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Abstract

We propose a curve-based Riemannian-geometric approach for general shape-
based statistical analyses of tumors obtained from radiologic images. A key com-
ponent of the framework is a suitable metric that (1) enables comparisons of tumor
shapes, (2) provides tools for computing descriptive statistics and implementing prin-
cipal component analysis on the space of tumor shapes, and (3) allows for a rich class
of continuous deformations of a tumor shape. The utility of the framework is illus-
trated through specific statistical tasks on a dataset of radiologic images of patients
diagnosed with glioblastoma multiforme, a malignant brain tumor with poor prog-
nosis. In particular, our analysis discovers two patient clusters with very different
survival, subtype and genomic characteristics. Furthermore, it is demonstrated that
adding tumor shape information into survival models containing clinical and genomic
variables results in a significant increase in predictive power.

Keywords: Magnetic resonance imaging; Shape manifold; Glioblastoma multiforme; Clus-
tering; Survival analysis.
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1 Introduction

There is intensive worldwide interest in preventing, detecting and treating cancer. Radio-

logic tools for detecting and treating cancer play central roles in disease management and

surveillance. Technological advances in imaging equipment and techniques, and develop-

ment of stage-specific methods for cancer, make medical imaging an indispensable tool for

clinicians to monitor various cancers (Gutman et al., 2013). Clinical decision-making, par-

ticularly for the brain, is routinely made on the basis of radiological image-based features in

a magnetic resonance image (MRI). The three main analytical tasks in such settings, each

with its own set of challenges, are: (1) segmentation of the tumor region from the MRI, (2)

characterization of the tumor via its shape, volume or other features, and (3) development

of prognostic models that link MRI features with genomic and clinical variables.

In this article, we focus primarily on the latter two tasks. Brain tumor characterization

is not straightforward because the tissue surrounding the tumor is often heterogeneous

in spatial and imaging profiles (Krabbe et al., 1997), and sometimes overlaps with normal

tissues (Provenzale et al., 2006). For example, it is extremely difficult to distinguish between

primary central nervous system lymphoma and high-grade glioma using MRI (Liu et al.,

2011). Integrating volumetric and morphological features of tumors obtained from MRI

with clinical and genomic variables is usually based on non-objective numerical summaries

of the features generated by experts. Thus, it is difficult to ascertain the reliability and

reproducibility of such studies, and to generalize to different clinical settings.

The biological process governing tumor growth generates artifacts that can assist in the

above-described tasks. A tumor normally originates from a single cell, and as it prolifer-

ates in size, it exhibits heterogeneity in physiological and shape-related features (Marusyk

et al., 2012). Both inter- and intra-tumor heterogeneity are critical for characterizing

tumors (De Sousa et al., 2013). Inter-patient tumor heterogeneity can be quantified by

morphological characteristics such as the shape and size of the tumor (McLendon et al.,
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2008), in addition to the genomics and clinical characteristics of a patient.

The relevance of tumor shape in characterizing tumor heterogeneity is linked to its

growth process. Intrinsic brain tumors tend to evolve along tracts of white matter, al-

tering the tracts in complex ways that include infiltration, displacement and disruption

(Goldberg-Zimring et al., 2005). It is conceivable that new insight into patterns of tumor

growth and invasion in the brain can be obtained through a better understanding of the

shape and evolution of the tumor. Tumor shape is significantly influenced by the location

in the brain and other anatomical constraints—in some places it might infiltrate and in

others displace the fiber tracts. Irregular or spiculated shapes suggest an anisotropic struc-

ture of the underlying white matter; spherical or regular shapes imply a lack of structural

or anatomical restrictions. The size of the tumor evidently affects its shape, especially

in the presence of anatomical restrictions. It is reasonable to theorize that a better un-

derstanding of the relationship between the tumor’s shape and size, and histopathological

factors related to the brain tumor would enhance the understanding of the tumor’s biologi-

cal growth process; this would not only enable better prognosis but also potentially predict

the likelihood of therapeutic success. For example, Figure 1 shows two semi-automated seg-

mentations of T2-weighted fluid-attenuated inversion recovery (FLAIR) brain-axial MRIs

of patients diagnosed with glioblastoma multiforme (GBM), also known as grade IV glioma,

with survival times of longer than 50 months (left) and shorter than one month (right),

respectively. The tumor shape for the patient with longer survival appears to be more reg-

ular or spherical than the irregular one corresponding to the patient with a short survival;

the tumor sizes appear to be quite different as well. Evidently, the tumor locations for the

two patients are different, which influences both size and shape.

While the potential importance of tumor shape as a prognostic biomarker has been rec-

ognized (Goldberg-Zimring et al., 2005; McLendon et al., 2008), there is a striking paucity

of progress in this direction. This is primarily due to the difficulty of representing and inte-

grating tumor shape into existing statistical models. Current approaches that incorporate
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Figure 1: T2-weighted FLAIR MRIs of two patients diagnosed with GBM, with survival times longer
than 50 months (left) and shorter than one month (right). The segmented tumor is marked in red.

the information of a segmented brain tumor’s shape and size into models for tumor char-

acterization and classification are based on subjective features provided by experts such as

tumor circularity/sphericity and irregularity, and numerical summaries such as surface-to-

volume ratio, total tumor area and entropy of the radial distribution of boundary pixels

(Krabbe et al., 1997). Such radiological features are only indicative of tumor shape and

do not fully characterize the shape. Furthermore, the subjective nature of the features

ensures that statistical inference founded on them will suffer from a lack of reproducibility

and reliability. In a recent article exploring the predictive power of MRI features in the

context of GBM, Gutman et al. (2013) state that (page 568): “...it is often challenging to

extract objective information for scientific analysis from prose statements of imaging fea-

tures by neuroradiologists who typically use idiosyncratic vocabulary.” Gutman et al. (2013)

used various measures of agreement of ordinal and numerical values of neuroimaging fea-

tures such as size and percentage of necrosis suggested by three expert radiologists, and

noted that volumetric and morphological information of the GBM tumor is informative for

characterizing its biological growth process.

1.1 Statistical challenges and contributions

We can circumvent issues associated with qualitative and quantitative summaries of tumor

shape by quantifying and utilizing information about the entire tumor shape. This exten-

sion, however, is not straightforward. Viewed statistically, tumor shape is a non-Euclidean

object residing on (a quotient space of) some nonlinear manifold. Thus, appropriate repre-
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sentation of a tumor shape should naturally employ statistical methods for non-Euclidean

data objects. Motivated by this need, we focus on examining the utility of the 2D shape of

GBM tumors obtained from a single brain axial imaging slice with the largest tumor area

in two contexts: (1) for detection of inter-tumor heterogeneity, and (2) for evaluation of

its association with molecular (genomic) profiles and survival times of patients diagnosed

with GBM. The methods we employ are broadly applicable to various tumor types. Recent

studies of scalar on image regression models in neuroimaging data applications incorpo-

rated the entire image (see e.g., Reiss and Ogden (2010), Li et al. (2015), Goldsmith et al.

