mH; \ I_{dc} = 184A; \ f_{sw} = 30kHz; \ C_f = 11\mu F \)

Fourier: Output Current \(I_g \) [A]

Fourier: CSI current \(I_c \) [A]

Fourier: L1 current \(I_s \) [A]
Transient Performance

Resulting Grid Current

Full power main VSI

Half power main VSI

CSI current

CSI LL voltages

$K = 20\% \Rightarrow 10\%$

$K = 10\% \Rightarrow 5\%$
VSI working in Rectifier mode

- $V_g = 415\text{Vrms line}$
- $V_{dc-\text{vsi}} = 750\text{V}$
- $P_{dc-\text{vsi}} = 4.2\text{kW}$
- $f_{sw-\text{vsi}} = 1\text{kHz}$
- $f_{sw-\text{csi}} = 40\text{kHz}$
- $I_{dc-\text{csi}} = 5\text{A}$

Parameters of the circuit:

- $L_{1(\text{vsi})} = 11\text{mH}$
- $C_s = 12\mu\text{F}$
- $C_p = 1\mu\text{F}$
- $L_{f-\text{csi}} = 0.3\text{mH}$
- $R_f = 50\Omega$
- $L_{dc-\text{csi}} = 30\text{mH}$
- $C_{\text{clamp}} = 20\mu\text{F}$
Experimental Evaluation

Transient tests

CSI voltage (top blue) drops significantly after CSI activation

Start Active Ripple Cancelation

Main VSI current

Grid current
Experimental Evaluation

Assessment of current ripple cancelation

Remaining sw. harmonics as percentage of original VSI switching harmonics

A reduction of 20 times of the switching ripple has been demonstrated

Attenuation is independent of harmonic order
Conclusions

• Switching ripple filters are subject to full current stress/ratings
• Traditional shunt active filters are rated at full grid voltage
• Active filters with series connected caps have been proposed for harmonic compensation (5,7,11 etc) but voltage reduction is highly dependent on harmonic profile $V_{C-h} = I_{C-h}/(\omega_h \cdot C)$
• Switching ripple profile changes very little with operating conditions
• Hybrid Active Filter with ultra-low installed power is proposed and validated using simulation (MW) and experimentally (kW)
• CSI rated at 20 % of voltage and 20-30% of current of main inverter
• Only 4-6% added installed power of main inverter
• The hybrid solution is suitable for retrofitting old VSI/meet new PQ
• Enables design of main inverter with much smaller inductor/very large current ripple