(2013), and many others); such methods are not applicable in the current setting since

MRIs of GBM tumors cannot even be coregistered.

We model the 2D tumor shapes as properties of parametric curves in R2, which provides

the flexibility to accommodate uncertainty regarding landmarks and other curve features.

In particular, we adapt the geometric framework for statistical shape analysis of closed

curves proposed by Srivastava et al. (2011). In summary, our main contributions are:

(i) We define a suitable shape space that captures relevant information pertaining to

tumor shapes represented as closed curves given by their outlines in 2D MRIs.

(ii) We define notions of a geodesic path and distance between tumor shapes, and an aver-

age tumor shape; we also perform shape-based principal component analysis (sPCA)

to identify and visualize principal directions of variation in a sample of tumor shapes.

(iii) We illustrate the utility of the developed tools in clustering GBM tumor shapes, and

other inferential tasks such as two-sample testing and survival time modeling.

We develop a coherent statistical representation of the tumor shape, and use a geometric

framework to implement tasks such as clustering and integrating tumor shape as a poten-

tial prognostic factor in statistical models commonly used in oncology studies. We find the

motivation in the GBM dataset (Section 2), for which issues about the use of MRI features

have been recognized but not satisfactorily addressed. We examine statistical methods to
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integrate the tumor shape with genomic and clinical features of GBM, and investigate asso-

ciations between them; this can subsequently accelerate effective personalized therapeutic

strategies for cancer development and progression. Note that the presented method is more

general and can be applied to other cancers and imaging modalities as well.

The rest of this paper is organized as follows. First, in Section 2, we introduce the

GBM dataset. In Section 3, we provide statistical tools for analyzing tumor shapes under

an elastic framework. In particular, we focus on comparing and averaging tumor shapes,

and summarizing shape variability in a sample of tumors. Section 4 considers specific

statistical tasks on the GBM dataset including clustering, hypothesis testing and survival

modeling. Section 5 provides a short discussion and directions for future work.

2 Description of GBM dataset

GBM, the most common malignant brain tumor found in adults, is a morphologically het-

erogeneous disease. Despite recent medical advancements, the prognosis for most patients

with GBM is extremely poor. In the United States alone, 12, 000 new cases are being

diagnosed every year1, among which less than 10% survive five years after diagnosis (Tutt,

2011). The median survival time for GBM patients is ∼12 months (McLendon et al., 2008).

Biological features that differentiate GBM from any other grade of tumor include hypoxia

and pseudopalisading necrosis, and proliferation of blood vessels near the tumor.

For our study, we collated MRIs with linked genomic and clinical data from 63 patients

who consented under The Cancer Genome Atlas protocols2. The data from pre-surgical

T1-weighted post-contrast (T1) and T2-weighted FLAIR (T2) MRIs for these patients were

obtained from The Cancer Imaging Archive3. The dataset comprising survival times, and

clinical and genomic variables was obtained from cBioPortal4.

1http://www.abta.org/about-us/news/brain-tumor-statistics/
2http://cancergenome.nih.gov/
3http://www.cancerimagingarchive.net/
4http://www.cbioportal.org/
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The imaging dataset is a subset of a larger patient cohort that contains information on

the linked clinical and genomic variables. For clinical variables, we used the survival times

of the patients and Karnofsky performance scores (KPS) (Karnofsky and Burchenal, 1949).

KPS indicates the ability of cancer patients to perform simple tasks (Crooks et al., 1991)

and is widely used to assess quality of life during disease diagnosis and treatment. Recent

investigations have identified four different subtypes of GBM: classical, mesenchymal,

neural and proneural, each of which is characterized by different molecular alterations

(Verhaak et al., 2010). We also curated the information about these subtypes of GBM

and some well-characterized GBM driver genes (Frattini et al., 2013): DDIT3, EGFR, KIT,

MDM4, PDGFRA, PIK3CA and PTEN. Biologically, a gene is known as a driver gene when

there is a mutation along with DNA-level changes (amplifications or deletions). The full

tumor volumes from T1 and T2 MRIs were also recorded for each patient. Pre-processing

of images including details of segmentation, a more detailed description of the clinical

and genomic covariates, and the demographics corresponding to the clinical covariates are

presented in Section 1 of the Supplementary Material.

3 Quantifying variability in tumor shapes: A geometric approach

Some issues associated with characterizing tumors in MRIs can be alleviated through a suit-

able representation, which should be versatile enough to accommodate various subjective

evaluations by neuroradiologists, and at the same time, be mathematically and statistically

well-defined so as to facilitate various inferential tasks. Shape analysis based on landmarks

(finite collection of ordered points) (Dryden and Mardia, 1998) is not flexible enough in

this context since the tumors rarely possess landmark features as such. Even if present,

identifying tumor landmarks is difficult and may require subjective assessment. A natural

way to represent a tumor is to use a 2D curve that corresponds to its boundary, which

allows for uncertainty in all landmark locations.
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(a) (b) (c)
T1 T2 T1 T2 T1 T2

Figure 2: Examples of manually segmented tumor contours overlaid on the T1 and T2 images for patients
with (a) short (<1 month), (b) medium (≈15 months) and (c) long (> 50 months) survival. Each row
represents a different tumor.

We adopt the shape definition of Srivastava et al. (2011) that is particularly attractive

in the current context (see Joshi et al. (2007), Srivastava et al. (2011) and Kurtek et al.

(2012) for details). While describing the tools, we concurrently illustrate their usage on the

GBM dataset. To get an idea of this problem’s complexity, we display a few examples of

tumor contours overlaid on the corresponding T1 and T2 MRI slices in Figure 2 (each row

represents a different tumor). The tumor shapes are heterogeneous, and at first glance it is

difficult to ascertain any relationship between tumor shapes and survival times. To obtain

insight into possible relationships between tumor shapes and outcomes, more sophisticated

approaches are required. Throughout this section, we use the word metric to refer to a

Riemannian metric (i.e., an inner product in tangent spaces), and distance to refer to the

measure of differences between objects.

3.1 Representation of tumor shape and elastic metric

The tumor shapes should be invariant to translation and rotation. Scaling might be con-

sidered important, and can easily be incorporated into our framework. Denote a parame-

terized, planar, closed curve representing the outline of a tumor by a function β : S1 → R2.

Since the tumor outline is a closed curve, it is natural to parameterize it using the unit
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circle domain S1, instead of an interval. There are several possibilities for representing β

for the purpose of shape analysis. One can simply use the x and y coordinate functions

of β; another possibility is to parameterize β using the arc length and compute the angle

β̇ = dβ
dt

makes with the x-axis (here, t is the curve parameter) (Klassen and Srivastava,

2006). For an overview of the different possible representations, and associated properties

of shape spaces, see Bauer et al. (2014).

The choice of a metric on the tumor shape space is vital for comparing two shapes.

Unlike typical problems in shape analysis, there is no template shape available while con-

sidering tumors. In this context, it is imperative that the metric capture all possible

deformations that match one tumor shape to another. One candidate metric is the elastic

metric, defined as follows. Suppose p(t) = |β̇(t)| is the speed function and θ(t) = β̇/|β̇(t)| is

the angle function. Consider two tangent vectors (small perturbations) (δpi, δθi), i = 1, 2

in the tangent space of (p, θ). The elastic metric (Mio et al., 2007) is defined as:

〈(δp1, δθ1), (δp2, δθ2)〉(p,θ) = a

∫
S1
δp1(t)δp2(t)1/p(t)dt+ b

∫
S1
〈δθ1(t), δθ2(t)〉p(t)dt, (1)

for constants a, b > 0. The first term in Equation (1) measures variations in the speed

function (i.e., how fast the tumor outline is traversed), while the second term measures

the variation in the direction of the unit tangent vectors via the standard Euclidean inner

product between δθ1 and δθ2 (denoted by 〈·, ·〉); a and b provide the relative weights for the

two terms. In other words, the first term captures the amount of stretching and the second

term captures the amount of bending required to deform one tumor shape into another.

Both terms are needed to generate natural deformations between tumor shapes. However,

choosing a and b is hard and problem-dependent.

An important source of variation is the choice of parameterization of the tumor contours.

This is a nuisance parameter when comparing tumor shapes, since the choice of parameter-

ization is arbitrary and shape preserving, i.e., the tumor contour can be re-parameterized
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in many different ways, but it’s shape remains unchanged. A common approach in the

shape analysis literature is to normalize curve parameterizations to arc length to ensure

that traversal along the curve is at unit speed. Under this scenario, only bending deforma-

tions are allowed, which often results in suboptimal point correspondences across shapes

(Mio et al., 2007). We describe how it is possible to not only efficiently employ the elastic

metric, but also ensure that the resulting geodesic distance is invariant to the choice of

parameterization. Unless otherwise stated, all curves are parameterized via arc length.

3.1.1 Square-root velocity function

Let Γ = {γ : S1 → S1|γ is an orientation-preserving diffeomorphism} be the group of re-

parameterization functions, and orientation imply clockwise or counter-clockwise traversal

of the contour (i.e., γ is an invertible function that maps the unit circle to itself and

preserves direction). The re-parameterization of a tumor curve β, termed the action of Γ

on the space of curves, is given by composition: (β, γ) = β ◦ γ. The chief issue with using

the popular L2 metric is that the distance between two tumor contours β1 and β2 is not

preserved under the action of Γ: ‖β1−β2‖ 6= ‖β1 ◦ γ−β2 ◦ γ‖ for a general γ ∈ Γ. In other

words, the action of Γ on the space of tumor curves is not isometric, which means that a

comparison of two tumor shapes depends on their parameterizations.

A proposed solution (Joshi et al., 2007; Srivastava et al., 2011; Kurtek et al., 2012) is

to use a different representation of curves called the square-root velocity function (SRVF),

given by q(t) = β̇(t)√
|β̇(t)|

, where | · | is the standard Euclidean norm in R2. This representa-

tion is convenient because it is automatically translation invariant. Conversely, β can be

reconstructed from q up to a translation. If a tumor curve β is re-parameterized to β ◦ γ,

then its SRVF changes from q to (q, γ) = (q ◦ γ)
√
γ̇.

The main reasons for using the SRVF for tumor shape analysis are: (1) the complicated

but desirable elastic metric reduces to the standard L2 metric with a = 1/4 and b = 1, allow-

ing for both bending and stretching of tumor shapes, and (2) ‖q1−q2‖ = ‖(q1, γ)− (q2, γ)‖,
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for all γ ∈ Γ, allowing for parameterization invariant analysis of tumor shapes. If in-

variance to scale is required, each tumor shape can be re-scaled to unit length. After

re-scaling, ‖q‖2 =
∫
S1 |q(t)|

2dt =
∫
S1 |β̇(t)|dt = 1, i.e., the representation space of all SRVFs

is a Hilbert sphere. For tumor shapes, the size of the tumor is often important, and the

variability in tumor shape due to scale differences is considered to be important as well. In

the GBM data example, we decouple tumor shape and size and consider them individually

as covariates in the survival models. For a closed curve, which characterizes the tumor con-

tours we are studying, the corresponding SRVF satisfies the additional closure condition∫
S1 q(t)|q(t)|dt = 0. Thus, the space of all unit length, planar, closed tumor curves, repre-

sented by their SRVFs, is given by C =
{
q : S1 → R2|

∫
S1 |q(t)|

2dt = 1,
∫
S1 q(t)|q(t)|dt = 0

}
,

and is called the pre-shape space.

3.1.2 Geodesic paths and distances in the elastic shape space

In the absence of a template tumor shape, it is critical to visualize deformations or changes

in tumor shape. The choice of the elastic metric and the SRVF of two tumor shapes make it

possible to compute natural geodesic paths and distances between them; as a consequence,

we can visually examine the meaningful deformations of one tumor shape that transforms it

into the other by traversing the geodesic path. This is potentially useful to radiologists for

assessing possible changes in tumor morphology, thereby facilitating targeted interventions.

Pre-shape space C with parameterization and rotation variability : The pre-shape space C is

a nonlinear submanifold of the Hilbert sphere due to the closure condition. It becomes a

Riemannian manifold with the standard L2 metric, 〈〈v1, v2〉〉 =
∫
S1 〈v1(t), v2(t)〉 dt, where

v1, v2 ∈ Tq(C) (i.e., v1 and v2 are elements of the tangent space to C at q; they are often

referred to as shooting vectors) and the inner product in the integrand is the standard

Euclidean inner product in R2. The task of computing geodesic paths between any two

elements q1, q2 ∈ C is accomplished numerically, using an algorithm called path straighten-

ing, introduced by Klassen and Srivastava (2006) and adapted to the SRVF representation
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by Srivastava et al. (2011). This algorithm initializes a path in C connecting q1 and q2, and

iteratively ‘straightens’ it until it becomes a geodesic. The geodesic distance dC is then sim-

ply the length of the geodesic path. The issue with dC is that it contains contributions from

two nuisance sources of variation. The distance between two tumor outlines is non-zero

when they are within (1) a rotation and/or (2) a re-parameterization of each other.

Shape space S accounting for parameterization and rotation variability : To remedy the is-

sues with the pre-shape geodesic distance dC between two tumor shapes, it needs to be

computed while accounting for all possible (1) rotations and (2) re-parameterizations of

one tumor shape to optimally register it to the other. This is achieved as follows.

Let SO(2) be the set of 2 × 2 rotation matrices (special orthogonal group). For a

tumor contour β and a rotation O ∈ SO(2), the SRVF of the rotated curve Oβ is given

by Oq. Thus, in order to unify all elements in C that denote the same tumor shape, we

define equivalence classes of the type [q] = {O(q ◦ γ)
√
γ̇|O ∈ SO(2), γ ∈ Γ}. Each such

equivalence class [q] is associated with a unique tumor shape and vice versa. The set of

all equivalence classes is called the shape space S and is the quotient space C/(SO(2)×Γ).

The distance dC can be used to define a distance between tumor shapes on S according to

dS([q1], [q2]) = inf
O∈SO(2), γ∈Γ

dC(q1, (Oq2, γ)). (2)

The geodesic distance dS is now the elastic distance on the space of tumor shapes and is

invariant to rotation and re-parameterization; as a consequence, all possible deformations

pertaining to stretching and bending of tumor shapes are captured. Moreover, dS is bounded

above by π/2, thereby offering a natural scale for comparing tumor shapes. In practice, the

minimization in the definition of dS is performed by sampling each curve with a large

number of points, and then recursively applying singular value decomposition (SVD) to

find the optimal rotation and the dynamic programming algorithm with an additional seed

search to find the optimal re-parameterization.
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(a) (b) (c)

Nonelastic geodesic path and distance Elastic geodesic path and distance

dNE = 0.9249 dS = 0.4709

Figure 3: Comparison of two simulated tumor shapes. (a) Curve with three protruding peaks. (b)
Curve with two protruding peaks before re-parameterization (uniform spacing of points). (c) Same as
(b) after re-parameterization (optimal non-uniform spacing of points). We show four colored points of
correspondence for improved visualization. The resulting geodesic paths are sampled uniformly using
seven points (NE=nonelastic).

Illustrative examples : We present multiple simulated and real data examples comparing

nonelastic geodesic paths and distances (we only optimize over rotations and the seed

placement but not the full re-parameterization group) to the proposed elastic versions

computed in the shape space. The points along the geodesic path between two tumor

shapes should be viewed as the possible deformations transforming one tumor shape into

the other. Since, in contrast to elastic shape analysis, the nonelastic framework does

not allow stretching and compression deformations, we observe some unnatural shapes

appearing along the geodesic paths in that case.

We first illustrate our approach on two simulated curves that are ‘toy’ tumor shapes.

The curves were generated so as to reflect the protrusion-type behavior of real GBM tumors,

and were both initially parameterized with respect to their arc lengths. This example is

shown in Figure 3. First, with the given arc length parameterizations, the geometric

features on the two curves do not match. This can be seen from the four colored points.

Panel (a) shows the first simulated tumor outline where the green, black and cyan points

correspond to three peaks. Panel (b) shows the second tumor shape, where the green

point corresponds to a peak while the other two do not. This results in an unnatural
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(a) (b) (c) (d) (e) (f)

Nonelastic geodesic path and distance Nonelastic geodesic path and distance

dNE = 0.9946 dNE = 0.5324

Elastic Geodesic path and distance Elastic geodesic path and distance

dS = 0.5324 dS = 0.4242

Figure 4: Left: Comparison of T1 tumor shapes for a patient with survival time of 14.3 months and for
a patient with survival time of 29.2 months. Right: Comparison of T1 tumor shapes for a patient with a
short survival time (8.8 months) and for a patient with a long survival time (48.6 months). (a)&(d) Curve
representing first tumor. (b)&(e) Curve representing second tumor before re-parameterization (uniform
spacing of points). (c)&(f) Same as (b)&(e) after re-parameterization (optimal non-uniform spacing of
points). We show four colored points of correspondence for improved visualization. The resulting geodesic
paths are sampled uniformly using seven points (NE=nonelastic).

nonelastic geodesic deformation between these two shapes, where two of the peaks on

the first shape are distorted to form the second peak on the second shape; the resulting

distance is dNE = 0.9249. Under the elastic framework on the shape space S, the optimal

re-parameterization is able to match the first two peaks across the two curves very well

(green and black points). Of course, there is no counterpart to the third peak on the second

curve (cyan point). This results in a natural deformation where the two matched peaks are

preserved along the geodesic path while the third one simply grows; the resulting distance

is dS = 0.4709 (nearly a 50% decrease). We hypothesize that improvements such as the one

in this simulated example are extremely important in capturing natural variability in GBM

tumor shapes. Upon visual inspection, the observed tumor contours have many geometric

structures such as the peaks in this example. This motivates the use of the elastic shape

analysis framework for studying GBM tumors.

Next, we illustrate the elastic representation, alignment, and computation of geodesic

paths and distances between GBM tumor shapes corresponding to patients with different
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(a) (b) (c) (d) (e) (f)

Nonelastic geodesic path and distance Nonelastic geodesic path and distance

dNE = 1.1209 dNE = 1.0113

Elastic Geodesic path and distance Elastic geodesic path and distance

dS = 0.6024 dS = 0.5346

Figure 5: Left: Comparison of T2 tumor shapes for a patient with survival time of 2.69 months and for
a patient with survival time of 13.3 months. Right: Comparison of T2 tumor shapes for a patient with
survival time of 6.14 months and for a patient with survival time of 0.72 months. Panels (a)-(f) are the
same as in Figure 4.

survival times; Figure 4 presents two examples for the T1 modality, whereas Figure 5

considers the T2 modality. In all examples, we have marked four corresponding points in

red, green, black and cyan, and show the stretching and compression of points along the

tumor curve due to optimization over Γ. The benefit of using the elastic framework becomes

apparent when computing and visualizing geodesic paths between the tumor shapes: the

points along the path represent tumor shapes that are elastically deformed in a natural way

and preserve important shape features of the tumors. Indeed, when we allow non-uniform

spacing of points along the curves, the geodesic deformation is improved due to an improved

matching of geometric features across the tumor shapes. For example, for the T1 example

in the left panel of Figure 4, the deformations along the geodesic path defined through the

distance dS are natural in the following sense: the highly concave geometric feature of both

tumors is nicely preserved along the geodesic path; this is not true in the nonelastic case.

At the same time, other local geometric features in the form of concave and convex curve

segments are preserved along the elastic shape geodesic. This is also clearly evident in the

two examples shown for the T2 modality in Figure 5. It is important to note that these

geodesic path improvements are accompanied by significant distance reductions between
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the nonelastic (dNE) and elastic (dS) frameworks. Improvements of this form are also even

more drastic when one considers statistical modeling of such tumor shapes. The presented

examples thus support our proposal for the use of elastic shape analysis of GBM tumors

for association with patient survival and genomic variables.

3.2 Statistical summaries of tumor shapes

Hereafter, our analyses focus on the shape space S and the distance dS . However, we

illustrate the resulting differences in the statistical summaries under nonelastic and elastic

shape analysis. We define and illustrate computations of a mean tumor shape and co-

variance of a sample of tumor shapes, both defined with respect to dS . Consequently, we

demonstrate how sPCA can be applied to explore and visualize the directions of variation

in tumor shape based on patient-level information. Identifying such directions can be useful

in understanding the most likely deformations of the tumor shapes, and can be potentially

used to monitor the disease and for targeted therapeutic interventions.

3.2.1 Mean and covariance

Under the SRVF framework, the shape space S is a (quotient space of a) nonlinear sub-

manifold of the Hilbert sphere, which is equipped with a Riemannian structure under

the L2 metric. We first introduce some notation. Let q1, q2 ∈ C be the SRVFs of two

tumor pre-shapes and v ∈ Tq1(C). Then, the maps q2 7→ v = exp−1
q1

(q2) ∈ Tq1(C) and

v 7→ q2 = expq1(v) ∈ C are the exponential and inverse exponential maps, respectively.

These are not available analytically for the pre-shape space of closed curves; algorithms for

computing these quantities are similar to the technique for finding geodesics (Srivastava

et al., 2011).

Let {β1, . . . , βn} denote a sample of given tumor contours, and {q1, . . . , qn} be their

16



corresponding SRVFs. Then, the Karcher (Frechet) mean tumor shape is defined as

[q̄] = argmin
[q]∈S

n∑
i=1

dS([q], [qi])
2. (3)

A gradient-based approach for finding this mean is provided in Le (2001) and Dryden and

Mardia (1998), and is omitted here for brevity. The Karcher mean is actually an entire

equivalence class of curves. For the remainder of our analysis, we select one element of

this class q̄ ∈ [q̄]. One could also use the more robust geometric median as an alternative

representative shape (Fletcher et al., 2009; Kurtek et al., 2013); for simplicity, we do not

consider this case in the current work.

The general computation of the covariance around the estimated shape mean is as

follows. Let vi = exp−1
q̄ (q∗i ), i = 1, . . . , n denote the shooting vectors from the mean shape

to each of the shapes in the given data. This first involves an optimal rotation O∗ and

optimal re-parameterization γ∗ of each qi, resulting in q∗i = (O∗qi, γ
∗), to register it to the

mean shape q̄. Then, the covariance kernel can be defined as a function Kq : S1 × S1 → R

given by Kq(ω, τ) = (1/(n− 1))
∑n

i=1 〈〈vi(ω), vi(τ)〉〉. In practice, since the curves have to

be sampled with a finite number of points, say m, the resulting covariance matrices are

finite-dimensional. Often, the observation size n is much less than m and, consequently, n

controls the degree of variability in the stochastic model.

Figure 6 displays a comparison of elastic and nonelastic shape averages for the T1 and T2

tumor shapes in our dataset. In both cases, the elastic approach provides averages that have

sharper geometric features than those provided by the nonelastic method. Thus, elastic

shape analysis better summarizes the data, as most of the tumor shapes have multiple

convex and concave characteristics. In other words, when one ignores the registration of

points across curves (as in nonelastic analysis), shape features tend to average out, and the

resulting shape means appear to be ‘oversmoothed’.
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T1 T2

Figure 6: Comparison of elastic (blue) and nonelastic (red) shape averages of T1 and T2 tumors.

T1 elastic T1 nonelastic

T2 elastic T2 nonelastic

Figure 7: Comparison of elastic and nonelastic principal directions of variation for T1 and T2 tumor
shapes. In each example, we display the path within two standard deviations of the mean (red).

3.2.2 Shape-based principal component analysis

We explore dominant directions of variation in a sample of tumor shapes with an efficient

basis for T[q̄](S) using traditional PCA (also referred to as tangent PCA). While one could

also use the Principal Geodesic Analysis developed in Fletcher et al. (2003) for the same

purpose, we choose the simpler tangent PCA method for data analysis in this work. Let

V ∈ R2m×n be the observed tangent data matrix with n observations and m sample points

in R2 on each tangent, i.e., each column of V is vi = exp−1
q̄ (q∗i ), i = 1, . . . , n, stacked into a

long vector. Let K ∈ R2m×2m be the resulting covariance matrix and let K = UΣUT be its

SVD. The submatrix formed by the first r columns of U , called Ũ , spans the r-dimensional

principal subspace of the observed shapes and provides the observations of the principal

coefficients as C = ŨTV ∈ Rr×n. Thus, each original tumor shape can be represented using

a finite set of principal coefficients acting as Euclidean coordinates. These coefficients can

then be used in a survival model for prediction as shown later.

Figure 7 displays the first principal direction of variation for T1 and T2 GBM tumor

shapes; visualization of principal directions of shape variability in anatomical structures is
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an effective and common qualitative assessment (Shen et al., 2009; Epifanio and Ventura-

Campos, 2014). For each case, we compare the elastic and nonelastic methods. The

elastic principal paths capture more geometric features and are better at representing the

overall variability in the tumor shapes. We compute the overall variance for each sPCA

model as 7.86 (elastic) and 12.74 (nonelastic) for T1 tumors, and 13.43 (elastic) and 27.68

(nonelastic) for T2 tumors. The elastic models are more compact and provide a more

efficient Euclidean representation of the tumor shapes in terms of the principal coefficients.

Note that due to a high level of heterogeneity of the tumor shapes, over 30 elastic sPCA

components are needed to explain more than 95% of the variance. In Section 2 of the

Supplementary Material, we additionally show that the elastic approach provides more

natural results in the context of sPCA-based shape modeling and reconstruction.

4 Shape-based clustering, testing and survival analysis in GBM

The elastic framework for analyzing tumor shapes allows one to perform a variety of estima-

tion and inferential statistical tasks. In particular, sPCA of tumors provides the possibility

of devising methods based on principal coefficients, which can be profitably viewed as Eu-

clidean features or summaries of the tumor shape for inclusion in regression models. Using

a dataset of MRIs of GBM brain tumors, we applied clustering, two-sample testing, and

survival modeling to illustrate the advantages associated with the elastic representation of

tumor shapes and the related geometric framework in the context of assessing patient sur-

vival and association with genomic/clinical variables. Note that from here on, we perform

statistical analysis via the elastic framework only.

4.1 Clustering of GBM tumor shapes

As a first unsupervised task, we performed hierarchical clustering of T1 and T2 tumor

shapes using the elastic shape distance. We first calculated the pairwise distance matrix
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Figure 8: Cluster-wise principal directions of variation for T1 and T2 tumor shapes. In each example,
we display the path within two standard deviations of the mean (red). Bottom: Multidimensional scaling
plots of the T1 and T2 tumor shape data (cluster 1=blue, cluster 2=red).

and then used complete linkage to separate the shapes into two clusters for each modality

(motivated by short vs. long survival and supported by cluster visualization; see bottom

panel of Figure 8). To better visualize the variability in each cluster, we performed cluster-

wise sPCA and plotted the three principal directions of variation in each cluster for the T1

and T2 modalities in Figure 8. We also report the cumulative variance in each cluster in

Table 1. For both modalities, the variance in cluster 1 is much smaller than the variance in

cluster 2. This can also be seen in the principal directions of variation; the shapes shown

along cluster 1 directions (including the mean shape) are smoother and more circular.

We present a multidimensional scaling plot of the data in the bottom panel of Figure

8. This plot confirms that cluster 2 is much more variable than cluster 1. Furthermore,
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Cumulative Variance T1 T2

Cluster 1 5.51 10.23

Cluster 2 14.74 17.95

Table 1: Cumulative variance of the cluster-wise sPCA models for the T1 and T2 tumor data.

Survival (in months) T1 Mean T1 Median T2 Mean T2 Median

Cluster 1 18.8 14.4 18.2 14.2

Cluster 2 12.0 10.8 16.3 13.3

Difference 6.8 3.6 1.9 0.9

Table 2: Summaries of cluster-wise survival for the T1 and T2 tumor data.

the separability of the clusters is very good for both modalities suggesting that the choice

of two clusters is appropriate in this setting. In Table 2, we provide the mean and median

survival times associated with the clusters, computed using tumor shape data in each

modality. First, the T1 modality provides better discrimination between survival times

than the T2 modality. Furthermore, for both modalities, we see that the mean and median

survival times are higher in cluster 1, which contains much lower cumulative variance. This

suggests that cluster 1 is more homogeneous, which is associated with longer survival times;

cluster 2 is more heterogeneous and is associated with shorter survival times. This can also

be attributed to the general morphological structure of tumors in the two clusters. The

tumors in cluster 1 are often smoother and more circular than those in cluster 2, which

are more irregular. It is this irregularity that is indicative of a more severe and infiltrative

tumor with blurred margins, and as a result, shorter survival times. Note that the mean

difference in survival times between cluster 1 and cluster 2 computed using T1 tumor shapes

is 6.8 months, which is large compared to the 12 month median survival time in GBM.

4.1.1 Cluster validation via enrichment

We use the concept of Bayesian cluster enrichment to study the association between the

computed clusters, the tumor subtypes and other genomic covariates. In this approach, we
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T1 T2

Figure 9: Enrichment plots for the T1 and T2 modalities: (a) classical; (b) mesenchymal; (c) proneural;
(d) EGFR; (e) MDM4; (f) PDGFRA; (g) PIK3CA; (h) PTEN. The red lines indicate the 0.75 and 0.25
cutoffs for ‘high’ enrichment in cluster 1 (blue) and cluster 2 (green), respectively.

want to compare the relative occurrence of a specific dichotomous covariate (with label 0 for

no occurrence and 1 for occurrence) across the two clusters. To develop a Bayesian model for

this purpose, let θ1 ∈ [0, 1] (θ2 ∈ [0, 1]) denote the true proportion of 1s (0s) in cluster 1; let

y1 (y2) denote the observed number of 1s (0s) in cluster 1. Then, y1 ∼ Binomial(n1, θ1) and

y2 ∼ Binomial(n2, θ2), where n1 is the total number of 1s and n2 is the total number of 0s.

Consider a Beta(1, 1) prior on the true proportions θ1 and θ2. Since the Beta distribution is

conjugate for the Binomial, the posterior distribution is of the same family as the prior; the

resulting posterior distributions for θ1 and θ2 are given by πθ1(θ1|y1, n1) ∼ Beta(y1 +1, n1−

y1 +1) and πθ2(θ2|y2, n2) ∼ Beta(y2 +1, n2−y2 +1). We generate a large number of samples

from the two posteriors πθ1 and πθ2 , and approximate the true probability P (θ1 > θ2) using

Monte Carlo. We refer to this approximate quantity as the enrichment probability. The

intuition behind this approach is as follows. If the computed clusters are not associated

with the dichotomous covariate of interest, the resulting posteriors for θ1 and θ2 should be

very similar. This in turn results in a Monte Carlo estimate of P (θ1 > θ2) close to 0.5,

or no enrichment. On the other hand, when the two posteriors are drastically different,

the Monte Carlo estimate of P (θ1 > θ2) would be either very close to 1 (if y1 is much

larger than y2) or 0 (if y1 is much smaller than y2). These two scenarios constitute high

enrichment of the covariate in one of the two computed clusters (a given covariate can be

enriched in only one cluster at a time).

We present enrichment plots in Figure 9. Each plot shows the enrichment probabilities
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as a line plot with high and low cutoffs in the form of horizontal lines at 0.75 and 0.25. We

note the following trends from the enrichment plots. The classical and mesenchymal tumor

subtypes are enriched in cluster 1 for both modalities. The proneural tumor subtype

is enriched in cluster 2 for the T2 modality. Interestingly, the mesenchymal subtype, a

very aggressive form of GBM, was enriched in the cluster with higher survival. However,

upon closer examination, there was an equal number of mesenchymal and nonmesenchymal

subtypes in cluster 1 for both modalities (the enrichment probability was mostly driven by

the arrangement in cluster 2). Furthermore, the patients in cluster 1 with the mesenchymal

subtype had lower survival than their nonmesenchymal counterparts (by ∼1.5 months).

The enrichment plots for both imaging modalities display results consistent with some

of the well-characterized genomic signatures in GBM. We note the following strong asso-

ciations between tumor subtypes and driver gene mutations that have also been found in

other studies (McNamara et al., 2013; Verhaak et al., 2010): (1) proneural subtype and

PDGFRA mutation (in T2), and (2) classical and mesenchymal subtypes and EGFR mu-

tation (in T2). EGFR mutation is a common molecular signature of GBM. It promotes

proliferation of the tumor, which is associated with classical and mesenchymal subtypes

(Fischer and Aldape, 2010). PDGFRA also plays an important role in cell proliferation

and migration, and angiogenesis. Unlike EGFR, this gene was found to be mutated in high

amounts in the proneural subtype of GBM tumors only (Verhaak et al., 2010).

4.2 Permutation test for difference in tumor shape means

The distance dS between two tumor shapes opens up the possibility of a distance-based

nonparametric two-sample test for differences in mean tumor shapes. To ascertain the

association between tumor shapes and survival times of GBM patients, we dichotomize

the data based on four different survival cutoffs examined in the literature (Nebert, 2000;

Affronti et al., 2009; Mazurowski et al., 2013): 12, 13, 14 and 15 months. Under the null

hypothesis that the two groups have equal mean shapes, a permutation test analogous to
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Survival Cutoff T1 p-value T2 p-value

12 months 0.511 0.134

13 months 0.039 0.426

14 months 0.712 <0.001

15 months 0.841 <0.001

Table 3: Permutation test results for T1 and T2 tumor shapes.

the case of landmark-based shape analysis (Dryden and Mardia, 1998) can be constructed

under no assumptions on the distributions of the two groups. For each cutoff, we calculate

the test statistic, which is the shape distance dS between the Karcher mean estimates for

the two groups based on the given data. The distribution of this test statistic under the

null hypothesis is not easily determined. Thus, we employ a permutation test by combining

shapes from both samples (survival labels are exchangeable under the null hypothesis). We

use 1000 random permutations of the labels to generate the distribution of the test statistic.

The resulting p-values for the T1 and T2 modalities, and all of the cutoffs, are presented

in Table 3. Based on our test statistic, there is a significant difference between T1 mean

tumor shapes at the 0.05 level only at the 13-month cutoff. For the T2 tumor shapes, there

is a highly significant shape mean difference for the 14- and 15-month cutoffs. The results

clearly depend on the choice of the cutoff; nevertheless, this result provides support for our

hypothesis that tumor shape features can be useful in survival analysis in GBM studies.

We only use the mean shape information in this hypothesis test, although we expect that

the covariance information is also useful. We demonstrate how that can be achieved using

a principal coefficient representation of tumor shapes in subsequent survival modeling.

4.3 Survival model adjusted for tumor shape

Next, we ascertain the utility of augmenting clinical and genetic information with imaging

information when modeling survival probabilities of GBM patients. In particular, we in-

vestigate the association between the shape of a tumor and survival times (with censoring),
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in the presence of genetic and clinical covariates, using the geometry-based elastic shape

method. Upon performing sPCA in the shape space S, each tumor shape is represented in

the principal directions of variation basis via its principal coefficients, which can be used

as predictors in a survival model. Geodesic paths constructed using principal shooting

vectors allow for the possibility of traversing the principal directions of shape variation

and monitoring changes in the shape of a tumor. It is customary to choose a handful of

principal directions that explain most of the shape variability; however, since S is infinite-

dimensional, and it is unclear how one can interpret the directions in the context of tumor

shapes, we propose to use all available directions to capture maximal information from the

data. Indeed, it may very well be that a direction corresponding to a small (in magnitude)

eigenvalue represents a physiologically important tumor shape deformation. In order to

incorporate all information from the images, we perform separate sPCA on tumors ob-

tained from both T1 and T2 MRIs, and collate the principal coefficients from each imaging

modality. Employing all available shape principal coefficients translates to a large number

of imaging-based shape predictors in a potential survival model necessitating dimension

reduction through variable selection.

To assess whether incorporating imaging covariates, through principal tumor shape

coefficients, improves discriminatory power of the survival model, we compare three nested

models: (1) M1, a model with a set of clinical covariates C ; (2) M2, a model with clinical

and a set of genetic covariates G ; and (3) M3, a model with clinical, genetic and a set of

imaging covariates I in the form of shape principal coefficients; note that M1 ⊂M2 ⊂M3

where A ⊂ B denotes that model A is nested within model B.

The clinical covariate KPS contains a few missing values; we impute a value of 80 for

those cases as advised by Gutman et al. (2013). A proportional hazards model (Cox, 1972),

hereafter referred to as the Cox model, is used as the de facto model underlying M1,M2

and M3, modeling the survival times of the patients in the presence of clinical, genetic and

imaging predictors. Note that M1 := Cox model with C , M2 := Cox model with C ∪ G ,
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and M3 := Cox model with C ∪ G ∪ I . Importantly, model M3, with a large number

of tumor shape principal coefficients as predictors (62 each for T1 and T2), is fitted to

the data by penalizing the negative log-likelihood using a lasso penalty. Furthermore,

we use leave-one-out cross-validation to determine the value of the penalty parameter.

Specifically, if η is the vector of coefficients, then M3 is fit by solving the optimization

problem minη

[
- log-partial likelihood of M3

]
+ λ|η|1, where |η|1 is the L1 norm of η. We

use the R package glmnet by Friedman et al. (2011) for our implementation of model M3

with leave-one-out cross-validation. The set I is then redefined to contain only the principal

coefficients with non-zero regression coefficients obtained from this lasso regression.

4.3.1 Significant directions of shape variation and other results

Next, we focus on the results of fitting the three models. Using the lasso penalty for

model M3, we first identify the principal tumor shape coefficients with non-zero regression

coefficients, owing to the lack of a general accepted way of testing for significance within

the lasso framework (see recent work by Lockhart et al. (2014)). We uncover six principal

directions of variation from T1 tumor shapes and five from T2 tumor shapes, when adjusted

for the presence of predictors in C and G . The 11 coefficients comprise the operative new

set I . One can visualize deformations of the Karcher mean tumor shape by following the

vector field along the geodesic in the directions represented by the significant principal

coefficients in the survival model. Such plots can potentially be used by neuroradiologists

to visualize and make qualitative statements about deviations from the mean shape relating

to increased or decreased chances of survival, when adjusting for the presence of clinical

and genetic factors. We provide these displays in Section 3 of the Supplementary Material

for both modalities. The shapes become more irregular as one traverses the significant

principal directions in the direction of a decreased chance of survival. The higher principal

directions show global deformations that introduce a high level of non-smoothness, which

are indicative of a protrusion of the tumors into neighboring structures.
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Results from fitting the three Cox models are given in Table 4. Gutman et al. (2013)

found significant association between the clinical covariate KPS and survival time, adjusting

for the presence of other numerical radiological summaries; this agrees with our results for

all three models. Although the KPS score is measured on a scale of 0-100, the only distinct

values in our dataset were 60, 80 and 100 along with missing values for 12 patients. As a

measure of the ability to perform activities of daily living, the KPS scores only influence the

survival time indirectly, and in this dataset, they complement the influence of the tumor

shape principal coefficients. Since tumor volume was recorded for each patient from T1

and T2 images, we considered the shapes of tumor outlines rather than shapes and sizes.

The size of the tumor was included in the model as a separate covariate through the tumor

volume. It is known that tumors with EGFR mutations are larger than tumors with other

mutations (Hatanpaa et al., 2010). In our analyses, EGFR and tumor volumes from both T1

and T2 images were not found to significantly correlate with survival time in the presence

of tumor shape information. This finding is at odds with that of Gutman et al. (2013)

where lesion size was used. It is known that older patients with GBM show high EGFR

amplification. However, the variable EGFR informs us only if a mutation has occurred, not

amplification. The age of a patient diagnosed with GBM is known to influence the survival

time (Weller and Wick, 2011). Older age is typically used as a surrogate marker for change

in the biology of GBM. The mean age in our dataset was 56.33 years; the variable Age

appeared to have significant correlation with survival time in all three models, and the

inclusion of tumor shape information did not alter that.

The discriminatory power of models M1, M2 and M3 are compared using their con-

cordance indices (C-indices), which are defined as the proportion of all pairs of patients

whose predicted survival times are correctly ordered among all patients that can actually

be ordered. For comparison purposes, we use the C-index proposed by Harrell et al. (1982,

1984), and another version of it based on a U-statistic (Gömen and Heller, 2005). The

C-indices (obtained through both methods) for the model M3 are significantly higher than
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Model Predictors C-index 1 C-index 2

Significant at 0.05 (Harrell et al., 1982) (Gömen and Heller, 2005)

M1 Age, KPS 0.641 0.652

Clinical

M2 Age, KPS 0.722 0.728
Clinical+Genetic DDIT3, PIKC3A

M3 Age, KPS, DDIT3 0.859 0.841

Clinical+Genetic+Imaging 11 PC shape coefs

Table 4: Results from fitting Cox models M1, M2 and M3. Predictors significant at the 5% level are
tabulated, and the two concordance indices are reported.

the C-indices for M2 and M1. This indicates a clear benefit in incorporating tumor shape

predictors in the form of principal coefficients into a survival model in order to obtain good

discriminatory power. The Kaplan–Meier estimates of the survival functions for the three

models, along with a description, are provided in Section 3 of the Supplementary Material.

In summary, amongst the driver genes known to be significant in GBM studies, only

DDIT3 appears to have a significant correlation with the survival time of a patient when

adjusted for the effect of tumor shape. Mutation of the driver gene DDIT3 appears to be

associated with low survival probability (see Figure 6 in the Supplementary Material); it is

known to indirectly regulate the glioma pathway through unregulated genes. Our analyses

indicate that the shape of the tumor captures sufficient information about the individual

relationships between each of the driver genes and survival time. A deeper study of the

relationships between the shape of the tumor and driver genes is well worth exploring.

5 Discussion and future work

The use of shape analysis in medical imaging has been proposed before in other disease do-

mains; we refer the reader to Chapter 17 of the edited volume by Tofts (2003) and references

within, for a good review. The shape of specific anatomical structures in the brain has been

successfully used in multiple sclerosis studies by Goldberg-Zimring et al. (1998), who based

the analysis of shape on a few shape indices of the lesion. Landmark-based techniques
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using Procrustes averaging were used to study schizophrenia by DeQuardo et al. (1996).

However, landmark and descriptor-based methods are not directly applicable to oncology

due to multiple issues mentioned in this paper. In this work, we provide a comprehensive,

Riemannian geometric solution to this problem that provides tools for various statistical

analyses of tumor shapes. The benefits of this framework are clear: (1) it provides an elastic

metric to measure interpretable shape deformations, (2) it defines a formal mathematical

and statistical framework, and (3) it provides tools for shape alignment, comparison, sum-

marization, clustering, classification, hypothesis testing and other tasks. We demonstrate

these benefits through a detailed study of tumor shapes in the context of GBM. The pro-

posed method can be readily extended to any cancer and/or other imaging modalities with

similar data characteristics and scientific questions.

The focus of this article is on 2D tumor shapes obtained from the segmented tumor

of a single axial slice of the brain with largest tumor area. The influence of the location

and anisotropic nature of the white matter tracts on the shape of the tumor can be better

assessed with 3D shape analysis, which is currently in progress. The geometric framework

presented in this paper allows for the extension to 3D shapes (square-root normal fields

(Jermyn et al., 2012)), which would allow one to capture the full elastic shape of the tumor.

However, studying parameterized surfaces in this context is difficult due to the large shape

heterogeneity of the tumors. Except for the work of Goldberg-Zimring et al. (2005) who

used spherical harmonic functions to model the 3D shape of a tumor (akin to nonelastic

analysis of tumor shapes), there is a lack of progress in this direction.

One way to view the proposed survival model is within the context offered by regres-

sion with functional predictors. The parametric closed curve representing a tumor shape

predictor can be viewed as an element of the pre-shape space C, which is a submanifold

of L2(S1) and not a vector space. Current approaches with functional predictors using

basis representations of the tumor shape or the coefficient function, or both, are hence

inapplicable (see Morris (2015) for a detailed review).
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The geometric framework used in this article enables us to perform PCA on the space

of tumor shapes under a Riemannian metric. The physiological interpretation of the prin-

cipal directions, however, is unclear and much work remains to be done in this direction.

Construction of a set of basis functions for the tangent space of a tumor shape that cap-

tures the biologically relevant deformations of the shape would be particularly useful; this

requires significant input from clinicians in the form of prior shape information. The defor-

mations observed in the tumor shape as we move away from the mean along the direction

of decreased survival are striking; the shape appears to become more spiculated, which

is consistent with the heuristic understanding of the seriousness of an irregularly shaped

tumor. The visualization afforded within our framework, in our opinion, can profitably be

used by neuroradiologists for initial non-invasive diagnoses. An alternative approach would

be to use sparse PCA methods to model the variability in tumor shapes, which has recently

proven useful in generating results that are clinically interpretable (Sjöstrand et al., 2007).

Applying the survival model M3 to the GBM dataset, we uncover several potentially

interesting relationships between the shape of the tumor (expressed through the principal

coefficients) and driver genes. This merits further consideration, and the implementation

of our methods on other GBM datasets would offer more insight. Biological validation of

the correlations between the two can significantly impact targeted personalized treatment

strategies for GBM patients. Importantly, prognostic biomarkers of the transition time

from a low-grade glioma to a malignant one can be determined.
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